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Phase III Activities

The primary focus during the third-phase of our on-going multi-year research effort has
been on 3 activities, supported either wholly or in part by this Grant. These are:
1) A global-scale model study of the anthropogenic component of the tropospheric sulfur cycle;.
2) Process-scale model studies of the factors influencing the distribution of aerosols in the remote
marine atmosphere; and
3) An investigation of the mechanism of the OH-initiated oxidation of DMS in the remote marine
boundary layer.

In the following sections, we describe in more detail our research activities in each of these areas.

Global Model Studies of the Anthropogenic Sulfur cycle in the Troposphere

This aspect of our research focuses on quantifying the ability of the current generation of
global chemical transport models (GCTMs) to reproduce regional and seasonal patterns in
observed sulfate concentrations. The significance of such an analysis stems from the fact that
results from these models are used to estimate the direct and indirect radiative forcing due to
sulfate aerosols.

To address this issue, we have simulated the present-day distribution of anthropogenic
sulfate using the GFDL global chemistry and transport model (GCTM). The GCTM has a
horizontal resolution of ~265 km, and is driven using meteorological fields from a general
circulation model. The most up-to-date, seasonally-varying anthropogenic sulfur emission
inventory from the IGAC/GEIA project is used in this study. Parameterizations for dry deposition,
precipitation scavenging of soluble gases and aerosols, and gas-phase and in-cloud oxidation of
SO2 to sulfate, are included in the GCTM. A key feature of our study is the evaluation of model

results against surface SOx concentration and wet deposition data from a network of stations in



North America and Europe. We find that the model results agree best with the measurements only
when a non-photochemical pathway for the conversion of SO2 to sulfate in included in the model.
We propose that this additional oxidation pathway may be related to heterogeneous reactions
between SO2 and atmospheric aerosols that typically are not included in models of the
atmospheric sulfur cycle. Despite this improvement, we find that while the model is generally able
to reproduce the seasonal cycle of surface sulfate in North America, it is unable to reproduce the
absence of a significant seasonal cycle in the western and central European sulfate measurements.
iOur results therefore suggest that significant uncertainties remain in model-calculated global
sulfate burdens, and therefore in the estimated radiative forcing of anthropogenic sulfate aerosols.
We have also analyzed the factors governing the seasonal evolution of the anthropogenic sulfate
burden in various regions of the NH mid-latitudes, and find that the amplitude of this seasonal
cycle is significantly affected by the modeled seasonal amplitude in aqueous-phase sulfate
production rates. It is therefore important that improved treatments of aqueous-phase chemistry
be included in GCTMs used to study the global sulfate budget.

The results from this study have been documented in a manuscript (attached in Appendix

A) that has been submitted to the J. Geophys. Res..

Model Studies of Marine Boundary Layer Aerosols

This aspect of our research focuses on the development and application of a detailed box
model to simulate the formation, growth, and removal of H2S04-H20 aerosols in the marine
boundary layer. In this model, the aerosol distribution is discretized using a finite number of uni-
modal size bins, in a manner similar to the AERO2 model (Raes et al., 1992). An attractive fea-
ture of our model is that the number and sizes of the individual bins are user specified parameters.
Physical processes described in the model include formation of new particles by nucleation, con-
densational growth of newly formed and pre-existing particles, and coagulation between particles
of different sizes. In it’s current configuration, the rate of nucleation is calculated using the
hydrate theory of Jaeker-Voirol and Mirabel (1989) and a user specified nucleation tuner (Raes et
al., 1992), with the size of the newly formed particles being a user-specified parameter. The
growth of particles by co-condensation of H2SO4 and H2O is assumed to be limited by the rate of
H2S04 condensation, which is calculated using the modified Fuchs-Sutugin formulation (Hegg,

1990; Kreidenweis et al., 1991), Coagulation coefficients between particles of different sizes are



calculated using the expression given by Seinfeld (1986). Simplified treatments of particle dry
deposition and processing by clouds are also included in the model.

We have used this model to examine whether in situ sulfate particle production and growth
can explain CN and CCN number concentrations in the marine boundary layer. Specifically, we
have examined the hypothesis by Pandis et al. (1994) and Russell et al. (1995) that there is a
linear relationship between DMS fluxes and marine boundary-layer CCN concentrations. This
hypothesis was based on results from a model which used a simplified, bimodal representation of
aerosol dynamics. Our results suggest that while the bimodal model reproduces certain aspects
simulated in the more detailed bin model, it does not fully capture the time-scales over which the
aerosol size-distribution evolves. Under certain conditions, this may lead to significant biases in

the results from the bimodal model. Further analysis of these results is currently underway.

Studies of the OH-initiated DMS oxidation mechanism

In a parallel effort, Dr. Doug Davis is spearheading our efforts to develop and evaluate a
detailed mechanism for the OH-initiated oxidation of DMS. One aspect of this effort has focussed
on an analysis of sulfur field data-sets from two distinctively different marine boundary-layer
environments: one involving a high-temperature, tropical setting (Christmas Island. 3N, 157W),
and the other involving a very low-temperature, high-latitude setting (Palmer Station, Antarctica,
64S, 60W). These datasets are being used to help set boundaries on the rate coefficients for
critical steps in the very complex OH-initiated oxidation of DMS.

The high-temperature tropical study has now established with a high degree of confidence
that the dominant OH-abstraction reaction channel (~75%), although involving several as yet
uncharacterized intermediate steps, does form SO2 with 85115 % efficiency. At this specific
tropical site, therefore, boundary-layer SO2 levels are virtually totally controlled by DMS
oxidation. This represents the first time that this has been demonstrated in a marine environment.
This same dataset has also shown quite convincingly that chlorine oxidation of DMS in a tropical
setting is a very minor pathway (<15%) relative to oxidation by OH.

Concemning the low-temperature Antarctic study, these results indicate that the dominant
OH reaction channel is addition, as indicated by earlier kinetic studies. We find, however, that as
much as 15% of the addition reaction channel goes directly to DMSO2 rather than DMSO. Our

results also strongly suggest that the stable oxidation product MSA is predominantly formed via



the addition channel and not the abstraction channel. The lifetimes of DMSO, DMSO2, MSA, and
H2S04 in this marine boundary layer environment was estimated to be typically less than 2 hours
due to surface and particle scavenging. We also find that, in the summertime Antarctic
environment, approximately half of the DMS released in the marine boundary-layer is transported
via shallow convection processes to the lower the lower and middle free troposphere, where it is
oxidized to reservoir species. Still later it is returned to the boundary-layer in very non-uniform
blobs at which time the mixing ratios of oxidation products such as DMSO and DMSO2 can be
observed to increase by factors of 10 to 15. This is an important finding in that the product
distribution in the lower free troposphere can be quite different from that in the boundary-layer.
This follows from the fact that there are lower temperatures in the former regime, and due to the
fact that DMSO (which is the major initial oxidation product from DMS) can undergo further

chemistry via its reaction with OH, rather than being removed by physical processes.

Other Activities

In addition to the activities described above, this project has provided partial funding for
our participation in: a) the development and application of a new-generation, assimilated-
meteorology driven GCTM at NASA/GSFC, and b) an international intercomparison of short-
lived tracer transport in GCTMs. Manuscripts describing the results from these activities have

been submitted to the J. Geophys. Res., and are included in Appendix B and C, respectively.

Planned Phase IV Activities

A major portion of our activities during the fourth and final phase of this project will
involve the preparation and submission of manuscripts describing the results from our model
studies of marine boundary-layer aerosols and DMS-oxidation mechanisms. It is anticipated that
two papers describing the results from the marine boundary-layer aerosol studies, and two papers
describing the DMS-oxidation study results will be submitted in the next few months.

We will then couple the aerosol dynamics model to the DMS-oxidation model, and use the
coupled model to further analyze the Christmas Island and Antarctic datasets. We will also
attempt to perform preliminary analysis on the ACE-1 dataset provided that it is becomes

available in the near future. In addition, we plan to investigate the sensitivity of model results to



the functional form of the rate expression used to calculate the nucleation of marine H2S0O4-H20
aerosols. This may be important because recent measurements indicate that the rate of nucleation
may be kinetically rather than thermodynamically controlled.

We will also initiate an effort to incorporate the representation of SOx emissions,
transport, chemistry, and removal, directly into a regional climate model (RegCM2) with the

ultimate goal of better characterizing the regional effect of sulfate aerosols on climate.
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ABSTRACT
A global three-dimensional chemical transport model is used to investigate seasonal
variations of anthropogenic sulfur in the troposphere. Particular emphasis is placed on detailed

comparisons of the modeled surface sulfur dioxide (SO,) and sulfate (SO4) concentrations, and

sulfate wet deposition fluxes with measurements from the EMEFS and EMERP field programs in
North America and Europe, respectively. Initial comparisons of model results with measurements
reveal a systematic tendency of the model to overestimate SO, concentrations and underestimate
SO, concentrations, while producing a reasonable fit to measured wet deposition fluxes. Through
a series of sensitivity tests, we find that the addition of a non-photochemical pathway for

converting SO, to SOy in the boundary layer with a pseudo first-order rate of constant of 1-2 x

100 57! provides the most reasonable method of bringing the model results into better agreement
with the EMEFS and EMEP datasets. We propose that this additional pathway may be related to

heterogeneous reactions between SO, and atmospheric aerosols that typically are not included in
models of the atmospheric sulfur cycle. Despite the vastly improved simulation of surface SO,
and SO, when this hypothetical heterogeneous oxidation pathway is included, the model is unable
to simultaneously simulate the large seasonal cycle in surface SO, observed North America and
the almost total absence of a seasonal cycle in surface SO, over Europe. The seasonal cycle in
model-predicted column SO, burdens are similar to but not identical to those for surface SO,

because of regional differences in transport, free tropospheric oxidation and in-cloud removal.
We find that the summer-to-winter ratio in column SOy is larger over eastern North America than
it is over Europe; however both are larger than that for eastern Asia, where wintertime column

SO, is predicted to exceed summertime column SOy.



1. INTRODUCTION

The environmental and climatic consequences of anthropogenic sulfur emissions have
been the subject of much scientific debate in recent years. In the 1970’s and 1980’s, the discussion
centered around the deleterious effects of “acid rain” and visibility degradation in and downwind
of industrial regions in the United States and Europe, where emissions of sulfur gases from fossil-
fuel combustion are most intense (OECD, 1977; NAPAP, 1990). More recently, the suggestion
that atmospheric sulfate particles may significantly affect climate (Bolin and Charlson, 1976;
Twomey et al., 1984, Charlson et al., 1987, 1991, 1992), has provided the impetus for a renewed
interest in the global aspects of the tropospheric sulfur cycle. In this context, it is particularly
important to assess the spatial and temporal impact of anthropogenic emissions on the
atmospheric sulfur cycle, and the subsequent effect of this anthropogenic component on the
radiative balance of the atmosphere.

Several investigators have attempted to address this question using three-dimensional,
global chemical transport models (GCTMs). Langner and Rodhe (1991) presented the first such
study, and a similar study has been performed by Pham et al. (1995). While these studies provide
useful insights into aspects of the global sulfur cycle, they are based on models which are driven
by monthly-mean, rather than synoptically-varying, meteorological fields. Studies using more
sophisticated GCTMs have recently been performed by Taylor and Penner (1994), Chin et al.
(1996), and Feichter et al. (1996).

In this study, we present results of model simulations of the anthropogenic sulfur cycle,
using a GCTM similar in character to the models used by Taylor and Penner (1994), Chin et al.
(1996), and Feichter et al. (1996). Our model is distinguished from these previous works in two

important aspects. The first is the inclusion of a detailed evaluation of model results against



simultaneous regional air chemistry and deposition measurements. This evaluation allows us to
more robustly assess the uncertainties inherent in the sulfate distributions derived from present-
day GCTMs and to identify potential shortcomings in their chemical algorithms

The other unique aspect of this study is the focus on the seasonal-cycle in the simulated
burden of anthropogenic sulfate, an issue which has received surprisingly little attention in
previous GCTM studies. The seasonal variation of the column sulfate burden can have a
significant effect on the direct radiative forcing of sulfate aerosols. Clearly, the month-to-month
variation in radiative forcing depends on the monthly variation in sulfate aerosol loading. For
example, Haywood and Shine (1995) calculated the global-mean radiative forcing in each month
using modeled sulfate aerosol distributions from Langner and Rodhe (1991) and Taylor and
Penner (1994). The Taylor and Penner (1994) distribution, which has a larger seasonal variation,
yielded 20-30% more forcing in summer, and 20-30% less forcing in winter, than that obtained
using the Langner and Rodhe (1991) distribution.

Interesting seasonal effects may also occur on regional scales in the industrialized regions
of the northern mid-latitudes. For example, observations of surface sulfate concentrations in the
eastern United States show a strong seasonal cycle in phase with the seasonal cycle in solar
insolation (i.e, maxima in the summer and minima in the winter) [Shaw and Paur, 1983], while a
similar seasonal cycle is largely absent or even reversed in the industrialized regions of western
and central Europe (Feichter et al., 1996). If these seasonal variations in surface sulfate reflect
seasonal variations in column sulfate, then the annually-averaged direct radiative cooling from
sulfate aerosols over the two regions would be quite different even if the annually-averaged
column sulfate burden is the same in the two regions. Over the eastern United States, the seasonal

cycle in sulfate aerosol will tend to amplify the annual-mean radiative forcing, while there will be



no such effect over Europe. Recognizing the fact that much of the direct radiative forcing from
anthropogenic sulfate is believed to occur in these two regions (Charlson et al., 1991; Kiehl and
Brieglib, 1993), our ability to simulate the seasonal variability in sulfur over these regions
provides a critical test of the reliability of present-day assessments of the climatic effects of

anthropogenic sulfate aerosols.

2. MODEL DESCRIPTION

The GCTM used in this study was originally developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) [Mahiman and Moxim, 1978; Levy et al., 1982, Levy et al., 1985;
Levy and Moxim, 1989; Moxim, 1990]. In recent years, the GCTM has been applied to study the
cycling of reactive nitrogen compounds and ozone in the troposphere, in a joint effort between
GFDL and the Georgia Institute of Technology (Kasibhatla et al., 1991; Levy et al., 1991;
Kasibhatla, 1993, Kasibhatla et al., 1993; Levy et al., 1993; Galloway et al., 1994, Kasibhatla et
al., 1996; Levy et al., 1996; Moxim et al., 1996). The model has a horizontal resolution of ~265
km, and 11 sigma levels in the vertical at standard pressures of 10, 38, 65, 110, 190, 315, 500,
685, 835, 940, and 990 mb. The model is driven using 12 months of 6-hour time-averaged
meteorological fields from a GFDL general circulation model (Manabe et al., 1974; Manabe and
Holloway, 1975).

In the current application, the GCTM is used to simulate the emissions, transport,

transformation, and removal of two species: sulfur dioxide (SO,) and aerosol sulfate (SO,4). The

algorithms used to simulate each of these processes is discussed below.



2.1 Transport

The calculation of tracer advection in the GCTM is described by Mahlman and Moxim
(1978). The calculations includes parameterizations for subgrid-scale horizontal transport, as well
as vertical mixing by dry and moist convection. Details of these parameterizations can be found in

Levy et al. (1982), Levy and Moxim (1989), and Kasibhatla et al. (1993).

2.2 Emissions

Because of our focus on the effects of anthropogenic sulfur, we only include
anthropogenic sulfur emissions; specifically the Version 1B.1 global SO, (SO, + SOy emission
inventory compiled by the International Global Atmospheric Chemistry/Global Emissions
Inventory Activity (GEIA/IGAC) [Penner et al., 1994]. This inventory contains seasonally-

varying emissions of SO, from fossil-fuel combustion and some biomass-burning activities at a

horizontal resolution of 1°x1° apportioned into 2 vertical levels (below 100 m and above 100 m)
[Voldner et al., 1996; see also Benkovitz et al., 1996]. In our model, emissions occurring below
100 m are assigned to the bottom model level (990 mb), while emissions occurring above 100 m
are assigned to the 940 mb model level. Direct emissions of SO, are known to comprise a small
fraction of this SO, source. Estimates of this fraction generally range from 1.4% in the United
States (Benkovitz et al., 1994) to 5% in Europe (Eliassen, 1978). Since reliable estimates of this

quantity are not available, we simply assume that 2% of the total SO, source is emitted in the

form of SOy, with the rest being emitted as SO,.



2.3 Gas-Phase SO, Oxidation
Our chemical mechanism includes a pathway for converting SO, to SO, via gas-phase
oxidation initiated by the reaction of SO, with OH. The rate of this process is calculated at

each time-step in the GCTM using prescribed monthly-mean three-dimensional OH fields
from Spivakovsky et al. (1990) and a reaction rate constant obtained from DeMore et al.
(1994). Calculations with enhanced OH concentrations will also be presented to illustrate the

sensitivity of our results to this prescribed OH distribution.

2.4 Cloud Parameterization

The treatment of aqueous-phase oxidation of SO, and precipitation scavenging of SO,
and SO, requires specification of the cloudiness within each grid box of the model at each

time step. Since the parent GCM does not explicitly represent clouds, the precipitation
scavenging parameterization for GCTMs developed by Kasibhatla et al. (1991) was modified
to calculate cloudiness in the model. In this modified scheme, a “rainy cloud fraction” and a
“non-precipitating cloud fraction” is calculated for each model grid box to represent the
fractional volume of air in each model grid-box that undergoes precipitation scavenging and
aqueous-phase chemistry, respectively, during each time-step. The “rainy cloud fraction” is
calculated using local model-calculated precipitation rates, and assumed cloud liquid water
content and cloud height according to Equation 3 in Kasibhatla et al. (1991). The “non-
precipitating cloudy fraction” is then calculated as:
non-precipitating cloud fraction = max{(9*rainy cloud fraction), (I1-rainy cloud fraction)],

based on the assumption that roughly 10% of all clouds precipitate (Lelieveld, 1990), and the



constraint that:
non-precipitating cloud fraction + rainy cloud fraction < |
As described in more detail below, we assume that precipitation scavenging via rainout
occurs in the “rainy cloud fraction” of each grid box. Precipitation scavenging via washout, on the
other hand, is assumed to occur in the fractions of the grid boxes that lie below the “cloud base” of
each of the “rainy cloud fractions”, with the *cloud base” assumed to be located at the top of the
940 mb model level (approximately 900 m). In-cloud aqueous-phase chemical processes, are

assumed to occur in the “non-precipitating cloud fraction” of each grid box.

2.5 In-Cloud Aqueous-Phase SO, Oxidation
In addition to gas-phase oxidation, aerosol SO4 may be generated in our mechanism via
the aqueous-phase oxidation of SO, within the ‘non-precipitating cloud fraction” of each grid box

of the GCTM. A simplified scheme is adopted to account for the effect of oxidant-limitation on
this rate. During each chemical time-step (approximately 56 minutes), we assume that there is a

rapid conversion of SO, to SO, in the “non-precipitating cloudy fraction” of a model grid-box,
with the amount of SO, converted being limited by the gas-phase H,O, concentration within that
grid box (Chameides, 1984). (In other words, if the H,O, concentration within a grid box is
greater than the SO, concentration, we assume that all the SO, within the “non-precipitating
cloudy fraction” of that 'grid box is converted to SO4. However, when the H,0, concentration is
less than that of SO,, the amount of SO, converted to SO, within the “non-precipitating cloudy
fraction” is set equal to the amount of H,O, within that fraction). The gas-phase H,O,

concentration within each grid box is specified using three-dimensional, monthly-mean fields



from the NCAR CCM2 model (Stacy Walters, private communication). This simplified aqueous-
phase chemistry scheme neglects the contribution of other potentially important aqueous-phase
SO, oxidation pathways such as reaction with (OH),q and (03),q, as well as by reactions with
dissolved NO5 and NO, which may be important in regions of high anthropogenic nitrogen oxide
emissions (Chameides, 1984). On the other hand, since we assume that the gas-phase H,0,

concentration in the “non-precipitating cloudy fraction” of a model grid-box relaxes back to its

monthly-mean value within I hour, there is the potential to underestimate the H,O, limitation,
and therefore overestimate the rate of aqueous-phase SO, oxidation. Calculations illustrating the

sensitivity of our model to the imposition of oxidant-limitation will be presented later.

2.6 Precipitation Scavenging

The GCTM includes a parameterization for precipitation scavenging of both SO, and SO,
via rainout as well as washout of SO,. As noted earlier, rainout of SO, and SO, is assumed to

occur in the “rainy cloud fraction” of each model grid box. Following the scheme of Kasibhatla et
al. (1991), we assume that all the liquid water within the *“‘rainy cloud fraction” is removed from

the atmosphere during each time step and that SO, is infinitely soluble, thus effectively assuming
a prccipitati.on scavenging efficiency for SO4 within the “rainy cloud fraction” of unity. As in the
case of aqueous-phase oxidation, the amount of SO, scavenged within the “rainy cloud fraction”
during each time-step is assumed to be limited by the amount of H,O,. Thus, when the H,0,
concentration is greater than the SO, concentration, we adopt an effective precipitation
scavenging efficiency for SO, within the rainy-cloud fraction of unity. When the H,0,

concentration is less than the SO, concentration, a proportionally decreasing precipitation



scavenging efficiency is adopted. Sensitivity calculations with maximum precipitation scavenging
efficiencies of 0.5 instead of 1 are also presented later.

Washout of SO, is assumed to occur in the fractions of each grid box that lie below the

“cloud base” (i.e., at the 940 and 900 mb model levels) of the “rainy cloud fractions”. Washout of

aerosol SO, (which is assumed to be in the form of sub-micron particles) is neglected (Langner
and Rodhe, 1991). Similar to SO, rainout in the “rainy cloud fraction” of each model grid box,

washout of SO, is assumed to be limited by the amount of H,O,.

2.7 Dry Deposition
Surface dry deposition rates of SO, and SO, are calculated using a drag-coefficient

formulation (Levy and Moxim, 1989), which is consistent with the treatment of surface exchange

processes in the parent GCM. Monthly- and spatially-varying dry deposition velocities of SO,
over land are calculated using a standard resistance-in-series model (Wesely and Hicks, 1977;
Wesely, 1989), in conjunction with a 1°x1° map of land-use data (Mathews, 1983). The SO, dry

deposition velocity over water is assumed to be 0.8 cm/s, and a dry deposition velocity of 0.2 crn/

s is prescribed for SO, over all surfaces (Ryaboshapko, 1983).

3. BRIEF DESCRIPTION OF MEASUREMENTS USED FOR MODEL EVALUATION

Because of our focus on the anthropogenic fossil-fuel component of the global SO,
budget, the most appropriate comparison is with measurements from regions where the local SO,

budget is dominated by this source. Furthermore, since the GCTM used in this study is driven by

meteorology from a GCM, it is desirable that the measurements be of sufficiently long duration,

10



to permit a climatological evaluation of model performance. With these issues in mind, we have

identified two long-term SO, measurement datasets which are suitable for model evaluation.

These datasets are briefly described below.
One dataset is comprised of surface measurements collected as part of the Eulerian Model
Field Evaluation Study (EMEFS) over North America from July 1988 to May 1990 (McNaughton

and Vet, 1996). Part of this dataset, comprised of near-daily measurements of SO, and SO, air

concentrations from 122 air monitoring sites, and rainwater sulfate concentration and
precipitation data from 129 deposition monitoring sites, has been provided to us by S. K. Seilkop
(private communication). The second dataset is comprised of measurements of surface air

concentrations of SO, and SO,, rainwater sulfate concentrations, and precipitation data from

Europe. These measurements were collected as part of the Co-operative Program for Monitoring
and Evaluation of the Long Range Transmission of Air Pollutants in Europe (EMEP) [Schaug et
al, 1987]. A subset of this dataset covering the period 1983-1992 at 61 sites located in Austria,
The Czech Republic, Denmark, Finland, Germany, Great Britain, Italy, Norway, The Netherlands,
Poland, Slovakia, and Sweden, was made available by J. Schaug (private communication). Since
some of these sites are located at significant altitude which may artificially bias our model
analysis due to orographical effects, we chose to only use data from sites located below ~ 500 m
above m.s.l., and this reduced the number of EMEP sites considered in our analysis to 49.

