
NASA Contractor Report 198474

Integrating Post-Manufacturing Issues Into
Design and Manufacturing Decisions

Charles F. Eubanks

Stanford University
Stanford, California

May 1996

Prepared for
Lewis Research Center

Under Grant NGT-51193

National Aeronautics and

Space Administration

https://ntrs.nasa.gov/search.jsp?R=19960027038 2020-06-16T03:53:29+00:00Z

Annual Technical Report

for

NASA GSRP Project NGT-51193

Integrating Post-manufacturing Issues into

Design and Manufacturing Decisions

Charles F. Eubanks

September, 1994 - August, 1995

Introduction

This project focuses on research into some of the fundamental issues underlying the

design for manufacturing, service and recycling that effect engineering decisions early in the

conceptual design phase of mechanical systems. I am investigating a systems-based approach

to material selection, manufacturing methods and assembly processes related to overall

product requirements, performance and life-cycle costs. I am placing particular emphasis on

concurrent engineering decision support for post-manufacturing issues such as serviceability,

recyclability, and product retirement.

Over the past 15 years, we have seen a growing body research on several concurrent

engineering issues. Probably the most mature of these is design for assembly (DFA)

(Boothroyd & Dewhurst, 1972; Homem de Mello & Sanderson, 1991; Sturges & Kilani,

1992), with design for producibility (Priest, 1988; Arimoto, et al., 1993) and design for

manufacturability (Poli, et al., 1992; Fathailall & Dixon, 1994) also receiving attention. We

now see several institutions pursuing a combination of these disciplines as design for

manufacturing and assembly (DFMA). These issues are very important, but fail to address

costs incurred after the product leaves the factory.

Rising warranty costs have focused attention on the issue of design for serviceability

(Makino, et al., 1989; Berzak, 1991; Eubanks & Ishii, 1993), particularly among automotive

and major appliance manufacturers. It is clear that component manufacturing and assembly

play a major role in overall quality and reliability, and that system configuration and assembly

methods contribute to the ease of service. More recently, design for environmental

compatibility (Navin-Chandra, 1991; Glantschnig, 1993; Marks, et al., 1993a) has become a

factor that focuses attention on how the materials that make up a product and manufacturing

processes used to create the product impact the earth's natural resources. All of these

considerations point towards the need for an integrated approach to product design and

manufacturing, and the need for decision support systems to aid engineers early in the design

process.

AnnualTechnicalReport:9/94-8/95
NASAGSRPProjectNGT-51193

SecondYear Progress Summary

The project timeline shows that the primary goals for the second year was to complete

the design representation phase, and to continue work on the decision propagation analysis,

system framework development, and begin the framework implementation. The project is on

schedule for the most part, although research into the framework implementation has been

delayed.

I Project and Research Timeline I
NASA GSRP Project NGT-51193

Progress as of September 1, 1995

Tasks

Background Research

Design Representation Devel.

Decision Propagation Analysis

System Framework Development

Framework Implementation

Application to Real-world Example

Final Report

1/94 1/95 1/96

'/ /

f, ,//

"4
.....!l/Ill,

r(////.

;/////%/////)

9/96

I I I

/

Research focus during the second year

The primary focus of our research over the past twelve months has been in the area of design

decision propagation analysis. Key factors are 1) capturing the conceptual design decision

process using methods and representations suited to that process, and 2) assuring, as much as

possible, consistent and complete delineation of the parameters and operating conditions that

will guide the layout and detail stages of the system design.

In the context of product design, the process begins by defining customer requirements, then

performing a functional analysis to generate the design concepts and define the design

problems to be solved. (Suh, 1990; Ullman, 1992) This process generally proceeds until

lower level functions can be mapped to components. However, as Ullman (1993) points out,

the design process should be seen as a more parallel development of form and function.

Approaching the problem from the standpoint of looking at relationships between function

and structure as the design develops, we realized that there is an opportunity to incorporate

the ability to perform advanced Failure Modes and Effects Analysis (FMEA) as a means of

testing the validity of our method. Preliminary work by Di Marco, et al. (1995) showed that

such an analysis could be extracted from a fairly simple function-to-structure mapping, but

Eubanks - 2

Annual Technical Report: 9/94-8/95

NASA GSRP Project NGT-51193

also showed some weaknesses of using a standard functional analysis model, and with the

ways in which FMEA is carried out on consumer and industrial products.

Outlining the FMEA problem

Like serviceability, the major problem associated with traditional FMEA and diagnosability

analysis methods is that they occur way too late in the design process, because it relies on the

specification of the components that make up the device. Generally, the required component

information is only available after completion of the prototype component and system design

phase. Thus, as indicated earlier, any shortcomings in the design that might be identified by

FMEA can be very expensive and difficult to correct or mitigate.

Our industry collaborators have also indicated that FMEA's on some consumer goods tend to

be carried out on sub-systems, without necessarily addressing system wide effects. For

example, a critical design criteria for an automatic ice maker is the alignment relative to dead

level. Appropriate alignment assures that the water level is even throughout the ice maker

freezing tray, so that ice cubes freeze evenly. Uneven freezing leads to hollow ice cubes on

one extreme, and brittle (over frozen) on the other extreme. Problems develop when the ice

maker is correctly aligned with respect to the freezer, but the freezer is not dead level with

respect to the earth. A standard FMEA would miss this failure mode, because it does not

account for issues related to the device's interface with the rest of the system. Other system-

wide variables that effect ice maker operation include incoming water pressure and freezer

temperature. Variations in alignment, water pressure, and freezer temperature contribute to

nearly half of ice maker service calls.

Several automated FMEA systems have been developed for use in analyzing electrical

systems, since faults and failures can be more easily characterized as numerical quantities.

Ormsby, et al., (1991) developed a concept for automated FMEA employing qualitative

reasoning in a model-based environment as a means of making the analysis extensible to other

domains. Computer-based diagnosis systems have been a popular research subject for the

past several years, as evidenced by Hamsher, et al. (1992) Abu-Hanna, et al., (1991) showed

that functional design models can be used in model-based diagnosis systems. In the mechanical

engineering domain, Umeda, et al., (1992) used functional representations for diagnosis and

self-repair of a copy machine. Morjaria, et al., (1992) have developed diagnostic systems

based on belief network technology, which employs causal networks and probability theory to

reason from symptom to failure in large industrial systems. More pertinent to this research is

work by Clark and Paasch (1994), who show that function to structure mapping can be used

in the early stages of design to assess diagnosability; i.e., a measure of the ease of isolating the

cause of a malfunction. They present a method for substituting functions and sub-functions

for component performance measures in the early stages of design to make diagnosability
assessments.

Eubanks - 3

AnnualTechnicalReport:9/94-8/95
NASAGSRPProjectNGT-51193

Behavior Model Development

Basic concepts and definitions

Structure is defined as the physical topology of a device or system, including the components

that make up the system, and the relationships between the components.

The definition of function is fairly well established, and is usually stated as what must be done

without specifying how it is to be achieved. Functional analysis is probably the most widely

accepted practice for defining designs in the conceptual phase. Engineers begin by defining

the overall function which the device is to perform, and decompose it into sub-functions that

delineate the design problems to be solved. (Suh, 1990; Ullman, 1992) The usual practice of

effective functional decomposition stresses suppressing the definition of the "hows" as long as

possible so that we can 1) better understand the design problems to be solved, and 2) identify

existing components that may fulfill the functional requirements. (Ullman, 1992)

Behavior is not quite as well defined, but normally follows the notion that it is "how (an)

expected result is attained" (Keuneke, 1989), or the "detailed description of internal physical

action based on physical principles and phenomena." (Welch & Dixon, 1994) However, using

these definitions, the line between function and behavior blurs very quickly during the process

of functional analysis. Finger and Rinderle (1989) recognized this, and used the term function

"to indicate the subset of behaviors which are required for the device to perform

satisfactorily." Struges (1992) brings this into focus when he describes his functional block

diagram decomposition (Figure 1) with the statement:

"The nodes to the left of a function node represent the reason why a function is

included: a higher-level function. The nodes to the right are functions

describing how the function is performed..."

• •

Figure 1 Functional Block Diagram Schematic

The distinction we have generally seen between models for function and behavior is the

latter's use ofpre- and post-conditions; i.e., what conditions must be true in order for the

behavior/function to take place, and what conditions exist given that the behavior/function has

taken place.

Eubanks - 4

Annual Technical Report: 9/94°8/95
NASA GSRP Project NGT-51193

Behavior modeling has received a good deal of attention on the theoretical level, particularly

in the AI community. In a function-behavior-structure modeling construct, behavior

knowledge forms the link between the functions and structure of a device. As mentioned

earlier, this information is vital to issues related to diagnosis and serviceability of systems.

