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Abstract

We discuss a model for interferometric GW antennas illuminated by a laser beam and

a vacuum squeezed field. The sensitivity of the antenna will depend on the properties of

the radiation entering the two ports and on the optical characteristics of the interferometer

components, e.g. mirrors, beam-splitter, lenses.

1 Introduction

An important ingredient for improving the sensitivity of Michelson interferometric gravitational

wave detectors (GWD) is using appropriate states for the light beams illuminating its two input

ports. In interferometric measurements the quantum noise is due to the fluctuations of the number

of photons and to the random motion of the mirrors induced by the radiation pressure. The GW

signal is extracted from the spectral density of the output.

Purpose of this paper is to discuss the dependence of the sensitivity of an interferometric

GW antenna on the photon-noise and radiation pressure noises. In particular we will consider

an interferometer driven by a fluctuating laser beam and a squeezed-vacuum field generated by a

degenerate OPO driven by the second harmonic of the laser beam. Particular attention will be

paid to the influence of phase and amplitude fluctuations of the laser beam.

2 Michelson interferometer

We consider a Michelson interferometer with two mirrors M1 and M2 suspended at the ends of

two arms. The vertices of M1 and M2 are located on the axes y and x passing through the origin

O, while the beam splitter is centered on O (see Fig. 1).

In order to account for aberration effects, we will model the interferometer as a multimode

device: we consider two groups of beams entering through the ports PI, P2 (Fig. 1), described by
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Figure 1: Michelson's interferometer. B.S.= beam-splitter; WM aberration regions due to the

mirrors; WB.s. aberration regions due to the beam-splitter; F.D.= frequency doubler; O.P.O.=

Optical Parametric Oscillator; ha,, fi2, = in-fields at the port 1,2; bl,, b2, = fields at the mirror 1,2;

c1,, c2. = out-fields at the port 1,2.

the operators (dj,, 5!1 ), (fiJ2, a_._) with j = 0, 1,..., N- 1, acting on a Hilbert space "Ha = 7/a, ® 7Q2,

with 7/,, = 7/(o) ®... ® 7/(_-_), i = 1,2. More specifically, the modes relative to port P_ consist

of Gauss-Hermite beams travelling along the x-axis with waist in O,

u''(Y'Z;X) (x e- 2q-7(g-Ht k-__] H,,, \w(x)]

The pair of indices lm will be denoted by il. Analogously, for P2 we consider a similar family of

Gauss-Hermite beams propagating along the y-axis with waist in O (see Fig. 2).

Passing through the beam-splitter, the input beams transform in two fields at Ml, M2 described

by (bj,,bj,), (bj2,bj2)_ t with j = 0,2,..., N- 1, acting on a Hilbert space 7/b = 7/b_ ®7/_, such that

az(0)_ ..®7/_N-1)and two outgoing beams described at P1,P2 by (Sj, (_!_), ((_j_, 5_)with j =

O, 1,..., N- 1, acting on a Hilbert space 7/_ = 7/_, ® 7/_, where, again, 7/_, = -]./(co)®... ® 7/_,N-1).

()^ ^ aQ
For the sake of notational convenience, we introduce the bold symbols hi = a_l ®a_2 =

ai 2

for indicating the pair of i-th modes relative to P1 and P2 respectively. Analogously, we introduce

the vector A = i . With the same meaning, we will introduce the vectors B and C for

hN__

the operators bj and _i, relative respectively to the mirrors and the output ports.
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Figure 2: Schematic of Gauss-Hermite beams.

Assuming the fraction of energy lost during the passage through the interferometer be indipen-

dent of the mode considered, B and C can be redefined as vectors proportional to the actual ones

and carrying the same energy of A. In view of the energy conservation, the linearity and time

invariance of the antenna, the outgoing vector C can be related to the ingoing one A by the

unitary matrix U,

with

C=U.A, (1)

V0,o Uoa "'" Uo,N-I )

U1,0 Ul,1 "-" U1,N-I

U-- i ! : i '

UN-I,O UN-I,1 "'" UN-1,N-1

where each Uij is a 2 x 2 matrix.

(2)

Moreover, to preserve the bosonic commutation relations, U

must be a symplectic matrix, that is U G Sp (2N, R) and U/.i C Sp (2, R).