The site-specific and near-daily EMEFS and EMEP observations were processed by first
binning all the measurements into the model grid boxes, and then calculating monthly-mean air

concentrations of SO, and SOy, and wet deposition fluxes in each model grid-box where data is
available. We then selected those grid boxes for which both summer and winter-mean SO, and

SO, concentrations, as well as wet deposition fluxes, could be derived. This procedure yielded

11



seasonally-averaged data (at model grid resolution) for 42 grid boxes in North America and for 30
grid boxes in Europe, spanning the range from polluted to background continental sites (see
Figures | and 2).

Figures 1 and 2 show the processed concentration and wet deposition data for summer and

winter from North America and Europe, respectively. It can be seen that mean SO, concentrations

generally range from 3 to 12 ppbv during winter, and from 1.5 to 6 pbbv during summer, in the
highly industrialized regions of eastern North America and western and central Europe. At the
cleaner continental sites, SO, concentrations generally range 0.5 to 3 ppbv during winter, and
from 0.1-1.5 ppbv during summer. (In the rest of this paper, we will use the phrase “large source
regions” to refer to regions where the mean surface SO, concentration is at least 1.5 ppbv during
both summer and winter). There is also a seasonal variation in the wet deposition fluxes at most of
the EMEFS and EMEP sites, with the highest fluxes (> 10 mMole S/m?) occurring in the large
source regions during summer.

An especially noteworthy feature of the data illustrated in Figure 1 and 2 {s the different
seasonal variations in surface SO4 over North American and Europe. In the large source region of
eastern North America between 35N and 50N, a strong seasonal cycle in surface SO, is evident,
with mean summertime concentrations ranging from 2-4 ppbv, and wintertime concentrations
generally falling below 1 ppbv. This is in sharp contrast to the observations in the large source
regions of western and central Europe, where no seasonal cycle in surface SO, concentrations is
evident.

One possible explanation for these different seasonal cycles is the different seasonal

patterns in emissions between North American and Europe. Over Europe, SO, emissions are

significantly higher in winter that in summer (Voldner et al., 1966), while over the eastern United

12



States SO, emissions are fairly constant throughout the year. Since conversion of SO, to SO, is
driven at least in part by photochemical processes, it is possible that the lack of a seasonal cycle
over Europe is the result of the off-setting effects of photochemistry and emissions. However, it is
not obvious if this explanation is consistent with the fact the summer-to-winter variation in wet
deposition fluxes over the industrialized regions of North America are quite similar to those
observed over Europe.

Thus, we see that the EMEFS and EMEP datasets provide a complex picture of regional,

seasonal, and species-specific variability in SO,. In the next sections, we examine the extent to

which our model is able to reproduce these contrasting seasonal and regional signals.

4. EVALUATION OF MODEL RESULTS
The model described in Section 2 (which will be referred to as the BASE model) was

initialized with a globally-uniform mixing ratio of 1 pptv for both. SO, and SOy, and integrated

for a period of 16 months after an initial spin-up period of 2 months. In the following sections, we

focus on the winter to summer variation in the simulated SO, surface concentrations and wet

deposition fluxes.
We begin our discussion by focussing on a detailed comparison of model results with the
EMEFS and EMEP measurements in North America and Europe, respectively. In each region, the

observed patterns of SO, and SO4 mixing ratios and wet deposition fluxes are influenced by the
distribution of SO, emissions, as well as by transport processes, gas and aqueous-phase chemical
processing of SO,, dry deposition of SO, and SOy, and precipitation scavenging of SO, and SO,.

Given the complex nature of the interaction between each of these processes, it is generally

difficult to unambiguously evaluate the model’s treatment of the individual processes that
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influence the SO, budget through comparisons with ambient SO, data alone. However,
comparisons with the combination of SO, and SO4 mixing ratios and sulfate wet deposition fluxes

contained in the EMEFS and EMEP datasets enable us to identify and improve specific
shortcomings in the model, and provide a much more rigorous test of the overall performance of

the model.

4.1 Comparisons with Surface EMEFS Measurements

Figures 3 and 4 show comparisons of simulated SO, mixing ratios and wet deposition

fluxes with the EMEFS measurements over North America during winter (December-January-
February mean) and summer (June-July-August mean), respectively. In each figure, scatter plots
of modeled versus measured variables are included on the left hand side, and maps showing the
spatial distribution of the ratio of modeled to measured variables are included on the right hand
side. Together these two types of plots provide an integrated view of model performance. The
degree to which there is a positive correlation between a measured and modeled variable in the
scatter plots is indicative of the model’s ability to reproduce the spatial distribution of that
variable, with deviations from the 1:1 line representing model bias. The location and magnitude of
the model biases can then be inferred from the ratio maps.

Inspection of Figures 3 and 4 shows that the modeled SO, concentrations correlate well

with the measurements, indicating that the model generally captures the large-scale spatial

distribution of SO, in the EMEFS measurement region. However, the model systematically
overestimates the SO, concentrations in both seasons, with ratios of calculated-to-measured SO,
often above 1.5 and occasionally in excess of 2.5. In contrast to SO,, the model systematically

underestimates SO, mixing ratios in both seasons by a similar magnitude, and this bias is most
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severe at the cleaner background sites during winter.

The scatter plots in Figures 3 and 4 show that the wet deposition fluxes at most of the
EMEEFS locations are simulated to within a factor of 2, though there are isolated locations with
larger discrepancies. Since the wet deposition flux at any given location depends on the local
precipitation climatology (which may not be adequately captured in the model), these larger
discrepancies do not necessarily suggest a systematic shortcoming in the model’s treatment of
precipitation scavenging. A closer inspection of the spatial maps does reveal however that there is
a tendency in the model to underestimate the wet deposition fluxes in the southwestern part of the

EMEFS region, and overestimate the fluxes in the northeastern part of the domain.

4.2 Comparisons with Surface EMEP Measurements

Figures 5 and 6 show comparisons of SO, mixing ratios and wet deposition fluxes over

Europe, in a manner similar to those shown in the previous section. These comparisons show
some similarities with those for North America, and also some important differences. Focussing

first on the wintertime results, we find that the modeled SO, over Europe is again generally higher
than the measurements, while SO, concentrations are significantly underestimated over the whole
region. Unlike in North America, however, where SO, concentrations near the large source
regions are simulated to within a factor of 2, the underprediction of SO4 mixing ratios in the large

source regions of Europe is consistently larger. The comparison of wet deposition fluxes for
winter is similar to that for North America, with agreement to within a factor of 2 at most
locations and some larger discrepancies at isolated locations.

In summer, the picture is more complex. The spatial maps in Figure 6 show that both SO,

and SO, tend to be overpredicted in the southern part of the EMEP measurement region around
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50N, and underpredicted in the northern part. However, when averaged over the entire EMEP

region, we once again find a tendency to overpredict SO, and underpredict SOy .

These results suggest that the discrepancies obtained for the summer over Europe arise
from two different model shortcomings: (i) A shortcoming that is region-wide and causes an
overprediction in SO, and an underprediction in SOy; and (i1) A regionally varying problem that
causes a SO, overprediction in the south and an overprediction in the north. With regard to the

regionally varying problem, it is interesting to note that a comparison of modeled and observed

wet deposition fluxes over Europe in summer show a similar trend to that found for SO,, with

overpredictions in central and western Europe, and underpredictions in Scandinavia. The fact that

the trend is the same for the both the primary and secondary pollutants (SO, and SO,

respectively), as well as for the wet deposition fluxes, suggests that the regionally varying
problem is related to transport rather than chemistry. Specifically, it is likely that the summertime

northward flux of SO, from the large source regions in western and central Europe may be

underestimated in the model. The origin of the region-wide model discrepancy, which is common
to all four intercomparisons (North America and Europe; summer and winter), is the subject of

the next section.

4.3 Sensitivity of SO, Overprediction and SO, Underprediction to the Chemical Algorithms

The comparisons of our model results with the EMEFS and EMEP measurements for both
summer and winter indicate a number of model deficiencies, but only one that is common to all

four cases: namely, a systematic and, for the most part, significant overprediction in surface SO,
and underprediction in surface SO,. Interestingly, in spite of these errors, the model simulations

produced little or no systematic error in the sulfate wet deposition flux.
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In principal, an overprediction in SO, and underprediction in SO4 could be caused by one
or both of the following errors: (i) An underestimate in the SO4-to-SO, ratio in the SO,
emissions; or (ii) An underestimate in the rate of conversion of SO, to SO, in the continental
boundary layer. However, an analysis of our model’s sensitivity to SO4 emissions indicates that in

our case the first option is not viable. Recall that we assumed in our BASE model that 2% of the

total SO, emissions are emitted as SO4. Model calculations indicate that we would have to
increase this fraction to at least 10% to remove the SO, and SO, model biases. However,
observations indicate that such a large fraction of primary SO, emissions is not realistic (Dietz

and Wieser, 1983, Hass et al., 1993). It therefore appears that the most likely explanation for the

systematic errors in the simulated SO, and SO4 concentration fields arise from a deficiency in the
model’s treatment of the chemistry of SO, to SO, conversion, either within the atmospheric
boundary layer in general and/or within SO, source plumes as they mix with and disperse into the
background atmosphere. In this section we will examine whether a variety of adjustments to
model’s chemical algorithms can in fact eliminate the systematic errors without degrading the

relatively good simulations of the distribution and rate of sulfate wet deposition that were

obtained with the BASE model.

Gas-phase oxidation

One simple way to increase the SO, oxidation rate is to increase the specified OH
concentration. To test the sensitivity of our results to OH, we conducted a calculation in which the
OH éoncentrations were uniformly increased by a factor of 1.5. We refer to this model as the

HIGH-OH model. The results from this model (not illustrated here) indicate only modest



improvements in the SO, and SOy fields in summer, minimal improvements in winter over North

America, and no improvement over Europe. Since it is unlikely that the specified OH has a
systematic error of more than a factor of 1.5, we conclude that an underestimate in the gas phase

SO, oxidation rate is not the cause of our systematic model discrepancies. More generally, the

results suggest that it is unlikely that an enhancement in a photochemically-driven mechanism can
correct the model’s systematic errors since these errors appear in both summer and winter, and

tend to be most severe in winter.

Oxidant limitation to in-cloud oxidation
A key facet in our treatment of in-cloud oxidation is the assumption of oxidant limitation

by H,0,. However, in-cloud oxidation of SO, may not always be H,O,-limited due to the
occurrence of other reactions such as metal-catalyzed reaction with O, (e.g., Clarke and
Radojevic, 1987; Ibusuki and Takeuchi, 1987), and it is also possible that the H,O, fields we have
specified are too low. To test the sensitivity of our results to the assumption of H,0O,-limitation
and the concentration of H,0,, we have carried out a simulation in which we removed all H,0,
limitation from the SO, aqueous-phase oxidation and precipitation scavenging processes. We

refer to this model as the NO-H2O2LIM model. Results illustrated in Figures 7 and 8 for North

America and Europe, respectively, show that while the overestimates in SO, are substantially
corrected by the NO-H202LIM model, the underestimates in surface SO4 concentrations are not.
The lack of improvement in SOy arises from two factors: (i) Aqueous-phase production of SO,

only occurs in the model above 940 mb (the assumed “cloud base”), and thus an increase in the in-

cloud SO, oxidation rate has a minimal impact on boundary layer SO,; and (ii) The enhanced
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removal of surface SO, by non-oxidant limited washout leads to less SO, production within the

boundary layer via gas-phase oxidation. Finally note that the NO-H202LIM model produces a
systematic and significant overestimate in sulfate wet deposition fluxes over both North America

and Europe, especially during winter.

In-cloud oxidation of boundary layer air

Another key facet of our algorithm for aqueous-phase oxidation is the assumption that
boundary layer air below the “cloud base” never undergoes any in-cloud aqueous-phase chemical
processing. However, it is possible that turbulent and convective mixing effectively causes some
cloud-processing of sub-cloud air. We have therefore examined the sensitivity of our results to
the possible presence of sub-cloud aqueous-phase chemical processing by performing a
simulation which is identical to the BASE model simulation except for the fact that air in the

“sub-cloud” model levels (at 940 and 990 mb) is allowed to undergo aqueous-phase SO,
chemistry and precipitation scavenging of SOy (in addition to washout of SO,). We will refer to

this model as the BL-AQCHEM model.
The results from this simulation are compared to the EMEFS and EMEP surface

measurements in Figures 9 and 10, respectively. Focussing first on SO, and SO4 over North
America, Figure 9 shows that there is a significant improvement in the simulated surface SO,

mixing ratios at the cleaner background EMEFS locations during winter. There is also a slight

decrease in the overestimate of SO, concentrations in the polluted EMEFS regions during both
summer and winter. However, the model now significantly underestimates SO, concentrations at

the cleaner background EMEFS locations during summer. The overestimate of wet deposition

fluxes in the eastern United States is also exacerbated, since SO, in the boundary-layer is now
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assumed to undergo precipitation scavenging as well.

Similar effects are seen over Europe (Figure 10). There is a significant improvement in the
simulated SO, concentrations during both summer and winter. However, the highest wintertime
SO, concentrations are still significantly underestimated. In addition, the overestimation of the

highest wet deposition fluxes and the underestimation of the lowest SO, concentrations during

summer are now significantly magnified.

As a further test of the BL-AQCHEM model approach, an additional simulation was
performed with a reduced precipitation scavenging efficiency of 0.5. This, in effect, reduces the
“rainy cloud fraction” calculated for each model grid box by half at each time-step, without
altering the calculated “non-precipitating cloudy fraction”. However, there was no significant
improvement in the overall quality of the simulation. This suggests that factors other than the
precipitation intensity (e.g, the precipitation frequency) are important in determining the net rate

of precipitation scavenging in the model.

Boundary-layer heterogeneous SO, oxidation

The previous two sub-sections demonstrate that increasing the effective rate of in-cloud
oxidation has some specific limitations, the most significant of which is the deterioration in the
simulation of wet deposition fluxes. Moreover, the results from the HIGH-OH model suggest that

an enhancement in the photochemically-driven gas-phase oxidation rate of SO, does not eliminate

model discrepancies in winter. We are therefore left with one alternative explanation for the

hypothesized underestimate in the boundary-layer SO, to SO4 conversion rate: namely, the

existence of a heretofore neglected, non-photochemical and therefore, most likely, heterogeneous

pathway for converting SO, to SO, in the boundary-layer. To investigate the viability of this
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explanation for the BASE model’s systematic errors, we have performed a simulation in which an

additional pathway for converting SO, to SOy in the bottom two levels of the model was added to

the chemical mechanism. We will refer to this model as the BL-HETCHEM model.

In principal the heterogeneous conversion of SO, to SO, could occur ubiquitously
throughout the boundary layer on atmospheric aerosols or more rapidly within specialized air
masses such as SO,-rich plumes from power plants as they disperse into the background

atmosphere. However, it is beyond the scope of this study to attempt to distinguish between these
two types of processes and, we simply treat this additional oxidation pathway in the BL-

HETCHEM model as a first-order reaction whose rate is proportional to the concentration of SO,

within each grid box and a spatially constant rate constant. Model simulations were performed

using various values for this first-order reaction rate constant, and it was found that relatively

good results could be obtained using values of 1 x 10 5! for winter and 2 x 10 s™! for summer,
and these are the values used to obtain the results for the BL-HETCHEM model reported here.
Before discussing the results from this model, it is interesting to note that a rate constant of the

magnitude used here is not unreasonable for a heterogeneous reaction involving of SO, and

particulate matter in the continental boundary layer. In the first place, there is some evidence to

suggest that there can be significant conversion of SO, to SO, in the boundary-layer via

heterogeneous reactions on wet and deliquescent aerosols, and in fog droplets (e.g., Chang et al,

1981; Hoffman and Jacob, 1984; Ruprecht and Sigg, 1990; Chameides and Stelson, 1992).

Furthermore, for typical continental boundary-layer aerosol surface areas of 100-200 |.1m2/cm3
and mean radii of 0.01 to 0.1 |l m, an effective uptake coefficient of only 107 t010™ is needed to

yield a first-order rate of 1-2 x 100571,
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Figures 11 and 12 compare modeled SO, concentrations and wet deposition fluxes from
the BL-HETCHEM model with the EMEFS and EMEP observations, respectively. The
improvement in the model results is most pronounced in wintertime, when for both the EMEFS
and EMEP regions, the systematic underestimates of surface SO, concentrations are largely
eliminated and the SO, overestimates are decreased, while the simulated wet deposition fluxes

remain essentially unchanged. As expected, the additional heterogeneous oxidation pathway has a
smaller effect in summer, when the photochemically driven gas- and aqueous-phase conversion
processes are relatively fast, but still produces significant improvements in the model simulation.
Despite the significant overall improvements, some details in the observations are not captured by
the BL-HETCHEM model. For example, during winter, the model does not reproduce the

relatively weak SO, gradient between the polluted and clean sites in the EMEFS region, and

overestimates the surface SO, at the relatively clean Scandinavian sites in Europe.

Statistical summary of sensitivity calculations

The overall and relative performances of each of the models described above can

be objectively assessed by evaluating the individual model biases for each parameter (SO, and
SO, mixing ratios and sulfate wet deposition flux) for each season. One measure of the overall

model bias is the average fractional difference defined as:

_ (Vmodel+ Vobs)
(Vmodel - Vobs)

f,

where, V,,,4.; and V_,; represent the modeled and measured value of a particular parameter (e.g,

the SO, concentration), respectively. Another perspective on model performance can be obtained
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by evaluating the percentage of comparison points where all three model-calculated parameters

(i.e., SO, and SO4 mixing ratios and sulfate wet deposition flux) are within a factor of 2 of the
corresponding measurements. We will refer to this percentage as P,.

Tables 1 and 2 show calculated values of f, and P, during summer and wiﬁter for the
EMEFS and EMEP regions, respectively, for the various models considered in this study. It is
readily evident that the BASE model has a strong negative bias in surface SO, over North
America and Europe, especially during winter, with f, = -0.36 and -0.56, respectively.
Furthermore, P, is less than 50% for all cases except North America during summer. Moreover,
inspection of the tables reveals significant problems in the HIGH-OH, NO-H202LIM, and BL-
AQCHEM models. In the case of the HIGH-OH and the NO-H2O02LIM models, we find that SO,
biases in winter are still quite large. In addition, a large positive wet deposition flux bias is
produced in the NO-H2O2LIM model in winter. The SO, bias over North America during winter
is relatively small in the BL-AQCHEM model (f, = -0.04), but remains high over Europe during
winter (f, = -0.34). In addition, the biases in the wet deposition fluxes in the BL-AQCHEM model
are at least a factor of 3 larger than the biases in the BASE model over both North America and
Europe during winter.

The BL-HETCHEM model clearly produces the best overall simulation. It is the only one

which reduces the absolute magnitude of both SO, and SO, biases in all cases, without

significantly increasing the magnitude of the wet deposition flux biases. Furthermore, it is the
only one in which the average absolute bias is of the order of 0.2 or less for all three parameters,

and yields the largest values for P, in both North America and Europe for both seasons. These

results, while by no means conclusive, would appear to suggest that an additional heterogeneous

23



oxidation pathway for SO, exists in the continental boundary layer and that this pathway is having

a significant impact on the aerosol sulfate concentrations over North America and Europe.

5. SEASONAL VARIATIONS IN THE ANTHROPOGENIC SULFATE BURDEN
As noted in the Introduction, it is important to characterize the seasonal variation in the
distribution of anthropogenic sulfate aerosols in order to reliably estimate their radiative effect. In
this section, we further examine our ability to correctly predict the summer-to-winter variation in

surface SO, concentrations and wet deposition fluxes over North America and Europe, where the

radiative effect of anthropogenic sulfate aerosols is expected to be largest. We also use the model
to provide a picture of the large-scale column burden of anthropogenic sulfate, and to quantify the
individual contributions of various processes to the seasonality in the column burden in the large

source regions of North America, Europe, and Asia.

5.1 Seasonal Differences in Surface SO 4 between North America and Europe

As noted in section 3, the most striking difference between the EMEFS measurements
over North America and the EMEP measurements over Europe is in the seasonal cycle of surface

SO, concentrations. This is further illustrated in Figure 13 which shows the ratio of the mean
summertime to wintertime SO4 concentrations measured over North America and Europe. Over
North America, there is a clear seasonality in surface SO4 mixing ratios, with the summertime

values being about 2-4 times higher than wintertime values at most locations. However, over

Europe the observed summer to winter SOy ratio is less than or close to unity at most locations.

Figure 13 also shows the corresponding calculated summer to winter amplitudes from the

BASE and BL-HETCHEM models. Over North America, the BASE model reproduces the ratio
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of summer to winter surface SO, concentrations quite well at most locations south of ~50N.
However, this result is largely fortuitous since the BASE model significantly underestimates
surface SO4 in each season. The BL-HETCHEM model, on the other hand, which is significantly
superior to the BASE model in terms of its SO, simulation in each season, systematically
underestimates the seasonal variation in surface SO, south of 50N. This underestimate in the BL-
HETCHEM model is caused by the model’s tendency to overestimate wintertime SO, and
underestimate summertime SOy in this region (see Figure 11). While both biases by themselves
are relatively small, together they cause an average bias in the seasonal amplitude of about a
factor of 2.

Comparison with the data from the EMEP region indicates reasonably good agreement
between observed model-calculated seasonal amplitude in SO4 over the relatively clean sites in
northern Europe and Scandinavia for both the BASE and BL-HETCHEM Models. However, over
the more polluted source regions western and central Europe, the .seasonal amplitude in surface
SO4 in the BASE model is 4-6 times higher than the observed seasonal amplitude. The BL-
HETCHEM model reduces this bias by about a factor of 2, though the calculated summer-to-
winter variation is still too large. This may be at least partly be due to an underestimate of the
summertime northward flux of SO, in this region (see discussion in Section 4.2). Although not
illustrated here, we also find that both models tend to capture the seasonal amplitude of the wet
deposition flux over the large source regions of North America reasonably well, but overestimate
it over corresponding regions in Europe by a factor of 1.5-2.

Thus, neither the BASE nor the BL-HETCHEM model is able to simulate the observed

difference between the large source regions of North America and Europe relative to the seasonal
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cycle of surface SO4. While not explicitly stated, a similar discrepancy has been noted in other
model studies as well. Feichter et al. (1996) found that there was a pronounced underestimate of

surface sulfate over central Europe in the ECHAM global model (with a horizontal resolution of

5.625°%), when H,0, oxidant-limitation was considered. Pham et al. (1995) found that the

IMAGES global model (with a horizontal resolution of 5°) underpredicted surface SO, at most
EMERP sites during winter, while overpredicting the measurements during summer. Hass et al.
(1993) modeled a 3 week episode during February/March 1982 using the EURAD regional model
(with a horizontal resolution of 63.5 km). Again, their model systematically underestimated
surface SO,4 concentrations in the EMEP region.

Our current inability to accurately model the seasonal variations in surface SO4 over both
North America and Europe, simultaneously, points to a gap in our understanding of the
anthropogenic sulfur cycle in precisely those regions where the radiative forcing of sulfate
aerosols is calculated to be largest. In this context, further studies, preferably with higher-
resolution regional models, are needed to bridge the gap between observations and results from

current generation GCTMs.

