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An electronic excitation of a molecule by a sequence of two femtosecond phase-locked laser pulses is
considered. In this case the interference between the vibrational wave packets induced by each of the

subpulses within a single molecule takes place. It is shown that due to the dynamical squeezing effect
of a molecular vibrational state the interference of the vibrational wave packets allows one to measure

the duration of a femtosecond laser pulse. This can be achieved experimentally by measuring the

dependence of the integral fluorescence of the excited molecule on the delay time between the
subpulses. The interference can lead to a sharp peak (or to a down-fall) in that dependence, the width

of which is equal to the duration of the laser pulse. It is shown that finite temperature of the medium
is favorable for such an experiment.

Recently a great interest has been shown to the study of spatially localized vibrational wave

packets in molecules induced by ultrashort laser pulses. The time evolution of the mean position of

such a wave packet corresponds to the nearly classical nuclei motion, and can be observed in the

pump and probe spectroscopic optical experiments [1-4]. The idea of controlling the chemical

reactions due to the possibility of the nearly classical nuclei motion has been widely discussed and

experimentally verified [5-10].

An important characteristic feature of the vibrational wave packet is its spatial extent. In the case

of a harmonic nuclear potential the spatial properties of the wave packet are closely connected

with the phonon statistics and can be treated by the methods developed in quantum optics. In a

series of previous publications [I 1-16] we have studied the statistical properties of the vibrational

states appearing due to the excitation of Franck-Condon transitions by the transform-limited light

pulses of finite duration. The problem was to learn how is it possible, by varying the characteristics

of a laser pulse (i.e. its amplitude and phase modulation), to excite the molecular vibrations with

the given quantum fluctuations of the conjugated variables. In particular, it was theoretically

predicted [11-13] and experimentally verified [17] that, when the spectral width of the exciting pulse
is smaller than that of the absorption band, there appears a molecule in a squeezed vibrational

state with a reduced quantum uncertainty of the nuclei position. The mechanism of squeezing,

which arises here, is of the dynamical nature and can be explained as the result of quantum

interference in the phase space of the molecular vibrations [13]. An application of the dynamical

squeezing effect to the problem of wave packets optimal shaping for the control of the chemical

reactions was considered in [ 18-21].

Our goal now is to show how this dynamical squeezing effect can be put to use in another way
for the duration measurement of a femtosecond laser pulse. Following [22], we shall consider the
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excitation of a Franck-Condon transition in a molecule by a sequence of two femtosecond phase-

locked Gaussian-shaped pulses:

_ ,
2n 4

separated from each other by the time interval T. Here a is a possible additional complex

coefficient between the pulses: ct = lalexp(i¢0). As it was demonstrated experimentally in [22] it is

possible to change the time interval T, keeping constant the value of phase rp .

We shall assume that due to the electronic transition only a spatial shift of the harmonic nuclear

potentials occurs in the molecule. The adiabatic Hamiltonians describing molecular vibrations in

the initial (i) and excited (e) electronic states have the form

^ 2 t_lO) 2 qi )2,= _' + P-2m+ ----_(q +Hi (2)

--^2-_mr°2_2 (3)+--T '
where e:,_ are the electronic energy levels. It is convenient to rewrite Eqs. (2) and (3) expressing

and f_ through the phonon creation and annihilation operators:

_/ h + h/h--mr_, +9= 2-_n_(b +b), _=i_---_b-b). (4)

Then

+--y-+ b+b+bb )+h b +b),g:q, , (5)

H,= G +7(b+b+bb+). (6)

A non-dimensional coupling constant g, which appears in Eq. (4), is equal to the ratio of the

Franck-Condon shift to the amplitude of zero vibrations. The Hamiltonian (5) can be diagonalized

by means of the unitary displacement operator

D : exp[-g(b + - b)], (7)

hco (b
D+H,D : _, +--_--, +b+bb+). (8)

It is easily seen from Eq. (8) that the ground state vibrational wave function of the molecule in
the initial electronic state has the form

@, ) =/_0), (9)

where 10) is the phonon vacuum, which coincides with the ground vibration state of the

electronically excited molecule. Let us note that the displacement operator acting on the vacuum

state gives the coherent state. Then Eq. (9) simply means that the ground state wave function of the

harmonic oscillator being placed in the shifted potential is a coherent state.