Many researchers in the AI community use the notion of causal chains or networks that are

derivable either from the functional description of a device (Keuneke, 1991), from its

structure, (Kuipers, 1984), or from the aspect of qualitative physics. (deKleer and Brown,

1984) More recently, researchers in the field have developed more rigorous definitions and

methods for describing the behavior of devices from the aspect of causal process descriptions

of devices (Iwasaki & Chandrasekaran, 1993) and causal ordering based on process models.

(Iwasaki & Simon, 1994)

Restating Ullman's conjecture, the design process should be seen as a more parallel

development of form and function. Given that this form-function link is created early in the

design process, then we should be able to perform FMEA and diagnostic analyses early in the

design process. As shown in Figure 2, FMEA begins with a failed or degraded component,

and attempts to identify the end-effect, usually expressed as a malfunction or misbehavior.

For example, if the ice maker thermostat exhibits a failure mode of"stuck open", ice will form

in the tray, but the ice maker will not cycle to push the ice into the ice bucket, and refill with

water. The observed effect is "no ice in bucket, ice in tray". Diagnosis entails the same

notion, but occurs in the opposite direction, starting with an observed misbehavior, and

attempting to identify the failed component. Using the previous example, we would observe

"no ice in bucket, ice in tray" and work to the conclusion that the cause was "thermostat stuck

open".

FMEA

 TROCTOR (BE.AV,O 1
(Failure) _ _(MIsbehavlor)J

Diagnosis

Figure 2: FMEA / Diagnosis Relationship

Thus, if we can develop a method capable of performing FMEA in the early stages of design,

then we should be able to provide insight into issues surrounding reliability, diagnosis, and

serviceability in these early stages as well. Key elements required to develop this capability

include:

Eubanks - 5

Annual Technical Report: 9/94-8/95
NASA GSRP Project NGT-51193

• a behavior model suitable for use in the early stages of design

• a structural model suitable for use in the early stages of design

• a framework linking these two models

• inferencing methods for evaluating effects of both behaviors and misbehaviors on

system operation

• a user intuitive interface consistent with the conceptual design process

The clearest advantage of using behavior modeling over traditional functional modeling for

this analysis is that it requires specification of initial system states and the transitions necessary

to obtain the desired system states. The major departure from behavioral modeling methods

mentioned in the previous section is that the full specification of the device state is not

necessarily known early in the design phase. Therefore, we must adapt methods for dealing

with sets of states, as opposed to individual states.

Initial concept development on behavior modeling for design

Gleaned from the literature, we submit the following definitions:

Variable: a triple (<object>, <attribute>, <value>)

where:

<object> can be any physical or conceptual entity

<attribute> is a distinctive quality or characteristic of the object

<value> is a quantification of the object attribute

State: a set of quantified state variables

Behavior: a transition from one state to another; i.e.,

initial state ---) behavior _ final state

Behavior definition and state space partitioning

Design begins when we 1) recognize a need, and 2) decide to build a device to satisfy that

need. At this point, we have no idea what the device will look like, how it will perform, etc.

What we do know is some initial existing condition, or state, that we wish to alter to create

some final desired state. For example, I recognize a need for ice cubes to be present in the ice

bucket of my household freezer; i.e.,

Initial state: no ice cubes in ice bucket

Desired state: ice cubes in ice bucket

Conceptualizing a universe S of all the possible states that any device that we might design

may exhibit, we have essentially partitioned the state space into two regions, each of which is

a set of states. One set consists of all possible states, where a state is some unique

combination of state variables, which have the common state variable (ice bucket, ice cube

Eubanks - 6

Annual Technical Report: 9/94-8/95
NASA GSRP Project NGT-51193

level, empty), while the other set consists of all possible states which have the common state

variable (ice bucket, ice cube level, not empty). Identifying these sets as Sl and $2,

respectively, we have:

Sx = {(ice bucket, ice cube level, empty), (obj2,*, *), (obj3, *, *),..., (obj,, *, *)}

5'l = {(ice bucket, ice cube level, not empty), (obj2, *, *), (obj3, *, *),..., (obj,, *, *)}

where (obj,, *, *), i = 2, ..., n, represent as yet unknown objects whose attributes may take on

any value. Therefore, if we take the intersection of all of the possible states contained in the

sets Sl and $2, we would have:

f') S I = {(ice bucket, ice cube level, empty)}
s,es

f') S 2 = {(ice bucket, ice cube level, not empty)}
s es

We now define the desired behavior, bl, for our device as "deposit ice cubes in bucket", which

causes the state transition to take place. We can envision the resulting state space and

transition as shown in Figure 3:

81
82

Figure 3: Partitioned State Space with Transition

We can also represent the transition as a flow diagram:
bl

Sl r- $2

We may also know some general operating conditions that we either expect will exist, or

which must exist due to the physical requirements of the process. In this case, the device must

exist in an environment cold enough to freeze water, and maintain it in a frozen state. Once

again, the state space can partitioned into sets of states which have state variables:

(environment, temperature, ___32)

(environment, temperature, > 32)

Eubanks - 7

Annual Technical Report: 9/94-8/95

NASA GSRP Project NGT-51193

We have now defined four sets of states:

n St = {(ice bucket, ice cube level, empty), (environment, temperature, < 32)}

n $2 = {(ice bucket, ice cube level, not empty), (environment, temperature, < 32)}
$2

n $3 = {(ice bucket, ice cube level, empty), (environment, temperature, > 32)}
$3 S

N $4 = {(ice bucket, ice cube level, not empty), (environment, temperature, > 32)}
$4 S

Note that the set of states $4 is, under normal circumstances, not possible. Laws of nature

(physics, chemistry, etc.) further partition the state space, separating device states that are

possible from those that are impossible; i.e., states that violate the 2nd Law of

Thermodynamics, Newton's Laws, etc. The implication is that a transition from initial state in

the set $1 to any state in the set $4 cannot occur, simply because the laws of nature prevent ice

from existing (at least for extended periods) in an environment with temperature greater than

32. In addition, state $3, is possible, but is undesirable, since there is no possible transition

from this state to the desired condition of having ice cubes in the bucket. These areas can be

visualized as shown in Figure 4:

Sl

821

Figure 4: Partitioned State Space with Undesired and Impossible States Defined

Among the 4 definable sets of states, we consider 2 to be desirable, both of which have as a

state variable the necessary operating condition (environment, temperature, _<32). Thus, the

set intersection of elements common to each set yields:

n St n n $2 = {(environment, temperature, < 32)}
S,sS S2eS

In addition to desired, undesired, and impossibl e sets of states, we may partition into sets of

states which are either unknown, or not applicable. Unknown sets are possible combinations

of state variables which cannot be designated as either desired or undesired, and may

represent behavior side-effects. Sets of states become not applicable when design decisions

exclude them from the realm of possibility; e.g., deciding to use an electric motor for energy

input as opposed to a hand crank. It is possible to represent these decisions as a hierarchical

Eubanks - 8

Annual Technical Report: 9/94-8/95

NASA GSRP Project NGT-51193

breakdown of a desired behavior into desired sub-behaviors. Behavioral decomposition is

covered in a later section.

Reasoning about failures

At this point, we can assume that some device exists whose desired behavior is to deposit ice
cubes into the ice bucket. We have also implicitly assumed the existence of an operating

environment with a temperature less than or equal to 32. Let's assume that we begin with the

conditions described as S1, and consider two possible failures: 1) the failure of our device to

deposit ice cubes in the bucket, and 2) the failure of the environment to exist at a temperature

less than or equal to 32. In the case of failure 1, no state transition takes place. We simply

remain in state S_ ad infinitum, or until failure 1 is corrected. In the case of failure 2, we make

the transition into the undesired state, $3, there to remain until failure 2 is corrected, which

allows us to transition to state S1, and then on to $2. It is reasonable to conclude that failures,

either in the device itself or in the system supporting it, can manifest themselves as either 1)

the failure to transition to the desired end state, or 2) the transition to an undesired state.

A behavior (bl) is uniquely defined by both it's initial state, or pre-conditions ($1), and it's

final state, or post-conditions ($2). (Iwasaki & Chandrasekaran, 1992) As such, we can define

any transition into an undesired state uniquely, and make the claim that the transition from

some desired state (Sl) into an undesired state ($3) results in a unique and undesired behavior

(bl'). It is also possible to define another undesired behavior, bt", that transitions from $2 to

$3, also a result of failure 2. We can assign both bt' and bt" the label "freezer failure". (Figure

5) Failure 1, on the other hand, can be thought of as a non-behavior, _b, representing a case

where there is simply no transition to another state. Since we would like to be able to identify

failures, we could choose to assign _b the label "ice maker failure".