5.2 Seasonal Variations in the Simulated Large-Scale Column SO Distribution

Our study has focussed thus far on a detailed evaluation of simulated surface mixing ratio
and wet deposition fields. In this section, we discuss the seasonal behavior of the simulated large-
scale column sulfate distribution. Since the BL-HETCHEM model gives the best overall
performance of the various models considered in this study, we restrict our analysis to results

from this model.

Figure 14 shows the calculated June-July-August and December-January-February mean
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tropospheric column sulfate loadings from the BL-HETCHEM model. As expected, the peak
loadings are found to occur in the anthropogenic source regions of eastern North America,
western and central Europe, and eastern Asia (i.e., the world’s three Continental-Scale Metro-
Agro-Plexes; see Chameides et al., 1994). The summertime maxima range from 20 to 30 mg SO4/

m?, with corresponding wintertime maxima lower by factors of 2 to 3 in the NH mid-latitudes. In

terms of the absolute differences, the calculated summertime loadings in the NH mid-latitude
source regions are therefore 10-20 mg SO4/m2 larger than corresponding wintertime loadings.
Away from the source regions, the anthropogenic sulfate loading decreases rapidly owing to the
relatively short lifetime of both SO, and its precursor, SO,. In fact, owing to faster transport and a
longer photochemical lifetime for SO, in winter relative to summer, the calculated anthropogenic
sulfate loadings over the NH mid-latitude oceans are comparable in the two seasons. Other
transport related differences can also be noted. For example, an elongated tongue of elevated
column sulfate extends from the source regions of Europe in a west-northwest direction during
winter, but not during summer.

Preliminary comparisons of the calculated seasonal column SO4 burdens with results from
other models show some similarities, but also some noteworthy differences. The column burdens
over North America and Europe from the BL-HETCHEM model are similar to those calculated
by Feichter et al. (1996) using the ECHAM model, in both summer and winter. Over Asia, the
SO, burden in the BL-HETCHEM model is 1.5-2 times smaller than in the ECHAM model. Over
all three source regions, the BL-HETCHEM and ECHAM models produce column SO, burdens
that are 2-3 times larger than those calculated by Taylor and Penner (1994) during winter. These

differences reflect the range of uncertainty that is prevalent in the current generation of global

27



models for SO4. The degree to which such differences in the calculated SO, burden cause

differences in the estimated magnitude of regional radiative forcings remains to be assessed.

5.3 Seasonal Variations in Regional Column SO 4 Budgets
Given the relatively large magnitude of the SO, column loadings in the NH source
regions, it is interesting to examine the factors responsible for the seasonal variability of column

sulfate in these region. Figure 15 shows the seasonal variation of the integrated column burden of

SOy simulated in each of 3 continental regions (only model land boxes are considered): eastern

North America, between 25N-50N and 60W-100W; western and central Europe, between 40N-
60N and 10W-40E; and, eastern Asia, between 15N-45N, and 105E-140E. Also shown in Figure
15, are the model-calculated, areally-integrated wet and dry deposition fluxes, chemical

production rates, and direct emissions of SO, in each region over the course of a season, as well

as the diagnosed net transport flux out of each region during that season. In the rest of this
discussion, we will use the terms North America, Europe, and eastern Asia, only to refer to these
specific sub-regions.

Over North America and Europe, model-calculated SO,4 burdens are similar in magnitude
during the summer (~15 mg SO,/m?). However, the wintertime column SO, burden over Europe

(9.3 mg SO4/m2) is almost a factor of 2 larger than that over North America (5.3 mg SO,/m?).
Thus, the model-calculated seasonal amplitude in column SOy is larger over North America than
over Europe. In terms of the vertical distribution (not shown here), the amount of SO, in the

bottom 1 km is approximately equal to the amount above 1 km, with the balance shifting slightly

between seasons. In winter, a larger fraction tends to occur in the boundary layer, while in
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summer there is a larger contribution from the free troposphere.

It is also evident from Figure 15 that the major source of SOy in each of these regions is

aqueous-phase chemical production, with smaller, but nevertheless significant contributions from
the hypothesized boundary-layer heterogeneous conversion pathway as well as summertime gas-

phase photochemistry. It can be seen that there is significantly more production of SO4 by

aqueous-phase and boundary-layer heterogeneous chemistry in winter over Europe than over

North America. This difference is due to the fact that there is a significant seasonal cycle in SO,
emissions over Europe, but not over North America. Regional SO, emissions range from 5-6 mg
S/m?%/day over Europe in summer, and over North America in summer and winter, while
wintertime SO, emissions over Europe are about a factor of 1.7 larger. It is this difference in the
seasonality of SO, emissions between North America and Europe that results in the lower
seasonal amplitude in column SO, over Europe relative to that over North America.

Over eastern Asia, summertime and wintertime column SO,4 burdens are comparable and

are of the order of 10 mg SO4/m2. This lack of a seasonal difference is due to the fact that
wintertime SO, emissions are about 25% larger than summertime emissions in this region, and

also due to the smaller seasonal variation in photochemically-driven processes relative to that in
the higher latitude regions of North America and Europe. In all three regions, the production of

SOy, is largely balanced by the wet deposition within the region, and to a lesser extent by export

from the region.

It is also interesting to note that the SO, production by our hypothesized boundary-layer
heterogeneous chemical pathway makes about a 15-40% contribution to the total SO4 production

within each region. If this hypothesized process were to largely occur on coarse particles, which
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make a minimal contribution to climate forcing (Boucher and Anderson, 1995), one would have

to reduce the calculated column SO, burden by this fraction when evaluating the radiative forcing

of anthropogenic sulfate aerosols.

6. SUMMARY
We have investigated the seasonal variation in the tropospheric cycle of anthropogenic
sulfur using a three-dimensional GCTM. This model is typical of the current generation of
GCTMs, the results from which are being used to characterize the radiative forcing of natural and
anthropogenic sulfate aerosols. One emphasis of this study has been on a detailed evaluation of

model results in regions where the radiative forcing of anthropogenic SO, aerosols is believed to
be largest. In this context, simultaneous measurements of SO, and SO, concentrations and wet

deposition fluxes from the EMEFS and EMEP measurements provide a rigorous test of model
performance.
The comparisons with the EMEFS and EMEP measurements suggest that boundary-layer

conversion of SO, to SO4 by a pathway other than gas-phase OH-driven oxidation may be of

some significance. We estimate that the pseudo-first order reaction rate coefficient for this process

is of the order 1-2 x 10 s™!, which is comparable to the corresponding summertime gas-phase

SO, oxidation rate in NH mid-latitudes. A likely candidate for this process is heterogeneous

oxidation of SO, on the surfaces of atmospheric aerosols. Given aerosol loadings typical of the

continental boundary layer, an effective accommodation coefficient of only 107 to 10 would be

required to yield a pseudo first-order rate constant of 10 ™. If such a process does indeed exist,
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it has the potential to alter the size distribution of sulfate aerosols within the continental boundary
layer and thus the radiative effects of these aerosols.

When we include this hypothesized heterogeneous conversion pathway in the model,
simulated surface SO, and SO4 concentration fields and wet deposition fluxes agree well with
observations from the EMEFS and EMEP datasets, At most of the comparison points, the
agreement is within a factor of 2. When all three parameters are considered simultaneously, the
simulations are within a factor of 2 of the measurements at 55-70% of the comparison points in
North America, and at about 45% of the comparison points in Europe. One major discrepancy,
however, is the inability to simulate the difference between the industrialized regions of North
America and Europe, in terms of the seasonal amplitude of surface SOy, and it appears that this is
a shortcoming common to other GCTMs as well.

The simulated column SO, is largest over the industrialized regions of eastern North
America, western and central Europe, and eastern Asia, ranging from 5 to 15 mg SO4/m2. Over

eastern North America, the simulated burden varies from ~6 mg SO4/m2 in winter to ~15 mg SO,/

m? in summer. This seasonal variation is driven by the seasonal variations in gas- and aqueous-

phase chemical production rates of SO4. Over western and central Europe, the simulated seasonal
amplitude in the column SO, burden is smaller due to the fact that the seasonal variation in
photochemistry is partially compensated for by an opposite seasonal variation in SO, emissions.
In fact since our model overestimates the seasonal amplitude in surface SO4 over western and

central Europe, and underestimates it in eastern North America, it is possible that the difference in
the seasonal amplitude in column sulfate over these two regions may be even larger. On the other

hand, since the simulated summertime column SO,4 burdens over North American and Europe are
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comparable, our model would likely predict similar cooling rates from sulfate aerosols over the
two regions.

Our study suggests a number of potentially important areas of uncertainty in our
understanding of, and ability to, simulate the cycle of anthropogenic sulfur and its impact on the
climate. These uncertainties include the possible role of previously neglected heterogeneous

oxidation pathways for SO,, complex and largely unexplained regional differences in the seasonal

cycle of sulfate, and indications of significant regional differences in column sulfate loadings
predicted by different GCTMs. In order to increase our confidence in GCTM simulations of
atmospheric sulfur species, these uncertainties need to be addressed though more detailed and
comprehensive datasets. Long-term measurements of column sulfate loadings over North
America, Europe, and eastern Asia would be most valuable in this regard. In addition, the rapid
growth in sulfur emissions projected for eastern Asia suggests that a regional measurement

program similar to EMEFS and EMEP should be a high priority.
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TABLE 1

Statistical Summary of Comparison of Model Results with Surface Measurements in
North America

WINTER
fr(a) P 2(b)
Model
SO, SOy Wet Dep. (%)
BASE 0.23 -0.36 0.08 21
HIGH-OH 0.22 -0.27 0.09 31
NO-H202LIM 0.04 -0.44 0.53 10
BL-AQCHEM 0.11 -0.04 0.32 40
BL-HETCHEM 0.18 0.08 0.11 55
SUMMER
£@ | p,®
Model
SO, SO, Wet Dep. (%)
BASE 0.11 -0.26 0.03 52
HIGH-OH 0.08 -0.17 0.04 62
NO-H202LIM 0.04 -0.31 0.08 29
BL-AQCHEM -0.15 -0.12 0.11 50
BL-HETCHEM 0.05 -0.12 0.04 69

(a) f; is the fractional difference between model results and measurements (see definition in

Section 4.3).
(b) P, is the percentage of the 42 comparison points where parameters are within a factor of 2 of

the measurements.
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TABLE 2

Statistical Summary of Comparison of Model Results with Surface Measurements in

Europe
WINTER
f@ p,®)
Model
SO, SO, Wet Dep. (%)
BASE 0.20 -0.56 -0.06 0
HIGH-OH 0.20 -0.53 -0.04 0
NO-H202LIM -0.20 -0.63 0.41 3
BL-AQCHEM 0.11 -0.34 0.17 17
BL-HETCHEM 0.13 0.03 -0.01 43
SUMMER
£@ P,®
Model
SO, SO, Wet Dep. (%)
BASE 0.02 -0.22 -0.05 40
HIGH-OH 0.04 0.09 -0.02 47
NO-H202LIM -0.13 -0.33 -0.01 23
BL-AQCHEM -0.35 -0.01 0.04 30
BL-HETCHEM -0.04 0.03 -0.04 47

(a) f, is the fractional difference between model results and measurements (see definition in

Section 4.3).
(b) P, is the percentage of the 30 comparison points where parameters are within a factor of 2 of

the measurements.
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FIGURE CAPTIONS

Gridded SO, and SO4 mean concentrations and sulfate wet deposition fluxes during winter

(December-January-February) and summer (June-July-August) derived from the EMEFS
network in North America. The dashed line represents the boundary of the region (referred to
as the “large source region” in the text) within which measured SO, concentrations are greater
than or equal to 1.5 ppbv in both summer and winter.

Gridded SO, and SO, mean concentrations and sulfate wet deposition fluxes during winter
(December-January-February) and summer (June-July-August) derived from the EMEP
network in Europe. The dashed line represents the boundary of the region within which
measured SO, concentrations are greater than or equal to 1.5 ppbv in both summer and winter.
. Comparisons of simulated mean SO, and SO,4 concentrations and wet deposition fluxes from
the BASE model with measurements for North America during summer. Left panels show
scatter plots of modeled versus measured variables, and right panels show the ratio of the
modeled to the measured variable at individual grid box locations. In the scatter plots, the 1:1
line (solid) and the 1:2 and 2:1 lines (dashed) are shown for reference. In the spatial maps, the
dashed line represents the boundary of the region within which measured SO, concentrations
are greater than or equal to 1.5 ppbv in both summer and winter.

Same as Figure 3, but for North America during summer.

Same as Figure 3, but for Europe during winter.

. Same as Figure 3, but for Europe during summer.

Scatter plots of simulated mean SO, and SOy4 concentrations and wet deposition fluxes from

the NO-H202LIM model (unfilled circles) with wintertime and summertime measurements
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10.

11.

12.

13.

14.

15.

for North America. Also shown are comparisons with the BASE model results (filled circles).
The 1:1 line (solid) and the 1:2 and 2:1 lines (dashed) are shown for reference.

Same as Figure 7, but for Europe.

Scatter plots of simulated mean SO, and SO, concentrations and wet deposition fluxes from
the BL-AQCHEM model (unfilled circles) with wintertime and summertime measurements
for North America. Also shown are comparisons with the BASE model results (filled circles).
The 1:1 line (solid) and the 1:2 and 2:1 lines (dashed) are shown for reference.

Same as Figure 9, but for Europe.

Scatter plots of simulated mean SO, and SO4 concentrations and wet deposition fluxes from
the BL-HETCHEM model (unfilled circles) with wintertime and summertime measurements
for North America. Also shown are comparisons with the BASE model results (filled circles).
The 1:1 line (solid) and the 1:2 and 2:1 lines (dashed) are shown for reference.

Same as Figure 11, but for Europe. |

Ratio of summertime to wintertime mean surface SO,4 concentrations in North America and
Europe. The top panel shows ratios derived from measurements, the middle panel shows ratios
derived from the BASE model, and the bottom panel shows results derived from the BL-
HETCHEM model. The dashed line represents the boundary of the region within which
measured SO, concentrations are greater than or equal to 1.5 ppbv in both summer and winter.

Simulated mean tropospheric column burden of SO4 during December-January-February (top

panel) and June-July-August (bottom panel) in the BL-HETCHEM model.

Seasonal budgets of regional column SO, over eastern North America (25N-60N, 60W-
100W), western and central Europe (40N-60N, 10W-40E), and eastern Asia (15N-45N, 105E-

140E) in the BL-HETCHEM model. The column SO, burden is in units of mg SO4/m2; other
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quantities are in units of mg SO4/m2/day. Note that the column SO, burden is scaled down by

a factor of 2 to facilitate presentation.

44



SON

30N

50N

30N

50N

30N

WINTER

NORTH AMERICA

SUMMER

1.3

e ] 6.

gy’ e

, 15 93
+" 3583 74 59 8.
5.0 45:54 4.9

08

28 1.8:09

356 31

+" 38 45 39 25

14

04

4

, 8 09 1.0 1.0
#" 06 09 09 08 0.
0.8 08:06 09

31 20:87 24
_--f7 7 23

X

;. 2563 48 37 3
) 8.7 49135 34
-~
{48 74T
~--T43 201

i

110W

90w

SO, (ppbv)

SO, (ppbv)

Wet Dep. (mMole S/m?)



EUROPE

WINTER SUMMER

70N

50N

70N

50N

70N

50N

SO, (ppbv)

SO4 (ppbv)

Wet Dep. (mMole S/mz)



model

model

model

NORTH AMERICA: WINTER

!
-

I

~1812122913
111272217

2.0
212

4 08080808
/08 .7 708 07

~

,7 0508608 1.0 0.7

508 $3
,» 0B 0FT118
/70904071110
0.4 08710 1.3
10

-

0.8 ¢
0.5
N
=
0.1 5%
10! g (ppbv)
3 // // 3
10° | gy 2l
: v :
' /. ' 02
10-1 3 // v ;. ';
E // // (] b
e 4 o :
10-2 E‘ // // 1:
10-3 f ./:./.....l sasal A aasal N ;'Tk
‘ 7/ &
[ Wet Dep. e X
2 s ’
10! {mMole S/m?) o
L [ s
/ /.
10° F v 3
E /’ // :
: «. /. ]
10-1 Er // /// 13 108
// ///
10'2 3 /// //
L/ s
10-3 j ./f.. A h

102 1071

10° 10!

observations

@/)

50N

30N

50N

30N

50N

30N



model

model

model

NORTH AMERICA: SUMMER

&~
0.2

0.7

SR
’
!

/09 .-

720 18

15 1.4
1413 2808
13 1.628 17

0.7

05 056 05
“To8

4
Vs [ 4
, [ 4 ]
® [ 4
Ve /.
3 4 7
E s 7/ ®
o ’ /
Ve Ve
7 7
7 e
é 7
2 7 Vi
Ve Ve
. s 4
Vs 7/
7 /
7 /
S
3 4 4
L - 7
- e
s 7/
7

K aasand aa asasaal

(mMole S/m?) ) - &

AEREALLL mm i | vy |
SO g
2 Yo
’
3 (ppbv) ‘® VAR
LIS s E
s e :
7/
o
7 7/
3 @/ 7 -
4 PY s 3
. ’ Vs
3
Vd 7
/ 7/
J/ s
3 Ve v .!
7/ s E
7 s @
Ve /
7 7/
’ /
3 / 4 X
; ’ 3
s e ]
7 s
f /
7’
KA al A al. aal AL aal
LAl muen oy | | ™)
o -
/7
SO, Ry
e
3 (ppr) ; s
7 s 3
3 e v p
7/ 7/
s/
’
7/
E ya @ !
3 3
Ve * <
P /
7/ /
o Vv [ %
Ve s
3 ’ 3
y ¢ 3
d
/ 7/
7 /
- 4 4
Va /
3 s 4 3
3 9
< / s/ 3
F 4 ]
b/ 7/ 4
K s L
/
PYAPE al aassasl al al
v
Wet Dep. y

R

2.2

’ 1009111311

14
A

.03/

04090914

102 10t 100
observations

10!

110W

50N

30N

50N

30N

50N

30N



model

model

model

1073

EUROPE: WINTER

< 70N

50N

YV Yoy N vy
SO e/
2 s
/
- (ppbv) o
° ) [ 4
@ o 7
s
o" ]
[ ] Ve
Ve v
3 , /e
s s
Vi s
7/ s
e v
Ve Vd
3 S
4 ’ /s
s s, Y
o Vs /
s 7
7 Vd
3 ’ /
’ 7/
Vs s
y v
K ’
/

s s aassal aud A sl
SERELEALLL L] L EEAALA AL Mun iy
s

’
b SO4 4
s
r (ppbv)
3 s /
< ’ s
L ’ s
s
, s
Y s
3 , , e
3
9
L

70N

50N

Wet Dep.
{mMole S/m?)

102 10! 10°
observations

10!

70N

50N




model

model

model

102

1073

10!

1072

1073

10!

EUROPE: SUMMER

10

' rrrrT— | Ty T
SOZ // s 70N
( b s s
- (ppbv) s
w7
,
[ J
//
"y’
- // // -3
./ /.f [ ]
>
y /
/ s
,
3 // s 3
/ / s
e
= / V4
s
s ’ 50N
4 7/ 4
L e
b/ e
/
i s
Ty TrT—YTY
s
SO4 // //1 7ON
- (ppbv) s
3 7/ s 3
Ve /7 b
s ’
, 8¢9 7
3 .7 g E
s 3
// :
s o ]
[ J
E // /,‘ E
Vs %
’ / 3
s Ve 4
o V4 V4 «
i R S0N
3 / 4 3
3 4 4
L - s
L~ ’
3 //
X aaanl aasad i aal
SERZRSALLL munonnaiii mum i maiil e b atil e
. WetD e/ ]
t ep.2 oe2® 70N
mMole S/m*) o & 3
3 q / 4
L / :
L ’
[ d ’o
s
@
1 L E
b /7 e 3
- s
s s
- ’
3 // // 3
3 ’ ’ 3
y ; 3
. ’
, s
[ 2/, SO0N
y s
S 3
, /
s ’
K //
FVaY A b asal A

102 10" 109 10!
observations



NORTH AMERICA: NO-H202LIM MODEL

—r—rrrrey —rrrrrmy My Ty
3 , e 3
1 [ Winter SO, 1 T Summer SO
10' k Y . 2
e (ppbv) " 1 F (ppbv)
X ° 1¢
4 S
0
100 L G 1F
3 s / N
v
g o ]
10 3 // // 3
3 % s 3
d s V4 -
. RY® ]
2 | S )
10 R 1
4 / 7/ 3
E ]
w4 7 r
1 4 <
-3 s
10 o 2 saaasal PR TYIY | aaaaasadd s aaasaul 2
s E s E T e e T
b s L b , o
. [ Winter SO4 2,1 T Summer SOy Ry Sne
10 F b W N ; b Ny
F (ppbv) S0 1 E (ppbv) N
F g it ]
: // Ve b // // o
9 s e 9 v/
O 7/ I Ve
. 10 F gt 1F 7 1
) ; 4 : ‘ ]
S [ > ] > ]
2 100k S iF . 4
3 s 9 3
3 Y 1t PO 3
5 / v L 9 7 v L
5 // // - 9 // // o
- 7 Vg 7 7
LU S ifF . 3
E y, il . . 5
L 107 :
-3 4
10 PV aaad 2 2 aasassl asasl aaasasaal i A K s aaasaal A s aaaaad A asaanal a8 8 aaasadl
s RPZN’ ]
. [Winter Wet Dep. - /.71 [Summer Wet Dep. ks
10" E (mMole S/m?) -1 F (mMole S/m?) AS
5 s . 1t Ik 3
[ ® )
100 3 / ,7e 4 F ’/ 3
= 3 O 7/ 1 E s 7 3
- Vd o V4 Vd P
o : [ ]
g : .// // : // // :
-1 4 4 s s
10 3 // d 1F // // 1
F Ry 1t S 3
o 7/ o 7/ -
2 4 // Ve b // Ve e
3 e // // -3 E // //
4 Y y 3 3 ’ ya 1-
E 7/ v E E /7 / E
b / 4 - o 7 P
k 4 4 F 4 o
10‘3 ././..m.l FEPIPTTY TS W T PG T UeTe I 4
-3 2 1 0 ) -3 2 -1 0 1
10 10 10 10 10 10 10 10 10 10
observations observations



