
/ /

Photon number-phase uncertainty relation

in the evolution of the field in a Kerr-like medium

Fan An-fu

Department of Opto-electronics Science and Technology,

Sichuan University, Chengdu 610064, China

and

China Center of Advanced Science and Technology(World Laboratory),

P. O. Box 8730, Beijin9 100080, China

Sun Nian-Chun

Southwest Institute of Technical Physics Chengdu, 610041, China

Abstract

A model of a single-mode field, initially prepared in a coherent state, coupled to a two-level

atom surrounded by a nonlinear Kerr-like medium contained inside a very good quality cavity

is considered. We derive the photon number-phase uncertainty relation in the evolution of

the field for a weak and strong nonlinear coupling respectively, within the Hermitian phase

operator formalism of Pegg and Barnett, and discuss the effects of nonlinear coupling of thr

Kerr-like medium on photon number-phase uncertainty relation of the field.

1 Introduction

Recently, Agarwal et al[1] have considered the propagation of a single-mode resonant field through

a nonlinear Kerr-medium. Bu_ek et al[2] have dealed with a combination of two models: the

Jaynes-Cummings model (JCM) describing the interaction of a single-mode cavity field with a

single two-level atom, and a nonlinear Kerr-like medium inside a cavity which may be modelled

by an anharrnonic oscillator[I,3]. Particularly, they have showed that with increasing nonlinear

coupling the period between the revivals of the atomic inversion is shortened and its time evolution

becomes more regular. Besides, they also described the squeezing of the cavity mode and the time

evolution of the photon-number distribution.

As is well-known, the phase properties of light field is very important in quantum optics. Lately,

Pegg and Barnett[4-6] have shown that an Hermitian phase operator of radiation field exists. It

can be constructed from the phase states. This new phase operator formalism makes it possible

to describe the quantum properties of optical phase in a fully quantum mechanics. Gerry['/'] has

studied the phase fluctuations of coherent light interacting with the anharmonic oscillator using

the Hermitian phase operator. Gantsog et al[8,9] have studied the phase properties of self-squeezed

states generated by the anharmonic oscillator, elliptically polarized light propagating through a

Kerr medium and a damped anharmonic oscillator using the Hermitian phase operator.
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In this paper we consider a generalized JCM with an additional Kerr-like medium, namely, a

combined model that comprises the JCM and the anharmonic oscillator model (AOM) used to

describe a Kerr medium. We deal with not only the field-Kerr medium interaction, but also the

field-atom interaction. We derive the photon number-phase uncertainty relation in the evolution

of the field for a weak and strong nonlinear coupling respectively, within the Hermitian phase

operator formalism of Pegg and Barnett, and discuss the effects of nonlinear coupling of the Kerr

medium on the number-phase uncertainty relation of the field.

2 The model

We consider a model which consists of a single two-level atom surrounded by a nonlinear Kerr-like

medium contained in a high-Q single-mode cavity. The cavity mode is coupled to the Kerr-like

medium as well as to the two-level atom. The Kerr-like medium can be modelled as an anharmonic

oscillator [1,3]. In the adiabatic limit, the effective Hamiltonian of the system involving only the

photon and atomic operators in rotating-wave approximation, is[l,2!

1

H_I ! = tu_(a+a + -_) + tU_oS z + hxa+2a 2 + hg(S+a + a+S-), (2.1)

where a and a + are the annihilation and creation opreators of the field mode, S* and S = are the

spin-flip and inversion operators of the atom respectively, g is the field-atom coupling constant

and X describes the strength of the quadratic nonlinearity modelling the Kerr medium, w0 is the

frequency of the atomic transition, the frequency w is

w = w! - Az/(wk -- Wl), (2.2)

Where w I and wk are the fi'equency of the field mode and the anharmonic oscillator modelling the

Kerr medium respectively, and A is the field-Kerr medium coupling constant.

