
/

QUANTUM PROBABILITY CANCELLATION DUE TO A
SINGLE-PHOTON STATE

Z. Y. 0U

Department of Physics

Indiana University-Purdue University at Indianapolis

Indianapolis, IN 46202, USA

zou @in dyvax, iupui, edu

Abstract

When an N-photon state enters a lossless symmetric beamsplitter from one input port,

the photon distribution for the two output ports has the form of Bernouli Binormial, with

highest probability at equal partition (N/2 at one outport and N/2 at the other). However,

injection of a single photon state at the other input port can dramatically change the photon

distribution at the outputs, resulting in zero probability at equal partition. Such a strong

deviation from classical particle theory stems from quantum probability amplitude cancella-

tion. The effect persists even if the N-photon state is replaced by an arbitrary state of light.

A special case is the coherent state which corresponds to homodyne detection of a single

photon state and can lead to the measurement of the wave function of a single photon state.

1 Introduction

Interference effect of light has played an important role in the conceptual development of quantum

theory. Richard Feynmann once wrote 1 that the Young's double slit experiment "has in it the heart

of quantum mechanics". But the phenomena of interference do not simply stop at Young's double

slit experiment and its variations. Much richer phenomena occur in higher-order interference 2-6

when there are more than one particle involved in the process. For example, Greenberger et al/

recently proposed new demonstration of locality violation by quantum theory with superposition

state of three or more particles.

In the meantime, along a quite different line, Ou and Mandel s have investigated a startling

quantum interference effect where a strong field interferes with a considerably weak field. It was

shown 3 and demonstrated s that for certain nonclassical fields, the interference fringe visibility does

not change even though the ratio of the intensities of the two interfering fields is much greater

than 1, in conflict with the intuitive picture from classical wave theory for interference. In this

case, the seemingly insignaficant weak field plays an essential role for the interference effect even

though its intensity is negligibly small. Therefore, the presence of the weak field can dramatically

change the outcome of the result.

In this paper, we will present another example of how existence of a weak field can make

a significant difference. It deals with N + 1 photons with N being a positive integer. We will

consider a situation when an N-photon state interferes with a single photon state with the help
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of a symmetric lossless beamsplitter (see Fig. 1). A special case of N = 1 has been experimentally

investigated as an example of fourth-order interference. 9 However, quite different from the two-

photon coincidence measurement technique used in fourth-order interference, we will exam photon

probability distribution at two output ports of the beamsplitter. Although no interference pattern

exists, the phenomenon discussed here attributes to quantum interference of multi-particle (N + 1

particles). We will also extend the discussion to an arbitrary state input in replacement of the

IN>

N-photon state.
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FIG. 1. Layout for the interference between N-photon state and a single photon

state via a beamsplitter.

2 Photon Probability Distribution for a Symmetric Loss-

less Beamsplitter

It is well-known that when a number of particles, say N, enter a 50:50 lossless beamsplitter from

one input port, the particles are randomly sent to the two output ports with equal probability,

resulting in the simple Bernoulli binormial distribution as

N!

Po(N, ,N2 ) - 2N NI }N2! 6Nx +N2,N. (1)

Na is the number of particles exiting from output port 1 while N2 is for port 2. In the case

of photon, the above result suggests that each photon acts independently as a classical particle.

The wave behavior of light does not show up here because of the absence of superposition. This

distribution has its maximum when N1 = N2 = N/2 (equal partition). So it is most likely to find

equal number of photons on each side of the beamsplitter. For large N and IN1 - N2[ << N,

Eq.(1) becomes

2 e -(Iv'-N2)2/2N 6N,+Iv2,N (2)
Po( N_, N2) - v/_-Nr

which is a Gaussian. The extra factor of 2 is because Po(N1,N_) = 0 for every other value of

N, - N2.

Next, we let a single photon state enter the input port 2 of the beamsplitter. We will look

for the probability Pa(Nt, N2) that N1 photons exit at output port 1 while the other N2 photons
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at port 2 with N1 + N2 = N + 1. Let us for a brief moment consider the outcome from classical

particle theory. As a classical particle, the input single photon will have 50% of probability going

out at either ports. Because the single photon is independent of the other N photons, we simply

add the probabilities to obtain the final result:

1 N! 1 N! (N + 1)! (3)
P_t(Nt'N2) = 22N(N1 -- 1)!N2! + 22N(N2 -- 1)!Nt! = 2N+1N_!N2! '

which is in the exactly same form as that in Eq.(1). Therefore the existence of the single photon

at the other port does not influence the photon probability distribution at all. The single photon

from port 1 acts as if it were part of the N photons from the port 1. This is because classical

particles are independent of each other and it doesn't matter which port it enters.

On the other hand, the outcome is totally different if we treat the photons as quantum particles.