S2

Figure 5: Representation of Undesired State Transitions

From the previous discussion, we can state the FMEA problem as:
"Given an undesired behavior or a non-behavior, what is the resulting device state?"

Using our example, we would pose the FMEA problem as:

"Given St and "freezer failure", how would that effect the system?"

From the transition graph, we see that the answer is $3.

Eubanks - 9

Annual Technical Report: 9/94-8/95

NASA GSRP Project NGT-51193

In much the same way,. we can state the diagnosis problem as:

"Given an undesired final state, what desired behaviors did not occur, or what

undesired behaviors did occur?"

Using our example, we would pose the diagnosis problem as:

"Given that the device is in Ss, what happened?"

We see that there are 2 undesired behaviors that could have occurred, both of which represent
"freezer failure".

The preceding examples are simple and straightforward, because we are working a very high

level of device abstraction, and thus at a very high of system aggregation;, i.e., entire sub-

systems. As we decompose the operation of the device into more detailed descriptions of

both behavior and structure, we need more sophisticated techniques for describing and

reasoning through the FMEA and diagnosis problem, a primary thrust of this research. The

methods developed will parallel work described in Goel & Chandrasekaran. (1989)

Behavior decomposition

The device design proceeds with decisions about how the device is to perform its desired

behavior, with each decision partitioning the state space. Using the notion of functional

decomposition, we can begin to perform behavioral decomposition to delineate the sub-

behaviors required to accomplish the overall device behavior. Continuing with our example,

behavior bl can be decomposed into 2 sub-behaviors:

bn: create ice cubes

b12: deposit ice cubes in bucket

which create state transitions:

bll b12
Sll _S12 $21 _$22

Note that the label of b12, "deposit ice cubes in bucket," is not unique, as it is the same label

used for bl. However, it is unique when we identify the pre- and post-conditions. For blx, the

initial and final states are:

Six = {(ice bucket, ice cube level, empty),

(environment, temperature, < 32),

(ice maker, ice present, false),

(obj4, *, *), (objs, *, *),..., (obj,, *, *)}

SlZ = {(ice bucket, ice cube level, empty),

(environment, temperature, _<32),

(ice maker, ice present, true),

(obj4, *, *), (objs, *, *),..., (obj,, *, *)}

Eubanks- 10

Annual Technical Report: 9/94-8/95
NASA GSRP Project NGT-51193

For b12, the initial and final states are:

S21 = {(ice bucket, ice cube level, empty),

(environment, temperature, _<32),

(ice maker, ice present, true),

(obj4, *, *), (objs, *, *),..., (obj,,, *, *)}

Sz2 -- {(ice bucket, ice cube level, not empty),

(environment, temperature, _<32),

(ice maker, ice present, *),

(obj4, *, *), (objs, *, *),..., (obj,, *, *)}

At this level of granularity, note that $12 and S21 are representations of the same set of states,

which we shall designate simply as St2. Because the post-conditions ofbn are therefore

precisely the pre-conditions orb12, we can say that bn and bl2 are causally linked to form the

state transition graph:

bll b12
$11 ,_Sl2 r.-$22

Intuition tells us that any pre-conditions required for bt must also be required for bn, and that

any post-conditions resulting from bt must also result from bt2, if this decomposition is valid.

In state space terms, any evaluated variables common to partition St must also be common to

partition Sn, and likewise for $2 and $7_; i.e.,

N S,,n NS,= NS,
s___ s__s s__s

N S_n N S_= N S_
s22_s s2_s s2_s

In addition, the afore mentioned operating condition (environment, temperature, <_32) must,

by definition, be pervasive throughout the decomposition of desired behaviors:

N S,,c_ N S,_c_ N &_= N S_c_ N S_
s_s s_2_s s22_s s_s s_s

It would be prudent at this point to note that the decomposition of a behavior into sub-

behaviors is not necessarily unique. The details of the decomposition hierarchy will be a direct

reflection of the design team's implementation decisions. Therefore, any representation model

must support multiple sets of decomposed child behaviors for each parent behavior.

I submit (without proof, for the time being) that $2 and Szz represent the same set of states,

since the "ice maker" variable is now assuming all possible values. Therefore, the state

transition graph becomes:

bll b12
Sll _-S12 _$2

Eubanks - 11

Annual Technical Report: 9/94-8/95
NASA GSRP Project NGT-51193

Graphically, the state space appears as shown in Figure 6:

S2

Figure 6: Representation of a Decomposed State Space

This situation now begs the question of whether the undesired behaviors are similarly

decomposable and will they follow the same decomposition rules? It would appear so in our

simple example, but may not be the case in general.

Imp#cations for system development

What we see developing is a set of methods and rules which can be used to both guide and

partially specify the way in which behavioral decomposition proceeds. For example, if the

designer declares an operating condition variable value to be pervasive, and later in the

decomposition attempt to assign a conflicting value to it, the system can easily perform a

consistency check and flag this as a mistake. The same can be done between levels of

decomposition, since conditions pervasive in the parent behavior must _exist in all states in the

child behaviors. Because we are grounding the specification and decomposition in logic and

set theory, we should be able to perform automated, detailed analyses and simulations of

device behavior, reason about conditions which depart from desired behaviors, and analyze

the results of those departures.

The method we are proposing is rigorous in that it requires specification ofpre- and post-

conditions, yet flexible in that we require no specific syntax by which the design team must

define the device operation. One obvious question to be answered is whether we can continue

to develop a meaningful representation and a tractable reasoning system without resorting to

the use of a specific syntax.

Concept development on device structure representation

Another major effort required by this research is the development of a robust representation of

device structure. We have seen how it is possible to define failures and their effects in terms

of undesired states and transitions to those states. However, the FMEA, and the diagnosis

models generated from it, make more sense to engineers when place in the context of

components and/or subassemblies. We need a comparable model for device structure, capable

of capturing as much knowledge about the physical aspects of the device as possible, as early

as possible in the design phase.

Eubanks- 12

Annual Technical Report: 9/94-8/95

NASA GSRP Project NGT-51193

As shown in the previous discussion, behavioral decomposition will generally define the nature

of the sub-systems that will eventually make up the device, and possibly some of the necessary

support systems for the device to operate properly; e.g., the freezer as a support device for the

ice maker. Thus, there is some notion of behavior to structure mapping that is simply implicit

in the behavior modeling process. UUman (1993) points out that in many cases some

structural decisions are made in these early stages, indicating that the structural representation

needs to be developed in parallel with the behavioral model. Of course, as the decomposition

of device behaviors continues, behavior descriptions will approach a detailed enough level to

1) warrant the use of engineering equations to describe the state transition, or 2) be mapped

directly to a know artifact which performs the desired behavior. (Ullman, 1992; Suh, 1990)

At this point, we are into the more traditional aspects of mechanical engineering component

design, which will begin to add design details that will be used in the development of 3-D

models.

As reported previously, I have been working on an object-oriented approach to a structural

representation syntax, applicable to the early stages of design, which aids in the definition of

the basic physical objects, and relationships between these objects, which define a mechanical

system. (Eubanks, 1994) I have established the basic elements of the system and their

semantic relationships. (Figure 7) A good deal of work remains to refine this model, and

determine the necessary object attributes.

l_l I

Figure 7: Representation of Existing Structural Representation

Where previous reports separated the notions of function and structure, we have now

combined them under the consolidated concept of behavior. The object-oriented approach of

the behavior model should dovetail with this structural model quite nicely. In addition, it may

be possible to establish object links to CAD systems that support component databases.

However, most commercially available packages do not support this option, or do so in a very

limited fashion. (Busick & Chong, 1995)

At every stage of the design process, we want key elements and relationships established as

shown in Figure 8.

Eubanks- 13

Annual Technical Report: 9/94-8/95

NASA GSRP Project NGT-51193

(

I BEHAVIORS 1

I STRUCTURE _ FUNCTIONS(comp or assy)

PROCESSES "1 compatiblewith j_ _AT_PTA_ "_

(mfg, assy)) -_

)

Figure 8: Key Elements and Relationships for Behavior/Structure Model

By creating the representations in parallel, and providing a direct link between the descriptions

of the device operation and descriptions of the physical entities that implement those actions, I

believe that we can generate pathways for inferencing strategies necessary to perform

advanced FMEA analyses, which in turn lead to advanced diagnosis and serviceability

analysis.

Inferencing within the structural model

Given that different teams might be working on different parts of a design, the parts still have

to fit together somehow. In general, this means that features of parts contained in

subassemblies will share a structural relationship. Using an automotive transmission as an

example, suppose we have one team working on the case, and another working on the gear

train, in particular the rear main shatt bearing. A simplified form of the instantiations for these

entities using the proposed structural representation would appear as shown in Figure 9.

