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In order to improve the design procedure of constant-torque springs used in aerospace 
applications,several new analysis techniques have been developed. These techniques 
make it possible to accurately construct a torque-rotation curve for any general 
constant-torque spring configuration. These new techniques allow for friction in the 
system to be included in the analysis, an area of analysis that has heretofore been 
unexplored. The new analysis techniques also include solutions for the deflected 
shape of the spring as well as solutions for drum and roller support reaction forces. A 
design procedure incorporating these new capabilities is presented. 

Introduction 

Within the aerospace industry the constant-torque spring fulfills an important rote. 
Many spacecraft, such as earth orbiting satellites and interplanetary explorers, once 
separated from a launch vehicle, must deploy several appendages, such as solar array 
panels, antennas, and sensory devices. The multi-layered constant-torque spring is 
often used as a power source to do this (Figures 1 and 2). 

Figure 1.  ayer red onstan t-To rque Spring Figure 2. Typical 180" Hinge 

The reason for its preference over other power sources includes the fact that the 
constant torque characteristic satisfies torque requirements over the entire deflection 
range, while at the same time minimizing the energy to be damped, also the constant- 
torque characteristic simplifies modeling of the system. 

Although the constant-torque spring is widely used, current analysis and design 
procedures are restrictive and inefficient. Design charts are provided by spring 
manufacturers for a finite number of "set" configurations. However, if the engineer 
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ishes to deviate 

To efficiently design a constant-torque spring, the torque-rotation response of the spring 
throughout the entire range of rotation must be accurately known. Figure 3 shows a 
typical torque-rotation response curve. The constant portion of the curve can be 
described using four basic parameters. The constant or average torque value TI the 
amount of hysteresis due to friction in the system e, the rotation required to develop the 
full resistance of the spring e,, and the maximum or final rotation at which the spring 
would slip off the roller 8,. 

6 Torque 

T 

e f  Rotation 

Figure 3. Typical Torque-Rotation Curve 

In the past, the only parameter that could be accurately predicted for any general spring 
configuration was T (Reference 1). There were no analytical methods available for 
calculating e, e,, or 6, for the general case. 

The inability to accurately predict the torque-rotation curve has led to difficulties. For 
example, the magnitude of the hysteresis in the system is generally unknown. If e can 
not be estimated analytically, a trial and error design procedure is required in order to 
optimize the performance of the spring. 

In the case shown in Figure 4, the drum size was decreased due to operating space 
considerations. Since the ratio of drum size to spring size deviates from standard 
published design charts, no information was available as to the minimum rotation (e,) 
required to develop the full operating torque and could only be confirmed by testing 
after fabrication of the mechanism. If 6 could have been determined analytically the 
testing could have been eliminated or a! least reduced. 

In the past there have also been no methods available for calculating the deflected 
shape of the spring. In many cases it is quite advantageous to know the deflected 

nd position of the spring. irst, calculating the shape of the deflection curve is 
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Figure 4. Non-Standard Ratio of 
Drum Diameter to Spring Diameter 

Figure 5. Guard-Rail 
Jnterferes with Spring 

advantageous because the exact length of the spring can be determined; there are also 
other subtle advantages. Figure 5 shows a configuration that was designed with a 
roller-guard to protect the spring. Since the deflected shape of the spring was 
unknown, the roller-guard jbas placed in the most logical position, directly under the 
roller. However, after the system was assembled it became apparent that the deflected 
shape of the spring was different than assumed and that the roller-guard would interfere 
with the spring. This resulted in a trial and error design process. 

Testing Program 

In order to develop analysis and design techniques so that problems similar to those 
mentioned above can be avoided an experimental program investigating several 
aspects of the behavior of the constant-torque spring was carried out at NASA's 
Goddard Space Flight Center and at The University of Texas at Austin. The results of 
these tests have led to the development of analysis procedures for completely defining 
the torque-rotation response of a constant-torque spring, including the effects of friction. 
Furthermore, the differential equation describing the deflected shape of the spring has 
been solved for, making it possible to describe the shape of the spring in the loaded 
configuration and possible to determine the support reaction forces created by the 
spring. Results will be presented herein that show that the methods developed 
accurately describe the deflected shape of the spring, and accurately predict the 
important parameters necessary for constructing the torque-rotation curve. 

