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I. The general process in laser

The general process in lasers is defined in the photon number representation [sl.

d p___. _

where u is the matrix change operation[2] up, - p.-1 - p., and/_l, p2,"" are the coefll-

cients. In the same way as previous paperill, we deduced the generating function G0(z, t)

for eq.(1)

(2)

With the aid of generating function Go(z, t) the mean photon number < n >0 and variance

of photon number < (An) 2 >0 can be evaluated

< - >o= f _,o(t)dt
< (A.)' >o= (I - 2_,,)<. >o

Now we include the cavity dumping in the treatment, the equation {1) reads

alp____._._
dt - _o(. - _,.' +...) + c(-.p. + (. + 1)p.+,)

After some tedious caculation, finally we arrive at

< (_.)' >= (I - _,) <. >0

(8)

(a)

(5)
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Eq.5 shows that when the cavity diss/pation is introduced, the variance < (An) 2 > turns

out to be smaller by a factor (I -/_l) thu it would be for a Poisson distribution. However,

when the cavity dissipation be moved, the factor should be (1 - 2#_) according to eq. (3).

We note that in view of the noise reduction the only coefficient evolved is/sl in ex-

psamion. Three dominant sources of noise contributing to the laser output are pump lluc-

tustions, spontaneous emission, and vaccum fiuctustion entering the cavity through the

mirror. We may evaluate the function p(z) by treating the interaction between atoms ud

field a dosed system first , then take the vaecum fluctuation into account by introducing

cavity duaping c.

For the atom-field system, if there is any variation in atoms excited Am -- m-- < m >,

this must reflect on the photons created An = n-- < n >, so that we have

Am= ._., < (A.)' >=< (Am)' > (e)

For example, the three-level system shown in Fig.1(a), Nt ( Nl, N,, the excitation

prol_bility p and de-excitation probability q of one atom satisfy the relations of stationary

solution

Ns N_
P = N_.+ N,' g = N_ + N, (7)

The probability of n = Nl + N, atoms, m in excited state,(n - m) in the ground state,

obeys the binomial distribution

n_

p, fm)= m!(. - m,lpmq"-mj (S)

This yields the factorial moment of atoms

< (Am)' >=< m > (I-p) (9)

below the threshold, N, _: (Nl + N,), lq _ 1, Poisson

above the threshold, N, _> Nl, /_! = p/2 >_ 1/4, sub-Poisson

We have a photon noise reduction factor 1/2 < 1 - pi <_ 3/4 (with cavity damping).

Similarly for a four-level system (Fig.l(b)) N4 _- 0,p = Nz/(N, + IV',) _ 1,q = N_/(Nt +

N,) _ 1, this is essentially a Poisson distribution.

II. The dissipative cohrent state and quantum interference

The coherent state is defined as the eigenstate of annihiration operator a for a harmonic

oscillator, what is the eigenstate of annihiration operator a for the harmonic oscillator with
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dissipation?

evidently the commutation relation [a,a t ] = 1 is violated.

da = (-ill- v
_-_ _)a + F

/o'a = aoe(m.-v/2lt + Y(t')elm-"/slO-eldt ' = aoe(m/s-v/s)' + t_

If we use the classical solution a = ae -_-mt for the annihiration operator,

(1)

(2)

/o'a t = aIoel-ia,-vli), + Ft(t,)e(-ia-,,I,i(,-,'idt, = atoei-ial,-,,ll), + _t

The dissipative coherent state Is >d corresponding to the dissipative harmonic oscillator

may be defined as

.1_ >.= (_ + _)1_>,
,t< 01-t = (-" + ,Bt)d< _'1

The states I(_ >_, d < (_l satisfying the definition can be expresed as

Io >a = ep'te-pt6la >

< _'1=< °_1est'e-'e°t

(s)

(4)

Here a, a t, [_ >, < _[ are the usual operators and coherent stats of harmonic oscillator

without dissipation, the operators/_, /_t act on the heat bath only but nothing to do with

Is >, < _1.
. < olO(a, at)l_, >a= o(_" + _,o, + #) (5)

The "quantum interference between two wave packets" studied here we mean that

there are two wave packets _bl, _b2 with it's centers initially located at z = +z0, the

temporal evolution of ¢1, _bs assumes [_71

_b,(z,t) = _/_exPI-E(x-
v 71- _

d 1_b,(x, t) - ex'p[- _ (x +

The superposition of ¢1, _b) gives

X I

zo cos f_t)'-i(_t + zzo sin fit- 4 sin 2flt)]

XoCOS fR)'-i(_t-ZZo sinflt - _ sin2_t)]

e(,,t) = -2_2[¢,(_,t)

and the probability density I(z, t) is

(6)

+ _,(_,t)l (7)

Itx, t) = I¢(x,t)l' = I, + h + 2_cosO (s)
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where

_, -- _exp[-(x-x0cosft) 2]

_3r

I2 = _ exp[-(x + z0 cos ft) 2] (9)

0 = 2xxosinfit

The density distribution l(z, t) is depicted in Fig.2.