From now on we will consider an interferometer illuminated by two TEMoo gaussian modes

on ports P1 and P2 respectively. This amounts to considering an input state vector of the form

I_ >" 1¢o > 101 > ...ION -- 1 >, (3)

where 101 >= 10i, > ]0i2 > indicates that the modes il, i2 are unexcited ground state. As a result

of the propagation through the imperfect interferometer, the states of all these modes will be

mixed up to some extent. So that, a mode initially in the ground state will be partially excited

at the output ports.

In view of (3), it is worth splitting "Ha in the product "Ha = "Ha0 ® "Hae, whith "Ha0 relative to

the fundamental modes entering the two ports, and "H_0 relative to the remaining 2N - 2 modes.
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where
In the same manner we will write A = &0 a02 ' &2

B and C.

Analogously to (1), the fields B at the mirrors will depend linearly on A

, and so for

B=V.A,

Vo Voo ) Physically, V describes reflectionwhith V a unitary linear transformation V = Voo V_ "

and transmission at the beam-splitter, followed by propagation through the interferometer arms.

Then, it can be expressed as the product

V = (I) • O(Bs) • K,

where K describes the aberration-free beam-splitter, _(Bs) is the aberration matrix relative to the

beam-splitter itself and ¢ is the interferometer arm delay matrix.

Introducing the N x N matrices lq = giljtgi2j2, T0 = gilj2Si2jt, and the 2 x 2 matrices k,, k2,

we can write K, whose elements are 2 x 2 matrices, as

K = eii_(cos 7 ao 1 + sin 7 al 1). (4)

with ao, al Pauli matrices. The aberrations of the beam splitter are modeled by including at

the two output faces two transparencies characterized by the aberration eykonals W(Bs)(X, z) and

W(Bs)(y, z) for the faces perpendicular to y- and x-axes respectively. O(Bs), representing the

aberration eykonal phase factor, is symmetric with respect to the exchange of the pair of indices

@(BS)O,O @(BS)O,1 "'" @(BS)O,N-_ I

_)(BS)I,O _(BS)I,1 "'" (I}(BS) I,N- 1

dP(BS)= : : : : ,

_(BS)N-LO @(BS)N-L_ "'" _(BS)N-LN-_

it,J2 with jl,j2,

(5)

where

( e iw(tJS3i',. O)dP(BS)ij -- 0 ei W{Bsli2n " (6)

The symmetry of the @(Bs) matrix is a consequence of the identities W(BS)it,j, = W(Bs)j,,i,

and W(BS)I2,j2 = W(Bs)j2,i2 •

Finally, the time-delay matrix is diagonal

% 0 ... 0 )

o ¢, ... o (7)
¢= _ i _ i

0 0 ... ON-_
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( eiCq 0 )with $i = 0 e i¢'2 ' Cq'_ representing the phase delay of the il,_-th Ganss-Hermite mode

hitting Mx,2. In particular,

(8)

where 5@_,2(> 0) stands for the delay of the i-th Gauss-Hermite mode with respect the phase

delay kLx,_ of a plane wave. 5¢awl,2 represents the gravitational wave (_¢aw_ = -3¢aw2). The

other terms stand for : (i) _¢(susp)=noise transmitted to the mirrors through the suspensions, (ii)

3¢(mi_)= noise caused by the vibration modes of the mirrors, (iii) _8(v_.)= pressure fluctuations

in the partially evacuated pipes of the interferometer arms, and (iv) 5¢(_p)= radiation pressure

noise.

As a result of the reflection on M1 and M2, the different modes propagate toward the exit

ports, by retracing the same paths followed before. Then,

U = -K • O(es) • _ • O(M) " _ • O(Bs)K (9)

where (I_(M) is the mirror aberration matrix.

3 Interferometer output

The interferometer output is proportional to the expectation value of the difference I between the

photocurrents detected at the ports 1 and 2 respectively

I = y_(c!_% - c!2%) = ct.a3 • C = A t. S'. A (10)
i

where S is the unitary self-adjoint operator S = Ut "0"3" U.