The geometry of the spring coil is uniquely defined by the following fundamental 
parameters: the width of the spring b, the thickness of the spring t, the natural radius of 
the spring R,, the length of the spring SI and in the case of a multi-layered spring, the 
number of spring layers n (Figure 6). The drum-roller configuration, as shown in Figure 

ius of the drum R,, the radius of the rolle 
f the drum and the center of the roller L, 
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Sprina Fundamental Geometry Sorina Material and Section ProDerties 
Spring width (b) 
Spring thickness (t) 
Spring natural radius (R,) 
Spring length (S) 

Young's modulus (E) 

Roller coefficient of friction (f) 

Secondary Geometric Parameters Geometric AssumDtions 
Spring Initial Diameter (ID) ID = 2R, 
Spring natural curvature (a,) a,., = 1/R, 
Spring thickness to width ratio (blt) 

Spring width is constant 

Figure 6. Geometrical Parameters 
of the Spring Coil 

Figure 7. Geometrical Parameters 
of the Drum and Roller 

drum 8. These parameters alone uniquely define the drum roller configuration. 
Definitions of other parameters and symbols are summarized in Table 1. 

In this section equations which describe the deflected shape of the spring are 
presented and two numerical methods for calculating the deflected shape of the spring 
are proposed. Results using these methods are then compared to test results from the 
experimental program. 

The deformed shape of the loaded spring will be described as a function. Therefore it 
is necessary to select a coordinate system that allows for only a single value of y for 
each value of x. It is also advantageous to select a coordinate system that allows for 
as many initial and final values as possible to be defined. For this purpose the 
coordinate system shown in Figure 8 was selected. The portion of the spring for which 
the deflected shape is unknown is that segment between point A, the point were the 
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tangent to the 

Initial values at A 
Y (0) = -Rr 
9(0) = 0 

y(%) = unknown 
e(+) = unknown 

$(O) = l/Rn $o$) = -l/R(j 

The origin of the coordinate system is the center of the roller. The angular orientation 
of the coordinate system is not referenced to the drum, but to the roller reaction force 
F,. This means that the location of point 6 and the location of the center of the drum 
will be unknown. Since F, must always pass through the center of the roller, F, will 
always be collinear with the y axis. Therefore point A will always be at x = 0, and F, will 
always be perpendicular to the spring at point A. This is advantageous because the 
bending moment M at any point along the spring can be simply expressed as the 
product of F, and the x coordinate of the point of interest (M = F, x). This will be true 
regardless of the effects of large deflections. The change in curvature of the deflection 
curve is related to the magnitude of the bending moment (M = A@ El). Using these 
relationships it can be shown that the curvature, slope, and deflection at any point along 
the curve can be expressed using Equations 1, 2, and 3 respectively (Reference 2). 

Slope e = sin-’ anx - J 
Deflection y = tan [ sin-’ [ e n x  - 2EI Frx2 ] ] dx (3) 

It should be noted that the curvature at point B is negative and is equal in magnitude to 
the curvature of the surface of the drum. Therefore, substituting -l/Rd for $ in Equation 
1 results in the following expression for 5. 

Equation 3 is the expression that describes the deflected shape of the spring. 
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Two numerical methods for calculating the deformed shape of the spring will be 
introduced. Theoretical results obtained using these two methods are then compared 
with test results of the experimental program. 

Method I: Numerical intearation.. This method uses the equations for the curvature, 
slope, and deflection of the spring. The values, @, 0 and y, are dependent upon the 
magnitude of the roller reaction force F,, but F, is conversely dependent upon L, the 
distance between the roller and the drum. Therefore an iterative solution based upon 
the roller reaction force will be necessary. If the deformed shape calculated using 
Equation 4 results in a drum-roller distance (L) that is equal to the actual drum-roller 
distance, then the solution is based upon the correct roller reaction force. The relation 
between L and the roller reaction force is shown in Figure 9. If the roller is close to the 
drum (i.e. L is small) the roller reaction force is large. If L is large, however, the roller 
reaction force approaches a minimum. 