The case of zero temperature. We shall assume that initially at t = -_ the molecule was prepared

in the state li) _,), where 1i) is the electronic wave function of the unexcited molecule. After the

resonance interaction with the field (1) the wave function of the molecule will have the form
/ I

Iv, t>= Ii, t)l¢, t)- i (E0. d,.e)le, t)v t), _(E°" d"')[ 1. (10)" ' <<
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Eq. (10) is derived in the first-order perturbation theory. Here di,,, is the dipole matrix element of

the electronic transition, which is assumed to be independent of the vibrational coordinate in

accordance with the Condon approximation, and IV, t), the unnormalized vibrational wave

function of the excited molecule. Due to (!) this wave function consists of two terms

IV,l):lv,t)+ lv ,,),
e functions Iv_ ,t) correspond to the vibrational wave packets being excited respectively by

each of the subpulses in (I). Generally, the wave functions IV ,t) and Iv,1> notor,hogon  and

their overlap depends on the delay time T between the subpulses. This opens a possibility to

observe the delay time dependent interference effects in the physical processes which are

determined by the population of the excited electronic state of the molecule. For the sake of

explicitness we shall assume that the measuring quantity is the quantum fluorescence yield of the
excited molecule. In the case of the transition in the pure electronic system (without a vibrational

degree of freedom) functions IV, ,t) are reduced to numerical amplitudes

I I F 6 2 i6T 7

where d = ee/h-c_/h-f2. The dependence of the excited state population on the delay time

between the subpulses in this case is of a trigonometric character:

Iv12= 2exp -z_- i- l+la +21,_lcos(_0+ar)]. (13)

In the remainder part of the paper we shall consider how the accounting of the molecular

vibrations changes Eq. (12). The general expressions for functions IV+_,t) are given by

, i _,) k<,[.
IVy,t)- 'a '_ dt, exp[- _-(t, + T/if2)-if_t,+_He(t, + h J

rc .-_ (14)

r, Iex PL-h-H i'l *i)"

to transform the wave functions (14) into the form of aUsing (7) and (9) it is convenient
distributed coherent state [I 3]

- n '4 exp -T-id _dt'exp_ --t2+2 , idt, D t, g--_--- t IO). (15)

Time dependence of the Heisenberg displacement operator D(t) in (15) is determined by the

Hamiltonian (6). To evaluate the time integral in (15) now it is possible to use the well known

Fock-space expansion of the coherent state DI0) [23]. As a result we have:

,, z(_g)_ex_.... g2 (6+no))2] _ i(6+2oa)T]V_,t)= 2'2/r 4 . _.1 2 2U 2 ex -Z- - - n,t), (16)

In, t) = exp(-ineot)ln) ,

wherein} are the Fock-space eigenfunctions of the harmonic oscillator. Comparing Eqs. (1 2) and

(16) it is easy to see that the coefficients at [0,t) in (16) coincide with the amplitudes V_ . Exact Eq.

(16) is convenient for the numerical calculations. Another way to evaluate the integral (1 5) is based

on the replacement of the coherent state D(t 1 T-T/2-t)lO)=l-gei°'l";ri-') ) by
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- ( -loot 1 which is possible when u>>co. In [13,15] it was shown that the integration

in (15) in this case can be performed in the operator form, and leads to the result:

]V_,t)_ I41' 12 exp(-T-i_--]D(t+ T/2)S(t+ T/'f2)]0). (17)

In (17) the normalizing factor W is the absorption spectrum of the electronic-vibrational
transition:

W = a- 2 -_-exp - , A=6+g2c0, B0 2 =U2+292CO 2, (18)

/_ and S are the unitary displacement and squeezing operators:

_ t (oA
D(t)=exp -gl b+U)-b(0

B0 2

S(0 = exp _-ln [b(0 2 - b'(0 2 .