TRANSMISSION

(B ,NG) .,.oh.,o)

OUTER RACE ,))

has feature

OuterDiameter
Surface

)

Q CASE

BEARING
BORELINER

has feeture

_1 InnerDiameter

_[Surface
Idimension
Itolerance
Ifinish

Figure 9: Interdependencies in a Concurrent Engineering Framework

Eubanks- 14

Annual Technical Report: 9/94-8/95

NASA GSRP Project NGT-51193

Just like any good concurrent engineering model, this model records the interdependencies of

the parts and features of one design team with those of the other team. In the event that the

shaft design team considers changing some attribute of the outer diameter, they can obtain a

list of the effected features on the bearing bore liner. The natural extension of this idea is a

constraint management system.

Another inference that can be drawn is that the liner and race materials are in physical contact.

Suppose that the case design team considers changing the material to magnesium (for what

ever reason). They could request the affected attributes of the race and see that the race

material is steel, and realize that there is the possibility of galvanic corrosion between these

two materials. The natural extension here is a rule-based system of design practices to flag

these types of potential problems.

In the above example, the link between the bearing OD and the liner ID is a natural

consequence of the fact that the bearing and the liner are physically linked. Of course, the

system would not know exactly what features, but it would be reasonable to establish a

consistency checking rule that effectively says "if two parts are in direct contact, then they
must have features in direct contact." Note that, while not implemented, we implied similar

rules in the definitions of our LINKER relationships; e.g., if one object covers another, then

that object must be attached to something else, otherwise it would be floating in space.

Model integration and user interface issues

Any tool must be presented to the user in a form that resembles, as closely as possible, the

representations and thought processes that the user employs to solve the problem. In most

cases, the interface must employ both verbal and graphical representations to be effective,

with a great deal of emphasis placed on intuitive graphical methods.

Similar to my approach with the LINKER interface design, I will rely, as much as possible, on

a mixture of graphical and verbal representations as the source of input. Since the basic

concept of the behavioral model is a sequence of events, I envision an input screen along the

lines of:

bll b12
S11 _ S12 _-- $22

This would mean that state and behavior description would require another page or a dialog

box for input or review. An even better approach, if it can be done without too much clutter

on the screen, would be to make the symbols explicit. Using the example of a computer

keyboard, the states and behaviors would appear as:

(keyswitch, status, open)

(KB interupt, status, inactive)

"close keyswitch" _._ (keyswitch, status, closed)
r

(KB interupt, status, active)

Eubanks - 15

AnnualTechnicalReport:9/94-8/95
NASAGSRPProjectNGT-51193

The behavior to structure mappings present another challenge in terms of a good and intuitive

representation to the user. In his work on function-structure mapping, Di Marco (1995) used

graphical formats for entering the function and structure trees separately, then used this

information to form hierarchical lists in order to do the mapping. This approach avoided the

problem of the considerable screen clutter of an icon-based system, but provided a less than

intuitive feel for the mappings.

However, suppose we have non-state changing requirements, such as aesthetics or packaging.

On a very basic level, addition of packaging or aesthetic requirements simply add more

constraints to the structural implementation of the functional requirements of the device. The

interesting notion here, applied to the idea of behavior modeling, is that packaging and

aesthetics do not necessarily contribute to change of state operations per se; e.g., a button

contact closing will result in a change of state, but the location, shape, marking, etc., does not.

What the location, shape, marking, etc. may contribute to ergonomic aspects of the design,

which will in fact exist as part of the design requirements, and probably should be considered

part of the device function. Consequently, we would expect to see a high-level function of

"easy to use", which would then be decomposed, using standard functional analysis

techniques, to the level where we would, as usual, map to structural entity, and a particular

feature of that structural entity; e.g., those little raised nubs on the "f' and "j" keys that let you

know by tactile feedback where the home row is located.

I now decide to map the behavior "close keyswitch" to a physical entity called "key," a part of

the keyboard, which provides the necessary behavior. It turns out that the marketing surveys

indicate that the users want the keys marked so they can tell which ones are which. I'm

thinking Braille, but my industrial designer says we should provide a label. In essence, then,

the feature "label" implements the function "distinguish keys." Graphically we can envision

the relationships as shown in Figure 10.

KEY

attaches to
C EY CAP j

has feature

exhibits behavior

implements function

Figure 10: Keyboard Structure to Behavior Mapping Fragment

Eubanks- 16

AnnualTechnical Report: 9/94-8/95

NASA GSRP Project NGT-51193

The representation shown in Figure 10 gets the point across, but it is still a fragment of a

much larger picture; a picture that may have to be composed via other fragments, such as

Figure 11.

(keyswitch, status, open)

(KB interupt, status, inactive)

"close keyswitch" ,.._ Oteyswitch, status, closed)

le "- (KB interupt, status, active)
xhibits behavior

KEY)

Figure 11: Structure to Behavior Mapping in a Keyboard Behavior Model Fragment

Even text based input and output must have a visual component. While the LINKER

representation has a nice visual aspect, our collaborators at GE felt that it was also necessary

to have a standard parts tree, or bill of materials form for the structural representation, an

aspect that also appears in Di Marco's (1995) work. These hierarchical representations will

appear in several places in the proposed work. For even moderately complex designs, putting

entire part hierarchies on a single page, even if it's a pretty big one, will result in a fair amount

of information overload for the user. This may require a similar use of model fragments where

we limit the visual extent of the hierarchy to only one or two levels. For example, if my

interest is in the keyboard key, I might have a representation such as Figure 12.

Keyboard

-- Key

-- Key Cap

-- Keyswitch

Figure 12: 3-Level Hierarchical Representation

Clicking on "Keyswitch" would bring produce Figure 13.

Key

-- Keyswitch

--Plunger

--Spring

--Base

Figure 13: 3-Level Hierarchical Representation - Lower Indenture

My views on presentation of outputs is much the same. Our experience with the LASER

program showed that intuitive graphical outputs, usually in the form of charts, graphs, or

forms, convey the most information and have the greatest impact. The bottom line, as I see it,

Eubanks- 17

AnnualTechnicalReport:9/94-8/95
NASAGSRPProjectNGT-51193

is to be as visual and as intuitive as possible, using graphics or text where appropriate to

convey the maximum amount of information as efficiently as possible.

Another factor from the conceptual design development standpoint is linking to sketches or

existing drawings. Computer-based drawing packages make electronic sketches a real

possibility, while scanners can handle input of back-of-the-napkin sketch. Hypertext systems

may be one way of linking conceptual design inputs, like functional block diagrams or

behavior models, to initial design sketches, or even to part specifications, where the behavior

links directly to a known component.

Error checking application and presentation

I see two basic type of error checking that would apply to this type of a system deployed in

the early design stages: 1) consistency checking, and 2) dependency checking.

Consistency checking

Early in the development of the behavior model, the nature of the information that the system

will process will be extremely qualitative; e.g, systems will be active or inactive, shafts will be

rotating or not, etc. Given this form of information, the goal of the error checking will be to

ensure that the specifications remain consistent throughout the behavioral decomposition that

will describe the operation of the device. In the preceding keyswitch example, a pre-condition

for the "close keyswitch" behavior is that the keyswitch status is open. Suppose that in some

previous behavior description, I had specified that one of the post-conditions was that the

keyswitch status was closed. As I move through the chain of behaviors, I would note that

these two state variable values conflict, producing an inconsistent specification of device state.

Optimally, the program would display the conflicting conditions, and ask for a clarification,
such as:

BEHAVIOR MODEL CONSISTENCY CHECK: ERROR

Behavior: "click mouse button" Behavior: "close keyswitch"

Post-con: (KB interupt, status, active) Pre-con: (KB interupt, status, inactive)

BEHAVIOR "close keyswitch" REQUIRES _ interupt, status, inactive)

PREVIOUS BEHAVIOR "click mouse button" RESULTED IN]Ol interupt, status, active)

RECOMMEND:

MODIFY CONDITIONS OF EXISTING BEHAVIORS

INSERT BEHAVIOR WITH RESULT_KB intcrupt, status, inactive)

Supplying recommendations will require recognizing error patterns and having a lookup table

or a rule-base of known fixes for those errors. For the example above, the recommendations

are directly related to the inherent flow of the behavioral relationships. In the structural

model, consistency checks can become quite extensive because of the number and types of

relationships that exist between the various data objects. For example, if a user specifies

"plastic" as the material, then "die casting" is an inconsistent specification as a manufacturing

Eubanks- 18

AnnualTechnicalReport:9/94-8/95
NASAGSRPProjectNGT-51193

process. This points to the need once again of a type of lookup table of materials and

acceptable manufacturing processes.