To calculate L, the position of the center of the drum must be determined. The position 
of the center of the drum is calculated by first determining the x and y coordinates of the 
tangent point B and’the slope of the deflection curve at B. Since a radial of the drum 
will be perpendicular to the deflection curve at point B the position of the center of the 
drum can be calculated. 

It should also be noted that it can be shown that the rotation required to develop the full 
strength of the spring (6,) is equal to the rotation to the tangent point B (Reference 2). 
This is the angle with vertex at the center of the drum, measured from the center of the 
roller to the tangent point B (see Figure I O ) .  

I 1  L 
I I I 

I - 
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ing the correct solution can e s u ~ m a r i ~ e d  as follows: 

* 
* 

* 

Assume a value for F,. 
to calculate 3. 
to calculate the slope of the deflection curve at point 

Solve for the y value of point B by numerically evaluating Equation 3. 
Now that the position and slope of the curve at point B have been 
determined, calculate the coordinates of the center of the drum. 
Calculate L and compare to the actual L. 
If the calculated value of L differs from the real value, adjust F, 
accordingly and repeat until the value of F, that corresponds to the real 
value of L is converged upon. 
Use true F, to calculate deflection, rotation, or curvature for any point 
along the deflection curve. Since the position of point B and the center of 
the drum are known, the angle 8, can also be calculated. 

Method 2: Finite seaments. The second method for calculating the deformed shape 
relies only upon the expression for the curvature (Equation 2): As in the first method a 
value of F, is assumed. However, in this method the driving parameter is s, the 
distance measured along the deformed curve from point A. Recalling that the curvature 
is defined as the change in slope per unit length (a = dWds) the following scheme is 
used to calculate points along the deformed shape of the spring. 

Initial values Differential values Updated values 
s = o  ds = small finite value s = s + d s  

x = o  dx = ds cos8 x = x + d x  
e = o  de =ads e = e + d e  

y = -I/R, dy = ds sine Y=Y+dY 
= @n @ = @,, - F, x/El 

A value for the reaction force is assumed. Initial values corresponding with the actual 
restraint conditions at point A are set. These values are then updated using differential 
values for each additional segment ds along the curve. At some point along the curve 
the curvature will become equal to the curvature of the surface of the drum. This 
signifies that the spring is now tangent to the drum. The updated values at this point 
are for point B, the tangent point of the drum. The x, y, and slope values for that point 
are used to calculate the position of the center of the drum and the corresponding value 
of L. This calculated value of L is compared to the real value of L and then the 
assumed value of F, is adjusted accordingly. This process is repeated until the correct 
solution is converged upon. 

An AutoLlSP algorithm which uses this method has been developed. This algorithm 
solves for the deflected shape of the spring and plots the spring, the drum, and the 
roller as an AutoCAD drawing file. Analytical results using this routine will be used in 
the comparison of the test results. 
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- The general shape of the spring 

The angle of contact between the spring and roller 8, 
The tangent-to-tangent segment length st 

- he rotation required to develop the full strength of the spring 0, 
- 
- 

These four characteristics will be used to compare the analytical solution with test 
results. These values vary for each unique combination of spring size and drum-roller 
configuration. Figure 10 illustrates qualitatively how each of these characteristics will 
vary just by changing the distance between the drum and roller. 

The first characteristic to be addressed is the general shape of the spring. Figure 4 1 
shows a photograph of the deformed shape of a typical spring in the loaded position. 
Superposed on the photograph is a plot of the analytical solution for the deformed 
shape of the spring. Figure 11 is still somewhat of a qualitative comparison, but it is 
important because it shows that space requirements can be checked analytically rather 
than by building a prototype to see if the deflected spring will have clearance problems. 

11. 

The next characteristic to be compared is the angle 0 . This is the rotation at which the 
spring develops its full strength. varies for differen! spring sizes and drum-roller 
configurations. Even for a given spring, drum, and roller, 0 will vary if the distance 

three different values of L using the same spring, drum, and roller. When L is small, in 
other words when the roller is close to the drum, it takes less rotation to develop the full 
torque of the spring than when L is large. 9, can vary by as much as 90 degrees in 
some cases depending upon the distance between the drum and roller. Table 2 

between the drum and roller is changed. Figure 12 shows ! orque-rotation curves for 

21 2 



ares values of and method 2 ith test results for a 
pt for small values 

rors in measuring L result in large 

typical constant 
values are accu 
13, the slope of the 
errors for 8,. 