EUROPE: NO-H202LIM MODEL

—v—vrrv TrrrTAT—T—rrTYITy TN
Winter SO, " Summer SO, s
101 3 d /3
(ppbv) (ppbv) 2
d / o
4 Vd
10 - Lo
[P] b Ve 3
g -1 /
10 - // // ;
3 ’ 7 8 3
d Vs 7, P
: S ]
— s/
107 r
L - / 3
b/ / o
K 4 <
-3 { sald d i al
10 A WETTY 2 2 a2 2 aa
. » YT rrr—Tr Ty —yrT;
- Ve o s -
. [ Winter SO4 2,71 T Summer SO4 e
s v
10°F  (epbv) o/ 1E by 3
: // // : / g // :
L s s L
10° oy ¢
3 g ’ 3 7 3
T s S @ L7 s
é i ;7 i e
-1 s s
10 3 // 3 // s 3
E o S 3 oS 3
9 Ve 4 d Ve rd p
-2 s 4 4
10° F /- Ak 3
< 7/ 7 : e /s 3
:/ / b / 4 o
{ e ‘ / -
10‘3 ././......l FPPTTRT AT TrITY B EPE T By ././.. and PYY Ry E el 2 2 s
T rTTT—Tvrvey vreny C.).w, yapz B SERdiAdie: BEASLALLL. EE AL »; .11
Wi Wet D "/ 4 ISummer Wet De 1
1 nter wet p. . > P.
10" F (mMole S/m?) >~ 1 F (mMole S/m?) s,
s - 1 s b
| X B el
0 s
_ 100 F S 1 R
"8 F // // it // s ]
S ; o 1t S ]
-1 [ 4 7 s ’
10 4 // // 1F // // 3
/s 7/ 1t / 4 ]
s Vi p L Y / d
// // - p // /// -«
=2 / s/
10 Er /// // 13 " // // 15
> s ] s 4 b
[ 4 < L/ / -
k /7 4 F 4 L
10_3 ././......x NPT BEPEP W T B Trren Bt 3 .z./......a > Aa sssand | — .....40 A anal A
-3 -2 -1 0 1 - - _
10 10 10 10 10 10 10 10 10 10

observations

observations



model

model

model

NORTH AMERICA: BL-AQCHEM MODEL

Ty [ P
[ ROZN" %
;[ Winter SO, .1 I Summer SO, Yl
10 2 s B ¢ s
f (ppbv) 1 F (ppbv) & 7 T
: 1} 7 ;
/
10° F &0 {F ]
3 < K 1¢ 3
f . 1t .9 :
Ve e V4
v s/
ot , i1 )
- v
10 3 // // I F // / 3
9 e 9 7 <
3 S il @0 :
g / 7/ 9 < 7 Ve L
o / Ve - o 7 v L
) y
10 r {1k /- O 1
< s 4 9 e 4 3
L - 7 S s 3
b 7 s L e/ / e
K / < K 4 E
-3 4 al ol al sl .// al al al al
10 MoA ASAAL Ad Acd A AAAL A A ASAL Aol d AL AlAL Ad A Adl AA A LLSa A S 8434 Ak 4
——rrrrey —r—rrrrmy e m s Tl i T B
- 7/ - - Y L
. [ Winter SOy 27,11 Summer SOy SN
100 F  (ppbv) /0 1F (epby) RO
; % 4 1¢ s 4 p
b 7 4 < o v e E
L / / P 3 L
0 4 /
100 LA 1F Lt 1
o 7 e 3 Vs P
] // 11 g ]
a | 4 11 %)
10 1 g 1 g
E // // !' 3 // /‘ .g
< ; ’ ° b I , ’ ]
r Ve 7 Y L o 7 Ve L
o 7/ 4 b / v L
-2 v / V] ’
v
10 E- // // 1: E- // / -g
L 7 4 iF - / ]
:/ e E b/ # <
K s o K /s
10"3 ./: aanal asal sl a2 aaaaul Al ././......1 al aasasnad o4 el A
[ B2 ]
1 [Winter Wet Dep. - /.71 [Summer Wet Dzep. T
100 F (mMole S/m?) "~ 1 F (mMole S/m?) AT
E 1t s b
: - o 7/
N v 1t oy
100 L7 4 F Rt -
3 E I ]
9 O . // h E // // ]
3 [ ’ / e ]
-1 [ d d 17 s //
10 3 // // 1 F // s 3
// // E 9 // /// E
: // // // 4 b
-2 s / s /
0>k 1 .-/ 3
e 1t .7 s
[ I b/ s ]
;/ // K 4
-3 7/ N \ 7
aaasanl A2 A ALSS A A AL A A A MMM A A A
10 T- 1 3 -2 1

10" 10°

observations

10° 107

10

100 10° 10

observations




EUROPE: BL-AQCHEM MODEL

- vy T
. e
] Winter SO, [ Summer SO, S
10 (ppr) E. (ppr) - /./ e 1§
i ° .7 ]
[ . ]
10° 3 , . 1
% : o ¢ 5
g [ Y ]
g -1 3 // V
10 3 // (& 9 O 3
3 /7 / ' p
3 7/ / r
[ ) b
o // // P
107 g Q
{ // 7 8 O -g
. . 3
w3 7/ o
K 7/ d
10—3 ././... o0 2 4 aaganl asad a2 s asasak Al
YT r——rrT—r | —rn
f ) - %
; [ Winter SOy 2 /,1 I Summer SOy4 S
100 F  (ppbv) /1 E (ppby) RS
3 s 4 1¢F s . ]
A S 11 it ]
0 4 z /
_ 10 F A 1F z :
QO 9 z 3 F v 3
= [ ° 11 7 ]
S -1 [ 7 N s °
10 F % 1F S 1
3 ’ s 1t ’ ’ 3
[ Ry ] R ]
s /s 4 Ve 7/ E
- /
10 2 :r /// /// 15 E- /// // 15
E % E ’
-l 7 b/ s
Vd
-3 [ // 2l j / ol al ol 3
10 o 2 2 2aazsal 2220 2 2aasal 2282 4 a2 oF 2 a aaay Al PrY YT 2 2 222l
g /1t ]
. [Winter Wet Dep. - /.71 [Summer Wet Dzep. e
10 e (mMole S/mz) ,” 1 F (mMole S/m“) . L7
; it P ]
3 L o 7 L
3 ® 3 7/ @ p
0 / /
T 10 :r Q// /7 } E- // 7/ qi
C P 9 s <
= F S 1t S :
Q 1 Ve Vs 11 Vs // ]
E -1 // // // s
10 E / s 1F s / 3
; ’ 4 1t s 4 3
F Ve d 7/ d : / é v g “1
9 Y 7 - Vs 7 -
- s/ 7
10 2 E‘ /// /// -| E- // // -g
L s 1t - s ]
-/ 7 4 b~ // )
K 4 o K p
10"3 .,./. [ EEPEPTY U T PP T S 3 ././......l 2. P | 1 — .1....10 N l......nl s
-3 2 -1 0 1 - - -
10 10 10 10 10 10 10 10 10 10
observations observations



NORTH AMERICA:

BL-HETCHEM MODEL

T

T

\BAAL)

—rrrever T Ty S— v
7 b I . p
1 Winter SO, ©® .1 [ Summer SO S
10" 4} 2 4
e (ppbv) N (ppbv) 203
g 1} ,° :
O 7/
10" F L 1F 1
) E p 1t 3
i > it ]
E [ o 11 S :
-1 s 7 -
10 3 .0 .’ 1 F .7 il 3
o 4 7 p o s 4 b
Ryt 1t S, ® ]
2 Ve e 7/ 7 p
- s/ 7 / 7
100 ¢ -/~
7 1¢.°7.7 3
f Ve o 4 e
-3 4 ol al Al 1 ! il aal Al ul
10 o 2 28820 Py AMAL s s 2 Py A 2 8 8aas 4 22228 A A AAANs PP
—r—rrrey T [T Trrrm—rrrrrmy——r—rerrrny v
4 / h P /
" Winter SO 2/,1 I  Summer SO S
101 4 ’ 4 ’
rd -3
e (ppbv) R (ppbv) ST
s ’ / 1¢ / ’ ]
b Ve / L 3 Ve v -
L 7/ - . Ve p
0 7 Vs
. 10" F , 1F ‘ 3
D] b 3 o 3
ko] r // 110 / h
g 1 4 11 . 4 )
-1 4 s
10 F S 1F A 3
3 ’ ’ it ’ 4 3
L 7 Ve [ ] p L Vi Ve o
- / / . - = / / -
-2 i // // 11 // // ]
o v - 1 . 3
E % it - 2 ]
S P 9 7 e
(/ // - f/ 4 L
10‘3 ././...n.n il Al al adasaml 2 ././. assal N a2 aasad aul
T ey S "
3 / - o r
 [Winter Wet Dep. _7/,“1 [Summer Wet Dzep. 1
10 F (mMole S/m?) o . 1F (mMole S/m?) Y
L ® % 1 ¢ s ]
3 o b V' r
[ ]l ® ]
7
10° o ! M ORI
—_— E ’ 1 ’ 20 E
O o 4 e b Vi Ve p
8 L @/’ L7 1t S, ]
e Cf ) § 11 / . ]
10 r S 1F A 3
4 < < v 3
F S 1t 0, ]
[ [ , ]
4 // // L P // Ve L
-2 V / ’ ,
- £ -/
F / L - 4 p
b 7 4 e / o
4 s/ kK 4 o
-3 .// d Las NPT BT ST 7
].O ) 3 -2 1

10

107

10" 10°

observations

10'

100 10°
observations

10

Uy



EUROPE: BL-HETCHEM MODEL

SERAAA AL B S B a Ak B aa sy e ez B aun o e st BEn R AALUL B R a il s i S L B S
{ . @’ [ ’
o' Winter SO, o -1 Summer SO, 2/,
5
E (ppbv) Fo 1E pv) o
b L b 7
3 b Ve
3 7
0 7®
10 3 4 4 F /®
— 3 4 /@ /
(5} 9 Vs 7/ d /
-8 [ // // [ /® 4 @
E -1 I ’ s s 7
10 F S 1F S 3
3 s / it 7 4 @ 3
b 7/ Ve - 4 / Ve -
N i e :
- V4
10 3 S % 3 S E
3 ’ s 3 s ’
L/ 4 1 F - 7 3
7 <4 b 7/ g
(/ 7/ 4 {/ 4 4
10"3 ././......l NPT BT P UrT T SN A/nlnnnu.l NPT EEDUPRTTTY BPEPT T Era
Aadi menanaa e e s e e me a7 B e e e R B Adiis
> . / - o /
- Winter SO /.1 T  Summer SO 4
101 4 s s 4 s ’
7
e (ppbv) 0 3 F (ppby) S
3 Ny 1t ~ 7
- o b 7
0 7 ’
—_ 10 3 1- 3 ) 7
9] E i F
"O - // L - //
g . .0 it ,
-1 4 s °
10 3 // // ... 1F : // -,
3 oS it oS
b Ve e /
) : /// // : : /// //
- 7 7
10 E S 1 F S
< / e b 4 s/ e
s 4 1 F - s
L e L/ e
kK // p 1 //
10_3 AT BN NPT BTG U T B ERTTVT EEPEPETTITY EEFENTTTITY EPEP T |
SEMBASL me et et e a i ey BN o -
! / 17
. (J
"Winter Wet Dep. 2/ 1 Summer Wet Dep.
10’ 2 o 2 ’
E (mMole S/m“) -~/ ,7 1 F (mMole S/m®) O L7 T
3 1t 4 .
3 - b V' -
3 - b 4 r
0 , . ®
5 0 F s % 1.
9 /s E - p
3 [ S 1t S :
Ve / 7 /
E 1 // // // //
10 F S 1E S 3
3 S 1t oS 3
: // // L : // // :
2 | S [ S ]
- 7/ '
10° ¥ 1k -/ 3
3 s 4 3 3 / 4 3
E s ] F - ’ ]
7 Ve - L/ e -
4 Ve o K 4 g
3 { aaaanl s saaasal A A4 ././.“-nl A adassal Al d Ak i

10‘ « ./.......n_ s .......1‘ N “ 1 L L PP B
10° 107 10" 10° 10 10° 100 10 10°

observations observations

10'



SURFACE SO 4+ SUMMER/WINTER RATIO

NORTH AMERICA

EUROPE

T N .
= OBSERVATIONS
SONF [?%% 08 08
: : g;%ii
09

30N

' 4340423942
; 41314127
(a;- --{9 30

haliC SRS

50N

30N

BASE MODEL

50N

30N

D

S 20181914

7o --"1f
~7 131,

1.6

13

110W

70N

50N

70N

50N

70N

50N



N 2
COLUMN SO, (mg SO4/m?)

Dec-Jan-Feb Mean

! 1 1 L 1 L | 1 1 1 1




(Column SO4)/2

Primary Emissions

Gas-phase
chemical production

B. L. heterogeneous
chemical production

Aqueous-phase
chemical production

Dry Deposition

Wet Deposition

Export

(Column SO4)/2

Primary Emissions

Gas-phase
chemical production

B. L. heterogeneous
chemical production

Aqueous-phase
chemical production

Dry Deposition

Wet Deposition

Export

Loss =

» Production

NORTH AMERICA
25N-50N, 60W-100W

I sumMMER
B WINTER

EUROPE

40N-60N, 10W-40E

[ SUMMER
B WiNTER

N — — - - -

I
|
I
I
|
I
I
|
Y
!
l
4

mg SO4/m2 or mg SO4/m2/day



Loss<— | » Production
| | |
(Column SO4)/2 | ' |
| I I
I I | *
Primary Emissions | | | ASIA
I | | 15N-45N, 105E-140E
| | I
Gas-phase l | | - SUMMER
chemical production | | |
I | , B WiNTER
B. L. heterogeneous I I !
chemical production | | I I I
I I ! I
Aqueous-phase I I I |
chemical production | | | |
[ I I I
Dry Deposition : : : :
| I I I
.. I I I
Wet Deposition | | |
I I I
I I I
Export I | I
I I |
4 4 6

mg SO4/m2 or mg SO4/m2/day



APPENDIX B



Transport-induced interannual variability of carbon monoxide
determined using a chemistry and transport model

Dale J. Allen!
Prasad Kasibhatla®
Anne M. Thompson?®
Richard B. Rood*
Bruce G. Doddridge!

Kenneth E. Pickering®
Robert D. Hudson!

Shian-Jiann Lin®

J. Geophys. Res., submitted, January 19, 1996

P
'Department of Meteorology, University of Maryland, College Park,
MD 20742

‘MCNC/Environmental Programs, Box 12889, Research Triangle Park,
NC 27709

’Laboratory for Atmospheres, NASA Goddard Space Flight Center and
Joint Center for Earth System Science, Department of Meteorology,
University of Maryland, College Park, MD 20742

‘Laboratory for Atmospheres, NASA Goddard Space Flight Center,
Greenbelt, MD 20771

*Joint Center for Earth System Science, Department of
Meteorology, University of Maryland, College Park, MD 20742

*Laboratory for Atmospheres, NASA Goddard Space Flight Center and
General Sciences Corp., a subsidiary of Science Applications
International Corp.



ABSTRACT

Transport-induced interannual variability of carbon monoxide
(CO) is studied during 1989-1993 using the Goddard chemistry and
transport model (GCTM) driven by assimilated data. Seasonal changes
in the latitudinal distribution of CO near the surface and at 500
hPa are captured by the model. The annual cycle of CO 1is
reasonably well simulated at sites of widely varying character.
Day to day fluctuations in CO due to synoptic waves are reproduced
accurately at remote north Atlantic locations. By fixing the
location and magnitude of chemical sources and sinks, the
importance of transport-induced variability is investigated at CO
monitoring sites. Transport-induced variability can explain the
decrease in CO at Mace Head, Ireland and St. David’s Head, Bermuda
between the summer of 1991 and the spring of 1993. Transport-
induced variability does not explain decreases in CO at southern
hemisphere locations. The model calculation explains 80-90% of
interannual variability in seasonal CO residuals at Mace Head, St.
David’s Head, and Key Biscayne, FL and at least 50% of variability
in detrended seasonal residuals at Ascension Island and Guam.
Upper tropospheric interannual variability in the GCTM during
October is less than 10%. Exceptions occur off the western coast
of South America where mixing ratios are sensitive to the strength
of an upper tropospheric high and just north of Madagascar where
concentrations are influenced by the strength of off shore flow

from Africa.
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1. INTRODUCTION

Carbon monoxide (CO) 1s an important trace gas for several
reasons. In urban areas, high concentrations of CO pollute the air
causing health problems. Globally, CO is important because its
oxidation by the hydroxyl radical (OH) can be a significant source
of tropospheric ozone [Crutzen, 1973; Chameides, 1978] and a major
sink (or source depending on odd nitrogen (NO,) concentrations) for
OH. Reaction with OH 1s the primary loss mechanism of many
atmospheric pollutants and gases. An increase in CO concentrations
globally could lead to a decrease in OH, resulting in a decrease 1in
the ability of the atmosphere to cleanse itself [Sze, 1977].

CO concentrations are being monitored at over 30 ground based
stations as part of the National Oceanic and Atmospheric
Administration (NOAA)/ClimateeMonitoring'and.Diégnostics Laboratory
(CMDL) Cooperative Air Sampling and Atmosphere Ocean Chemistry
Experiment (AEROCE) networks [Novelli et al., 1992, 1994a)]. CO has
been measured from space by the Measurement of Air Pollution from
Satellites (MAPS) [Reichle et al., 1986, 1990] instrument and will
be measured by the Measurements of Pollution In the Troposphere
(MOPITT ) [(Drummond, 1991] instrument as part of the Earth
Observing System (EOS). The distribution of CO has also been
studied using chemistry and transport models (CTMs) driven by
general circulation model (GCM) output [Pinto et al., 1983; Muller
and Brasseur, 1995]. The importance of convective transport to the

budget of CO has been studied over the central United States
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[Thompson et al., 1994]) and over Brazil [Pickering et al., 1992,
1995].

Measurements of CO at monitoring sites show that CO
concentrations vary seasonally and over longer time scales [eg.
Novelli et al., 1994a]. Seasonal differences are primarily due to
the annual cycle of CO sources and sinks. Interannual differences
are due to fluctuations and/or trends in CO emissions, sinks, and
chemistry, and to changes 1in atmospheric circulation or
temperature. Long term trends are also variable. Ground based CO
concentrations increased by 0.8 to 1.4% per year between 1981 and
1987 [Khalil and Rasmussen, 1988] but decreased by about 2% per
year between June 1990 and June 1993 ([Novelli et al., 1994b]. The
recent decrease in CO concentrations may be due to a reduction in
anthropogenic sources and biomass burning [Novelli et al., 1994b;
Khalil and Rasmussen, 1994].

Interannual variability in atmospheric circulation can also
lead to uncertainties in the estimation of trends. The importance
of transport to interannual variability is clear over synoptic time
periods and has been studied at Mace Head, Ireland [Doddridge et
al., 1994b]). However, the global importance of transport-induced
interannual variability could not be directly calculated until the
advent of CTMs driven by assimilated data. A six year (1988-1993)
CO calculation has been run using the Goddard CTM (GCTM) driven
by assimilated data from the Goddard Earth Observing System data
assimilation system (GEOS-1 DAS) (Schubert et al., 1993]. In this

calculation, by maintaining a fixed annual cycle of CO sources and



3

sinks, transport-induced CO variability is evaluated. Assimilated
data from GEOS-1 DAS is ideal for studying interannual variability
because the analysis system was held constant throughout the
assimilation ([Molod et al., 1996]. This ensures that model-
calculated interannual variability is not due to changes in the
analysis system. An understanding of transport-induced interannual
variability assists in the interpretation of the CMDL and AEROCE
CO monitoring networks.

The model is discussed in section 2. Model-calculated CO
distributions are compared to NOAA/CMDL measurements and MAPS data
in section 3. Transport-induced interannual variability in the
boundary layer and in the upper troposphere are investigated in

section 4. Results are summarized in section 5.
2. SOLUTION OF CONSTITUENT CONTINUITY EQUATION

The constituent continuity equation is solved using a 2° in
latitude by 2.5° in longitude (2° x 2.5° ) version of the GCTM
(Lin et al., 1994, Allen et al., 1996b]. This model has 20 sigma
levels, (about 13 in the troposphere) chosen to match the vertical
levels of the GEOS-1 atmospheric general circulation model (GEOS-1
AGCM) [Takacs et al., 1994].

Output from the multi-year GEOS-1 DAS is used to drive the CTM
in an off-line mode. The GEOS-1 DAS fields used to solve the
continuity equation for CO are the u and v components of the wind,

the surface pressure, the temperature at 0, 6, 12, and 18 Universal
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Time (UT), the three-hour averaged planetary boundary layer (PBL)
depth, and the six-hour averaged convective mass flux. A twelve
minute time step 1is used with fields interpolated to the

appropriate transport time before using.

2.1 The model

The mixing ratio change due to advection is solved using a
multi-dimensional and semi-Lagrangian extension of the piecewise
parabolic method (PPM) (Lin and Rood, 1995; Lin et al., 1994]). The
horizontal wind components poleward of 70° are filtered with a Fast
Fourier Transform before using to remove noise.

The algorithm used to calculate the mixing ratio change due to
turbulent mixing is described in Allen et al. [1996b]. Turbulent
mixing in the GCTM is confined to the PBL. During a CTM time
step, a fraction (a=0.125) of material in each model layer within
the PBL 1is mixed uniformly throughout the PBL.

The algorithm used to parameterize convective mixing 1s
described in the appendix. Briefly, GCTM convection is
parameterized using cloud mass flux information from the Relaxed
Arakawa-Schubert (RAS) algorithm [Moorthi and Suarez, 1992; Arakawa
and Schubert, 1974] that was used to parameterize convection 1in
the GEOS-1 AGCM. The mixing ratio change due to convection 1s
determined by solving iteratively a coupled linear system that
defines the mass flux due to convection across the edges of model

layers.
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2.2 Specification of CO sources and sinks

Four major global sources of CO have been identified: fossil
fuel combustion, biomass burning, oxidation o©f nonmethane
hydrocarbons (NMHCs), and oxidation of methane (CH,).

A global CO inventory 1is not yet available; therefore, CO
emission due to fossil fuel combustion is assumed to Dbe
proportional to anthropogenic NO, emissions. NO, emissions were
obtained from the 1985 Global Emissions Inventory Activity (GEIA)
data base [Benkovitz et al., 1996]. It 1s assumed that 7.9 moles of
CO are emitted per mole of NO, emitted from fossil-fuel combustion,
based on EPA estimates for the United States for 1985 [EPA, 1993].
The actual CO/NO, emission ratio is greater for mobile sources (eg.
automobiles) than for point sources (eg. heavy industry) [Buhr et
al., 1992]. Therefore, the assumption of a uniform emission ratio
is clearly a simplification. Measured values of the CO/NO, emission
factor are given in Lonneman et al. [1986], Pierson et al. [1990],
and Buhr et al. [1992]. Emissions by fossil fuel combustion are
assumed to be constant with time and are put into the lowest model
laver.

CO emission from biomass burning is calculated assuming a
CO/CO, volume ratio of 0.08 in biomass burning [Andreae et al.,
1988]. Estimated emission ratios for savanna fires 1n Brazil,
Ivory Coast, and Australia are between 0.053 and 0.113 [Hurst et
al., 1994; see also Crutzen and Andreae, 1990]. Carbon emissions
due to deforestation and savanna fires in tropical America, Africa,

and Asia were obtained on a 5° x 5° grid from Hao et al. [1990].
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Emissions are apportioned throughout the year using information on
climatology, <cultural practices, and vegetation types 1in 15
tropical regions [Richardson, 1994]). Hao et al. [1990] did not
include Australian emissions. In this calculation, Australian CO

emissions are assumed to be constant with time and equal to 8% of

total tropical emissions [(Hao et al., 1990].
NMHC oxidation also releases CO. Isoprene {CsHy) and
monoterpene (C,oH;,) emissions were obtained for each month from

the 1985 GEIA inventory. Oxidation of one mole of isoprene 1is
assumed to yield 2.5 moles of CO. Miyoshi et al. [1994] found
that oxidation of one mole of isoprene under NO,-rich (NO,-free)
conditions yields 2.75 (0.55) moles of CO and estimated the global
vield to be 1.5 moles of CO per mole of isoprene. Therefore, model-
calculated CO production from isoprene oxidation is overestimated
in regions such as the southern hemisphefe (SH) where NO,
concentrations are usually low. Oxidation of a mole of monoterpene
1s assumed to produce 0.8 moles of CO [R. Saylor, personal
communication, 1995].

The final source of CO considered is oxidation of methane
(CH,) . CO 1is an end product of
CH, + OH =5 —>— OTP —>——> CO (1),
where OTP = other products. The reaction rate constant (k) equals
2.65x10 %exp(-1800/T) where T is temperature [DeMore et al,, 1994].
CH, is assumed to be uniform in height and longitude, and 1its
latitudinal gradient is taken from Fig. 6 of Steele et al. [1987].