Dependency checking

Dependency checking will take the form of either a less rigorous approach to constraint

management, or a rule set of good design practices. This type of checking is particularly

applicable when we have different teams working on different portions of the same design.

The presentation to the user will probably take a form similar to the above, presenting the user

with the two elements in conflict, why the conflict exists, and possible ways to resolve the

situation.

Levels of representation within the system

At all levels, I expect to see a mapping between physical entities (PE's) themselves, and also

between PE's and behavior or function specifications. There may also be a mapping between

a function or behavior, and a feature of a physical entity, but I think that that mapping should

be thought of as a modifier, since it is still the PE that provides the feature that fulfills the

function or behavior. The fins on a motorcycle cylinder provide an example of a behavior to

feature mapping, where the behavior might be specified as "remove excess heat from

cylinder."

My perception is that the resulting system will exhibit the characteristic of one large system in

that it will only have one basic data structure, and thus will lend itself to a centrally located file

server. From the usability standpoint, though, different design teams should only have to see

the elements of the system that they are working on, and those elements directly dependent on

them. Using the transmission example, the members of the case design team are obviously

concerned with some elements related to, or features of, the bearing, but will not be

concerned about the speed ratio for reverse gear. Therefore, while all elements and features

of the outer race specification would be part of their visible data partition, all elements of the

design of the reverse gear would be transparent to them. There will be data partitioning, but

at the same time there will be some crossover due to the Coupling of design elements.

Levels of the design will be captured by the hierarchical nature of the design description.

Going back to the keyboard example, the behavior fragment could be thought of as

representing an intermediate level behavior. A higher level behavior regarding the entire

keyboard as a unit might look like:

(KB interrupt, status, inactive) "press key" ,._'_ (KB interrupt, status, active)

Only one of the state variables is specified, because at a higher level we are only concerned

that pressing a key makes the keyboard interrupt status change from inactive to active. To

decompose this behavior, we must decide what press key means: closing a switch,

compressing a membrane, etc. I chose to use a switch with a keycap, and ended up with the

behavior specification in the previous section that involved closing a switch. A key point is

Eubanks- 19

Annual Technical Report: 9/94-8/95

NASA GSRP Project NGT-51193

that, no matter how we decide to decompose "press key," it must result in the KB interrupt

being active - the results must be consistent.

We can also exploit the hierarchical and consistent nature of the decomposition to examine

design alternatives as well. As long as the coupling at the higher levels is maintained, we can

"plug" various representations of alternatives into the representations of the entire system and

perform evaluations, and we can do this because we are maintaining one consistent data

structure at every level of the design representation.

These same arguments hold for the structural representation also, since design decisions will

be inherent in the components we choose to make up our subassemblies. The logical

extension along this line is the ability to build design decision histories by taking "snapshots"

of the system, and storing them for review and reevaluation.

From this central system, we can then integrate the flow of information to and from the

various tools that work at lower levels of abstraction, like FEM and solid modeling packages,

when the use of those packages is appropriate. The data structures for the structural

representation include both part specification, and specifications for part features, the two

elements that form the core of most structural modeling packages. For example, our model

links the feature object with the manufacturing process that is used to create it. Now, suppose

I am designing a steel plate that has a feature "3/8 inch hole" created by a "drilling operation"

and that I specify this prior to building my geometric model. A simplified, partial data

representation might appear as shown in Figure 14.

FGACTION) J
'.drill createst

Icompatiblewith

(PART) tname: plate
part number: composedof

as

,J (FEATURE)
]name:hole

diameter: 0.375

I (MATERIAL) t
Iname: steel

_'lspec:AIS11040

Figure 14: Manufacturing Relationships in the Structural Model

Eubanks - 20

AnnualTechnicalReport:9/94-8/95
NASAGSRPProjectNGT-51193

Conceptual extensions

Integration with other design tools

Let's assume that I have the ability to link this information to other design tools. (I realize

this is a very rash assumption at this point.) I create the representation of my plate, and link it

to the above part specification. I now pull up a parametric representation of a hole (assuming

I have one), and link it to the above feature. My CAD package accesses the diameter

information and sizes the hole for me. I can continue building models, linking to existing

concepts generated earlier. When the design is mature enough, I can send the information to

my FEM package, it can access the material specification, which could link to a database

containing all the necessary parameters (modulus, density, etc.) for its calculations. The

information could also flow the other way. For example, if I were able to identify parts by

name as I create them in a solid modeling environment, then that information can be used to

create the database entries, details of which could be filled in later. Following on the ideas

established in the LINKER model, the user can also specify relationships between elements

of the design. If the structural modeling package is capable of inferring these relationships,

then this information could be fed to the database, and the assembly and disassembly plans

can begin to take shape. I think it might be impractical to go the other way with this

information, since it lacks any geometrical data.

The key needs are common part identifiers and standard interface data structures. Using the

concept of a part, i.e., some component in a design, comes the closest to supplying a common

data item to work from that is applicable to most design packages. The fact remains that

most geometric modeling packages do not support this concept right now. Those that do

(e.g., the latest IDEAS package) have a very limited parts library, and it is in a non-standard

format that cannot access or be accessed from outside databases. (Busick and Chong, 1995)

We also need standard data structures in order to provide portability. Each package will need

to have a hook to and from the central database that passes and receives the information in a

way that each can understand. The object-oriented approach that we are employing in this

development shows the most promise for providing this portability. Object-oriented methods

have proven to be the next standard for software development, particularly in the realm of

data structure development (e.g., OSU's CIS 680 data structures course), and distributed

systems. (Booch, 1994)

Advantages and disadvantages of common design data bases

Advantages

The major advantage is the ability to provide a central access point for basic information on

as many aspects of a device's design as possible. Since the proposed system is to be applied

primarily to early design phases, I have not attempted to include data structures in the

proposed specification for spatial information or for various types of numerical results from

Eubanks - 21

AnnualTechnicalReport:9/94-8/95
NASAGSRPProjectNGT-51193

tools such as FEM packages. I do believe that it forms the basis for accessing information

necessary in the later stages of design also.

The idea of accessing common design bases also allows for access to information of existing

parts. While obviously valuable for configuration (routine) design, there is a strong push in

industry to standardize part use. This effort results in savings by decreasing the amount of

design work necessary to field a system, decreasing accounting of parts and part

specifications, decreasing the inventory and spares necessary for maintenance and service, and

allowing for high volume purchase or manufacture of standard parts. An automated search to

flag the existence of suitable parts early on could be a major benefit in this regard. This

involves a matching process which could be very difficult without constraining the semantics

of the behavior model, as indicated previously.

Along this same line, another aspect of having a common design base would be to present the

designers with alternative component structures in the component search task that fulfill the

design requirements; i.e., when one behavior or function maps to multiple components or

subsystems. In the previous example, where the design description called for a behavior

"maintain contact between part A and part B," the system could present a list of fasteners

including mechanical or chemical type. It could also list something like Velcro as a possible

candidate, which may be perfectly suitable for the task, but may not have otherwise occurred

to the design team to use.

Disadvantages

One major disadvantage that I see is the increased computing and information overhead that

all of this will entail. The amount of information inherent in any reasonably complex system

will be enormous on its own. Tracking down dependencies and maintaining consistency in all

of the data objects could be a formidable task. I can also foresee a great deal &effort

expended just in maintaining the data base with current information on parts, materials and

processes.

This raises another interesting point that I've seen engineering functions at GE, GM, and Ford

dealing with, and that is "how do you maintain data integrity." Even in the context of a single

(but fairly complex) design, it is not inconceivable that someone could enter erroneous data

that would become part of a central data system. Given a situation, as I envision, where that

information is propagated to all other interdependent entities, the effect could be disastrous.

There is a need for error checking, but this becomes very difficult in knowledge-based

systems, since there is nothing to fall back on, like a check calculation (e.g., solving the ideal

gas law for R and checking against a known value).

Use of conceptual design libraries

The behavior model, proposed as a means of defining a dek, ice in the conceptual design phase,

may provide a way of accessing design library entries. Library entries will be a composite of

the functional, behavioral and structural description of a design object, thus the task of

Eubanks - 22

Annual Technical Report: 9/94-8/95
NASA GSRP Project NGT-51193

mapping between various representational views becomes extremely important. The key

element is being able to recognize that a structural entity, be it a part or subsystem, or a class

of structural entities (i.e., fasteners, motors, valves, etc.) exists that fulfills the

functional/behavioral specifications. Therefore, the structural entities will need to have a

specification of exhibited behavior associated with them that fully describes the applicable pre-

and post-conditions that will result from the component or system performing its behavior.