We cannot simply add the probabilities. The principle of quantum mechanics requires that the

probability amplitudes be added. For simplicity, let us first consider the case when N is an odd

integer and N1 = N2 = (N + 1)/2. The probability amplitude has two contributions as shown in

Fig.2: (a) the single photon input at port 2 goes directly to output port 2 while N1 - 1 = (N- 1)/2

of the N photons input at port 1 are reflected and go to output port 2 and N2 = (N + 1)/2 photons

to port 1, or (b) the single photon is reflected and goes to output port 1 while N2 - 1 = (N- 1)/2

photons go to output port 1 and N2 = (N + 1)/2 photons are reflected to port 2. From Eq.(1),

we find that these two possibilities have equal probability thus their probability amplitudes have

equal absolute value. For their phases, however, because there is a 7r/2 phase shift for the reflected

field and no phase shift for the transmitted one at a symmetric beam splitter, the total phase shift

for the N + 1 photons at the output ports will be different for the two possibilities. Referring

to Fig.I, we find that the total phase shift for the first possibility mentioned above is _0_ =

(N2- 1)_/2 = (N- 1)7r/4 while for the second possibility, hob = _r/2 + N2rc/2 = (N + 3)_r/4. The

phase difference between the two possibilities is thus q0b - ho_ = _r. Therefore, the two probability

amplitudes will cancel each other, resulting zero probability for Nl = N2 = (N + 1)/2. This

result is completely different from that of a classical particle theory in Eq.(3). As seen above, the

probability cancellation at Nx = N2 results from the quantum interference of N + 1 particles.

I1)

FIG. _.

N+I IN)
2

N+I
2
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Two contributions to the output photon distribution.

• N-.___I+ I = N+__.A.I
" 2 2
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For the other cases when NI :/: N2, we cannot use the simple argument as above. But we may

derive the output state along the line of Ref.10 and find the probability distribution PI(NI, N2).
Or we can use the formula

PI(N1,N2) = (: ('4_ Ji'l)N'Nl!e-'_[2_l (A_A2)N2c-'4_"i'2N2! :)' (4)

where

A, = (a, + i = + i

are the annihilation operators for the output modes for a symmetric lossless beamsplitter. The in-

put modes represented by f,, fi2 are in the state of J@) = IN) I1)2. After some lengthy calculation,
we have

N!

Pl(Nx, N2) = 2N+XN1[N2[ (N1 - N2)26N,+N2,N+t. (5)

The above expression can also be derived from the general formula given by Campos, Saleh and

Teich in Ref.ll for arbitrary numbers {nl,n2} of input photons at the two input ports, with the

setting of r = 1/2, n_ = N, n2 = 1. When N, N_, N2 >> 1, Eq.(5) can be approximated by

(N, - U2) 2 2 ,_CN,_N2)_/2N, (6)
PI(N1, N2) ._ N _ _ tINI+N2'N+I"

Notice that when N is an odd integer, P_(N1,N2) = 0 for N, = N2 = (N + 1)/2, exactly as

predicted from the simple argument of probability superposition given in the previous paragraph.

When N is an even integer, Px(N/2 + 1,N/2) = N!/2N+'(N/2 + 1)!(N/2)! ¢ 0, but because

P_(N/2 + 1,g/2)/Po(g/2 + 1,g/2) = 1/(g + l) << 1 for N >> 1, or the probability with

a single photon input is much smaller than that with vacuum state input, the probabilities for

N1 _ N2 are quite different in the two cases with or without the single photon state at port 2.

Actually, the whole probability distribution in Eq.(5) is different from the probability distribution

in Eq.(1), as seen in Fig.3. The maximum probability for Px(N_,N2) occurs at ]N_ - N21 _

or N_ _ (g + v/N)/2 while for Po(N_, N2) it occurs at N_ = N2 ,_ g/2. The existence of a single

photon dramatically changes the pattern of the output photon distribution.
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FIG. 3. Output photon distribution for N-photon state input at port l with (a)

vacuum state or (b) single photon state at port g (17=19).
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3 Interference of a Single-Photon State with Arbitrary

State

The above quantum probability cancellation effect due to a single photon state is not stricted to

N-photon state as input state. Let us consider an arbitrary state of light input at port 1. Its

state is generally described by the Glauber P-distribution Pi_(a). But before going into lengthy

calculation, we may take a guess about the photon distribution of the output fields by the following

argument: since the vacuum state and the single photon state are completely incoherent in the

sense that they have a totally random phase distribution, the output fields due to interference

of one of these states with any other state will not have any coherence information of the input

state. Therefore, the output photon distribution of the beamsplitter will lose all the coherence

information of the input state and will depend simply on the photon statistics P_'" of the input

state at port 1. So combining this fact with Eqs.(1,5), we come up with the output photon

distributions in the form of

Po(g_ N2) = (gl + N2)[ __,_ (7a)
' 2 N, +-----N-2]V 1 ]---g2! -]'_/VI + N:2

for vacuum input at port 2 and

(N, + N2 - 1)[( , g _2p_, (75)
P,(N,,N2)= -_-'_,g-N;_,V1_2i VIv,- 21 N,+N2-,

for singlephoton state input at port 2. Of course,we may rigorouslyderive the output photon

distributionby followingthe procedure described in Ref.10 to firstfind the state of the output

fieldsof the beamsplitter in terms of the P-distribution.The photon distributionfor the output

fields can then be calculated through Eq.(4). It can be shown that Eq.(7) is indeed the correct

form for the output photon distribution.