Now we consider the influence on quantum interference when the damping v is taken

into account. In the weak damping fimit, i.e. ut _ 1, the classic&! solution a -- a0e -_t/s-;at

may be use to evaluate the probability /_(x,t), because the violation of commutation

relation [a, a t ] = 1 is not seriously.

x_(_,t) = I,_+ z,_+ 2_cosO_ (lO)

where

_,c Cf= 2-_e_l-(_ - Xo_-_'/'cosft)2]

I2 c (_= 2-_e_[-(_ + _o_-_/2cos_t)2] (1_)

Oc = 2xzoexp(-ut/2) sin_t

If we use the quantum Langevin squation's solution (2) and rewrite a, a t as

a = (ao + _)exp(-ifIt- ut/2), /_ = Fexp[(if + u/2)t']F(t_dt'
JO

_0 ta t = (a t + _t)exp(ift - ut/2), _t = exp[(-if + u/2)t']Ft(t')dt '

From eq. (12), setting yo = 0, we derive

= Xoe -_/2 cos wit + Ale -_/2 cos ft + A2e -_/2 sin wit

where

= zo¢ -_/2 sin ft + Ale -_/s sin ft + A2e -'_/s cos ft

a + a t a-- a t

- 2 ' #- -2i

/_-I- _ t
Al = , _2 --

2

(12)
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Refering to (11), (13), naturally leads to the following formula for quantum Langevin

equation's solution.

Iq = Ill + Isq + 2_ cos Of
(gf

x,, =. _ exp[-(_- _)']

exp[-(x+ _)'1 (14)

Oq = 2z#

The mean amplitude and variance of vuuum fluctuation Ale -_/2,

out

< Ale-_/l > _ < Ale-"/1 >---- 0

Ale -'all can be find

e-vt L t< (_:-":)_ > - 4 < ( F(t')e(iii+_'li)i' dt ° + fot

= _(._+ 1-e -_)

Fl (t')_(-;°+'/'l',tt')' >

(is)

l(n_, -t- _)(1- e-_)< (_,e-"'/')' > =

From equ. (15)we write out immediately the distributionfunctions/(Ale-"/2),/(A,e -"t/i)

as

f(Ale-Ul/i) -- (,tie_./,),
I exp

_,,(._, + |)(1 - e-") (n_,+ |)(1 - e-,,,)
(16)

(Aie__l,),exp (._,¥ _i7:;-,,)]y(A,e__/,) = 1
d-(-_ + l)(1- e--)

Via f(A:-"/'}, S(A,e -'_/') and (14) the expectation value of density operator < If(z,t) >

can be find out

< Xf("r"lt) > _- f i f(Ale-l_lli)S(Aitl'-I/tti)Ill(x'_t)dAl#l'-I/llid/llle-'il'

(17)

= x,(,,t) + 1,(,,,t) + x,(x,t)
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where

l,(x,t) = ov exp [
2_rV1 -I"(st., "I" I/2)(1 - e -.'t)

exp
2_/1 + (n,_ + 1/2)11 - e -'t)

(__.,-,o_,-,"_',_o:._0'1
I + (st_+ 112)(1- e-,_)j

r.(,,t) =

l,(x,t) =

(x + zoe-''/s cosnt) 1 ]

_' .... e_ {-lI+ (-_ + _)(I- ,-")le}
,_J1+ (._.+ i12)(1-_--,)

(is)

@--,_oe at ]cos(2,,0,-'/'mat)
× exl> I + (st,,, + _)(I - e-")J

If the v_ccum is squeezed to s degree of Intt_the variance of Ale -vtls, Ase -vtls reads

<(a,,--_,),>=_(.. +_)(,- ,--)
(19)

! 1

<(_,,-_,,),>=_(.. +_)(,- ,--)
The expectation value for squeezed _Lccum fluctuation < I.(ztt) > sssumes a s/tartar

formul& as (17)

< &(_,t) = &.(_,,t) + z..(,,t) + z,.(,, t) (20)

I,.(_,t) = o,,9
2_ \/(st., + _)(1 - e-"t)(sin ' nt -4- p' cos =_t) -I- p

where

x exp

I2o(z, t) =

X

p(x - x0e-"/I cos 9t)* ]

(st.,+ |)(1 - e-')(gi.' at + t" cos' at) + t' J

_,,/p
2,,v/(._+ |)(I - _--,)(m' at + j,, cos,nt) + i,

[ _(_+ _0_-_/,cos.,), ]e_p (._+ |)(l=;-_)-(-_-_¥_'cos'at)+_

(21a)
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I..(x, t) - _v_

{ eI,[I+ (._ + {),(1- .-_),] }x exp (n_.i__)(l_e__)(sin, fit+p, cosSnt)_l.p

{ x'(.,. + |)(I - _-")0,' + _n'., + _,'cos'_,) }x exp -(sin' nt + #2cos' nt)[(n_ + _)(1 - ¢-_)(sin' fit + p'cos'nt) +/L]

_z02e -_ cos 2 fit ]x exp (n_ + ])(1 - e-"t)(sin'fit+ p' cos'fi{)+ #

{ [(-_+ I)(1- _-') +.12._0.-"/'m fi, }x cos (n,, + ])(I - e-"t)(sin' fit + pScos'fit) + p

(21b)
The calculatiov results for L(z,t) are shown in Fig.3 and a comparison between/.

and I¢, /_ shown in Fig.4.
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Fig.2 I(x,t), no damping.
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