This is then compared to the behavior required by the design to determine suitability, as

shown in Figure 15.

)
Design Library Entry II

mplemet_ed by

I STRUCTURE 1(comp or assy)

I PRooEssEs_ ="_'_"*%/ M=_t, "3

Figure 15: Behavior Matching in a Design Library

For example, a design description may call for a behavior "maintain contact between part A

and part B." My design library would need to have a behavior description "maintain contact

between two parts" that maps to a class of components known as fasteners. We could seek

the match via "maintain contact between *" and automatically infer the use of some kind of

fastener, be it a mechanical fastener, an adhesive, a clamp, etc. Further specifications, such as

separation force of a boiler plate derived from internal pressure, would be used to narrow the

possible candidate to bolts or rivets larger than a certain size, certain grades of epoxy, etc.

This may require the use of semantic matching (which means the implementation of a semantic

system) between the behavioral representation under development and the library entries.

Another source of information for analysis packages may exist in the pre- and post-condition

specifications for the component behaviors. These conditions are state variables which will

include items like operating temperature and power requirements at very high levels of

abstraction, and items such as loads and torques at lower levels of abstraction. While I can

say that this information should be available within the behavior model structure, I cannot yet

say exactly how it will be made available. That lies within the scope of my proposed research.

Eubanks - 23

Annual Technical Report: 9/94-8/95

NASA GSRP Project NGT-51193

Regulatory issues

Regulatory issues pose a very interesting set of constraints on design. My experience with the

medical devices industry, at least from theconceptual design standpoint, showed that it

basically boils down to the implementation of a rule-based system that serves to interpret the

regulations imposed on the design. For example, only certain materials are approved for

contact with the human body, and even fewer for placement inside the human body. The

proposed system could be configured to perform various checks, via a rule-based system, to

ensure that material specifications were appropriate, or that testing procedures (another object

in our model) were complied with. The rule-base would have to be partitioned, since various

levels of regulation exist depending on the application of the device under development. A

key need is standard data structures so that the rule-base can communicate with that facet of

the database to which it applies.

Applying framework concepts to post-manufacturing issues

Evaluating the effects of design decisions

We began the process by looking at a semantic syntax, as outlined in the previous annual

report, and developing a preliminary object model representing the relationships of various

design issues (materials, manufacturing, assembly, testing) to the elements under design. This

model comprises the more "physical" aspects of the design artifacts, and have characteristics

defined as attributes in the model. These objects also have methods associated with them that

provide the means for evaluating the design issues. The methods will be a direct reflection of

the type of evaluation available; i.e., explicit closed form solutions as equations, and

qualitative methods as a knowledge- or rule-base).

From decision analysis, we know that decisions are made traversing down through a decision

hierarchy, while the effects of decisions are propagated back up the hierarchy. Placing the

discussion in the context of design, decisions are made as we move down through the parts

hierarchy; i.e., from conceptual to detailed design. The effects of decisions, of course,

propagate up through the hierarchy.

Service and maintenance issues

Model and inferencing techniques:

Cunningham and Cox (1972) point out that during the early phases of equipment or system

design, the key requirement affecting service and maintenance decisions is overall system

availability. Further, they place more emphasis on inherent availability as a function of

designed-in maintainability. Inherent availability can be expressed as Equation 1.

Eubanks - 24

Annual Technical Report: 9/94-8/95
NASA GSRP Project NGT-51193

MTBF
.4 (1)

MTBF + MTTR

where: MTBF = mean time between failure

MTTR = mean time to repair

MTBF is an input to the system based on reliability analysis. We can use the reciprocal of

MTBF as the failure frequency input into the service cost equation: We can compute MTTR

by summing the time required to perform each service step, as we do in our current

serviceability analysis system. One question that remains is exactly what service actions

(parts needing replacement or repair) are required when a particular part fails.

The answer can be provided by an FMEA capable of generating multi-failure scenarios. For

example, an oil pump failure may result in a main crank bearing failure, requiring both items

to be replaced. As stated in the behavior model development section, we can identify failure

effects in two ways: 1) by the results of non-behaviors, or 2) by examining known failure

paths. Suppose we have the model fragment shown in Figure 16.

(oil, pressure, none)
(oil, flow_rate, none)

(engine, speed, >0)

(

"pump oil" _ (oil, pressure, nominal)

_" (oil, flow_rate, nominal)

exhibifsbehavior

OIL PUMP 3

Figure 16: Oil Pump Behavior Model Fragment

If we can ask the question "What if the oil pump fails?", our answer can be inferred from the

fact that the "pump oil" behavior has not occurred. Therefore, we know that the oil pressure

and flow rate are none, since their states have not changed. In the context of the

serviceability question, we defined, by direct inference (Di Marco, et al., 1995), the service

operation:

(failure: oil pump) •--_ (replace: oil pump)

In addition, we can also infer a diagnosis path by determining the behavior that did not take

place, based upon the deviation of state variable from their expected values. In our example,

we expected oil pressure and flow to be nominal, and instead they are none. The behavior

that did not happen was "pump oil," since its preconditions match the existing state, and

postconditions match the expected state. The oil pump is the element responsible for

implementing this behavior, so that we can infer:

Eubanks - 25

Annual Technical Report: 9/94-8/95

NASA GSRP Project NGT-51193

Expected conditions:

Existing conditions:

Non-behavior:

Mapped element:
Conclude

(oil, pressure, nominal)

(oil, flow_rate, nominal)

(oil, pressure, none)

(oil, flow_rate, none)

"pump oil"

oil pump

(failure: oil pump)

Experience tells us that no oil flow or pressure generally leads to crank bearing failure, so

that we can augment the model with a failure path:

(oil, pressure, none)
(oil, flow_rate, none)

(engine, speed, >0)

(

"pump oil" ,.._(oil, pressure, nominal)

,_ ,v (oil, flow_rate, nominal)

lexhibitsbehavior

OIL PUMP)

exhibitsfailure

"not pump oil"
failure: main crank bearing

Figure 17: Augmented Oil Pump Behavior Model Fragment

The serviceability inferencing will now include:

(failure: oil pump) _ (failure: main crank bearing) _ (replace: main crank bearing)

Our previous work demonstrated the ability to infer service steps from our structural

representation (Eubanks & Ishii, 1993), and was designed around the concept of single

element service operations, such as "replace oil pump." In the context of multiple

simultaneous failures, we must modify this concept to exclude duplicate labor steps that

might result from generating the step sequences separately. In the above example,

inferencing on both "replace oil pump" and "replace bearing" will generate steps such as

"remove oil" for both repairs. These duplicate steps will need to be eliminated from the list

of total service steps prior to calculating the service cost. There may also be items that may

require replacement whenever the system is down for maintenance or repair, typically things

like gaskets, seals, working fluids, and other consumables. We can handle these situations

by flagging the part for replacement whenever it appears in a service step list.

Life-cycle service costs:

Given an arbitrary repair action j consisting of labor steps 1 through n, a simplified model of

the life-cycle service cost for that repair action is shown in Equation 2.

Eubanks - 26

Lcsc=4E {[(. +pL)x]+ +;,
/=1

Annual Technical Report: 9/94-8/95
NASA GSRP Project NGT-51193

(2)

where: tL --"

PL =

CLR =

Cp --"

pp =

-
n =

labor time (hours)

labor time penalty (hours)

labor rate (S/hour)

part or material cost ($)

part or material cost penalty ($)

frequency of repair action j

number of labor steps in repair action j

The above cost equation assumes that repair action j is only performed as needed; i.e., when

something fails.

In mission critical systems, we generally try to anticipate such failures, and establish periodic

maintenance, during which time several inspections and minor repairs are made in order to

prevent these type of failures. Given a particular maintenance cycle k consisting of 1

through m maintenance actions are performed, a simplified model of the life-cycle

maintenance cost is shown in Equation 3.

m /I

LCMq=J E +p.]},, (3)
j=l i=1

where: m = number of maintenance actions in maintenance cycle k

Our previous works demonstrated the ability to infer service steps from our structural

representation (Eubanks & Ishii, 1993), and was designed around the concept of single

element service operations, such as "replace oil pump." In the context of either multi-task

maintenance operations or multiple simultaneous failures, we must modify this concept to

exclude duplicate labor steps that might result from generating the step sequences separately.

For example, an oil pump failure may result in a bearing failure, requiring both items to be

replaced. If we generate the labor steps separately, both lists may contain steps such as

"remove engine" and "remove oil." These duplicate steps will need to eliminated from the list

of total service steps prior to calculating the service cost.

There will also be items that may require replacement whenever the system is down for

maintenance or repair, typically things like gaskets, seals, working fluids, and other

consumables. We can handle these situations by flagging the part for replacement whenever it

appears in a service step list.