The action on the vacuum state of the operator/9S gives an ideal coherent squeezed state in which,

generally, the mean position and momentum of the oscillator have nonzero value, the uncertainties

of the position and the momentum are not equal to each other and their product has the minimal

possible value. In the a-plane of the coherent states each of the vectors _; ,t) can be considered
t

as

/ __N

an ellipse uniformly moving along the circle with the radius _=g_l-r°_'/B_ ), and keeping the

orientation of the axes in the rotating frame. At moments t, for which the arguments of the

operators in (17) are equal to the integer number of the vibrational periods, the values of the ellipse

main axes are equal to the non-dimensional uncertainties of the position and the momentum with

the small axis corresponding to the uncertainty of the position:

u , ._2g2co_ + u 2

Aq= x/_x/2g2c ° 2+ u2 Ap= x/'2u (20)

If the coupling constant is large enough (g>>l), then the wave functions V_+,t) are located at a

sufficient distance from each other, and are approximately orthogonal except for the case when the

time delay between the subpulses appears to be equal to an integer number of the periods. From

geometrical considerations it is clear that when the delay time between the subpulses gains an

integer number of the vibrational periods, the overlap of the vibrational wave functions V+,t) and

V, t) can be observed in the a-plane as the approaching of two ellipses along the direction of their

big axes. So it is likely to expect the following qualitative effect of the molecular vibrations on the

interference picture given by Eq. (13): (i) the dependence of the population of an excited state on

the delay time between the subpulses should be more pointed in comparison to the trigonometric

dependence in Eq. (13), (ii) while the delay time approaches the integer number of the periods the

interference picture should be sensitive to the quantum state of the molecular vibrations, and the

squeezing effect can be seen due to the dependence of the interference picture on the subpulse
duration.
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27/" m
Let us put T=--+ r in Eqs. (15), (16), where r, is a small deviation from the integer number

co

of the vibrational periods, and evaluate the population of the excited state. In accordance with

Eqs. (15) and (16) one finds

(v v):. dr/ex i6_ - _r/
,a,,

where M(_)= (0 D+ (0)D(_) 0), and

g2. r
Ivlvl: g

i 7
a e '`° " M(rl + r)+a'e ' _ '_"M(r/-r)_]

(21)

.2 i+Ia12+21 lco . (22)

i( ,)While deriving Eq. (21) we have performed the integration over the summary time T tl + tl . The
t

remaining integration in (21) is carried out over the difference time t) -t) = 7/. The vacuum average

of two displacement operators in (21) frequently arises in the theory of Franck-Condon transitions

and can be evaluated, for example, using the coherent states method [23]:

M(_:) = exp[g2(e i°'¢ -1)]. (23)

It is worth noting that Eq. (22) can be received from (21) by expanding in (23) the exponent in the

powers of g2exp(ico_). Due to the condition u>>co integral in (21) can be evaluated

asymptotically (by the steepest descent method [24]). To do that one can expand the index of the

exponent in the powers of _ up to the second order terms:

M(¢) = exp(ig2(0¢ - ½ g2c02¢ 2). (24)

Substituting (24) into (21) and performing the integration, one obtains

f 2 r l(r ]2] ( + +Au'_v_

(VIV)=Wll+lal+2lalexp[--_i-_o J Jcos_cp 27rmdco --B-_-o2Jf,2

(25)

B 0 _u 2 + 2fco 2

zo - 4_g<ou - 4_ugco

Equation (25) describes the interference between the vibrational wave packets within a single

molecule. Depending on the experimental conditions, i.e. the values of ¢p, 6, and m, this

interference can lead to a sharp peak (constructive interference), or to a down-fall (destructive

interference) in the fluorescence dependence on the delay time between the subpulses. The new and

the most constitutive feature of Eq. (25) is the dependence of the interference peak width Y0 on the

reciprocal pulse duration u. Within the range of pulse duration co2 << u 2 << 2fco 2, where, in

accordance with Eq. (20), the squeezing effect is the most considerable, the width of the

interference peak approximately equals to the subpulse duration 7'0 = u-I. This gives a practical

possibility to use this effect for the duration measurement of a femtosecond laser pulse. The fact
that the dependence of the interference peak width on the pulse duration is indeed the consequence

of the dynamical squeezing effect becomes clear if we note that the second order expansion in Eq.