Torque 

L = Medium 
L = Small 

0 30 60 90 120 150 180 
Rotation (degrees) 

Figure 12. Torque-Rotation Curves 
Illustrate the Variability of e, 

Figure 13. e,, Comparison of 
Analysis with Test Results 

The other characteristics of interest are the angle of contact between the spring and the 
roller (this angle is called 8, and defines the orientation of the roller reaction force; see 
Figure IO),  and the tangent to tangent segment length st. st is directly calculated when 
using the finite segment method, and can also be included in the calculation when 
using the numerical integration method. 

Table 2 compares values calculated using method 1 and method 2 with test results for 
a typical constant-torque spring configuration. The results presented are for single 
layered springs but are also comparable to results for layered springs. The results of 
tests for multi-layered springs (Reference 2) demonstrate that the characteristics of the 
deflected shape of a layered spring do not significantly differ from the characteristics of 
the individual springs used to make the layered spring. 

Table 2. Comparison of Test Results to Methods 1 and 2 
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: the friction in the roller 

Effects of friction in the roller. First it is necessary to differentiate between the two 
types of rollers commonly used. There are rollers that rotate and there are rollers that 
are just a fixed shaft. The first type of roller rotates about its center and may make use 
of a journal bearing, a ball bearing or some other type of bearing. This type of roller will 
be called a "bearing roller". This is the typical roller shown in all the previous 
illustrations. The second type of roller is not an actual roller, but is a fixed post or shaft 
that cannot rotate. Using a fixed shaft in place of a roller is not uncommon; many 
constant torque-spring mechanisms are designed using simply a steel pin for a roller. 
This type of roller will be called a "sliding roller" because when the spring is loaded or 
unloaded the spring slides along the surface of the fixed pin or shaft. It should be noted 
that if the typical bearing type roller were to bind or "freeze up" it would become a 
sliding roller, too. So the behavior of the sliding roller is of interest regardless of the 
type of roller used. In the case of a sliding roller, friction occurs when the surface of the 
spring actually drags across the surface of the roller. In the case of a bearing roller 
friction occurs within the bearing and not between the spring and the roller. 

It can be shown that the hysteresis e in the torque-rotation curve due to the effects of 
friction in the roller can be expressed using Equation 5 (Reference 2). Where Rd is the 
radius of the drum, Fr is the roller reaction force obtained analytically using the methods 
described in the previous sections, and f is the "coefficient of friction" of the roller. 

e = f F, 2R, 

Test results for a wide variety of constant-torque spring configurations demonstrate that 
this relationship is indeed linear (Figures 14. and 15). In Figures 14 and 15 the slope of 
the lines represents the coefficient of friction of the roller f. For these plots e was 
measured and F, was calculated. 

0 
0 

0 
I Bearing 

0 

O0 Steel Ball 0 

T Nylon Journal 0 

6 
k? 9 '  

0 0  

0 i o  ,, ,, 
o.2 T Steel 

Y' 8 
m, m 

Teflon m-' 

0 0.5 1 1.5 
Fr 2Rd (Nm) 

0 0.5 1 I .5 
Fr 2Rd (Nm) 

21 4 



slide down the slope rather than roll.) The flat surface is then raised to the angle at 
which the forces of friction are overcome by the forces of gravity. The roller coefficient 
of friction is calculated using Equation 6. Table 3 compares values of f obtained using 
the sliding test with the slope of the e vs Fr 2R, curves shown in Figures 14 and 15. 

f = tana (6) 

Figure 16. Testing for f 

As the values of f get small (see steel ball bearing results) it becomes difficult to 
accurately measure e or predict fusing the sliding test. Fortunately, for values of fthis 
small the effect of friction on the torque-rotation curve is negligible. 

The effects of friction between sprina lavers. Test results demonstrating the effects of 
friction between spring layers for a four-layered spring configuration made of type 301 
stainless steel are shown in Figure 17. Torque-rotation curves for a one-, two-, three-, 
and four-layered spring are shown. With the addition of each succeeding spring layer 

14 Layers 

- . \3 Layers 

--- - j2 Layers 

/ - -  

-_ - 
--_ - - . 