By comparing Eqs.(7a) and (75), we easily find that PI(N1 = N2) = 0 for single photon state

input at port 2 while
oo (2N1)[

Po(N, = N2) = _ 22N,(NI!)2P_"N, # 0
Nt =0

for vacuum input. Therefore, the existence of the single photon state at port 2 does make a

difference in the output photon distribution even for arbitrary input state at port 1, and the

probability for N1 = N2 is exactly equal to zero. The cancellation of the probability for N1 = N2

is because of the destructive interference between the N photons and the single photon as we

discussed above.

In an actual experiment, however, it is difficult to measure the complete distribution P(N1, N2),

but the distribution P(Nt -N2 = M) can be measured by balanced homodyne detection) 2'13 From

Eqs.(7a,b) we find that

oo (2N1 - M)! pi,,
Po(N, - N2 = M) = _ 22N,_MN,[(N 1 _ M) t 2N,-M

N1 =M

PI(NI - N2 = M)
oo (2N, - M- I)[ p_n

= M2 E 22N,-MN1!-(-N:_ - i)! 2N,-M-,
N1 =M

(s)
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for M >_ 0. For M < 0, the symmetry between N,, N2 in Eq.(7) leads to P(M) = P(-M).

Next, we will evaluate Po(M), P_(M) for some special states. For N-photon state input with

N >> 1, we have P_" = _n,N, and Eq.(8) gives results similar to Eqs(1,5):

Po(M) =

PI(M) =

N_

2N(N/2 + M/2)!(N/2- M/2)!

2 ¢_M2/2N for N >> 1

M2N!

2N+l(N/2 + M/2 + 1/2)!(N/2- M/2 + 1/2)!

2 M2 e -M_/2N for N >> 1.
v_-N _- N

(9)

For coherent state input, Pi_, = ft'_e-fi/n! with _ being the average photon number. Therefore, we
have

Po(M)
o_ (2N1 + M)! fi2g_+Me-_

= Y]_ 22N_+MN2T(N1+M)[(2N2+M)! =e-_IM(fi)
N2 =0

_o M2(2N1 + M - 1)! fi2N2+M-le-'_ M 2

Pa(M) = _ 22Nt+Mg2,(gl __ MX!_-XT: _-7,!}[_2v2-t-m-t) = 7e-r_IM(fi),
N_=0 " 72

(io)

where/M(fi) is the Bessel function with purely imaginary argument and has the form of

_" 1 e _-M2/2_ when fi >> 1. (11)
IM(fi) --= _ dqoe-iM_° e "ac°s_° ,_

Therefore, for large fi,

1 _M2]2fi

Po(M) ,_ _

1 M 2 e_M_/2rt.
P (M)

(12)

Eq.(12) has the same form as Eq.(9) for large N besides the factor of 2 which is explained earlier

right after Eq.(2). This is not surprising if we consider the fact that when the photon number is

large, the interference scheme discussed above becomes homodyne detection scheme. Since both

vacuum state and single photon state have random phase distribution, homodyne detections with

N-photon state (N >> 1) and coherent state as local oscillators are equivalent. As a matter of

fact, the output photon distributions will always have the form of Eq.(12) for any state as local

oscillator, provided that the average photon number is large and photon number fluctuation is

much less than average photon number ( (A_'_ << fi). We can see this point from Eq.(8): when

_<< fi, Pi_, has a narrow peak around fi and is a fast changing function as compared with
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other terms in the summation, therefore the contribution to the summation is only from the few

terms around fi, so that we can pull all other terms out of the sum, that is,

fi! 1 e -M2/2_ when fi >> 1, (13a)
Po(M) _ 2,_(fi/2 _ M)!(fi/2 + M)! _,_ Pi_/2 "_

and similarly

1 MS e -M,/_ when fi >> 1. (lab)
P,(M) ,_ _ fi

We can also understand this result from the fact that any fluctuation in local oscillator is cancelled

in balanced homodyne detection scheme) 2

Furthermore, if we set fi _ co, we can replace the discrete variable M with a continuous

one defined by x = M/v_ and the probability distributions in Eqs.(13a,b) lead to probability

densities of continuous variable x as

1 __2/2 x2 -_:/2 (14)
Po(x)=-_ e , P,(z)= _e

which correspond to the square of the absolute value of the wavefunction for the ground state

and single photon state, respectively. Thus by measuring P(M) in homodyne detection, we can

deduce the wavefunction of the input state at port 2. This is exactly the technique of optical

tomography used by Smithey et al. la But here we applied it to a single photon state (input at

port 2) and proved that the outcome does not depend on the state of the local oscillator (input

field at port 1) as long as the average photon number is large and the fluctuation is not very large

for the local oscillator (i.e., the condition for the approximation in gqs.(laa,b)).