To isolate the effects of the nonlinear coupling of the Kerr medium from that of the finite

detuning, we restrict in the case of the resonance (i.e.,w0 = w). Let us assume that the atom is

initially in the excited state [e > and the field mode is prepared in a coherent state la >. The

initial state vector [¢(0) > of the system is

oo

I¢(0) >= la > ®le >= b, e"'3ln,e >, (2.3)
n----0

b,, = exp(-f_/2)(fi'*/n!) 1/2.

where

(2.4)

In the interaction picture, the state vector of the system at a later time t is found from the

Hamiltonian (2.1) to be

b ei"ae -i×'h ,;r_,-.or1 o _ .2xn 1
I¢(t) >= z., ,, "tt '°k2'*"nX + z-fl-_.xsin(_fl,_xt)]ln, e >

r_----O

2gv_+ 1 1

z' fl,_x sin(2fl'_xt) In + 1 , g > }, (2.5)
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where Ig > is the ground state of the atom, fl.x is the generalized Rabi frequency defined by

fl, x = [492(n + 1) + 4x_n2] '/2, (2.6)

It is obvious that, for X = 0, the state vector [¢(t) > given by Eq.(2.5) describes the dynamics of

the ordinary JCM.

3 The phase variance of the cavity field

Based on the Hermitian phase formalism of Pegg and Barnett[4-6], The complete set of s + 1

orthonormal phase state is defined by

1

10,, >= _ __oexp(inO_)ln >, (3.1)

where 0,, = Oo+27rrn/(s+ 1), m = 0, 1, 2,..., s, and 0m is an arbitrary real number. The Hermitian

phase operator is given by
a

'_o---- _ 0,_10,_ >< 0,_], (3.2)
rn----O

Clearly, phase state [0m > are eigenstates of _0 with the eigenvalues 0,,. The eigenvalues 0m are

restricted to lie within a phase window between 00 and (00 + 27r). It has to be noted That, after

all expectation values of the phase variables associated with the phase properties of the field have

been calculated in the finite (s + 1)-dimensional space, s is allowed to tend to infinity. The phase

distribution of the state given by Eq.(2.5) is

p(O,,,t) = [< 0role(t) > Is, (3.3)

with the expectation value and the variance

< _o >= _ O,,P(O,_,t), (3.4)

< A(i,_ >= _(0m- < _o >)2P(O,,,t). (3.5)

We choose the reference phase 00 =/3- 7rs/(s + 1), and introduce a new phase label # = rn- s/2,

which goes in integer steps from (-s/2) to (s/2). Then the phase distribution becomes symmetric

in #. In the limit as s tends to infinity, the continuous phase variable can be introduced replacing

#2rc/(s + 1) by 0 and 21r/(s + 1) by dO. Then we can find a continuous phase distribution

where

1

P(O,t) = _--_{1 + 2 _ b,,bw[A..¢cos[(n- n')O + (n 2 - na)xt]

+B,,., sin[(n - n')O + (n 2 - n2)xt]]},

492_(n + 1)(n' + 1) + 4x2nn '
1A,,, = cos(gt,_×t) cos(_g_,_,×t) + sin(_nxt) sin(_n'xt)

(3.6)
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. 1
B.., = (2X./_x) sm(_D...xtlcos(1C_,xt) _ (2X.,/C_,x)cos(l f1_xtl .sm(_f_,xt1.1

The function P(0, t) is normalized so that

(3.7)

/: P(O, tldO = 1.
It

(3.81

If the mean photon number in the field is large, fi >> 1, the coefficient bn in Eq.(2.4) can be well

approximated by a continuous Gaussian distribution

bn = (2n'fi)-U' exp[-(_ - n)_14,_]. (3.9)

If Eq. (3,9) is substituted into Eq.(3.6) and the summation in Eq. (3.6) is replaced by an appropriate

integral over the variable n, one can appraximately work the phase distribution.

We will consider two limit cases:

(1)The weak nonlinear coupling which is defined by the condition g2fi >> X2fi2, with fi >> 1.