In order to focus on transport variability, the CH, mixing ratio



7
is held fixed throughout the simulation at the values shown in
Table 1. The OH distribution was obtained by monthly averaging and
interpolating the OH distribution from the Harvard CTM [Spivakovsky
et al., 1990]. Harvard OH is based on a calculation of OH as a
function of temperature, ultraviolet irradiance, water vapor (H,0),
CO, ozone (05}, CH,, and total odd nitrogen (see Spivakovsky et al.,
[1990] for their definition). The use of an equilibrium amount of
OH simplifies the calculation but does not allow for feedback
between CO and OH. The CO-OH feedback 1s not crucial for this
calculation since the effect of chemical perturbations on multi-
vear trends 1s not being calculated. Additionally, halocarbon-
based estimates of OH concentrations have shown little change from
1978 to 1994 [Prinn et al., 1995].

The geographical distributions of annually averaged CO
emissions due to fossil fuel combustion, NMHC oxidation, and
biomass burning are shown in Figs. la-c, respectively. Fossil fuel
combustion is the dominant northern hemisphere (NH) source and is
largest 1in highly populated regions. Biomass burning is an
important CO source in portions of South America and Africa. NMHC
oxidation is important in the tropics and in the summer hemisphere.
Model-calculated global CO sources are compared to estimates by
Logan et al. [1981], Seiler and Conrad (1987], and Pacyna and
Graedel (1995] in Table 2 [see also WMO, 1992]. The total global
CO source 1in the GCTM is lower than tabulated estimates because of
a lower estimate of the biomass burning and fossil fuel sources and

the neglect of CO emission from vegetation and oceans. The biomass
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burning source 1is considerably less than the tabulated estimates
because a relatively low CO/CO, emission factor was used, emissions
due to burning of agricultural wastes, fuel wood, and charcoal were
neglected, and because extratropical emissions were neglected. The
addition of emissions due to agricultural wastes, fuel wood, and

charcoal 1increase total tropical CO, emissions by about 20%

[Andreae, 1991]. The neglect of CO emission due to extratropical
burning may also be important. An analysis of Arctic Boundary
Layer Expedition (ABLE 3A) chemical measurements and wind

trajectories showed that summertime boreal fires are a significant
high latitude source of CO [Wofsy et al., 1992; Shipham et al.,
1992; Harriss et al., 1992].
CO is destroyed through the reaction

CO + OH --> products (2),
where k equals 1.5x107*(1+0.6xP) and P is preésure in atmospheres
[DeMore et al., 1994]. CO loss due to consumption by biological
processes 1s not included. Its magnitude is believed to be less
than 10% of the magnitude of loss due to reaction with OH [Logan et

al., 1981]

3. MODEL CLIMATOLOGY

The CO calculation was initialized on January 1, 1988 with CO
set to zero at all grid points. The calculation was run through
October 31, 1993 with CO amounts from each source saved separately

every six hours.



3.1 Global distribution

The latitudinal distributions of model-calculated and measured
CO are compared for the December-February, March-May, June-August,
and September-November seasons in Figs. 2a-d, respectively. The
"CMDL" average for each season was constructed by averaging July
1988 to June 1993 NOAA/CMDL measurements with unique time stamps
taken during each season. Measurements flagged as being non-
background are excluded from the average. The sites used 1in the
latitudinal averages are listed in Table 3. Only NOAA/CMDL sites
at which CO data has been released through an anonymous ftp server
to the general science community are used in the average. The
"Model CMDL" average was calculated using surface layer (the lowest
layer of the model, =12 hPa deep) output at the grid wvolume
containing the measurement site. The "Model (all)" average was
calculated using zonally averaged surface layer model output for
the appropriate season. The model was sampled as close to the
measurement time as possible for both the "Model (all)" and "Model
CMDl" averages.

The main features of the distribution of CO are reproduced by
the model. Lowest concentrations are found in the SH during
December-February and highest concentrations are found in the
northern hemisphere (NH) during the same months. The slopes of the
distributions are also similar. During December -May, measured and
model-calculated CO amounts increase rapidly between 60°S and
30°N. The increase 1s smaller during June-August when biomass

burning causes a peak between 30°S and the equator. The large
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peak in NOAA/CMDL CO at 36°N is caused by extremely polluted air in
the Qinghai Province of China. Model-calculated concentrations at
this location are at least 50 ppbv less. During most seasons,
model-calculated concentrations are 5-25% higher than CMDL
concentrations in the SH and about the same percentage lower at
mid and high latitudes of the NH. The low bias in the NH 1is
believed to be due to the neglect of CO emission by boreal fires.
The high bias in the SH is primarily due to an overestimation of
the SH CO source from NMHC oxidation. CO concentrations
constructed using model output at CMDL stations are lower than CO
concentrations calculated by zonally averaging model output because
most NOAA/CMDL sites are placed at marine locations.

The mean 1989-1993 latitudinal distributions of 500 hPa CO
during April and October are compared to April 9-19, 1994 and
September 30-October 11, 1994 MAPS measurementé in Figs. 3a-b. The
MAPS instrument is designed to measure CO concentrations 1in the
middle troposphere and values from it are Dbelieved to be most
representative of 490 hPa [V. Connors, personal communication,
1995]. Model-calculated concentrations are within a standard
deviation of measured concentrations at nearly all latitudes during
both seasons although significant differences do exist between the
shapes of the distributions. During April, measured CO
concentrations are nearly constant between 60°S and 30°S while
model-calculated concentrations increase gradually from 60°S to
309S. In addition, the rapid increase in CO with latitude between

10°S and 10°N is underestimated by the model. Larger differences
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are seen during October. Model-calculated CO concentrations
between 10°S and 25°S are about 30 ppbv 1less than mean <O
concentrations from MAPS. Model-calculated concentrations are less
because biomass burning was underestimated especially in Asia,
and because the moist convective algorithm in the GCTM tends to
move too much material from the PBL to the upper troposphere
directly leading to an underestimation of concentrations in the
mid-troposphere [Allen et al., 1996b; Allen, 1996a]. Concentrations
at high northern latitudes are also underestimated presumably due
to the neglect of CO emission by boreal fires.

The mean model-calculated (1989-1993) distributions of CO at
500 hPa during April and October are compared in Figs. 4a-b. During
April, model-calculated concentrations exceed 105 ppbv north of 40°
to 50°N and also over Colombia and the Gulf of Guinea. During
October, model-calculated concentrations are iargest in a region
extending from northern South America to western and southern
Africa. The model calculation did not reproduce a region of high
CO concentrations seen by MAPS during October 1994 near Indonesia
[V. Connors, personal communication, 1995].

The contributions of fossil fuel combustion, oxidation of
NMHCs, biomass burning, and oxidation of CH, to the mean 500 hPa
model-calculated CO distribution during October are shown in Figs.
5a-d, respectively. The contribution from methane oxidation is
nearly uniform with latitude. CO amounts from this source range
from 29 ppbv at high southern latitudes to 33 ppbv at equatorial

locations. CO from fossil fuel combustion has a strong latitudinal
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gradient in the NH. CO amounts from fossil fuel combustion are
greater than 35 ppbv at high northern latitudes, fall off rapidly
through the mid-latitudes, and are as small as 5 ppbv in the SH.
Large amounts of CO from biomass burning [see Watson et al., 1990]
and NMHC oxidation are evident in the tropics over continents.
Biomass burning during August and September is much larger in the
SH than in the NH. By October, model-calculated CO mixing ratios
due to biomass burning exceed 60 ppbv in southern Africa but are
less than 10 ppbv in most of the NH. NMHC oxidation contributes
20-30 ppbv over most of the globe but more than 70 ppbv in
northwestern South America.

The mean model-calculated CO distribution for October 1989-
1993 in the boundary layer (assumed to be the lowest 3 layers of
the model; approximately 90 hPa in depth) is shown in Fig. 6a.
Boundary layer concentrations exceed 500 ppbv in portions of South
America and Africa where biomass burning is extensive. Monthly
average measured concentrations in a region of burning near Cuiabég,
Brazil exceeded 650 ppbv [Kirchhoff et al., 1989]. Another feature
of the boundary layer distribution i1s tongues of elevated CO
extending eastward from source regions in Europe and westward from
source regions in equatorial South America and Africa.

Locations where interannual CO variability is large were
identified by calcuiating standard deviations of residuals from the
1589-1993 October means. The relative importance of interannual
variability is shown in Fig. 6b which shows the normalized standard

deviations as a function of longitude and latitude. Model -
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calculated interannual variability is less than 3% at locations
where CO 1s nearly uniform but more than 12% at locations such as
the eastern north Atlantic, the southern tip of South Africa, and
western India, where CO gradients are large. Interannual
variability 1in the eastern north Atlantic (Mace Head, Ireland) was

studied as part of AEROCE.

3.2 Atmospheric variability

As part of AEROCE, CO was measured almost continuously between
September 1992 and September 1993 at Heimaey, Iceland (63°N, 20°W)
and between August 1991 and January 1993 at Mace Head, Ireland
(53° N, 10° W). The experimental technique and sampling protocol
are discussed in Doddridge et al. [1994a, 1994b]. Descriptions of
the Mace Head and Heimaey measurement sites are given in Jennings
et al. [1991, 1993] and Prospero et al. [1995], respectively.
Surface layer model output is compared to daily average AEROCE
measurements 1in Figs. 7a-b. A seasonal cycle is evident at both
locations and 1s captured by the model although model-calculated
summertime concentrations are lower than measurements at Heimaey.
The most striking feature of the CO distributions at Mace Head and
Heimaey are the abrupt increases that occur when polluted European
ailr reaches these sites [Jennings et al., 1993, 1995; Doddridge et
al., 1994b]. The amplitude, length, and timing of most of these
events 1s captured by the model with only a few spring events
missed. A major strength of the GCTM is its ability to resolve the

transport of pollutants to island sites in the northern Atlantic
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[eg. Allen et al., 1996b].

Fall (September-November) CO measurements are available at
Mace Head, Ireland during 1991 and 1992. Statistics from the AEROCE
measurements [Doddridge et al., 1994b] and from the model for the
fall seasons are shown in Table 4. Flow from Europe was more COmMMmoOn
during 1991 resulting 1in larger concentrations and a larger
standard deviation. Model-calculated means were slightly lower
than observed means, but 1interannual variability in mean CO
concentrations and in CO variability was well captured by the

model. Measured (model-calculated) 1991 means exceed 1992 means by

42 (34) ppbv. Standard deviations calculated from 1991
measurements and 1991 model output exceed 1992 standard
deviations by a factor of 3.5. Interannual variability is

especially large at Mace Head due to its proximity to large CO
sources in Europe. The ability of the GCTM to éimulate variability
at other locations where measurements are less frequent and CO
gradients are smaller is examined by comparing model output with

NOAA/CMDL measurements.

3.3 Annual cycle at NOAA sites

Because of the approximations used in specifying chemical
sources and sinks, the investigation of interannual variability
will be limited to the marine and coastal locations shown in Fig.
8. Longitudes and latitudes of these sites are listed in Table 3.
Model-calculated and observed monthly average means at these sites

are compared in Figs. 9a-k. Model-calculated means were obtained
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by averaging daytime surface layer model output for each day of the
month. Measured means were calculated by Novelli et al. [1991,
1994a] using a curve fitting technique. Measured means are likely
to be biased low, since measurements are usually taken during
periods when "background " air is expected. Measurements were
taken 2-4 times per month, and the date of the first measurement at
each site is listed in Table 3.

The observed annual cycle of CO 1s reproduced reasonably well
at all locations except Christmas Island where it is completely
missed. Measured CO concentrations at Christmas Island show a
strong peak during the late NH winter and a much smaller peak
during the late NH summer. Model-calculated CO concentrations show
a strong peak during the late NH summer and fall. The amplitude of
the annual cycle is overestimated at Ascension Island possibly due
to an overestimation of CO emission in southern Africa due to
savanna fires ([Scholes et al., 1995]. The seasonal cycle is also
overestimated at Cape Grim and underestimated at Seychelles. In
general, model-calculated concentrations are too low in the NH and

too high in the SH.

4. INTERANNUAL VARIABILITY

4.1 NOAA/CMDL sites
The importance of transport-induced interannual variability at
NOAA/CMDL sites 1s assessed by evaluating how well a model without

interannual chemical variability and interannual variability in CO



16
emissions reproduces interannual fluctuations 1in seasonal CO
concentrations.

Since the lifetime of CO is long compared to the lifetime of
synoptic systems, CO concentrations away from source regions are
determined to a large extent by atmospheric flow patterns. Flow
patterns are variable due to barotropic and baroclinic
instabilities. Mean CO concentrations vary from year to year as
the location, strength, and timing of disturbances caused by
instabilities change. Causes of 1interannual variability 1in
atmospheric flow patterns are varied. Doddridge et al. [1994Db]
speculate that interannual variations in flow to Mace Head during
the fall are caused by changes in external forcing from the
tropics. Interannual variability in mean NOAA/CMDL CO
concentrations may be especially large because measurements are
taken infrequently, allowing fluctuatiops in CO concentrations due
to synoptic systems to remain.

Seasonal means at NOAA/CMDL stations are constructed by
averaging measurements with unique sampling times from each season.
Seasonal means are calculated because too few measurements exist to
accurately determine monthly means. Measurements flagged by NOAA
as non-background or erroneous are not included in the average. In
order to lessen possible sampling biases, measurements taken before
the beginning of the first full season and after the end of the
last full season are not included. For example, although
measurements at Barrow, AK began July 1988 and ended June 1993,

seasonal means were calculated using output between September 1988
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and May 1993. Seasonal means are available for as few as 7 seasons
at Key Biscayne, FL to as many as 19 seasons at Barrow, AK and
American Samoa. The number of complete seasons at each site (N) 1is
listed in Table 5. 1In order to lessen sampling biases, seasonal
means from the model are calculated by sampling the surface layer
of the model at the same time the observations were taken.

The average seasonal means from measurements and model output
are calculated by averaging seasonal means from each year.
Residuals from the average seasonal mean are calculated by
subtracting the average seasonal mean from the actual seasonal
mean. A quadratic function is then fitted to each residual time
series in order to determine the change in residuals during the N
seasons. Annually averaged model-calculated and observation-
calculated changes in CO residuals at each site are listed in Table
5. Residuals calculated from NOAA/CMDL measurements decrease at all
locations but Key Biscayne. Model and observation-calculated 1991-
1993 changes at Mace Head, Ireland; St. David’s Head, Bermuda; and
Key Biscayne, FL are nearly the same suggesting that transport
alone 1s responsible for the summer 1991 to spring 1993 decrease in
CO at these locations. In addition, model and observation-
calculated residual time series at these three sites are highly
correlated with r'=0.9 at each location (see Table 5). Model -~
calculated CO concentrations also decrease at most SH locations;
however, the magnitudes of decreases are much less than the
magnitudes of observation-calculated decreases (see Table 5).

Transport-induced variability is responsible for only a small
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portion (or quite possibly none) of SH decreases. Changes 1in
model-calculated CO concentrations at NOAA/CMDL sites are not
caused by <changes in the total amount of CO in the model. The
global surface layer CO burden in the model varies by less than 1%
per year between 1989 and 1993. Global trends in CO during the
late 1980s and early 1990s are discussed in Novelli et al. [1994Db]
and Khalil and Rasmussen [1994].

In order to focus on interannual variability, the linear and
quadratic trends were removed from each time series. This process
removes CO variability due to "long-term trends" (i.e. changes 1in
CO over the entire 7-19 season period) 1in sources, sinks and
transport. Time series of detrended CO residuals at the selected
NOAA/CMDL sites are shown in Figs. 10a-k. The correlation
coefficient between model-calculated and NOAA/CMDL-calculated
residuals (r), the percent of variance 1in NOAA/CMDL residuals
explained by the model (r?), and the significance of correlations
at the 0.05 significance level are shown in Table 5.

The explained variance is also an estimate of the fraction of
interannual variability that can be explained by transport. The
estimate 1s accurate 1in locations where the GCTM is able to
simulate day to day fluctuations in CO accurately but is likely to
be low in regions where atmospheric variability is not captured.
Transport-induced interannual variability explains more than 80% of
total interannual variability at Mace Head, St. David’s Head, and
Key Biscayne. The model-calculation explains about 50% of

variability in detrended NOAA/CMDL residuals at Ascension Island.
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The importance of transport-induced variability at Ascension Island
is somewhat surprising given the importance of biomass burning to
its distribution. However, the amount of CO reaching Ascension
Island is dependent on both the strength and location of biomass
burning and atmospheric transport [Fishman et al., 1991; Novelli
et al., 1992].

Residuals calculated from model output and measurements are
negatively correlated at Christmas Island and uncorrelated at
American Samoa, and Cape Kumukahi. The poor agreements are not
necessarily evidence that interannual chemical variability
dominates interannual transport variability at these locations.
They may also indicate that meteorological variability is poorly
captured at these locations.

Model-calculated and observation-calculated residuals at Guam
and Cape Grim are correlated although the égreement 1s partly
fortuitous since the magnitudes of model-calculated residuals are
usually substantially smaller than the magnitudes of observation-
calculated residuals. Transport appears to be responsible for
about 30% of interannual variability at Seychelles although the

correlation 1s not significant at the 0.05 significance level.

4.2 Upper tropospheric variability in GCTM

Upper tropospheric CO measurements are Loo scarce to evaluate
interannual variability; however, processes responsible for upper
tropospheric interannual variability in the GCTM can be identified.

The mean model-calculated CO distribution for October at 300
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hPa 1s shown in Fig. 1lla. The CO distribution has the most
structure in the tropics where a combination of biomass burning,
NMHC oxidation, and convection creates a CO peak over equatorial
South America and Africa. Strong upper tropospheric winds advect a
substantial portion of this CO as far east as Australia. The
normalized standard deviation of 1989-1993 Octobers is shown in
Fig. 11b.

Transport-induced interannual variability during October is
largest in areas where the gradient of the CO distribution is
largest. In these areas, small interannual changes in atmospheric
circulation can lead to substantial changes in CO. Interannual
variability at 300 hPa rarely exceeds 4% in the NH where
horizontal CO gradients are small.

Upper tropospheric variability during October exceeds 10% to
the north and east of Madagascar (15°S, 50°E)‘and off the western
coast of South America (10°S, 80°W) [see Fig. 1lb]. Most CO in the
upper troposphere near Madagascar was originally emitted in eastern
Africa and subsequently lofted by convection (Fig. 12c). Upper
tropospheric 1993 CO concentrations to the northeast of Madagascar
exceed 1990 concentrations by over 30 ppbv (Fig. 12d). The cause is
strong off shore flow during 1993 (Fig. 12b) and weak off shore
flow during 1990 (Fig. 12a). The situation i1s a bit more
complicated off the western coast of South America. CO emissions
are largest 1in eastern Brazil (Fig. 13c), but variability is
largest in the eastern Pacific (Fig. 11b) where 1990 CO

concentrations exceed 1993 amounts by up to 50 ppbv (Fig. 134).
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A strong anti-cyclone is located over South America during 1990
(Fig. 13a). Convectively lofted CO is transported around the high
and into the Pacific where some CO is transported to the west and
some to the south. The amount of CO incorporated into the upper
tropospheric anticyclone 1is likely to be overestimated because
tropical forcing is overestimated by the RAS convective algorithm
[Schubert et al., 1995; Molod et al., 1996]. The strength of the
southward component of the aﬁti—cyclonic circulation is especially
variable from year to year. CO concentrations off the western coast
of South America are larger during 1990 because the anti-cyclonic
circulation is much stronger in 1990 than 1993 (compare Figs. lla
and b). Direct transport of CO to the Atlantic is larger in 1993

when the upper tropospheric high is weaker.
5. SUMMARY

Transport-induced interannual variability of CO must be
considered when calculating long-term trends of CO using data from
only a few years and when evaluating the representativeness of
satellite measurements taken over a few days. The fraction of
interannual CO variability attributable to transport was estimated
by comparing output from a GCTM calculation with a fixed annual
cycle of sources and sinks to NOAA/CMDL measurements.

The latitudinal distribution of CO obtained by averaging model
output at NOAA/CMDL sites was realistic during all seasons,

although SH concentrations were typically 5-15 ppbv too high and NH
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concentrations were 10-40 ppbv too low. Mean model-calculated CO
concentrations at 500 hPa are within one standard deviation of 1994
MAPS measurements at nearly all latitudes during both April and
October, although the magnitude of a SH peak due to biomass
burning is underestimated.

Day to day fluctuations in trace species are well simulated
by the GCTM at north Atlantic sites and these three sites are ideal
for estimating the importance of transport to interannual
variability. Transport-induced interannual variability explains
80-90% of total interannual variability at these sites. The
estimation is less reliable at sites where day-to-day variations
are not as well simulated; however, it appears that transport 1is
responsible for more than 50% of interannual CO variability at Guam
and Ascension Island. Transport-induced variability can explain a
decrease in CO during 1991-1993 at Mace Head, Ireland and Bermuda
and an increase 1in CO at Key Biscayne. Transport-induced
variability 1s responsible for little (or possibly none) of the
observed decrease in CO at SH locations.

Monthly mean model-calculated CO concentrations are most
variable in regions where emissions vary strongly with location.
October upper tropospheric variability is largest off the western
coast of South America and off the eastern coast of Africa. The
variability off the South American coast was traced to the strength
of an upper tropospheric high while the variability off of Africa
was traced tc the strength of upper tropospheric off shore flow

from Africa.
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APPENDIX

Cumulus convection in the GCTM is parameterized using cumulus
mass flux output from the RAS algorithm [Moorthi and Suarez, 1992;
Arakawa and Schubert, 1974] used to parameterize convection in the
GEOS-1 AGCM.

The conservation of mass principle is invoked in order to
calculate the mixing ratio change due to convection. Consider layer
k in Fig. A-1l. From mass conservation it follows that the upward
flux due to convection (C,) is balanced by compensating large-scale
subsidence (Sy). This circulation moves AtC,q. kgs of tracer upward
and out of layer k and AtC,q, ; kgs of tracer downward and into layer
k [At 1s the dynamic time step, g. is the mixing ratio of tracer
within the cloud (assumed to be constant), and q, is the mixing
ratio of tracer in layer k]. Similar arguments can be applied to
calculate the mass flux at the lower edge of the layer. The mass

of tracer in layer k after At is given by

qukrnl: qukn + At{c}wl[qcn*l _ qkm»l] _ Ck[qcnd_qk_lnafl]}’ (Al)

where M, = 100Ap,/g is the background air mass per unit area
(kg/m*), Ap, is the depth of model layer k in hPa, and g is the
gravitational acceleration in m/s?’. At the fixed cloud base (the

top of layer NLAY-1), k=c and equation Al reduces to

Mv-q“noi: M~q(-““ Atcc[qcnvl _ qc-ln-l] . (AZ)
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The equations for each model layer from cloud base to cloud
top form a coupled linear system that is similar to a discretized
flux form transport equation for a time implicit differencing
scheme. In the limit At --> 0 and Ap --> 0 (i.e., the continuous

case), the cloud transport equation becomes

Jdg =g C(a.-q) (A3)

9
ot 100 dp
This equation 1is analogous to Schneider and Lindzen’s equation
[Schneider and Lindzen, 1976] for computing the "apparent momentum
source" due to cloud motions. The equations for each layer (Al)
form a coupled linear system that is solved iteratively using a
time step of At/ns, where ns is the number of iterations. The
equations can be written in a discretized form as

Mg "= Mg+ AL {C,,, (@™ - ] - Cela ™t ™-aq ")) (Ad),
ns

where the intermediate cloud mixing ratio q."*''/™ 1s obtained by

+1

directly solving A2 after replacing q.,"' with q.;".

q. s = (Mg "+AtC.g..,"/ns ]/ (M.+AtC./ns) (A5)

Equations A4 and AS are integrated from the cloud base to the
cloud top ns times in order to obtain a more accurate solution. In

practice, ns=3 which results in a cumulus transport step of 4

minutes for At = 12 minutes.
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Figure captions

1. Annually averaged model-calculated CO source (Tg / vr) due to
(a) fossil fuel combustion, (b) oxidation of NMHCs, and (c)
biomass burning. Shaded region shows where source is greater than
0.5 Tg / yr. Hatched region shows where source is greater than 2
Tg / yr.

solid lines) and model output in lowest sigma layer [=994 hPa]
dashed lines) for (a) December-February, (b) March-May, (c) June-
August, and (d) September-November.

