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Abstract

Introducing the generalized Langevin equation, we extend the stochastic quantization

method so as to deal with singular dynamical systems beyond the ordinary territory of

quantum mechanics. We also show how the uncertainty relation is built up to the quantum-

mechanical limit with respect to fictitious time, irrespective of its initial value, within the

framework of the usual stochastic quantization method.

1 Basic ideas of stochastic quantization method (SQM)

The Parisi-Wu stochastic quantization method (SQM) [1, 2] was so designed as to give quantum

mechanics as the thermal equilibrium limit of a hypothetical stochastic process with respect to a

new (fictitious) time other than the ordinary time. The Background idea is that a d-dimensional

quantum system is equivalent to a (d+ 1)-dimensional classical system with random noise. We can

consider the SQM to be a third method of quantization remarkably different from the conventional

theories, i.e., the canonical and path-integral ones. The SQM has the following advantages:

1. We can quantize any dynamical system only on the basis of equation of motion, while the

canonical method is based on Hamiltonian and the path-integral method on Lagrangian.

2. We can quantize the gauge field without resorting to the conventional gauge fixing procedure

[3].

We deal with the dynamical system described by Euclidean action SE[q], where

q(x) = (q_;i = 1, 2,...} are dynamical variables and x is the ordinary time for particles or 4-

dimensional coordinates for fields. As the first step, we show that SQM gives the same result as

given by the conventional path-integral method:

< G > = C/l)qG(q)exp(-SE[q]/h) , (1)

A(x,x') = C f T)qq(x)q(x')exp(--SE[q]/h) , (2)

where < G > is the quantum-mechanical expectation value of an observable G(q), A(x, x t) is the

propagator and C the normalization constant. In this paper we also observe how the uncertainty
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relation is built up to the quantum-mechanical limit within the framework of the hypothetical

stochastic process of SQM.

According to the prescription of SQM, we set up the basic Langevin equation in the following

way:

Oq_(oc, t)
_ 5SE[q]]" + Th(X, t) , (3)

Ot 5qi(x) .q=q(x,t)

< rli(x, t) >, = 0, < _/i(x, t)TIj(x', t') >,= 2a5ij6(x - x')_f(t - t') , (4)

where t stands for the fictitious time, T/i for Gaussian white noises and a for the diffusion constant.

Using its solution in the thermal equilibrium limit, we get the same expectation value as given by

the conventional path-integral method. To show this situation more clearly, we need to use the

Fokker-Planck equation corresponding to the Langevin equation.

Defining the probability distribution functional q)[¢, t] by

/DqG(q)¢[q,t] =< G(q'/(z,t) >,, (5)

we can derive the Fokker-Planck equation as

o
5 1 6SE[q] } ,

_-_[q,t]=t_[q,t], /_=a/d__{_+a_ (6)

where F is the Fokker-Planck operator. If the drift force Ki(q,t) = -(SSE[q]/5(h)q=q(z,t) has a

damping effect, i.e. (SSE[q]/_qi)q=q(x,t) > O, we get the thermal equilibrium limit (t ---, co) as
follows:

¢.q[q] = C exp(-_SE[q]) • (7)

Putting a = h, therefore, we obtain the prescription of SQM:

lim < G(q'_(x,t) >, = lim f DqG(q)¢[q,t]
t---*_ $---*oo J

f DqG(q)¢_q[q] = c.,f DqG(q)exp(-lnSE[q]) =< G > (8)

2 Building-up of the uncertainty relation in the hypo-

thetical stochastic process

Quantizing one-dimensional harmonic oscillator by means of SQM, let us see the dependence of the

uncertainty relation on the fictitious time. The Euclidean action of the one-dimensional harmonic

oscillator is given by

M dq 2
scq]: I..o [v(_l +_M'.'q'] (9)

According to the prescription of SQM, we set up the Langevin equation of this harmonic oscillator
as follows:

_q(xo, t) = M2[ 0 ]-w 2 q(xo, t) + 71(xo, t) , (10)

< 'l(zo, t) >, = 0, < 'l(zo, t),l(z'o,t') >,= 2h_(z0 - Z'o)_(t- t'). (11)
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Solving this, we easily obtain the following dependence of the uncertainty relation on t:

[/ ]1 dkp(k)e-2M(k2+_2)t + 2Mw _ Jo(Aq(t))2(Ap(t)) 2= _ e-Z2dz

1 /dkk2p(k)e_2M(k2+_2)t hMw 2 Jo e -z dz]
(12)

where p(k) = (Aq(k, 0)) 2 is the initial value at t = 0.
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FIG. 1. We show how the uncertainty relation were built up with respect to the

fictitious time. The solid line corresponds to the uncertainty relation for Aq(k, O) = O,

the dotted line to that for Aq(k,O) _ 0. Note that the negative sign of (AqAp) 2 is

due to the Wick rotation (z0 --* -ixo).

In FIG. 1, we can clearly see that the uncertainty relation in the hypothetical stochastic process

approaches to the quantum-mechanical limit, irrespective of its initial values.

3 Generalized stochastic quantization method

We have many basic Langevin equations to give the same quantum mechanics [2]. By making use

of this kind of freedom, we can go beyond the ordinary territory of quantum mechanics.