However, there is an exception to the above. It is well-known that for thermal light, we have

:) = + 1)

so that V_/kn2} _ fi and we cannot use the approximation in Eqs.(13a,b).

pi_n = fin/(fi + 1),_+1, so from Eq.(8), we have

(2N2 + M)! fi2N2+M
Po(M) = 22N_+M(N2 + M)!N2! (fi + 1) 2N2+M+l

N2=0

X M

_ fi+lU(.M+l M2 ' 2 +l'M+l;4x2)

For thermal light,

(15)

(2N2 + M - 1)! f_N_+M-1

PI(M) = i 2 _ 22N_+M(N2_t_ _/'_-.WN2!(fi + 1)2N2+M
N2 =0

MXMT(M. + I,M M + I'4x 2)
fi 2 2

where x = fi/2(fi + 1) and 5r(a,/3, _; z) is the hypergeometric function. With some re-arrangement,

we can prove that Eq.(15) have a simpler form as
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1

Po(M)- v/_-ff+ 1 qM

M
_(M) - qM

h

(M >_ O) (16)

with q = 1 + 1/fi - x/_ + l/ft. For large fi, qM becomes e-M/v _ so that Eq.(15) is changed to

1 e_Miv/_
Po(M) - v/-_-+l

(M > 0) (17)

P1( M ) = __M e_ M/ x/_-_.
fi

Therefore, The output photon distribution for thermal light input is different from that of coherent

state input. But the general trend in the change of the shape from Po(M) to PI(M) is similar in

both states (Fig.4). The quantum interference effect due to single photon is the same.
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FIG. 4. Probability distribution Po,I(M) for the balanced homodyne detection of

vacuum state and single photon state with (a) coherent state or (b) thermal state as
local oscillator, fi = 300.
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It is interesting to note that the weak nonclassical state (single photon state) plays an important

role in the interference with a strong classical field (coherent state or thermal state) in contrast to

the case discussed in Ref.3 where the nonclassical interference occurs between a strong nonclassical

field and a weak classical field. Even though the nonclassical field is weak here, the result is very

nonclassical in the sense that the probability of detecting equal intensities in the two outputs is

zero (PI(M = 0) = 0). It can be proved that in the similar situation (one field is weak and the

other is strong), classical wave theory predicts that the probability is largest for equal intensity

output at the two ports.

So far we have only discussed the single mode situations. In practice, we always have wide

spectrum. Since two different sources of light are involved in the interference, the observation of

the probability cancellation effect requires the overlap of both spatial and temporal mode structure

of the two fields as well as near unit quantum efficiency of the detectors.

Acknowledgments

This work was supported by the Office of Naval Research and the Purdue Research Foundation.

References

[1] R. P. Feynman, in The Feynman Lectures on Physics, Vol.III, Addison-Wesley, Reading,

Mass. (1963).

[2] R. Ghosh and L. Mandel, Phys. Rev. Lett. 59, 1903 (1987).

[3] Z. Y. Ou, Phys. Rev. A37, 1607 (1988).

[4] J. G. Rarity and P. R. Tapster, Phys. Rev. Lett. 64, 2495 (1990).

[5] A. M. Steinberg, P. G. Kwiat, R. Y. Chiao, Phys. Rev. Lett. 68, 2421 (1992).

[6] T. E. Kiess et al. Phys. Rev. Lett. 71, 3893 (1993).

[7] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell's Theorem, Quantum Theory, and

Conceptions of the Universe, M. Katafos, ed., Kluwer Academic, Dordrecht, The Netherlands

(1989).

[81Z. Y.

[9]C. K.

[10]Z. Y.

[11]R. A.

[12]H. P.

[13]D. T.

Ou and L. Mandel, Phys. Rev. Lett. 62, 2941 (1989).

Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).

Ou, C. K. Hong, and L. Mandel, Opt. Comm. 63, 118 (1987).

Campos, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A40, 1371 (1990).

Yuen and V. W. S. Chan, Opt. Lett. 8, 177 (1983).

Smithey, M. Beck, M. G. Raymer, and A. Faridari, Phys. Rev. Lett. 70, 1244 (1990).

487