Multi-task maintenance operations will be input by the user, along with a specified frequency

or MTBM. Multiple simultaneous failures can be inferred by the automated FMEA algorithm,

currently under development, based on MTBF data. Given complete statistical data (median

and distribution) for MTBM and MTBF, we could run a discrete system simulation model to

generate the maintenance and service events. In the early stages of design, we will probably

Eubanks - 27

Annual Technical Report: 9/94-8/95

NASA GSRP Project NGT-51193

be limited to estimated times, for which we can calculate event frequency over the life-cycle.

For example, if we specify the MTBM for a system to be 2000 hours, and the system has an

estimated life of 25,000 hours, the we can estimate the maintenance frequency, fro, using

Equation 4.

fm- Estimated Life _ 25,000 = 12.5 = 12 (4)
MTBF 2000

A similar calculation will yield the service frequency, f_, based on MTBF.

In a detailed maintenance and service cost analysis, we should consider including three

additional major costs: the cost to remove and replace the sub-system from the system (i.e.,

cost to R/R a jet engine from the aircraft), the cost of system downtime, and, if necessary,

cost of parts or subsystem transportation. The precise application of these costs depends on

the service logistics decisions; i.e., is the system down for part replacement, or down for the

entire length of the repair.

Recylability issues

In my previous report, I discussed the concepts of Design for Product Retirement, DFPR, and

presented a system retirement cost equation. The focus of DFPR is strictly end of product

life-cycle. Material life-cycle is a concept that attempts to encompass the idea that a material

may be reprocessed and either reused in a similar application, or used in a lower performance

application, over several product life-cycles before being discarded due to the degradation of

material properties. (Ishii, et al., 1994)

Application to service parts

We need to expand the notion material life-cycle into the use phase of the product life-cycle.

For example, we generally replace automotive engine oil as many as 40 times over the 10 year

life-cycle of the vehicle. The material and labor costs associated with this requirement are a

significant part of the life-cycle cost of using the product. As a consequence, we need to

expand the analysis to include the environmental impact of service and periodic maintenance.

The modified life-cycle service cost can be calculated using Equation 5.

i=l

where: cd_po_

cr_eo

Vrefurb

C_,ele

Vtecyele

= cost of disposal

= cost of part of assembly refurbishment

= value of refurbished part of assembly

= cost of material reprocessing/recycling

= value of reprocessed/recycled material

Eubanks - 28

AnnualTechnicalReport:9/94-8/95
NASAGSRPProjectNGT-51193

In this equation, the cost of material recovery is borne by the labor cost terms (first set of

brackets) of the service cost equation, which is a function of system configuration (i.e.,

component access) decisions. The level of service or maintenance (part, module,

subassembly) is reflected in the part cost terms (second set of brackets). The impact of reuse,

recycling, and disposal costs is reflected in the last set of brackets, and will be a function of

material selection, and end of material-cycle disposition (as opposed to end of material-life

disposition).

The material reprocessing conundrum

Product retirement plans require design for disassembly and material reprocessing. Both of

these must be balanced against the costs to design and manufacture a product, and its

performance in the field.

A great deal of work continues on design for disassembly. Japan's MITI Mechanical

Engineering Laboratory continues to work on technologies such as "swarming robots" for

massive and, for the most part, destructive disassembly of larger systems such as automobiles.

Paul and Beitz continue to investigate fastener design for ease of disassembly in response to

Germany's so-called "take back" laws. Unfortunately, we can design for disassembly all we

want, but if all were let_ with is nice clean piles ofnon-reprocessable junk, then we gain very

little.

For the recyclability analysis, the burning questions still involve reprocessing technologies.

Current reprocessing technologies capable of generating engineering grade materials are

generally applied to single material waste streams, or to non-chemically mixed waste streams.

Non-chemically mixed refers to parts or assemblies where materials can be removed using

either mechanical means (e.g., brass bushings in plastic, coatings on glass), or by selective

chemical or thermal removal (e.g., sweat furnaces for printed wiring boards) Reprocessing

technologies for many engineering composites and compounds (e.g., thermoset plastics, exotic

metal alloys) are unknown.

But how do we compute costs which are unknown or uncertain? In general, the answer to

that question is that, for the time being, we must simply rely on knowledge, and any inferences

that can be made from that knowledge. Thus, our use, both past and present, of knowledge

based systems for product retirement and recycling knowledge. For example, we have

developed very qualitative methods using material compatibility models (Marks, et al., 1993),

which remain valid, and will be used for reprocessing cost estimates in this model. This is not

without precedence. We continue to see serviceability issues stated primarily in terms of

knowledge, such as providing adequate clearance, clearly labeling service items, etc. The key

element to be addressed is how to integrate design issue knowledge into the more qualitative

elements of product design.

Eubanks - 29

AnnualTechnicalReport:9/94-8/95
NASAGSRPProjectNGT-51193

Framework integration

It makes sense to select materials and processes that provide for the minimum life-cycle cost

for a given level of performance. Factoring in the cost or value of a material at the end of the

product life-cycle may change the outcome of that decision point. For example, a part which

costs $1.00 to produce and is worth $0.40 at product retirement is a better value than a part

whiCh costs $0.75 to produce and has no retirement value. We bring this aspect of material

cost into the framework as shown in Figure 18.

t (_MFGACTION)

name: drill creates
spec:

Icornpatiblewith

(PART)

name: plate
)art number:

J (FEATURE)
,--i name:-ff_" Z

[diameter: 0.375

compatiblewith

I (REPROCESSING)

name: recycle
spec:
cost:

composedof

)'1 (MATERIAL)
•._lname: steel

r[spec: AIS11040

Figure 18: Integration of Reprocessing into Structural Model Framework

While the manufacturing action may be specified in terms of material removal rates, machine

cost, etc., the reprocessing action will probably be a knowledge-based application that returns

an estimate based on qualitative evaluations. In our past work, we have used a simple if-then

rule structure to implement the knowledge component of our product retirement analysis

program. (Marks, et al., 1993) While good for proof of concept, we should consider using a

commercial package designed for knowledge/rule based applications.

Future work

Over the next 12 months, we will finalize the structure of the system framework, and

implement a prototype program to demonstrate the concepts presented in this report. The

implementation will feature modules for the device behavior and structure representations of

the framework, and will be tied together via a common link to the physical entities that

comprise the system being designed. The system will incorporate a semi-automated FMEA

module based on a description of device behavior, and life-cycle cost evaluation modules for

assembly, serviceability and recyclability. We anticipate that advances in technology,

particularly in the area of recyclability, will bring new and better models and evaluation

Eubanks - 30

Annual Technical Report: 9/94-8/95
NASA GSRP Project NGT-51193

methods. Thus, we will employ an object-oriented topology for the system to take advantage

of the ability to add and modify the various programs used to evaluate the various life-cycle

costs without disturbing the basic system framework. We intend to provide a full specification

of the program structure, and implement a PC-based prototype system as a proof of concept.

References

Abu-Hanna, A., Benjamins, R., Jansweijer, W. (1991), "Device Understanding and Modeling

for Diagnosis," IEEE Expert, Vol. 6, No. 2, pp. 26-32.

Arimoto, S., T. Ohashi, M. Ikeda and S. Mitakawa (1993), "Development of Machining-

Producibility Evaluation Method (MEM)," Annals of the CIRP, vol. 42/1/1993, pp.

119-122.

Berzak, N. (1991), "S erviceability by Design," Proc. of the 23rd Int 'l SAMPE Technical

Conference, October 21-24, 1991, pp. 1060-1071.

Booch, G. (1994), Object-oriented Analysis and Design with Application's, 2nd ed.,

Benjamin/Cummings Publishing Co., Inc., Redwood City, CA.

Boothroyd, G. and P. Dewhurst (1983), Design for Assembly: A Designer's Handbook.

Boothroyd Dewhurst, Inc., Wakerfield, RI, 1983.

Busick, D. and C. Chong (1995), Personal communication, August 22, 1995.

Clark, G. and R. Paasch (1994), "Diagnostic Modeling and Diagnosability Evaluation of

Mechanical Systems," Proc. of the ASME 6th International Conference on Design

Theory and Methodology (DTM '94), Minneapolis, MN, pp. 179-189.

Cunningham, C. and W. Cox (1972), Applied Maintainability Engineering, John Wiley &

Sons, New York.

deKleer, J. and J. Brown (1984), "A Qualitative Physics Based on Confluences," Artificial

Intelligence, 24(3), pp. 7-83.

Di Marco, P., C. Eubanks and K. Ishii (1995), "Service Modes and Effect Analysis:

Integration of Failure Analysis and Serviceability Design," Proc. of the 15th Annual

International Computers in Engineering Conference (CIE '95), Boston, MA, pp. 833-

840.