A generalized Langevin equation to give the same quantum mechanics is given by

6s _djK(_,5'.,.¢)
o¢(_, t)=- f adz' K(x, x';¢)6¢(_',t) + f 6¢(x',t) + f adx'G(_,_';¢)_(x', t)

< 7/(z, t) >= 0,

, (13)

< rl(x,t)_l(x',t')>= 26a(x-x')6(t-t').(14)

Note that we put h = 1 hereafter. As an example, let us discuss the bottomless system described

by scalar field ¢(x) with the following action

SE[¢] = Sfree[¢] + Sint[¢] , (15)

x being d-dimensional Euclidean space-time point. Sfree[¢ ] is the free part of the action and

Sint[¢] the bottomless interaction part. We know that we can hardly quantize the bottomless

system by means of the conventional quantization method. For

K(x,_e';¢)=6d(x-x')K[¢] , G(x,x';¢)=6a(x-x')K1/2[¢] , (16)
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we simplify the above generalized Langevin equation as

6s_.[¢] _K[¢____]
O¢(x,t) =-K[¢]5¢(x,t------_) + 5¢(x,t) + K1/2[¢] rl(x't)' (17)

i.e.

6s_[¢____!]
¢(x,t) = -g[¢]_¢(x,t) + K1/2[¢]_(x,t), (lS)

where we have put SK = SE -- In K. Provided that the drift force has a damping effect, that is

to say, SK = SE -- In K > 0, this Langevin equation has the thermal equilibrium limit. To satisfy

this condition in the bottomless system, we may choose the Kernel as K[¢] = exp{Sint}. In this
case the generalized Langevin equation becomes

5S_[¢]
O¢(x, t)= -K[¢] 5¢(x,t) + K1/2[¢] rl(x't)" (19)

Based on this equation, we can perform the numerical simulations of bottomless scalar field models

and the bottomless hermitian matrix model.

4 Application to bottomless systems

A simple bottomless example [4] is given by

s2[¢]= , S,[¢]= >0, (20)S[¢] $2[¢] S4[¢],

where ¢ is a zero-dimensional field. If we put K[¢] = exp(AK¢4), the well-posed condition men-

tioned in the preceding section becomes

l_2n 1
SK=SE-InK= _',u_ +_(AK-A)¢ 4>0, i.e. AK_>A. (21)

Ifwe choose AK equal to A, the Langevin equation reduces to

_t¢(t) = exp[-S4]¢(t) + exp[-S4/2]rl(t ) . (22)_m 2

Based on this Langevin equation, we have numerically simulated the stochastic process of ¢.

t_

* | I I it'. a
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FIG. 2. Distribution of numerical solution of the Langevin equation (22) (open cir-

cles) for A = 0.1, m = 1. For comparison, we plot the path-integral measure exp{-S}

of the bottomless action (20) (solid line) for the same parameters.
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FIG. 2 shows that the form of the distribution of numerical solution is consistent with the form

of the path-integral measure exp(-S} of the bottomless action (20) in the central region of ¢.

From the prescription of SQM that at the thermal equilibrium limit we get the same expectation

value as given by the path-integral method, we conclude that, in the central region of ¢, the

probability distribution of solutions of the generalized Langevin equation (22) is consistent with

the path-integral measure exp(-S} even of the bottomless action.

As the next example, let us consider the bottomless hermitian matrix model [5], which is

regarded as an important model of two-dimensional quantum gravity [6]. The partition function

of N x N hermitian matrix model is given by

N

= : dCexp{-S[¢]}, de - 1-'[ d¢_ 1-I d(Re¢_j)d(Im¢_j) .Z (23)
_=1 l<i<j<_N

Independent variables of the hermitian matrix model are Re¢_j, Im¢_j (i < j) and ¢_

with i, j = 1, 2,... N. The action of the bottomless hermitian matrix model is given by

S[¢] = Sfr_[¢] + Sint[¢] , Sfroe[¢] = Ntr[_¢ 2] , Sint[¢] = -gtr[g¢ 4] -- -$4[¢] , g > 0. (24)

For kernel K[¢] = exp{-S4[¢]}, the generalized Langevin equation becomes

-1S 4= + e (25)

t¢_'I(t) = -2Ne-S4¢_J(t) + e-_S4_lRJ(t) , (i < j) . (26)

The statistical properties of the Gaussian white noises must be subjected to

< rhi(t ) >, = 0, < _(t)rljj(t') >,= 2_j6(t - t') , (27)

< _A(t) >, = O, < rlA(t)_(t ') >,= 2_AB6ik6jl6(t- t'), (i < j,k < l), (28)

< _A(t)rl,_m(t') >n=O, (i < j) , (A,B= R,I) . (29)

One of the most remarkable results is observed in the deviation of < tr¢ 2 > /N from the

planar calculation [6], as shown in FIG. 3.
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FIG. 3. Expectation values < tr¢ 2 > /N for various values of N(open squares).

The solid line shows the planar result [6]

This deviation has so far been anticipated only from theoretical conjecture.
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5 Conclusion

We have observed, within the framework of SQM, that the uncertainty relation will be built up to

the quantum-mechanical limit, irrespective of its initial value, in a hypothetical stochastic process
with respect to the fictitious time.

Introducing generalized (kerneled) Langevin equations, we have extended SQM so as to deal

with singular dynamical systems beyond the ordinary territory of quantum mechanics. We also

have attempted to quantize a few singular systems, such as bottomless systems, by means of SQM

which is based on the generalized Langevin equations.
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