2. CO (ppbv) as a function of latitude from NOAA/CMDL measurements
(
(

3. MAPS CO [Shaded range shows mean (solid line) * 16] and 500 hPa
model-calculated CO (dashed line) as a function of latitude for a)
April and b) October. MAPS data are composite picture for April 9-
19, 1994 and September 30-October 11, 1994, respectively. Model
fields are 1989-1993 means for April and October. Units are ppbv.

4. Mean CO (ppbv) as a function of longitude and latitude from
model at 500 hPa for (a) April 1989-1993 and for (b) October 1989-
1993.

5. Mean 1989-1993 model CO at 500 hPa (ppbv) during October due to
(a) fossil fuel combustion, {b) oxidation of NMHCs, (c) biomass
burning, and (d) oxidation of CH,. Contour intervals of 5 ppbv for
a, 10 ppbv for b-c, and 1 ppbv for d.

6. a) Mean 1989-1993 model CO (ppbv) for October in boundary layer.
Contour 1interval of 10 ppbv for [CO] less than 100 ppbv, 20 ppbv
for [CO] between 100 and 200 ppbv, and 50 ppbv for [CO] greater
than 200 ppbv. b) Normalized CO standard deviation from model for
October (i.e. the standard deviation of 1989-1993 October residuals
divided by the October mean). Contour interval of 3 percent.

7. Model grid point containing AEROCE and NOAA/CMDL measuring sites
discussed in this paper. Note: Locations are approximate. See
Table 3 for actual latitudes and longitudes of sites.

8. CO timeseries (ppbv) for a) September 1992 through September
1993 at Heimaey, Iceland and for b) August 1991 through December
1993 at Mace Head, Ireland. Measurements are shown with asterisks.
Model-calculated surface layer CO at nearest grid point is shown
with dashed lines.

9. Monthly averaged CO (ppbv) for 1989-1993 at a) Barrow, Alaska;
b) Mace Head, Ireland c) St. David's Head, Bermuda; d) Key
Biscayne, FL; e) Cape Kumukahi, HW; f) Guam, Mariana Islands; g)
Christmas Island; h) Mahe Island, Seychelles; i) Ascension Island;
J) Tutuila, American Samoa; and k) Cape Grim, Tasmania. CMDL
measurements are shown with solid lines. Model-calculated surface
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layer CO at nearest grid point is shown with dashed lines.

10. Interannual fluctuations in monthly mean CO (ppbv) after
removing mean and trend over measurement period at a) Barrow,
Alaska; b) Mace Head, Ireland; c) St. David’s Head, Bermuda; d) Key
Biscayne, FL; e) Cape Kumukahi, HW; f) Guam, Mariana Islands; g)
Christmas Island; h) Mahe Island, Seychelles; i) Ascension Island;
J) Tutuila, American Samoa; and k) Cape Grim, Tasmania. Residual
calculated from data (model output) is shown with a solid (dashed)
line.

11. a) Mean 1989-1993 model CO (ppbv) for October at 300 hPa,
Contour interval of 10 ppbv. b) Normalized CO standard deviation
from model for October (i.e. the standard deviation of 1989-1993
October residuals divided by the October mean). Contour interval of
3 percent.

12. For October in southern Africa: a) 300 hPa wind vectors (m/s)
for 1990, b) 300 hPa wind vectors (m/s) for 1993, c) CO source
(Tgs) due to fossil fuel combustion, oxidation of NMHC's, and
biomass burning, and d) Difference (ppbv) between 1993 and 1990 CO
at 300 hPa. Contour interval of 0.25 Tgs for c and 10 ppbv for d.

13. For October in northern South America: a) 300 hPa wind vectors
(m/s} for 1990, b) 300 hPa wind vectors (m/s) for 1993, c) CO
source (Tgs) due to fossil fuel combustion, oxidation of NMHC's,
and biomass burning, and d) Difference (ppbv) between 1990 and 1993
CO at 300 hPa. Contour interval of 0.25 Tgs for c and 10 ppbv for
d.

Al. Schematic of algorithm used to calculate mixing by moist
convective processes in column with NLAY layers. Mass flux at edge
of layers (C,), mixing ratio at layer centers (q,), mass flux due
to subsidence (S5,), and mass flux at cloud base (C.) are shown.
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Table 1

Latitude CH, Mixing Ratio’
90°N 1.90 ppbv
80°N 1.89 ppbv
70°N 1.88 ppbv
60°N 1.87 ppbv
50°N 1.87 ppbv
40°N 1.86 ppbv
30°N 1.85 ppbv
20°N 1.83 ppbv
10°N 1.79 ppbv

0°N 1.78 ppbv
10°s 1.76 ppbv
20°s8 1.75 ppbv
30°8 1.75 ppbv
90°S to 30°S 1.74 ppbv

* CH, 1s assumed to be constant in height and longitude.
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Table 2

Annual CO emissions in Tg / yr

GCT™! LPWM? Sc? PG*

Technological sources 329 450 640200 440150
(Fossil fuel combustion)

Natural NMHC oxidation 618 560 900+500 800+400
Biomass burning 370 655 1000x600 700200
Methane oxidation 722 810 600+300 600+200
Ocean® - 40 100+ 90 50+40
Vegetation -—- 130 75425 75+25
Oxidation df -——- 90 --- -—-
anthropogenic HCs
Total 2039 2735 3315+1700 2700+1000

'Model-calculated source for model year 1989

‘Estimate by Logan et al. [1981]
‘Estimate by Seiler and Conrad [1987]

‘Estimate by Pacyna and Graedel [1995]

*Oceanic emission estimated to be 13 Tg/yr with an uncertainty of

a factor of two by Bates et al. [1995].
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Table 3

CO monitoring stations discussed in paper

Site Lat Lon Ht lst CMDL obs
Barrow, Alaska’ 71°N 157°W  1llm 07/25/88
Heimaey, Iceland? 63°N 20°W 100m 11/16/91
Mace Head, Ireland’® S3°N 10°W 25m 06/03/91
Niwot Ridge, Colorado’ 40°N 106°W 3475m 12/14/88
Tae-ahn Peninsula’ 379N 126°E 20m 01/05/91
Qinghai Province’ 36°N 101°E 3810m 08/05/90
St. David’'s Head, Bermuda’ 32°N 65°W 30m 06/11/91
Key Biscayne, Florida’ 26°N 80°W 3m 08/09/91
Cape Kumukahi, Hawaii® 20°N 155°W 3m 07/04/89
Guam, Mariana Islands’ 13°N 145°E 2m 10/10/89
Christmas Island’ 02°N 157°W 3m 12/25/89
Mahe Island, Seychelles’ 04°S 55°E 3m 11/16/90
Ascension Island’ 08°S 14°W 54m 02/02/89
Tutuila, American Samoa’ 14°5 171°W 42m 09/23/88
Cape Grim, Tasmania’ 41°S 145°E 94m 06/14/91

‘Sampling site included in latitudinal average (Fig. 2)

Mace Head: AEROCE data are used for Fig. 7. NOAA/CMDL data are
used for remainder of study.

%Heimaey: AEROCE data are used for Fig. 7, although NOAA/CMDL
measurements began November 16, 1991.
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Table 4

Mace Head, Ireland CO for fall 1991 and fall 1992

1991 1992

Measurements Model Measurements Model
Minimum 65 78 68 71
25th Percentile 118 99 101 93
Median 127 114 111 103
75th Percentile 157 145 122 112
Maximum 447 474 193 193
Mean 156 140 114 106

tone sigma 64 71 18 21
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Table 5

Residual information

Trend

N r r? .05 CMDL Model r’
Barrow, AK 19 .59 .35 wvyes -3.3 +0.1 .27
Macehead, Ireland 8 .90 .81 no -2.8 -3.1 .86
Bermuda 8 .92 .85 no -3.5 -4.2 .91
Key Biscayne, FL 7 .97 .94 no +6.2 +4.6 .91
Cape Kumukahi, HW 15 -.01 XX no -3.5 +0.3 .02
Guam, Mariana Isl. 14 .83 .68 vyes -4.1 -0.7 .66
Christmas Island 14 -.50 XX no -0.8 -1.6 -.49
Mahe Isl., Seychelles 10 .57 .32 no -2.7 -0.5 .66
Ascension Island 17 .72 .52 vyes -2.4 +0.4 .48
American Samoa 19 -.11 XX no -3.7 -0.7 .25
Cape Grim 8 .55 .31 no -6.7 -0.4 .03

N: Seasons where measurements are available throughout
19: fall 1988 to spring 1993
15: fall 1989 to spring 1993
11: fall 1990 to spring 1993
7: fall 1991 to spring 1993

r (r’) Linear correlation coefficient between model-calculated
and measured time series after (before) removing linear and
quadratic trends

re: Variance explained by linear correlation
.05: Significance calculated using t test with N-8 degrees of
freedom

Trend: Mean percent change per year in residuals calculated from
NOAA/CMDL measurements (CMDL) and model output (Model). Percent
change 1is calculated using fields from N seasons.
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ABSTRACT

An intercomparison of global atmospheric transport models using short-lived tracers
was held in December 1993 to evaluate the ability of these models to capture the contri-
butions of convective and synoptic processes to global-scale transport. Twenty models
participated including nine established three-dimensional (3-D) models with resolved
synoptic-scale meteorology, one established 3-D model with monthly averaged transport,
six 3-D synoptic models under development, and four 2-D models. Primary focus was on
simulation of ???Rn, a gaseous tracer emitted by soils and removed by radioactive decay
with an e-folding lifetime of 5.5 days. Additional simulations were conducted for air-
craft and lightning tracers released in the upper troposphere, and for aerosol 210py, pro-
duced in the atmosphere by decay of 222Rn (only four models conducted this last simula-
tion). The seasonal statistics of 222Rn concentrations simulated by the established 3-D
synoptic models were in general consistent with available observations. However, none
of the models were able to capture the high 222Rn concentrations observed in the upper
troposphere over the North Pacific, and large discrepancies between models were found
in the simulation of meridional transport in the upper troposphere. Remarkable similarity
was found between the established 3-D models in the simulated vertical gradients of
222Rn and other tracers, implying that the diverse subgrid convective parameterizations
used in the different models yield comparable vertical mass fluxes. Models under
development that did not include a subgrid parameterization of convective transport
underestimated considerably the 222Rn concentrations in the upper troposphere. The 2-
D models yielded mean meridional transport rates consistent with the 3-D models but
tended to underestimate vertical exchange between the lower and upper troposphere.
The four models participating in the 210pp aerosol intercomparison yielded global mean
aerosol residence times against deposition ranging from 7 to 13 days; the lower end

appears 10 be most consistent with observations.



1. INTRODUCTION

Convective and synoptic processes play a major role in the global transport of heat,
momentum, and trace gases in the atmosphere. Capturing these processes in global
models is a challenge because of the coarse model resolution (typically 100-1000 km in
the horizontal). Convection is subgrid on these scales and must be parameterized.
Synoptic motions are near the grid scale. In December 1993 the World Climate Research
Program (WCRP) held an intercomparison of global atmospheric transport models to test
the ability of these models to capture the contributions of convective and synoptic
processes to global-scale transport. Twenty models from seven countries participated,
spanning the range of current modeling approaches including three-dimensional (3-D)
and 2-D; Eulerian, spectral, Lagrangian, and semi-Lagrangian; 8 different general circu-
lation models (GCMs) and two assimilated meteorological data sets. We report here on
the principal results.

The intercomparison used simulations of short-lived tracers as sensitive diagnostics.
Primary focus was on 22?Rn, a natural radioisotope emitted ubiquitously from soils by
decay of 226Ra [Nazaroff, 1992] and removed from the atmosphere by radioactive decay
with an e-folding lifetime of 5.5 days. Because of its simple source and sink, 222Rn has
long been recognized as a useful tracer of convective and synoptic-scale transport in glo-
bal atmospheric models [Liu et al., 1984; Brost and Chatfield, 1989; Feichter and
Crutzen, 1990; Jacob and Prather, 1990; Allen et al., 1995; Mahowald et al., 1995: Rind
and Lerner, 1995]. A comparative analysis of two GCMs using 222Rn as a tracer was
recently reported by Genthon and Armengaud [1995a].

Also included in the intercomparison were simulations of anificial short-lived
tracers descriptive of aircraft and lightning emissions. These simulations were aimed at
examining downward transport and horizontal motions in the upper troposphere, comple-
menting the simulation of 2?Rn. The results could not be compared to observations but

still allowed an assessment of differences between models.
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Four models participated in an intercomparison of 2!°Pb, an aerosol tracer pro-
duced in the atmosphere by decay of 2%2Rn [Turekian et al., 1977]. Wet deposition is
the principal mechanism for aerosol removal from the atmosphere, and is highly sensitive
to the frequency of precipitation and to the parameterization of aerosol scavenging
(Giorgi and Chameides, 1985, 1986; Feichter et al., 1991; Balkanski et al., 1993]. A
large data base of 2!°Pb observations is available from surface sites around the world,
and there are also a limited number of observations at altitude [Lambert et al., 1982].
The 2pp intercomparison was a preliminary exercise; a more extensive intercom-
parison of aerosol transport in global models was conducted by WCRP in August 1995

(organizers were P.J. Rasch, H. Feichter, K. Law, and J.E. Penner).
2. SIMULATIONS

Table 1 lists the 20 participating models; descriptions of each are given in the
Appendix. Sixteen of the models were 3-D and four were 2-D (latitude-altitude). All 3-
D models except MOGUNTIA resolved daily weather (i.e., used meteorological data
with resolution finer than one day) and are referred to as "synoptic” models. Most
models had a recorded history of use prior to the intercomparison and are referred to as
“established”. Other models were still under development at the time of the intercom-
parison and are identified as such in Table 1. Participation of 2-D models made it possi-
ble to document the extent to which these models can reproduce the zonal mean features
of the 3-D models. Because of their computational advantage, 2-D models have been
used extensively in tropospheric chemistry assessments involving simulation of shor-
lived species such as nitrogen oxides (NO,) [Intergovernmental Panel on Climate
Change, 1992, 1994].

The intercomparison consisted of four simulations, described in Table 2. The

2

222Rn simulation (case A) used a uniform emission of 1.0 atoms cm ™ s~! from land

excluding polar regions. This source is probably accurate to within 25% on the global
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scale and a factor of 2 on the regional scale [Wilkening et al., 1975; Turekian et al.,
1977; Schery et al,, 1989; Graustein and Turekian, 1990; Nazaroff, 1992; Balkanski et
al., 1993]. The dominant causes of variability are the 226Ra abundance in soil, the loca-
tion of 2Ra within the soil grains, soil moisture, and soil freezing [Jacob and Prather,
1990; Nazaroff, 1992; Ussler et al., 1993]. These effects are not well quantified on a glo-
bal scale, and there is therefore little justification for using a more complicated source
than given in Table 2. Ignoring the effect of soil freezing overestimates the source at
high latitudes in winter [Jacob and Prather, 1990; Genthon and Armengaud, 1995a]. The
assumed oceanic source of 0.005 atoms cm™2 s~} is an upper limit [Wilkening and Cle-
ments, 1975; Lambert et al., 1982], and is unimportant except for defining background
concentrations in the marine boundary layer.

The tracers in cases B and C had the same lifetimes as “*’Rn but were released in
the upper troposphere (400-200 mb column) at northern mid-latitudes and in the tropics
respectively. Their source distributions were intended to be illustrative of emissions
from aircraft (case B) and tropical lightning (case C). Sim'ulation of nitrogen oxide
(NO, ) emissions from these two sources is of particular importance for modeling of glo-
bal tropospheric chemistry.

The 21°Pb simulation used the 222Rn decay rates computed in case A to specify the
210pp source. Loss of 21%Pb by wet deposition was left up to the participants to com-
pute using their own schemes for scavenging a submicrometer, water-soluble aerosol.
Additional loss of 2!°Pb by dry deposition was imposed with a uniform dry deposition
velocity of 0.1 cm s~} referenced to 10-m altitude.

Simulations were conducted for two four-month periods, May-August and
November-February, starting from zero tracer concentrations. The first month served as
initialization; model output was sampled for the last 3 months. Since different models

were based on different meteorological years, only 3-month seasonal statistics were used

for intercomparison. It should be noted that discrepancies between model results may
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reflect not only differences in modeling approaches but also interannual variability in
weather.

The intercomparison diagnostics requested from each model are listed in Table 3.
Diagnostics for cases A-C included contour plots of 3-month average concentrations, and
time series of concentrations at 7 sites and three altitudes: 300 m above the surface
(mixed layer), 600 mb, and 300 mb. Diagnostics for the 210~Pb simulation consisted of
global inventories and latitude-pressure cross-sections of 3-month average concentra-
tions. Concentration units for the diagnostics were molar mixing ratios (mol/mol);
conversion factors to common radioactivity units are given in Table 3a.

The sites for the time series (Table 3b) were chosen for the availability of 22pn
observations and also to sample a range of different environments. The time series for
the mixed layer were sampled only once a day in early afternoon, when the mixed layer
depth is near its maximum and hence when model results are least sensitive to details in
the vertical gridding near the surface and subgrid surface layer parameterizations. Time
series at 600 mb and 300 mb were sampled at all times of day. No coastal sites were
used for intercomparison because the sharp concentration gradient across the coastline
makes results for these sites strongly dependent on details in the grid geometry of the
model [Genthon and Armengaud, 1995a]. Thus we did not consider Chester, New Jer-
sey, where a particularly long record of %?2Rn observations is available (Jacob and
Prather [1990] and references therein).

Participants were requested to submit their results prior to an intercomparison
workshop which was held on 30 November - 3 December, 1993 and was attended by
representatives of almost all models. Participants were not allowed to revise their sub-
mitted results following the workshop except for correcting errors in input conditions and
output diagnostics. They were however allowed to withdraw. One participant withdrew
its simulations for Cases B and C. Two participants withdrew their 2°Pb simulations.

There were no other withdrawals.
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3. CASE A (*2Rn): COMPARISONS WITH OBSERVATIONS

Reviews of the observational data base for 222Rn have been presented by Lambernt
et al. [1982], Gesell [1983], and Liu et al. [1984]. Only a few data sets are sufficiently
extensive to offer seasonal statistics suitable for model evaluation. For these data sets the
original time series of observations are generally unavailable, so that the only usable
comparison statistics are those that can be retrieved from the literature. We focus our
attention on Cincinnati, United States (40°N, 84°W); Crozet Island, Indian Ocean (46°S,
51°E), and 200 mb over Hawaii (20°N, 155°W); these locations offer the best published
statistics for comparison with model results in continental interior, marine air, and upper
troposphere environments. We will also compare the vertical profiles simulated by the
models over northern mid-latitudes continents to the observational averages reported by

Liuetal. [1984].
Cincinnati, United States

Figure 1 (top panel) shows the seasonal frequency distributions of 222Rn concentra-
tions simulated by the models at Cincinnati, Ohio at 1400h local time in June-August.
Cincinnati is in the continental interior of the United States, where the principal influence
on Z22Rn concentrations should be the vertical mixing and ventilation of the continental
boundary layer. A 4-year data set of observations at Cincinnati has been reported by
Gold et al. [1964]). Dashed lines in Figure 1 indicate the interannual range of the
observed June-August means in early afternoon (8()-105x10'21 mol/mol). The observa-
tions were made a few meters above the ground, while the models were sampled at 300-
m altitude; the difference in concentration between these two altitudes is small during
daytime summer as the surface layer is unstable and the mixed layer extends above 300-
m altitude [Moses et al., 1960].

The degree of agreement between model and observations is assessed by comparing

the June-August 1400h means in the models (white bands in Figure 1) to the interannual
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range of the corresponding means in the observations (dashed lines). Most 3-D models
are consistent with observations to within the uncertainty of 2%2Rn emission. The 2-D
models [R-U] are too low, as would be expected because of zonal averaging of the 2?2Rn
source over land and ocean. Concentrations in CCM2 [A], MOGUNTIA (J], and
LLNL/IMPACT (n) are only slightly higher than the 2-D models and lower than
observed, implying excessive boundary layer mixing. Post-intercomparison inspection of
CCM2 revealed that boundary layer depths were indeed excessive, and subsequent ver-
sions of the CCM2 are improved. Concentrations in ECHAM3 [B] are much higher than
observed, in part because the model was sampled twice a day rather than at 1400h local
time as in the other models; still, additional diagnostics indicate that the average con-
tinental boundary layer concentrations simulated by ECHAM3 are a factor of 2 higher
than in the other established 3-D synoptic models.

The published observational statistics for Cincinnati do not include information on
day-to-day variability. As seen in Figure 1, all 3-D synoptic models show pronounced
day-to-day variability reflecting weather disturbances. Thc-variability is remarkably
similar in all established 3-D models except ECHAMS3,; relative standard deviations (o/p)
vary over a narrow range from 15% in LLNL/E (G) to 29% in CCM2. Higher variability
1s found in ECHAM3, MRI [o0], TOMCAT [p], and UGAMP [q], reflecting frequent
occurrences of anomalously high concentrations (ECHAM3 was sampled in both day and
night, but only a small fraction of the variability is due to the diel cycle because sampling
was at 300-m altitude). Occurrences of high concentrations would normally be caused
by lack of ventilation of the 0-300 m column. In the exweme case of full mixing up to
300-m and no mixing above, 222Rn concentrations in the 0-300 m column would build
up to a steady-state value of 640x1072' v/v (limited by the e-folding lifetime of 5.5 days
against radioactive decay). The seasonal maximum reported by TOMCAT is still higher

than this theoretical maximum.

Crozer Island, Indian Ocean
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The middle panel of Figure 1 shows the frequency distributions of 222Rn concentra-
tions simulated by the models in June-August at Crozet Island. Crozet is located in the
subantarctic Indian Ocean 2800-km from the African coast. Twenty years of continuous
measurements have been made at this site [Polian et al., 1986]. The data indicate a low
background of 0.1-1x1072! mol/mol interrupted about once a month by high- 222Rn
episodes lasting typically 1-2 days {Lambert et al., 1970; Polian et al., 1986]. The
episodes are caused by fast boundary layer transport of air from Africa in a circulation
driven by the semi-permanent subtropical Mascarene High to the north and transient
mid-latitude cyclones to the south [Balkanski and Jacob, 1990; Heimann et al., 1990;
Miller et al., 1993]. The peak 2*2Rn concentrations observed during the episodes are
usually 5-10x1072! mol/mol, with exceptional occurrences of up to 25x1072! mol/mol
[Polian et al., 1986]. Seasonal statistics in the models should thus yield 75th percentiles
less than 5x 107! mole/mole and maxima in the range of 5-25x1072! mole/mole.