Eubanks, C. and K. Ishii (1993), "AI Methods for Life-cycle Serviceability Design of

Mechanical Systems," Artificial Intelligence in Engineering Journal, 8(2): 127-140.

Eubanks, C. (1994), "Annual Technical Report for NASA GSRP Project NGT-51193,"

September, 1994.

Eubanks - 31

AnnualTechnicalReport:9/94-8/95
NASAGSRPProjectNGT-51193

Fathailall,A. andJ.Dixon (1994),"A Methodfor EarlyManufacturabilityEvaluationof
ProposedTolerancePlansfor Thin-WalledParts,"Proc. of the ASME 6th lnt 'l Conf.

on Design Theory and Methodology, Minneapolis, MN, pp. 9-17.

Finger, S. and J. Rinderle (1989), "A Transformational Approach to Mechanical Design Using

a Bond Graph Grammar," Proc. of the ASME 1st Int '1 Conf. on Design Theory and

Methodology, Montreal, pp. 107-116.

Glantschnig, W. (1993), "Green Design: A Review of Issues and Challenges," Proc. of the

1993 1EEE lnt 'l Symposium on Electronics and the Environment, Arlington, VA, pp.

74-77.

Goel, A. and B. Chandrasekaran (1989), "Functional Representation of Designs and Redesign

Problem Solving," Proc. of the l lth bit 'l Joint Cop_ on Artificial Intelligence,

Detroit, MI, pp. 1388-1394.

Hamscher, W., Console, L., de Kleer, J. (eds.) (1992), Readings in Model-based Diagnosis,

Morgan Kaufmann Publishers, San Mateo, CA.

Homem de Mello, L. and A. Sanderson (1991), "A Correct and Complete Algorithm for the

Generation of Mechanical Assembly Sequences," 1EEE Trans. on Robotics &

Automation, vol. 7, no. 2, pp. 228-240, April, 1991.

Ishii, K., C. Eubanks, P. Di Marco (1994), "Design for Product Retirement and Material Life-

cycle," Materials and Design Journal, 15(2): 225-233.

Iwasaki, Y. and B. Chandrasekaran (1992), "Design Verification Through Function- and

Behavior-Oriented Representations," Artificial Intelligence in Engineering Design '92

(J. Gero, ed.), Kluwer Academic Publishers, Boston, pp. 597-616.

Iwasaki, Y. and H. Simon (1994), "Causality and Model Extraction," Artificial hltelligence,

(67)?Kluwer Academic Publishers, Boston, pp. 597-616.

Keuneke, A. (1991), "Device Representation: The Significance of Functional Knowledge,"

IEEE Expert, vol. 6, no. 2, April, 1991, pp. 22-25.

Kuipers, B. (1984), "Commonsense Reasoning About Causality: Deriving Behavior from

Structure," Artificial Intelligence, 24(3), pp. 169-203.

Makino, A., P. Barkan, L. Reynolds and E. Pfaff(1989), "A Design for Serviceability Expert

System," Proc. of the ASME Winter Annual Meeting 1989, San Francisco, CA, pp.
213-218.

Eubanks - 32

Annual Technical Report: 9/94-8/95
NASA GSRP Project NGT-51193

Marks, M., C. Eubanks, M. Shriver and K. Ishii (1993), "Life-cycle Design for Recyclability,"

Proc. of the JSME-ASME Joint Workshop on Design '93, Tokyo, Japan, pp. 19-24.

Marks, M., C. Eubanks, K. Ishii (1993), "Life-cycle Clumping of Product Designs for

Ownership and Retirement," Proc. of the ASME 5th International Cot_erence on

Design Theory and Methodology, Albuquerque, NM, pp. 83-90.

Morjaria, M., M. Simmons, J. Stillman (1992), "Development of Belief Networks Technology

for Diagnostic Systems," General Electric Corporate Research and Development

Technical Information Series, GE CR&D, Schnectady, NY, April, 1992, 35 pages.

Navin-Chandra, D. (1991), "Design for Environmentability," Proc. of the ASME 3rd lnt 'l

Conf. on Design Theory andMethodology, Miami, FL, pp. 119-125.

Ormsby, A., J. Hunt, M. Lee (1991), Towards an Automated FMEA Assistant, Applications

of Artificial Intelligence in Engineering VI, eds. Rzevski, G. and Adey, R.,

Computational Mechanics Publications, Southampton, Boston, pp. 739-752.

Poli, C., P. Dastidar and R. Graves (1992), "Design Knowledge Acquisition for DFM

Methodologies," Research in Engineering Design, (1992) 4:131-145.

Priest, J. (1988), Engineering Design for Producibi#ty andRe#abi#ty, Marcel Dekker, Inc.,

New York, 1988

Sturges, R. (1992), "A Computational Model for Conceptual Design Based on Function

Logic," Artificial hltelligence in Design '92, Kluwer Academic Publishers, Boston,

pp. 757-772.

Sturges, R. and M. Kilani (1992), "Towards an Integrated Design for an Assembly Evaluation

and Reasoning System," Computer-AidedDesign, vol. 24, no. 2, pp. 67-79, February,

1992.

Suh, N. (1990), The Principles of Design, Oxford University Press, New York, 1990.

Welch, R. and J. Dixon (1994), "Guiding Conceptual Design Through Behavioral Reasoning,"

Research in Engineering Design, (1994) 6:169-188.

Ullman, D. (1992), The Mechanical Design Process, McGraw-Hill, Inc., New York.

Ullman, D. (1993), "A New View on Functional Modeling," Proc. of the 9th hlternational

Conference on Engineering Design (ICED'93), The Hague, pp. 177-193.

Umeda, Y., T. Tomiyama, Y. Yoshikawa (1992), "A Design Methodology for a Self-

Maintenance Machine Based on Functional Redundancy," Proc. of the 4th lnt'l.

Conference on Design Theory and Methodology, Scottsdale, AZ, pp. 317-324.

Eubanks - 33

Form Approved

REPORT DOCUMENTATION PAGE OMBNo.0704-0188
Public repotting bu_lell for Ihll coitect_, o(.]nfomlatlo_.II _ttn_tod, to.lv_'a0e 1.hou.r per roepor_.e, Including,the tlrnofor rlw.i_n_l Instn_ton|,..so_.chtng exkl,tklg data Iou .r_,,
gatheringand malntalnlrl_the data nee_eo., n comps..ng .ano.rev_wlng ii_. ¢_.lectlor_..olmlormazlon._ _.o_nmon_regaz.ol.ngInl.I.OUrlO_e._lma_e .orany otr_' asl:_, ovIftls
colk)cllond Information, Inctudln0 suggestionsfor reoucmgthis ouroen, to wmmmgtonHeaoqulutets u,entlces,uwectorlle for inlornladbo¢luperalmna aria Hepoas,]z]= Jerren=on
Davis Highway. Suite 1204, Arlington,VA 22202-4302. and to the Office o(Man&gemontand Budget.P_rk ReductionProject(0704-0188), Washington,DC 20503.

1. AGENCY USE ONLY (Leave blanlO 2. REPORTDATE 3. REPORTTYPE AND DATES COVERED

May 1996 Final Contractor Report
4. TITLE AND SUBTITLE

Integrating Post-Manufacturing Issues Into Design and Manufacturing Decisions

6. AUTHOR(S)

Charles E Eubanks

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSEES)

Stanford University
Stanford, California 94305--4021

9. SPONSORING/MONITORINGAGENCYNAME(S)AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

5. FUNDING NUMBERS

WU-505-63-5B
G-NGT-51193

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-10206

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-198474

11. SUPPLEMENTARY NOTES

Project Manager, Christos C. Chamis, Structures Division, NASA Lewis Research Center, organization code 5200,
(216) 433-3252.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 39

This publicationisavailable from the NASA Center forAeroSpace Information.(301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

An investigation is conducted on research into some of the fundamental issues underlying the design for manufacturing,
service and recycling that affect engineering decisions early in the conceptual design phase of mechanical systems. The
investigation focuses on a system-based approach to material selection, manufacturing methods and assembly processes
related to overall product requirements, performance and life-cycle costs. Particular emphasis is placed on concurrent
engineering decision support for post-manufacturing issues such as serviceability, recyclability, and product retirement.

14. SUBJECTTERMS

Manufacturing; Methods recycling; System; Materials; Assemblies; Product requirements;

Life-cycle costs

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

_ISN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

35
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI SId. Z39-18
298-102

_- O__o<°. _"

, .O-o

.,_ o_o._:___
_-

0

z CO
0 _

"n

e-

3