,--- -3 1 Layer - - -  
- - ._ - _- 

p - 1  

0 30 60 90 120 150 180210 
Rotation (deg) 

ys te res is 

Layers 1, 2, 3,4 .I42 .I47 97% 
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e hysteresis increases. 
s is related to the frictio 

must be remembere~ that with the addition of ea 
force also increases, and hence the hysteresis d 
order to determine how much of the hysteresis is due to relative motion of the spring 
layers, the increased hysteresis due to the roller must first be subtracted out. The 
hysteresis of each individual spring and the hysteresis of multiple spring combinations 
are given in Table 4. By subtracting out the hysteresis due to the roller, we find that the 
remaining hysteresis due to relative sliding between spring layers was smaller than the 
accuracy of the test. Therefore, it is concluded that hysteresis due to relative sliding of 
spring layers is insignificantly small compared to the effects of friction in the roller. 

Torque 

Fatigue Life 
Operating Space 

Rotation 

Design Example 

Required Value Safety Factor Design Value 

2.5 Nm (TREQ) 4 10 Nm (T,,s) 
180" (@REQ) @LM = lo",  @UM = 10" 200" (@LM 4- @REQ @UM) 
500 cycles 4 2,000 cycles 
120 mm x 200 mm 1 120 mm x 200 mm 

The following is a design example that incorporates the new analysis techniques. The 
design requirements shown in Table 6 will be used. Safety factors are examples and 
do not represent recommendations. 

Table 6. Example Design Requirements 

Upper and Lower Margins of Safety for Rotation 

Determine the sprina material. Spring manufacturers can help in determining the 
appropriate spring material to be used. Type 301 stainless steel is the most common 
material used and will be selected for this example. 

Determine the stress factor. Using a fatigue life curve such as the one shown in Figure 
18, determine the stress factor S, corresponding to the fatigue life design value. (Spring 
manufacturers can provide stress factors corresponding to the fatigue life of their 
specific products.) The stress factor is proportional to the cyclic stress range in the 
spring and is equal to the product of the thickness of the spring and the change in 
curvature the spring will experience (Equation 7). For the material used in this example 
the stress factor for 2,000 cycles is 0.0275. 
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CYCLES N 

Figu 

2 

Greater than 2 

Estimate the drum size. The drum must fit within the 120 mm operating space. 
Therefore, a drum diameter of 100 mm will be chosen; hence R, = 50 mm. Minimizing 
the drum size can reduce the size and weight of the mechanism, so hopefully R, can 
be reduced even more. But for starters we will use a diameter of 100 mm. In the case 
that there are no space requirements, use your best judgement to choose a 
'ireasonable" drum diameter to start with. 

90" - 120" Commonly used 

less than 90" Small rotation ranges 

Determine a. the ratio of drum diameter to sprina diameter. Use the recommendations 
in Table 7 to select a (a = R,/R,). Most constant-torque spring design guides 
recommend that the drum diameter be twice the spring diameter (a = 2). However, in 
order to optimize mass and maximize rotation, this author recommends a = I .25. a 
should never be less than 1 .O because instabilities can occur when the drum diameter 
is less than the spring diameter. 

Table 7. Recommended Values of a 

Determine the natural radius of the sprina coil. Based upon a the natural radius of the 
spring coil is determined. 
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Calculate the maximum allowable sprina thickness tm,, 

Select a sprina. Select a spring with a thickness smaller than or equal to the maximum 
allowable thickness. If using stock springs, the catalog will give the width (b) of the 
spring and the initial diameter (ID) of the spring. The natural radius of stock springs 
must be modified to the design value if optimization of the mechanism is desired. tf the 
spring is to be ordered to specifications, specify a thickness smaller than the maximum 
allowable thickness and specify a width approximately 60 to 100 times greater than the 
thickness (Reference 1). For this example the next standard thickness smaller than 
tmax is 0.4064 mm (0.016 in). 

Determine the roller diameter. The roller diameter must be smaller than the spring ID. 
For this example a roller diameter of 25.4 mm will be used. 25.4 c 80, therefore, OK. 