(24) is equivalent to the first order expansion over t I + _/2 in Eq. (15). In the limit of extremely

1

short pulses u 2 >> 2g200 2 Eq. (25) coincides with that previously received in [20]. In that limit the
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interference peak width does not depend on the pulse duration: Y0 _ (r_gco)-' .It should be noted,

that the limiting interference peak width is achieved for those laser pulses, during the action of

which the initial vibration state of a molecule in the process of electronic excitation has no time to

change. The effect of the dynamical squeezing in this limit is absent. The picture of the interference

peak as the function of the variables r and u, numerically evaluated with the help of Eq. (22),
can be seen in Fig. I.

The case of nonzero temperature. In the case of nonzero temperature we shall assume that the

initial vibrational state of the molecule is described by the equilibrium density matrix. The
population of the excited electronic state in this case can be evaluated in the second order

perturbation theory for the density matrix. An expression for the nonequilibrium density matrix of

the phonons, arising due to the excitation of a Franck-Condon transition by a single laser pulse

was obtained in [11, 14]. In the present paper we need to calculate the trace of an analogous
density matrix, appearing due to the action of the field (1). It seems to be evident, that the

expression for this trace will have the form of Eq. (21) with the functions M(d_) replaced by

(l_))=Sp[poD+(O)l_)]=exp{g'[(K+l)e '°_ +_e '_ - 2_-1]}, (26)

where P0 is the equilibrium density matrix of phonons, and K, the thermal equilibrium phonon

number. The Fourier expansion of (M(_)) is given by
n

(M(_))= E 2I_ 2g2_)ex_-g2(2-_+l)+inco_] , (27)
n: _orj

where 1,, is the modified Bessel function. A generalization of equation (22) for the case of a

nonzero temperature has the form

÷ , 2 ,-. F (8 +nco)'1
(VIV) : 2rc_ 2..,/--=-/ l,,[2g _/n{h_+l))exp[

-g2(2h-+ 1) [.
n--_k n ) L UZ J

(28)

l+lal2+ 2lalcos ¢+2n--+(8 +nco)r .
CO

To evaluate the integral in Eqs. (21), in analogue to the case of the zero temperature, we shall
expand the index of the exponent in Eq.(26) in the powers of _: up to the second order terms. In

this way we find that the effect of finite temperature in Eqs. (18) and (25) is manifested in the

replacing coefficients B 0 and Y0 by

B=_/u 2 + 2g2co2(2_+ 1) , y= x/u2

/

+ 2g2co2(2_+ 1)

ugcox/2(2_ + 1) (29)

From (29) one can see that the temperature growth leads to the extension of the area of linear

dependence of the interference peak width on the laser pulse duration. According to. Eq. (29),

uo' = [2g2a_2(2_ +1)] -5 can be considered as the limiting value of pulse duration for the range of

this linear dependence. It is interesting to estimate the value of Uot for a real physical system. To do

this we shall use the data for 12 molecule from [22]. Taking g2 = 6.4, 2n-//= 300f_ and T = 300°K,

we obtain Uo_ _ 7fs. The natural upper limit for uo _ is the inverse vibrational frequency co-_. In the

experiment [22] the laser pulses of about 50f_ duration have been used. In accordance with the

given estimate the pulses of such duration belong to the area where ), = u -t.
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In conclusion note that the measurements of the interference peak width aimed at determining

the duration of a femtosecond laser pulse represents only one of the possibilities to use the

intramolecular interference phenomenon of the vibrational wave packets. Another interesting and

important possibility is the observation of the wave packet distortions due to the intramolecular

propagation. This problem we are planning to consider in our forthcoming paper.
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