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I. The general process in laser
The general process in lasers is defined in the photon number representation!?.

dpa

o = olu— pru® + pyu® + pgut — - )p, (1)

where u is the matrix change operation!2] up, = pa—1 — pn, and p1, g3,- - are the coeffi-
cients. In the same way as previous paper!!l, we deduced the generating function Gy(z,t)
for eq.(1)

Golert) = X "on(0) = exp { [ (ole = 1) = male = 1)+ - )t} (2)

With the aid of generating function Go(z,t) the mean photon number < n >4 and variance

of photon number < (An)? >; can be evaluated

<n>p= fﬂo(t)dt

< (An)? >= (1 -2p) < n>, ®)
Now we include the cavity dumping in the treatment, the equation (1) reads
dpn _ 2
g = Pole =g’ o) te(=npn + (nt+ 1)pnsa) (4)
After some tedious caculation, finally we arrive at
< (An)? >=(1-p1) < n > ()
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Eq.5 shows that when the cavity dissipation is introduced, the variance < (An)? > turns
out to be smaller by a factor (1 — s,) than it would be for a Poisson distribution. However,
when the cavity dissipation be moved, the factor should be (1 — 2u,) according to eq. (3).

We note that in view of the noise reduction the only coefficient evolved is g, in ex-
pansion. Three dominant sources of noise contributing to the laser output are pump fluc-
tuations, spontaneous emission, and vaccum fluctuation entering the cavity through the
mirror. We may evaluate the function s(z) by treating the interaction between atoms and
field a closed gystem first , then take the vaccum fluctuation into account by introducing
cavity damping c.

For the atom—field system, if there is any variation in atoms excited Am = m— < m >,
this must reflect on the photons created An = n— < n >, so that we have

Am = An, < (An)?>=<(Am)*> (8)

For example, the three-level system shown in Fig.1(a), Ny €« N,, N,, the excitation
probability p and de—excitation probability ¢ of one atom satisfy the relations of stationary

solution
N 3 N 1

= ———, = 7

PENM+N, = NM+n, )

The probability of n = N; + N, atoms, m in excited state, (n — m) in the ground state,
obeys the binomial distribution

pa(m) = mf_i—mypmqkm (8

This yields the factorial moment of atoms
<(Am)?>=<m> (1-p) 9)

below the threshold, N; « (N; + Nj), g1 € 1, Poisson
above the threshold, N3 > N,, g, = p/2 > 1/4, sub—Poisson
We have a photon noise reduction factor 1/2 < 1 — y; < 3/4 (with cavity damping).

Similarly for a four-level system (Fig.1(b)) Ny~ 0,p = N;/(N;+ Ng) € 1,¢= N, /(N +
N3) == 1, this is essentially a Poisson distribution.

II. The dissipative cohrent state and quantum interference

The coherent state is defined as the eigenstate of annihiration operator a for a harmonic

oscillator, what is the eigenstate of annihiration operator a for the harmonic oscillator with
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dissipation? If we use the classical solution @ = ae™**~" for the annihiration operator,

evidently the commutation relation [a,a'] = 1 is violated.

da ) v
i (-0 - §)a +F (1)

a= aoe(l‘ﬂt—u/’)t + f‘p(t')e(m’"/’”“")dt' - aoc(m/z—u/z): +8
0
(2)
al = a‘t)e(--'m—u/:): + '/; ‘ F'(t’)e(“‘““’/’”“"’ dt’ = aa lmin/3-v/at ﬂ'

The dissipative coherent state | >4 corresponding to the dissipative harmonic oscillator
may be defined as

alo >4= (a+ B)la >4 3)
i< alal = (0" + )y < of

The states |a >4, ¢ < a satisfying the definition can be expresed as

la >4= P e Ao > )

i < a| =< aeflaepe!

Here a, a!, |0 >, < a| are the usual operators and coherent stats of harmonic oscillator

without dissipation, the operators 3, B! act on the heat bath only but nothing to do with
la >, < al.

¢ < a|O(a,a')|a >4= O(a* + 8*,a + B) (5)

The "quantum interference between two wave packets” studied here we mean that

there are two wave packets ¥, ¥; with it’s centers initially located at # = £z, the

temporal evolution of ¥;, %3 assumes*~7

3
Yi(z,t) = \/gexp[—%(x — zocos ()} — i(gt + zzosin 0t — %q sin 2Q2¢t)]
, (6)
Ya(z,t) = \/—%'exp[—- %(x + xocos (1t)? - i(gt — 2z sin (Ot — ? sin 202t)]
The superposition of ¢, ¥, gives
$(2.0) = Z5l0r(,0) + bala.0)] U
and the probability density I(z,t) is
I{z,t) = |¢(z,0)* = I, + I; + 2y/I;I; cos 8 (8)
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where

I, = % exp|—(x — zo cos (1t)?]
I = = exp|—(z + z, cos (1¢)?]
3 oy 0

0 = 2zxysin(it

The density distribution I(z,t) is depicted in Fig.2.