Determine the drum-to-roller distance L. The distance L influences the magnitude of 
e,, the magnitude of the roller reaction force F,, and the inclination of the roller reaction 
force 8,. In order to optimize mass, L should be small. However, if L is too small the 
magnitude of the roller reaction will increase, resulting in large hysteresis effects. 
Based upon results'of the testing program the author recommends using a value of L 
that results in an angle of inclination of 1 I O "  for the roller reaction force. An analysis of 
the spring is carried out iteratively for various values of L until the one which results in 
6 = 1 I O "  is converged upon. Figure 19 shows the results of such a routine for this 
design example. Note how the appropriate value of L was selected so that 8 , would 
result in a value of 1 I O " .  

DRU M-RO LLER C-OAFEU-J'-TmN 

Drum diameter = 100 
Roller diameter = 25.4 
Center-Center dist (L) = 89.5 

SPRING DALA 

Thickness (t) = 0.4064 
Width (w) = 25.4 
Initial Diameter (ID 
Young's Modulus ( ) 

RESU LTSQFALALY SLS 

Spring Coil 

L =80 = 193,000 

Torque (T) = 1388 
Roller reaction force (FJ = 16.54 @ 1 I O "  
Tangent to tangent length (s,) = 81.8 
Minimum rotation (ep) = 59 

Drum 

re 
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+ 1 
(40 rnm) (50 mm) 

(190,000 N mm* ) (25.4 mm) (0.4063 mmr3 
24 

mm) - - 

=1,388 Nmm = 1.388 Nm 

Calculate the maanitude of the hvsteresis e. We will assume that a “sliding test’’ 
resulted in a roller coefficient of friction of 0.10. 

e = f F, 2R, = (0.1)(16.54 N)(50 mm) = 82.7 Nmm = 0.0827 N m  

Calculate the effective torque for one laver Tavz The effective torque is equal to the 
calculated torque less one half of the hystergsis. In this case the hysteresis resulted in 
a 3% loss of torque. 

0*0827 Nm = 1.347 Nm e 
2 2 

Te, = T - - = 1.388 Nm - 

Calculate the number of sprina lavers required n. Divide the design torque by the 
effective torque of one layer to determine how many spring layers are required. In 
order to optimize mass this author recommends using between 5 and I O  layers. If less 
than 5 layers are required, the drum can be made smaller and the analysis procedure 
repeated. If more than 10 layers are required, the drum should be made larger and the 
analysis procedure repeated. In the case that the drum cannot be made larger, more 
than 10 layers could be used, but tests to confirm stability should be performed. 

lo Nm 
= 7.4 4 8 layers n = - -  ‘des - 

Teff 1.347 Nm 

This design has 8 layers, and will therefore be accepted. The design could be fine 
tuned a bit by adjusting the drum diameter and repeating the procedure to this point, 
however, we shall accept this design and proceed. 

Calculate the required lenath of the sprina S. This calculation is for one spring layer. 

= St + Rd( ~ ~ ~ ~ X ~ ]  = 81.8 + (50) (200’ x%) = 256 mm. 
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hese are the rotation v 

*mi" = 'p + %M 

emax = 9, + QLM + aREa = 59" + I O "  + 180" = 249" 

= 59" + 10" = 69" 

This completes the proposed design procedure. The torque-rotation response of the 
spring is completely defined, the deflected shape of the spring is known, and all the 
important parameters required to specify the spring, drum, and roller have been 
determined. This design procedure, however, is only a recommendation, the analysis 
capabilities presented herein can, of course, be used to enhance other design 
procedures as needed. 

Conclusion 

In order to improve the design and analysis procedure of constant-torque springs used 
in aerospace applications several new analysis techniques were developed along with a 
design procedure which incorporates these new capabilities. The new analysis 
techniques include solutions for the deflected shaped of the spring, the roller reaction 
force, and the hysteresis effects of friction. Experimental results show that these new 
techniques are accurate and reliable, thus allowing several new aspects to be included 
in the design procpss. 

The capacity to accurately calculate the deflected shape of the spring allows for 
space requirements and kinematic functionality of the spring mechanism to be checked 
analytically rather than using the time consuming process of trial and error. 
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