We see from Figure 1 that all established 3-D synoptic models reproduce qualita-
tively the observed temporal structure of low 222Rn backgrdund interrupted by occa-
sional high- 2%?Rn episodes. The seasonal maxima are consistent with observations
except in GFDL/ZODIAC [C] where one episode is anomalously high. The median con-
centrations (1-2x107%! mol/mol) are higher than observed, probably due to overestimate
of the oceanic source. Inspection of individual time series indicates that the established
3-D synoptic models simulate between 3 and 8 high- 22Rn episodes over the 3-month
period, and that none of the episodes lasts longer than 3 days, consistent with observa-
tons. It thus appears that the models resolve the time scale of the transient weather sys-
tems advecting continental air to Crozet. The sharp structure of the high- ?2?Rn episodes
in the models demonstrates further their ability to transport continental air masses over
the ocean without appreciable numerical diffusion.

Among the 3-D models under development, only MRI (o] yields statistics compar-

able to the established 3-D models. CCCA-GCM [k] and especially LLNL/IMPACT [n]
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have too high medians; LaRC [m] does not simulate high- 22Rn episodes; TOMCAT (p]
has an anomalously high maximum; and UGAMP [q] produces negative concentrations.

The 2-D models yield higher 222Rn concentrations at Crozet than the 3-D models, a
difference that can be explained by inclusion of the South American land mass in the
zonal means at 46°S (latitude of Crozet). Inspection of zonal mean concentrations at
46°S indicates in fact agreement to within a factor of 2 between the 2-D models and the
established 3-D models.

The 3-D model MOGUNTIA [J], which uses monthly mean winds and a 10°x10°
horizontal resolution, shows median concentrations at Crozet that are comparable to the
2-D models and higher than observed, suggesting that the model resolution is too coarse
to capture the gradient between the African continent and the island. Genthon and
Armengaud [1995a] found a similar problem when using the GISS GCM with 8°x10°
resolution to simulate high- 2*Rn episodes at Kerguelen Island, near Crozet; the problem
disappears when the 4°x5° resolution version of the GCM is used [Balkanski and Jacob,

1990].
Upper troposphere over Hawaii

Kritz et al. [1990] reported 61 aircraft measurements of 222Rn concentrations at
200 mb over the North Pacific between California and Hawaii in July-August 1983-1984.
Seventeen of these measurements were made near Hawaii at 18-25°N (the individual
measurements are shown in Balkanski et al. [1992]). Each measurement was a 30-
minute average, representing an aircraft travel distance of about 250 km. The median
concentration for the 17 points was 2.5x1072! mol/mol; 3 of the 17 points had concentra-
tions higher than 10x1072! mol/mol, and the highest concentration was 26x1072!
mol/mol. Kritz et al. [1990] showed that the extremely high concentrations were due to
deep convection over eastern Asia followed by rapid transport over the Pacific in the sub-

tropical jet.
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Simulated frequency distributions of 222Rn concentrations in the upper toposphere
over Hawaii in summer are shown in the bottom panel of Figure 1. The observed median
and extrema of Kritz et al. [1990] are shown respectively as dashed and dotted lines.
The model results are for 300 mb, whereas the Kritz et al. [1990] observations are at 200
mb; however, inspection of seasonally averaged latitude-altitude cross-sections in the
models at the dateline indicates less than 30% vertical differences in concentrations
between 300 and 200 mb at the latitude of Hawaii. The model statistics at 300 mb can
therefore be justifiably compared to the Kritz et al. [1990] data.

We see from Figure 1 that all 3-D models except LLNL/E [G] underestimate the
observed median concentrations by typically a factor of 2. The maxima are underes-
timated by a greater factor, i.e., the models do not capture the large relative variability in
the observations. Concentrations simulated by LaRC [m] and LLNL/IMPACT [n] never
exceed 0.1x1072! mol/mol, which may be explained by the lack of a subgrid convective
parameterization 1o transport 222Rn 1o high altitudes in these models. All 2-D models
except UW [U] show concentrations lower than the observed hedian, even though con-
centrations over Hawaii should be less than the zonal mean. This apparent underestimate
of ?22Rn probably refiects insufficient accounting of deep convective motions in the 2-D
models, as discussed further below.

One possible explanation for the failure of the 3-D models to reproduce the high
concentrations observed over Hawaii would be the presence of an anomalously high
Z22Rn source in eastern Asia. P. Kasibhatla and N. Mahowald [personal communica-
tion] have proposed such an explanation to account for the unusually high 222Rn concen-
trations observed at Mauna Loa Observatory, Hawaii. There are to our knowledge no
measurements of 222Rn concentrations or *22Rn emission fluxes over eastern Asia.
Deposition flux data for 2!°Pb available from one site in Japan indicate values more than
twice higher those found at any site in the United States or Europe {Fukuda and Tsuno-

gai, 1975; Turekian et al., 1977; Balkanski et al., 1993].
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Vertical profiles over continents

Seasonal mean vertical profiles of éan concentrations over northern mid-latitude
continents have been compiled by Liu et al. [1984] by averaging together measurements
made at different locations in North America and Europe. The data base is scant, con-
sisting of 23 profiles at 6 locations in summer and 7 profiles at 3 locations in winter. The
mean profiles for summer and winter are shown in Figure 2 along with standard errors
(c/‘/; ). Because the data are from a small number of locations, the standard errors cer-
tainly underestimate the actual uncertainties on the mean 2%2Rn concentrations over
northern mid-latitude continents.

We compare the Liu et al. [1984] profiles in Figure 2 to the results from the indivi-
dual models averaged over the three continental sites for which time series were archived
(Kirov, Cincinnati, Socorro). Most of the established 3-D models reproduce the observed
profiles to within a factor of 2 ar all altitudes. Exceptions are LLNL/E [G] in summer,
where deep convection is too weak, and ECHAM3 [B] where mixed layer concentrations
are a factor of 2 higher than in other established 3-D models for both summer and winter.
Considerable underestimate of concentrations in the middle and upper troposphere is
found in 3-D models under development that do not include a subgrid parameterization
of convective transport (LaRC [m], LLNL/IMPACT [n], TOMCAT [p]). The 2-D
models generally underestimate the observations, as would be expected due to the zonal
averaging in these models; however UW [U] overestimates concentrations in the middle
and upper troposphere in winter, implying excessive vertical mixing.

Deep convective transport over continents is an episodic process, and concentra-
tions of continental tracers in the upper troposphere are known to be highly variable
[Dickerson et al., 1987; Pickering et al., 1995]. There are few 222Rn observations avail-
able in the upper troposphere over continents for evaluating the variability in the models.
The largest single source of upper troposphere data in the compilation of Liu et al.

(1984] is from four aircraft flights over eastern Ukraine in July [Nazarov et al., 1970).
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We compare in Figure 3 the range of values reported by Nazarov et al. [1970] at 300 mb
to the summertime frequency distributions simulated by the established 3-D synoptic
models at the same altitude over Kirov. The seasonal ranges in the models encompass
the range defined by the observations, but not by much; considering that the observa-
tional range is defined by just four individual measurements, while the model ranges are
from continuous sampling of a 3-month time series, it appears that the 3-D models

underestimate the variability of 222Rn in the continental upper troposphere.
4. CASES A-C: GLOBAL DISTRIBUTIONS

Global distnbutions of seasonally averaged concentrations afford a more general
intercomparison of model results. We limit our analysis to the established models and to
CCCA-GCM; as pointed out above, some of the models under development exhibited
major anomalies when compared to observations.

Figure 4 compares the global distributions of 2*2Rn concentrations at 300 mb in
June-August for the different 3-D models. All models show rémarkably similar patterns
of convective pumping over continents and long-range transport over the oceans. Excep-
tions are MOGUNTIA, CCCA-GCM, and the LLNL models (especially the Eulerian ver-
sion, LLNL/E), where concentrations are generally a factor of two lower than the other
models. ECHAM3 shows particularly high concentrations in polar regions, refiecting
strong meridional transport from middle to high latitudes in the upper troposphere.

Zonal mean cross-sections of 222Rn concentrations as a function of altitude and
latitude in June-August are compared in Figure 5. Meridional and vertical structures in
the 3-D models are similar to a high degree of detail, as seen for example in the patterns
of deep convection in the tropics, lower-level convection at northern mid-latitudes, and
meridional gradients in the lower and middle troposphere. There are however some
differences. In particular, GISS/H/I features a secondary maximum of concentrations in

the equatorial upper troposphere due to frequent deep convection, but none of the other
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models show such a maximum. All 2-D models ‘except UW underestimate concentra-
tions in the upper troposphere, a problem likely caused by inadequate treatment of con-
vection. UW captures successfully much of the structure of the 3-D models.

Figure 6 shows the mean June-August concentrations simulated by the 3-D models
at 300 mb for the aircraft tracer of Case B. All models show remarkably similar large-
scale horizontal dispersion of the tracer. Zonal mean cross-sections for Case B in June-
August are presented in Figure 7. Most models show similar vertical gradients at north-
ern mid-latitudes, implying similar rates of downward transport, except KNMI/TM2
where this transport is unusually rapid. Large differences are found between the 3-D
models in the rates of meridional transport in the upper troposphere. GISS/H/I and
ECHAM3 show particularly slow interhemispheric transport at high altitudes, resulting in
tracer concentrations in the southern tropics that are one order of magnitude lower than in
the LLNL models and CCM2 where interhemispheric transport is particularly rapid.
Transport from northern mid-latitudes to the Arctic in the upper troposphere also varies
considerably between 3-D models; concentrations at the North Pole differ by more than
one order of magnitude between MOGUNTIA (where transport 1s fastest) and
GFDL/ZODIAC (slowest). A more recent version of MOGUNTIA using ECMWF winds
shows a substantial reduction of transport to high latitudes, resulting in tracer concentra-
tions at the North Pole that are more consistent with the other 3-D models. The zonal
mean cross-sections of concentrations in the 2-D models are generally consistent with the
range of results from the 3-D models, although the latitude range of maximum downward
transport appears to be misplaced in UW.

Figure 8 shows the zonal mean cross-sections of concentrations in December-
February for the tropical lightning tracer (Case C). All 3-D models show similar vertical
gradients in the tropics, implying again close similarity in the computed rates of down-
ward transport. An exception is MOGUNTIA, which features tracer concentrations in

the lower tropical troposphere that are five times higher than the other established 3-D
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models. A more recent version of MOGUNTIA shows much improvement. Meridional
transport rates from the tropics to high latitudes in the upper troposphere show consider-
able differences between 3-D models, in a manner similar to those found in case B.
Downward transport in the tropics in the 2-D models is too fast in UW and rather too
slow in AER and UCAMB. Meridional transport rates in the 2-D models are consistent

with the range of values in the 3-D models.
5. AEROSOL *'°Pb

Four models participated in the 2'°Pb aerosol intercomparison: GISS/H/I,
LLNL/GRANTOUR, UCAMB, and HARWELL. Each model uses a different scheme
for wet scavenging of aerosols. GISS/H/I scavenges aerosol in subgrid wet convective
updrafts and also has a first-order rainout scheme for large-scale precipitation.
LLNL/GRANTOUR assumes a first-order loss rate normalized to precipitation intensity.
UCAMB uses specified aerosol lifetimes as a function of altitude. HARWELL predicts
rainfall rates on the basis of the local relative humidity and agsumcs similarity between
scavenging of aerosols and water vapor. References for the various schemes are given in
the Appendix.

Figure 9 shows the global 210pp inventories simulated by each model for August 31
and February 28, partitioned into three altitude bands. Also shown is the global inven-
tory of 1.4 moles obtained by Lambert et al. [1982] by partitioning geographically and
averaging the available data base of observations from surface sites, ship cruises, and air-
craft. There are few aircraft observations in the troposphere, and Lambert et al. [1982]
had to relie heavily on vertical extrapolation of surface observations. They did not
account for seasonality in their inventory, arguing that it would be small; indeed, none of
the model inventories in Figure 9 differ by more than 20% between February and August.

The global inventories simulated by the models are 1.4 moles in UCAMB, 1.8
moles in LLNL/GRANTOUR, 2.1 moles in GISS/H/I, and 2.7 moles in HARWELL.
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UCAMB agrees well with Lambert et al. [1982], while other models are too high. Con-
sidering that all models have the same source of 2'9Pb, the total atmospheric loadings
can be converted to global mean aerosol residence times (shown as additional ordinate in
Figure 9) ranging from 7 days in UCAMB to 13 days in HARWELL.

In order to evaluate the vertical distribution of 2!°Pb in the models, we recon-
structed the global inventory of Lambert et al. [1982] by following their procedures and
retaining information on vertical resolution. Their inventory of 1.4 moles can thus be
partitioned into 0.58 moles below 600 mb, 0.34 moles at 600-300 mb, and 0.52 moles
above 300 mb; 80% of the inventory above 300 mb is in the stratosphere. The large con-
tribution of the stratosphere to the 210py, inventory is a well-known feature of the obser-
vations and is due to a combination of *??>Rn-rich air entering the stratosphere and the
absence of aerosol removal processes within the stratosphere [Lambert et al., 1990]. It
appears from Figure 9 that HARWELL is t0oo high in the lower troposphere while
GISS/H/T is too high above 300 mb. Previous studiés using GISS/H/I have documented
problems related to insufficient scavenging of aerosols in the ﬁpper troposphere [Koch et
al., 1995] and excessive transport of air from the troposphere to the stratosphere
[Spivakovsky and Balkanski, 1994]. Both of these problems would contribute to an

overestimate of 21°Pb above 300 mb.
6. CONCLUSIONS

Intercomparison of 20 global atmospheric transport models representing the state-
of-the-science as of December 1993 indicates that these models can capture to a
significant degree the contributions of convective and synoptic processes to global-scale
transport. The current cohorte of established 3-D models is in general successful at
reproducing the observed concentrations of 222Rn over continents, including both sur-
face air concentrations and vertical gradients in the tropospheric column. These 3-D

models also capture the observed episodic structure of long-range transport of 222Rn
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over the oceans. However, none of the models can reproduce the high 2;22Rn concentra-
tions observed in the upper troposphere over Hawaii. Models under development at the
tme of the intercomparison were in general less successful in reproducing the 222Rn
observations.

The 3-D models revealed remarkable similarity in their simulations of mean vertical
gradients for 222Rn and other tracers, despite the diversity of parameterizations used to
describe boundary layer meteorology and convective transport. This result suggests that
the parameterization of convection in 3-D models is better constrained than is usually
assumed, 1.e., that different parameterizations yield comparable convective mass fluxes.
The 3-D models under development that did not include a subgrid parameterization of
convective transport underestimated considerably the 222Rn concentrations in the upper
troposphere.

Large differences were found between established 3-D models in the representations
of meridional transport in the upper troposphere, including in particular interhemispheric
transport. This result suggests that the models may have Widely different interhem-
ispheric exchange times; the issue needs to be investigated further by simulations of
long-lived tracers such as chlorofluorocarbons (CFCs) or 8Kr.

Comparisons of zonal mean quantities in the 2-D vs. 3-D models indicated that the
2-D models offer a reasonable simulation of large-scale meridional transport in the tropo-
sphere. However, they fail in general to reproduce the vertical gradients obtained by the
3-D models, presumably because they do not account adequately for deep convection.

Four models (two 3-D and two 2-D) participated in an intercomparison of 20py,
aerosol simulations. The global 219pp jnventories simulated by the models tended to be
higher than observed, which could indicate insufficient rates of aerosol scavenging by
precipitation. There are however substantial uncertainties in the inventories derived from

observations.
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APPENDIX: DESCRIPTION OF PARTICIPATING MODELS.

A. NCAR CCM2: A 3-D model using instantaneous meteorological fields (with a time
step of 15 minutes) from the standard version of the CCM2 [Hack, 1993; Hack et al.,
1993, 1994]. Horizontal resolution: 2.8 degrees longitude by 2.8 degrees latitude. Verti-
cal resolution: 18 layers up to 5 mb, with 11 in the troposphere. Convective mass fluxes
are calculated as described in Hack [1994]. The scheme adjusts the moist static energy
over three adjacent layers, allowing for entrainment in the bottom layer, condensation
and rainout in the middle layer, and detrainment in the upper layer. The method is

applied sequentially, beginning at the surface, until all of the tropospheric levels have
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been adjusted. The conservative convective transport of trace constituents is also treated
according to this vertical mass exchange. Resolved scale transport is performed using a
shape preserving semi-Lagrangian transport algorithm [Rasch, 1990). A "non-local"
boundary layer parameterization [Holtslag and Boville, 1993] diagnoses a boundary layer
depth and determines diffusivity profiles and non-local turbulent transports of heat and
constituents within the boundary layer. These algorithms have been used in a variety of

chemical transport studies [i.e., Rasch et al., 1994, 1995; Hartley et al., 1994].

B. ECHAM3. An atmospheric general circulation model developed for climate studies
[Roeckner et al., 1992]. Prognostic variables: Vorticity, divergence, temperature, sur-
face pressure, water vapor, cloud water, turbulent kinetic energy, chemical species. Hor-
izontal advection: spectral transform (vorticity, divergence, temperature, surface pres-
sure) with tniangular truncation (T21). Nonlinear and physical terms are calculated on a
Gaussian grid (5.6°x5.6°). Vertical resolution: 19 levels up to 10 hPa. Model time-step:
40 minutes. Water vapor, cloud water and chemicals are treated by a semi-Lagrangian
method [Rasch and Williamson, 1990]. Boundary layer: surface fluxes of momentum,
heat, moisture and chemical tracers are calculated from Monin-Obukhov theory. Within
the boundary layer and also in the free atmosphere, turbulent transfer is calculated on the
basis of a higher-order closure scheme. Mass flux scheme for penetrative, shallow and
mid-level convection is from Tiedtke [1989]. The scheme considers convective transport
of heat, moisture, cloud water, chemicals and momentum in downdrafts and updrafts.
The model has been used in many climate sensitivity experiments [Cess et al., 1990;
Cubasch et al., 1992; Roeckner et al., 1994], tracer transport [Brost et al.,1991; Feichter
et al., 1991a,b] and tropospheric chemistry studies [Roelofs and Lelieveld, 1995; Feichter
et al., 1995].

C. GFDL/ZODIAC. A 3-D model using 6-hour time-average meteorological fields

from a Geophysical Fluid Dynamics Laboratory GCM [Manabe et al., 1974]. Horizontal
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resolution: ~265 km. Vertical resolution: 11 levels up to 10 mb, with 6-7 in troposphere.
Vertical transport by dry and moist convective processes is parameterized in terms of a
Richardson number diffusion. The model has been used in many tracer transport studies
[Mahlman and Moxim, 1978; Levy et al., 1985; Levy and Moxim, 1989; Kasibhatla et
al., 1991, 1993].

D. GISS/H/I. A 3-D model using 4-hour time-average meteorological fields from the
Goddard Institute of Space Studies GCM 2 [Hansen et al., 1983]. Horizontal resolution:
4° latitude x 5° longitude. Vertical resolution: 9 layers up to 10 mb, with 7-8 in tropo-
sphere (sigma coordinate). Convective mass fluxes are diagnosed from the GCM. Wet
removal of soluble tracers includes both scavenging in convective updrafts and first-order
rainout and washout in large-scale precipitation, as described by Balkanski et al. [1993].
The GISS/H/I model has been used in many tropospheric chemistry studies (for example
Prather et al. [1987], Spivakovsky et al. [1990)], Jacob et al. {1993], Chin and Jacob
[1995]).

E. KNMI-TM2 A 3-D model based on the TM2 model of Heimann [1989] and the
GISS model of Hansen et al. [1983]. The transport model uses meteorological informa-
tion obtained from the ECMWF forecast model. From analyzed data (wind, temperature,
geopotential height and humidity) collected every 6 or 12 hours, the horizontal and vert-
cal transport of air mass is calculated. The ECMWF data are analyzed at 14 standard
pressure levels (1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 and 10
hPa) on a horizontal scale of 2.5°x2.5°. The transport model KNMI-TM2 has a resolu-
tion of 5°x4° and 15 sigma levels in the vertical (up to approximately 30 km altitude).
Advection of trace gases in KNMI-TM2 is calculated by the slopes scheme of Russell
and Lerner [1981], which is modified in order to avoid negative concentrations. Cumulus
convection is parameterized according to the mass-flux scheme of Tiedke [1989]. In this

scheme the humidity convergence, obtained from ECMWF data, determines the upward
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mass-flux. The parcel buoyancy determines the height of the convective transport in the
model column. Turbulent transport in the boundary layer is parameterized using the
Richardson number [Louis, 1979], obtained from ECMWF data. For this WCRP exercise
we use ECMWF fields for June-August 1989 and December-February 1989-1990,

analyzed every 12 hours.

F. LLNL/GRANTOUR. The GRANTOUR model [Walton et al. 1988] is a 3-D model
using 12-hour time-averaged meteorological fields from the National Center for Atmos-
pheric Research CCM1 GCM [Williamson et al., 1987]. Resolution: 50,000 constant-
mass air parcels whose dimensions average 100 mb x 330 km x 330 km. Parcel informa-
tion is periodically mapped to the CCM1 grid which has resolution of 4.4° latitude x 7.5°
longitude x 12 vertical layers up to 10 mb with 8-9 layers in the troposphere. Convective
mass fluxes are diagnosed from the CCM1 GCM. Advection is by a non-diffusive
Lagrangian scheme. Mixing ratio changes due to both diffusion and convection are cal-
culated on the CCMI fixed grid and then mapped to the parcels. Wet scavenging is pro-
portional to the precipitation rate obtained from the CCM1 with a large scale scavenging
coefficient of 2 cm™! and convective scavenging coefficient of 0.6 cm™'. The GRAN-
TOUR model has been used in many tropospheric chemistry studies (for example Ghan
et al. [1988]; Erickson et al. [1991]; Penner et al. [1991ab, 1993, 1994]). The simula-

tions reported here are fully documented by Dignon [1993].

G. LLNL/E. A 3-D model identical to LLNL/GRANTOUR except that the atmosphere
is discretized solely by the Eulerian grid used in the CCM1 (no constant-mass air parcels
are used). A second-order diffusion-limited Van Leer advection scheme is used. Diffu-
sion, convection and scavenging have all been included in this new model. The simula-

tions reported here are fully documented by Bergmann et al. [1994].

H. LMD. A 3-D tracer model implemented in-line within the Laboratoire de

Météorologie Dynamique (CNRS, Paris) GCM [Sadourny and Laval, 1984]. Horizontal
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grid is linear in longitude (5.6° resolution) and in sine of latitude (3.6° mean resolution).
Vertical resolution: 4 levels in the boundary layer, 4 in the troposphere and 3 in the stra-
tosphere. GCM-triggered dry and moist convections induce uniform vertical tracer mix-
ing within the unstable layers and over a GCM-selected fraction of the column horizontal
section. Vertical tracer diffusion in the boundary layer is parameterized using GCM-
calculated diffusion coefficients. The LMD tracers/climate model is fully described in
two recently published studies of 222Rn, 219pp and other tracers {Genthon and Armen-

gaud, 1995ab].

I. TM2Z. A 3-D model using 12-hour instantancous meteorological fields analyzed by
the ECMWF for the year 1990. The model is a new version of the TM1 model
developed by Heimann and Keeling [1989] . Horizontal resolution: 2.5°x2.5°. Vertical
resolution: 9 layers up to 10 mb, with 7-8 in troposphere. Convective mass fluxes are cal-
culated using the cloud mass flux scheme of Tiedtke [1989] . Turbulent vertical tran-
sport is calculated based on the stability of the air using the scheme of Louis [1979] .
The implementation of these schemes in the transport model is described by Heimann
[1994] . The TM2Z model has been used to simulate 222Rn and CO, concentrations

[Ramonet, 1994; Ramonet et al., 1995].