(9)

Now we consider the influence on quantum interference when the damping v is taken

into account. In the weak damping limit, i.e. vt < 1, the classical solution a = age

—wt/3—illt

may be use to evaluate the probability I.(z,t), because the violation of commutation

relation [a,a'] = 1 is not seriously.

Ic(c’ t) = Ilc + Ilc + 2 Ichic cosoc

where o
L, = 2 exp[—(z — zoe™*/? cos it)?]
I, = % exp|— (2 + zge™*/? cos (2t)?]

8., = 2zxqexp(—wvt/2)sinlt

If we use the quantum Langevin squation’s solution (2) and rewrite a, a' as

o = (ao+ B)exp(—it —vtf2), B = /: exp[(sQ + v /2)t'|F(t")dt

~ - t
o' = (al+ ) exp(i0t —vt/2), B = /; exp((—iQ + v/2)t|Ft (¢')dt’
From eq. (12), setting yo = 0, we derive

2=1zge " Pcos Ut + Ase /2 cos (Ut + Age"/?sin (Ot

§==zoe " 3sinQt + Are™*/¥sin Ot + Age /2 cos (It

where ‘
_ekd _a-d
-T2 R
_B+4 _B-4
=" L=y
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Refering to (11), {13), naturally leads to the following formula for quantum Langevin
equation’s solution.

Il' = %exp[—(x—i)’]
L, = 5-expl~(z+2)’] (14)
b, = 2z§

The mean amplitude and variance of vacuum fluctuation A e /2, Aze=**/? can be find

out

<A e3> = <AeI>=0

-t t S t , ,
< (Alc—ut/i)z > = CT < (/ F(t')e('m'”/’)‘ dr' +/ Ft(tl)e(—lﬂ+vt/))t dtl)) >
0 0

(15)
1 1 e
= E(nw'{'a)(l_e )
< (Aze)? > = %(nw + %)(1 —e™)

From equ. (15) we write out immediately the distribution functions f(A,e™*/?), f(Aje™*/?)

" e~V = ! ex ’-- (Alc‘”‘/’)’
= Tt e oo+ =,
(16)
Ly _ 1 o F_ (Age~/3)3
(s ) V(e + D1 — e P+ D - )]

Via f(A,e7/3), f(Ase™**/?) and (14) the expectation value of density operator < I,(2,t) >

can be find out

<I,(z,t)> = f f F(Are=P) f(Age™/ N, (2, t)dA e/ 2 dA g™/
(17)

= Ii(z,t) + Ii(z,t) + Iy(x,t)
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where

L(z,t) = @ e P_ (2 — zoe™/* cos t)? |
el S It et D) L T+ 172) (=)
. _ a -_ (z + zge™*/? cos Qt)? ]
flet) = 2my/1+ (n, + 1/2)(1 — ) T+ e+ 1)1 - ), (
18)
Liz,t) = 2 exp {~1+ (m, + 3)(1 - ¢ )]}
a1+ (v, +1/2)(1 - &) 2

zde vt cos® (It

- —n/3 g
b exp[ [T o ¥ D= ") cos(2zzoe sin (3¢)

If the vaccum is squeezed to a degree of In p,the variance of Are~"/3 Aje~**/? reads

< (Alc_"'/’)’ >= g‘(“w + '21:')(1 - c-—ﬂ) ‘
(19)
< (Aze™/) >= 2—1';(»“ + %)(1 —-e™)

The expectation value for squeezed vaccum fluctuation < I,(z,t) > assumes a similar
formula as (17)

r

< I(z,t) = Lu(2,8) + (2, ) + Iss(,1) (20)
where
I].(3 t) = a\/‘ﬁ
T 2ayln+ D - ) (sin’ Bt + 47 cos? O1) +
- plz — zoe™*/* cos Ot)?
R e s o e e e

(21a)
Ila(xa t) = a\/ﬁ

Zﬂ\/(nw + - ¢=vt)(sin® Ot + p? cos? (It) + p

X

exo | p(z + zoe /2 cos Ot)?
P (o +3)(1 - e~)(sin® Qt + p? cos? Ot) + p
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z = e
Is.(z,t) “\/(nw_’__’1_)(1_c—w)(sin’ﬂt-f-y’cos’nt)'i‘ﬂ

o[- St }
(no+ 3)(1 = e=*)(sin® Ot + p? cos? Ot) + 4

. {_ z*(n, + ) (1 — e=*)(4? + sin® Qt + p* cos® ) }

xp (sin® 0t + p? cos? Ot)[(n, + $)(1 = e)(sin” Qt + p? cos? Ot) + ]
< e [_ pzie ™ cos? (1t ]

P (no+ (1 — e ) (sin® Ot + p? cos? QL) + p

f [(no + 3)(1 = %) + pl2zzge*/3 sin Ot

X O\ Mot DI — e )@ Ot ¥ poos’ 00 + 5

(21b)
The calculation results for I,(z,t) are shown in Fig.3 and a comparison between I,

and I, I. shown in Fig.4.
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Fig.1(a) Three - Level System

B4

Fig.1(b) Four- Level System
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