Introducing the quantity K3 - K'.a3. IV = cos(2"7)_3 1 - sin(27)a2 [ (see Eq.

assuming an input state of the form (3), it yelds

4) and

S : I_'* "(_BS)" (_* " (_.I_t)" (y_* "¢_BS)" K3" (_(BS)" (_" (I)(Ai) " (I). (Y_(BS)" K : S(O) 4- S(ab) (11)

where S(0) = -sin _, - cos _O'3, with $ -- 2(¢0_ - ¢0,), is the matrix in absence of aberrations

and 33' = 0, while S(_b) = alal + a_a2 + azaa describes the effects of the aberrations and the

deviation from the condition of exact equipartition of the incident intensity between the two B.S.

outputs.

Now introducing the quantities A, : aot .a, .ao , A2 : a_.a2.ao , A3 : a_ "_r3"ao

and considering an interferometer operating on a dark fi'inge, we can express the photocurrent I

as I = l(d) + IN, that is as the sum of a deterministic part I(d) =< A3 > [50aw + a3] depending

on the GW signal and the aberrations, and a noise depending part

IN ,_ A_(-1 + o_) + A2a2+ < A3 > 66N + (A3- < A3 >)a3

= Ix(_,) + IN( .... ) + IN(,,,_ + lxlp_,t + I,,,(_,) + I,,,(ob_ (12)
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In particular, as regards to the radiation pressure noise IN(rp), the mirrors M1 and M2 can be

considered as multiple damped pendula driven by known time dependent pressure forces,

(13)

with FM(t) the impulse response of the mirrors. Accordingly J¢(rp)(t) = k(y,(t) - x2(t)) =

FM * (bf • a3 • b), having indicated with FM* the convolution integral (13). So That IN(rp) =

(--1)k+l(I'M * A2) < A3 >.

4 Fourier analysis of the interferometer output

In most GW antennas the signal is extracted from the frequency spectrum of the photocurrent

I = I(d) + IN. Therefore, the sensitivity of the interferometer depends on the autocorrelation of I,

<: l(r),I(O):>=<: l(d),I(d ) :> + <: IN, IN :> (14)

having considered l(d) and IN as indipendent.

The limiting sensitivity of the antenna will be obtained by equating the Fourier component

SGw(W) of <: I(d), I(d) :> at the frequency of the gravitational wave to the noise component,

SGW(Cd) = SN(W)/ < A3 >2

The noise terms IN(,,,), Ig(,,,_), IN(pr.,) are mutually independent, so that

SGw@) = + s(mi,)@) + + +
< A3 >2

+ + (15)
< A3 >2 + [HM(w)I2S2(w) + < A3 >

where $1, $2, $3 are the Fourier transforms of the convolutions <: Al, A1 :>, <: A2, As :>, <:

5A3, SA3 :>, while Sl2 and $21 represent the Fourier transforms of the convolutions <: Al, FM *

A2 :> and <: FM * A2, A1 :> respectively.

The beam h2, entering the port 2 of our interferometer, is generated by a degenerate parametric

oscillator (OPO) excited by a pump beam 5v, obtained by duplicating the laser beam al, entering

P_. In the following we will treat &_(t) = ei*(t)_ as a classical field (semiclassical analysis)

whose instantaneous phase ¢(t) and intensity fluctuations gnt(t) = hi(t)- < nt >t will be assumed

to be both Gaussian and mutually independent stationary processes, with autocorrelations <

(¢(r) - ¢(0)) 2 >= a_(lr[), < _n,(r),an,(O) >= a_C,(lr[) with a_ =< ((in,) 2 >.

The evolution of the the field operator a2 has been derived by Collett and Gardiner [13] for a

classical coherent pump. We have integrated C.-G. equation of motion of as by representing the

pump as 5p = rIe=ie+2i6nl and applying the WKB method.

The expectation values of the Eq.(14) have been obtained by averaging over the noise entering

the OPO and the laser field amplitude and phase.

In particular, as a consequence of the classsical approximation for ap we can write

Am h(1)fh (2) + h(2)_ct (1) -= aaX (2) A2 _ v(2) A3 n_ - n (2) (16)= , = CtlA¢+rr/2 ,

with n (2) = a(2)fa (2).
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