J. MOGUNTIA. The MOGUNTIA model [Zimmermann, 1988; Zimmermann et al.,
1989] has been designed to numerically simulate the transport of trace constituents and
the background photochemistry of the global troposphere and lower stratosphere. Grid
resolution is 10°x10° x100 hPa. The large-scale transport is based on observed monthly
mean temperature and wind fields. Turbulent diffusion is parameterized proportional to
the day-by-day deviation of the winds. Deep convection is performed explicitly accord-

ing to observational occurrence of cumulus clouds [Feichter and Crutzen, 1990].

k. CCCA-GCM. A 3-D climate GCM producing dynamical and tracer fields every 15

minutes. The model uses spectral transport with a horizontal resolution of 32
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wavenumbers and a vertical resolution of 10 levels up to 10mb, with 6-7 levels in the o-
posphere. Convective transport and PBL mixing are parameterized. The convective
tracer transport occurs for moist and dry events using a diffusive mixing associated with
the convective adjustment scheme of the model. The degree of mixing is dependent upon
the local strength of the convective column instability. The GCM is the second genera-
tion CCCA-GCM [McFarlane et al., 1992], an established climate simulation model,

which was modified to include 2%2Rn and #'°Pb tracers in a developmental form.

m. LaRC. The LaRC general circulation model is a 3-D, sigma coordinate, quasi-
spectral, primitive equation formulation |Grose et al., 1987; Pierce et al., 1993]. It has 34
levels in the vertical, spanning the region from the Earth’s surface to approximately-95-
km altitude. The levels are spaced about 100) mb apart from the Earth’s surface to about
200 mb. Above 200 mb, they are spaced about 3-km apart. A semi-implicit integration
technique is used with a 15-minute time step. A 1-2-1 time filter is applied every sixth
time step to control time splitting. Orographic forcing is approximated by using a
smoothed spherical harmonic representation of the Earth’s topography. Throughout the
model atmosphere a biharmonic diffusion is applied to the vorticity, divergence, and
temperature prognostics. In the equatorial upper troposphere an additional linear damp-
ing term is incorporated to parameterize the effects of "cumulus” friction. A surface drag
proportional to the wind speed is applied in the lowest model level. Vertical diffusion of
momentum and temperature are incorporated via a non-linear, time-split technique.
Above 55-km altitude, a Rayleigh friction term is applied to vorticity and divergence,
increasing to a peak damping time of 0.4 days at the top model level. Above about 100
mb, a radiative transfer scheme is used that incorporates the effects of absorption of UV
radiation by O, and O3 and the infrared contribution of CO,, O3, and H,O. Diabatic
heating in the troposphere is parameterized by a 2-term Taylor’s series "type” expansion

which incorporates observed heating rates and climatological temperature distributions.
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n. LLNL/IMPACT. A 3-D model using 6 hour meteorological fields from the tropos-
pheric data assimilation model of the Data Assimilation Office at NASA/Goddard. Hor-
izontal resolution is 2°x2.5°. Vertical resolution is 20 layers, to 10 mb. At the time of
this simulation, the 3-D model was very much under development. Most important to
this simulation, the model did not have any convective transport mechanism, making
222Rn simulations difficult. LLNL/IMPACT has since undergone upgrades and is now

better able to perform simulations such as these.

0. MRL A 3-D semi-Lagrangian transport model using 2-hourly meteorological fields
from the MRI global spectral atmospheric circulation model [Shibata and Chiba, 1990).
Spectral horizontal resolution is R24 and vertical resolution is 23 levels up to 0.05 hPa.
Mixing of tracer in PBL is parameterized by using the scheme of Louis (1979). Convec-

tive transport is not included.

p. TOMCAT. A 3-D model using 6-hourly meteorological fields from the UGAMP
GCM (see model q). Horizontal resolution: 2.8° latitude x 2.8° longitude. Vertical resolu-
tion: 19 levels up to 10mb. Tracer transport is performed using the second-order-
moments scheme of Prather [1986]. TOMCAT was developed at Météo France, Toulouse
and University of Cambridge. The model has been used in many stratospheric chemistry
studies [e.g. Chipperfield et al., 1993, 1994, 1995]. and is being developed for tropos-
pheric studies. For the experiments described in this paper the TOMCAT runs did not
contain any tracer transport other than advection. Since the WCRP workshop treatments
of convection [Tiedtke 1989] and vertical turbulent diffusion {Louis 1979] have been

added to the model.

g. UGAMP. A 3-D spectral general circulation model derived from Cycle 27 of the
ECMWF model [ECMWF Research Manual 2]. Spectral horizontal resolution: T42
[Simmons et al., 1988). Chemical tendencies and parameterized physical processes are

resolved on a Gaussian grid: 2.8° latitude x 2.8° longitude [Tiedtke et al. 1988]. Vertical
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resolution: 19 hybrid levels up to 10mb. Planetary boundary layer modeled explicitly
using 5 model levels and a 30-minute time step. Morcrette [1990] radiation scheme.
Fourth-order Total Variation Diminishing (TVD) vertical advection [Thuburn 1993].
Betts-Miller convective adjustment scheme for moisture [Betts 1986; Betts & Miller

1993]. No convective transport of tracers.

R. AER A 2-D model using the diabatic circulation based on calculated heating rates and
a horizontal eddy diffusion coefficient function of latitude, altitude, and season. Hor-
izontal resolution: 9.5°. Vertical resolution: ~3.5-km up to 60-km. The model with full
photochemistry module has been used in many stratospheric chemistry studies (for exam-
ple Ko et al. [1984, 1985, 1986, 1989, 1991]; Sze et al. [1989]; Rodriguez et al. [1991];

Weisenstein et al. [1991, 1992]; Pilumb and Ko [1992]).

S. UCAMB. A 2-D classical Eulerian model. Eddy diffusion coefficients are specified
and the mean circulation is calculated, based on forcing by latent and radiative heating
and eddy transport processes. This gives updated fields of tcmpératurc and velocity every
4 hours. There is additional vertical mixing in the model if air becomes unstable with
respect to the dry adiabat. A full description of the model formulation and tropospheric
chemistry is given in Harwood and Pyle | 1980} and Law and Pyle [1993]. Horizontal
resolution: 9.5°. Vertical resolution: ~3.5 km up to 60-km. Treatments of dry and wet
deposition are included in the model. The latter is modeled simply as the reciprocal of
the lifetime (with respect to rainout) following Logan et al. [1981]. The model has been

used in tropospheric chemistry studies (e.g. Law and Pyle [1993], Bekki et al, [1994]).

T. HARWELL. A 2-D zonally averaged model with 12 vertical layers, each of 2-km
height, and 24 equal-area latitudinal bands. The model uses circulation derived by
Plumb and Mahlman [1987], who used the output from a 3-D GCM [Mahlman et al,,
1980] 1o derive & mean meridional circulation and a tensor describing the eddy motions

present in this zonal flow. The rainfall in each grid cell is set as a smooth function of the
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local relative humidity and the wet removal of a soluble aerosol is calculated as a func-
tion of this removal of the water vapor. The water or soluble species removed from a
given cell is transported to the cell immediately below, giving the potential for re-
evaporation, except for the lowest layer when it appears as rain or wet deposition at the
surface. The differential equations are solved employing the FACSIMILE integration
package [Curtis and Sweetenham, 1987}, which uses a variable order Gear’s method.
The transport has been tested by comparison with observations of the atmospheric tracers
8Kr, CFCl; and CF,Cl; [Hough, 1989] and, with the inclusion of a chemical mechan-
ism, comparison with observations of CH,, CO, non-methane hydrocarbons, O3, peroxy-
acetylnitrate (PAN), and peroxides [Hough, 1991; Hough and Derwent, 1990; Hough and

Johnson, 1991; Johnson et al, 1992].

U. UW. The University of Washington 2-D chemical transport model has been
developed by Tung, Yang, and Olaguer [Tung, 1982, 1986; Yang et al., 1990, 1991;
Olaguer et al., 1991]. Formulated in isentropic coordinates, the model is run with 18 lati-
tudinal bands each 10° wide. There are 48 levels vertically from O to 54-km. Eight of
these levels are below 100 mb (average pressures are approximately 880, 670, 500, 370,
280, 230, 180, and 140 mb). Transport parameters derived from observed 1980 atmos-
pheric temperatures are used. Recently, the model has been validated using tracers
which are sensitive to tropospheric transport and chemical parameters. In the work of
Brown [1993], model simulations of 85 Kr, CFC-11, CFC-12, and methylchloroform are
shown to be in good agreement with observations. The distribution of 2??Rn in the tro-
posphere is sensitive to the vertical diffusion parameter K,,. Values of K,, used here are
50 m? s7! in the tropics and 10 m? 57! at higher latitudes. These values are the same as
those used by Brown [1993] and are consistent with those discussed in the works of

Plumb and McConalogue [1988] and Plumb and Mahlman [1987].
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Table 1. Participating models
Simulations Correspondent

established 3-D synoptic models

A.CCM2 ABC Rasch

B. ECHAM3 AB.C Feichter, Kbhler

C. GFDL/ZODIAC ABC Kasibhatla

D. GISS/H/I AB.C,2%p  Jacob

E. KNMI/TM2 ABC Verver, Van Velthoven
F.LLNL/GRANTOUR AB,C,%°Pb  Dignon, Penner
G.LLNL/E ABC Bergmann

H.LMD A Genthon

1. TM2Z ABC Balkanski, Ramonet

established 3-D model
with monthly mean winds

J. MOGUNTIA ABC Zimmermann
3-D synoptic models under development
k. CCCA-GCM A Beagley, de Grandpré
m. LaRC A Grose, Blackshear
n. LLNLAMPACT ABC Rotman
0. MRI ABC Chiba
p. TOMCAT ABC Chipperfield
q. UGAMP AB,C Stockwell
2-D models }
R. AER ABC Shia
S. UCAMB AB.C,2%Pb  Law, Wild
T. HARWELL AB.C.%%Pb Reeves
U. Uw AB.C Brown, Yang

A description of each model is given in the Appendix. "Synoptic" models use meteorological fields with
resolution finer than one day.



Table 2. Simulations
Case A: *#2Rn
Source: 72 moles yr~! distributed as follows:
70-90°S and 70-90°N: no emission
60-70°S and 60-70°N: 0.005 atoms cm™2 s
60°S-60°N, oceans: 0.005 atoms.cm™> s~}
60°S-60°N, land: 1.0 atoms cm =2 s~! (adjusted as necessary
to yield a global source of 72 moles yr™!)

Sink: radioactive decay (k = 2. 1x107% 57! )

Case B: aircraft tracer
Source: 72 moles yr~! distributed uniformly in the 400-200 mb column over four line
segments (18 moles yr'l for each segment): Japan-California (34°N, 120°E-120°W)
California-New York (40°N, 120-75°W) Boston-Rome (42°N, 75°W-10°E), and Rome-
Oslo (42-60°N, 10°E).

Sink: same as in case A

Case C. tropical lightning tracer

Source: 72 moles yr~! distributed uniformly in the 400-200 mb column at 10°S-10°N
over three longitudinal belts: 75-45°W, 10-40°E, and 100-130°E.

Sink: same as in case A
20p} gerosol
. . ' P>
Source: radioactive decay of ~ Rn from case A

Sink: wet and dry deposition (see text).



Table 3a. Model output diagnostics
Cases A, B, C, Jun-Aug and Dec-Feb

1. Three-month average contour plots of concentrations as a function of latitude and
pressure: zonal mean, dateline (180°), and Greenwich meridian (0°).

2. Three-month average contour plots of concentrations as a function of latitude and
longitude: 300 m above local surface, 600 mb, and 300 mb.

3. Plots and seasonal statistics of 3-month time series of concentrations at 7 sites (Table
3b) and 3 altitudes per site: 300 m above local surface, 600 mb, and 300 mb. The time
series at 300-m altitude are sampled once a day at 1400h local time. The time series at
600 mb and 300 mb are sampled at all times of day. Seasonal statistics include means,
variances, medians, quartiles, and extremes.

210pp gerosol

1. Global atmospheric inventory at the end of the 4-month simulation (February 28 and
August 31) partitioned into three altitude bands: below 600 mb, 600-300 mb, and above
300 mb.

2. Three-month average (Jun-Aug and Dec-Feb) contour plots of concentrations as a
function of latitude and pressure: zonal mean, dateline, and Greenwich meridian.

Units: All output reported in units of moles and molar mixing ratios (mol/mol).
Conversion factors to common radioactivity units for 22?Rn are 1 mole = 3.4x10’ Curies
(Ci) = 1.25x10° Becquerels (Bq); and 1x107>' mol/mol = 1.52 pC/SCM = 5.6x10~2
Bq/SCM (where SCM jis a standard cubic meter of air at 273.15 K and 1 atm).
Conversion factors for 2'9Pb are | mole = 1.6x10* Ci = 5.9x101 Bq; and 1x107%!
mol/mol = 0.71 fCi/SCM = 2.6x10™> Bq/SCM.



Table 3b. Sites for time series

Site Available observations
Kirov, Russia (58°N, 49°E) Senko [1968]
Cincinnati (40°N, 84°W) Gold et al. [1964]
Socorro, New Mexico (34°N, 107°W)  Wilkening [1959]
Hawaii (20°N, 155°W) Kritz et al. [1990]
Samoa (14°S, 171°W) none
Crozet Island (46°S, 51°E) Polian et al. [1986]
Ferraz, Antarctica (62°S, 58°W) Pereira [1990]

Observations are for surface air except at Hawaii (200 mb).



FIGURE CAPTIONS.

Figure 1. Seasonal frequency distributions of simulated 2%2Rn concentrations at
Cincinnati (mixed layer, 1400h local time), Crozet Island (ibid.), and Hawaii (300 mb, all
times of day) in June-August. See Table 3a for conversion of mol/mol to common
radioactivity units. Models are identified by letter code (see Table 1). Values for the 2-D
models (R-U) are zonal mean concentrations. Boxplots for each model show seasonal
extrema (whiskers) and quartiles (shaded box); the white band indicates the mean
concentration (Cincinnati) or the median (Crozet, Hawaii). The concentrations at
Cincinnati and Crozet were sampled at 1400h local time except in ECHAM3 where they
were sampled as 12-hour averages. Dashed lines in the Cincinnati panel show the
interannual range of observed mean afternoon concentrations in June-August reported by
Gold et al. [1964]). Dotted lines in the Crozet panel show the range of maximum
concentrations observed during high- 222Rn episodes recurring -about once a month
[Polian et al., 1986]. Dashed and dotted lines in the Hawaii panel show respectively the
median and the extrema of 17 aircraft measurements at 200 mb over Hawaii in July-
August [Kritz et al, 1990]; the minimum indicated by the dotted line (0.7x1072!

mol/mol) is the detection limit of the instrument.

Figure 2. Mean vertical profiles of 2?2Rn concentrations over northern mid-latitude
continents in (a) June-August and (b) December-February. The solid lines are the mean
profiles obtained by Liu et al. [1984] by averaging aircraft observations from various
locations in North America and Europe; the horizontal bars are the associated standard
errors (standard deviations on the means). Model results (symbols) are seasonal means at
300-m above ground, 600 mb (shown as 4.2-km), and 300 mb (shown as 9.2-km)
averaged for Kirov, Cincinnati, and Socorro. Some symbols have been moved up or
down from the actual sampling altitude to improve legibility. The models are identified

by the letter code of Table 1. See Table 3a for unit conversion factors.



Figure 3. Frequency distribution of 222Rn concentrations simulated by the established
3-D models at 300 mb over Kirov in June-August. Models are identified by letter code
(Table 1). Boxplots show seasonal extrema (whiskers), quartiles (shaded box), and
medians (white band). Dashed lines indicate the observed range of concentrations at 300

mb from four measurements over eastern Ukraine in July [Nazarov et al., 1970].

Figure 4. Mean 2%2Rn concentrations simulated by the established 3-D models and
CCCA-GCM at 300 mb in June-August. Units are 1x1072! mol/mol; see Table 3a for

conversion factors.

Figure 5. Zonal mean 222Rn concentrations (units of 1x10™%! mol/mol) simulated by the

established models and CCCA-GCM in June-August. Data for LMD are missing.

Figure 6. Mean concentrations at 300 mb in June August for the tracer released in the
upper troposphere at northern mid-latitudes (case B). Units are 1x10™%' mol/mol. Data

for MOGUNTIA are missing.

Figure 7. Zonal mean concentrations in June-August for the aircraft tracer released in the

upper troposphere at northern mid-latitudes (case B). Units are 1x1072! mol/mol.

Figure 8. Zonal mean concentrations_in December-February for the tropical lightning

tracer released in the upper troposphere (case C). Units are 1x10~2! mol/mol.

Figure 9. Global atmospheric inventory of 2!%Pp partitioned by altitude bands.
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6/17/96

Proposed Budget
(7/1/96 -12/31/96)

Direct Labor (ITD) P Kasibhatla 83% FTE
Benefits
Total Direct Labor

Direct Labor Overhead (ITD)

Expenses:
Travel
Materials and Supplies
Equipment
Lease
Subtotal Expenses

Total MCNC Incurred

Subcontract Expense:
Georgia Tech

Total Subcontracts

Subtotal Contract Costs
General and Administration

TOTAL FUNDING REQUEST

Provisional Rates
Benefits

Tech Ovhd
G&A

25,898
10,660

36,558
15,164
2,000
5,074

1,244

8,318

60,040

10,010

10,010

70,050
6,634

76,684

41.16%
41.48%
9.47%



Drug-Free Workplace Certification

I.  MCNC certifies that it will provide a drug-free workplace by:

A. Publishing a statement notifying employees that the unlawful manufacture, distribution,
dispensing, possession or use of a controlled substance in the grantee's workplace and specifying
the actions that will be taken against employees for violation of such prohibition;

B. Establishing a drug-free awareness program to inform employees about--

1. The dangers of drug abuse in the workplace;
2. The grantee's policy of maintaining a drug-free workplace;

3. Any available drug counseling, rehabilitation, and employee assistance programs: and

4. The penalties that may be imposed upon employees for drug abuse violations occurring in the
workplace;

C. Making it a requirement that each employee to be engaged in the performance of the grant/contract
be given a copy of the statement required by paragraph (A);

D. Notifying the employee in the statement required by paragraph (A) that, as a condition of
employment under the grant, the employee will--

1. Abide by the terms of the statement; and

2. Notify the employer of any criminal drug statute conviction for a violation occurring in the
workplace no later than five days after such conviction;

E. Notifying the agency within ten days after receiving notice under subparagraph (D)(2) from an
employee or otherwise receiving actual notice of such conviction;

F. Taking one of the following actions, within 30 days of receiving notice under subparagraph (D)(2).
with respect to any employee who is so convicted--

1. Taking appropriate personnel action against such an employee, up to and including
termination: or

2. Requiring such employee to participate satisfactorily in a drug abuse assistance or
rehabilitation program approved for such purposes by a Federal, State, or local health, law
enforcement, or other appropriate agency;

G. Making a good faith effort to continue to maintain a drug-free workplace through implementation
of paragraphs (A), (B), (C), (D), (E) and (F).

II. MCNC shall insert in the space provided below the site(s) for the performance of work done in
connection with the specific grant/contract:

Place of Performance (Street address, city, county, state, zip code)

Highway 54, 200 Park, Suite 112
Research Traingle Park, NC 27709

Durham County




CERTIFICATION REGARDING DEBARMENT, SUSPENSION, PROPOSED DEBARMENT,
AND OTHER RESPONSIBILITY MATTERS-PRIMARY COVERED TRANSACTIONS

(1)  The prospective primary participant certifies, to the best of its knowledge and
belief, that it and its principals:

(a)  Are not presently debarred, suspended, proposed for debarment, declared
ineligible, or voluntarily excluded from covered transactions by any Federal
department or agency;

(b)  Have not within a three-year period preceding this proposal been
convicted of or had a civil judgment rendered against them for commission of fraud or
a criminal offense in connection with obtaining, attempting to obtain, or performing a
public (Federal, State or local) transaction or contract under a public transaction;
violation or Federal or State antitrust statutes or commission of embezzlement, theft,
forgery, bribery, falsification or destruction of record, making false statements, or
receiving stolen property;

(c)  Are not presently indicted for or otherwise criminally or civilly charged
by a government entity (Federal, State or local) with commission of any of the offenses
enumerated in paragraph (1) (b) of this certification; and

(d)  Have not within a three-year period preceding this application/proposal
had one or more public transactions (Federal, State or local) terminated for cause or
default.

(2)  Where the prospective primary participant is unable to certify to any of the
statements in this certification, such prospective participant shall attach an explanation
to this proposal.

Organization (Offeror): MCNC L

Signature: ( ) U

T /( L 74 A2 A’A4
Typed Name: Franklin D. Ha{t

Title: President Date: ﬁ




DISCLOSURE OF LOBBYING ACTIVITIES
Complete this form to disclose lobbying activities to 31 U.S.C. 1352

Serve as consultant to MCNC sith responsibility for strategic, analysis
other federal and private funding opportunities.

1. Type of Federal Action: N/A 2. Status of Federal Action: N/A |3 Report Type:
(] a. contract [ a. bid/offer/ application @ a. initial filing
b. grant b. initial award b. material change
c. cooperative agreement ¢. post-award For Material Change Only:
d. loan year quarter
e. loan guarantee date of last report
f. loan insurance
4. Name and Address of Reporting Entity: 5. If Reporting Entity in No. 4 is Subawardee, Enter
"] Prime (7] Subawardee Name and Address of Prime:
Tier , if knoun:
MCNC
3021 Cornwallis Road
Research Triangle Park, NC 27709
Congressional District, if known: 4th Congressional District, if known:
6. Federal Department/Agency: N/A 7. Federal Program Name/Description: N/A
CFDA Number, if applicable:
8. Federal Action Number, if known: 9. Award Amount, if known: N/A
N/A $
10. a. Name and Address of Lobbying Enlity b. Individuals Performing Services (including address if
(if individual, last name, first name, MI): different from No. 10a}
Barfield, Vic (last name, first name, MI):
Barfield and Wilson
888 16th Street, NW, Suite 714 Barfield, Vic
Washington, DC 20006
(attach Continuation Sheet(s) SF-LLL-A, if necessary)
11. Amount of Payment (check all that apply): 13. Type of Payment  (Check all that appiy):
$ 13,000/ mo {x] actual (x] planned X]a. retainer
12 Form of Payment (check all that apply): [Ib. one-time fee
X] a. cash e. commission
[ b. in-kind; specify: nature [Jd. contingent fee
value (le. deferred
(XIf. other; specify: monthly payments of
$13,000
14. Brief Description of Services Performed or to be Performed and Date(s) of Service, including officer(s),

employee(s), or Member(s) contacted, for Payment Indicated in Item 11:

and budgetary matters before the U.S. Congress and assist MCNC with

(attach C: Sheet(s) SF-LLL-A, if necessary) =)
15. Continuation Sheet(s) SF-LLL-A attached: & YES ONO 47X} 1)
16. Information requested through this form is authorized by title 31 US.C. ”/
section 1352. This disclosure of Jobbying activities is a material Signature: M
representation of fact upon which reliance was placed by the tier above . L)
when this transaction was made or entered into. this disclosure is required |Print Name: Franklin D. Hart
pursuant to 31 US.C. 1352. This information will be reported to the Congress
semi-annually and will be available for public inspection. Any personwho [Title: President
fails to file the required disciosure shall be subject to a civil penalty of not
less than $10,000 and not more than $100,000 for each such failure. Telephone No.:  (919) 248-1810 Date: 18-Jun-96

Authorized for Local Reproduction
Standard Form - LLL




DISCLOSURE OF LOBBYING ACTIVITIES
Complete this form to disclose lobbying activities to 31 U.S.C. 1352

Reporting Entity: MCNC Page 2 of 2
10a. FBA,Inc. 10b. McNelis, David N.
1620 L. St., NW, Suite 875 Kirkland, J. R.
Washington, DC 20036
Authorized for Local Reproduction

Standard Form - LLL-A