In this case the generalized Rabi frequency can be approximated as

1

a.,,,_.gl(n),/2+.(n)-,/_](1+ _), (3.101

where

Then using Eqs.(3,9) and (3.10)

integral over n, we obtain

cx = (X2n2192fi) U2" (3.11)

and replacing the summation in Eq.(3.6) by an appropriate

I 2_'fi 12
P(O,t) = _-_r(1+ 16fi2xZt2 • {(1 + Cx)exp[ 2F_ [2nxt + (0 2g_/._)21]I + 16fi2x2t 2

_+(1-¢x)exp[ 1 + 16fi2X2t 2[2nXt+(O+ )211}. (3.12)

According to Eqs.(3.4) and (3.5), using Eq.(3.121, and taking into account 0m = 0 + 8, we can

directly find an expectation value of the phase operator and its variance

gt
< C0 >= _ + ex';-'__ (1 - 4flex), (3.13)

-iVn

1 (gt) 2 , 16_2x1. (3.141< a_] >= _ +-_-(l +

(2)The strong nonlinear coupling which is defined by the condition g2fi << X2fi2, with fi >> 1.

In this case the generalized P_bi frequency can be approximated as

12
n,= _ 2Xfi(1 + _e,), (3.15)

where

6, = (g2n/x2n2)_/2. (3.16)

584



Then, we find

2fi

P(a,t) = (8¢n)'/22,r(1+ lOn2x2t2)-1/2exp[- 1+ 16_2x2t2(O+ 2_) 2] (3.17)

< 6, >=/_- 2fiXt, (3.18)

1

< A&_ >= _ + 4fi(xt) 2. (3.19)

We see that the average value of the phase is not equal to the initial quantity/_, and the

phase variance is always enhanced. For the weak nonliner coupling, the enhancement of the phase

variance is proportional to (gt)2/4_, this is similar to that of the resonance field in coherent state

JCM[10]. For the strong nonlinear coupling, the enhancement of the phase variance is proportional

to 4fi(xt) 2. Obviously, the enhancement of the phase variance in the strong nonlinear coupling

case is larger than that in the weak nonlinear coupling case.

4 The number-phase uncertainty relation

It is not difficult to calculate the variance of the photon-number for the state given by Eq.(2.5).

Using h = a+a, for the weak nonlinear coupling we obtain

< (Ah) 2 >=< h2 > - < h >2_ fi+ V_gtexp[_(gt)2/2]sin(2v/_gt). (4.1)

_From Eqs.(3.14) and (4.1),we findthat the number-phase uncertainty relationis

i 4 lO_ 2 16v_gt6_exp[-(gt)2/2]sin(2J'_gt)}. (4.2)< (A_)2>< A_2 >_ _+ (_)2{i+ +

For the strong nonlinear coupling, we find

< (Ah)2 >_ n + 2nxte2exp[-2_(xt)2]sin(2nxt), (4.3)

1

< (A_)2>< z_&2>_ _ + 4n2(xt)2(1+ 2Xte2exp[_2_Cxt)2]sin(2_xt)}. (4.4)

We see that, the uncertainty product during the evolution is expanded. The expansion of the

uncertainty product is fast in strong nonlinear coupling case. This is similar to that of the

self-squeezed state generated by the anharmonic oscillator[8]. This occurs because both the field-

atom interaction[11] and the field-Kerr medium interaction are nonlinear, moreover the nonlinear

interaction strength of the latter is larger than that of the former.

5 Summary

In the present paper we consider a generalized JCM in the presence an additional Kerr-like

medium, we have derived the photon munber-phase uncertainty relation in the evolution of a

resonant field for a weak mid strong nonlinear coupling, within the Hermitian phase operator
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formalism of Pegg and Barnett. We have shown that the nonlinear coupling of the cavity mode to

Kerr-like medium leads to the enhancement of the phase variance of the field and the expansion of

the uncertainty product. Particularly, the expansion of the uncertainty product is fast in strong

nonlinear coupling case. We have indicated that this is similar to that of the self-squeezed state

generated by the anharmonic oscillator. We have also indicated that the nonlinear interaction

strength of the field-Kerr medium is larger than that of the field-atom.
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