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A Non-Axisymmetric Linearized Supersonic Wave Drag Analysis
Mathematical Theory

PAUL J. BARNHART*

NYMA, Inc.

Engineering Services Division
Brook Park, Ohio

Abstract

A mathematical theory is developed to perform the calculations necessary to determine the wave drag
for slender bodies of non-circular cross section. The derivations presented in this report are based on

extensions to supersonic linearized small perturbation theory. A numerical scheme is presented utilizing

Fourier decorfil3"bsition to compute the pressure coefficient on and about a slender body of arbitrary cross

section.

Introduction

Supersonic linearized small perturbation theory has been used to calculate the wave drag for simple aircraft

configurations of slender fuselages and thin wings since the 1950s. Complex aircraft configurations have been

analyzed by linearized small perturbation theory since the 1970s. The interference effects between aircraft

fuselage, wing, and engine nacelle found in complex configurations can be simulated by the superposition

of pressure fields from and on interfering bodies. Only axisymmetric slender body theory has been used
to model the interference of aircraft fuselages and engine nacelles in the past. However, current designs

for supersonic transport aircraft incorporate engine nacelle configurations which are not axisymmetric. In

order to analyze the engine/airframe interference effects for these current nacelle designs other methods have
been used. In particular, Euler Computational Fluid Dynamic techniques have been used to compute the

interference wave drags for complex aircraft configurations. Using CFD techniques greatly complicates the

analysis set up and run times, thus limiting the number of possible configurations which can be analyzed.
The motivation for this work is to find an extended solution technique whereby linearized small perturbation

theory can be used to calculate the pressure field about slender, non-axisymmetric bodies. This would extend

the modeling capablities of existing aerodynamic configuration analysis programs based on linearized small

perturbation methods.

Governing Differential Equation and General Solution

The following are the basic relations and theory developed in the non-axisymmetric wave drag analysis. The

problem is formulated in cylindrical coordinates, as is typical for slender body theories. Figure 1 shows
a slender body whose cross sections is not axisymmetric, and the coordinate system used in the following

analyses. The z axis is aligned with the free stream flow direction. The governing partial differential equation

for the perturbation velocity potential is:

02¢ 02¢ . 10¢ 1 02¢
(1 - M 2) _ + _ + r_rr + r'_- = 0 (1)

Implicit in the derivation of Equation 1 are the assumptions that the gas flow is; supersonic (M > 1), ideal,

irrotational, and inviscid. Ward (Reference 1) gives a general solution of the above equation:
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Where: .....

fl_ = M 2 -- 1 (3)

The terms fn(_),gn(_) in Equation 2 are singularity distributions along the body axis. The perturbation

velocities are found by:

a_
u = -- (4)

Ox

o¢= -- (5)
Or

Ia_
w- (6)

r 00

For axisymmetric flows (Reference 2) the governing P.D.E and solution are:

82_ 02_ 1 aS
(1- M_)_ + _ + 7_ = o (7)

[:-_" L(O_____
_(_,r) = ,o _/(__ _)2 _/_2r2

=f:-'"
_o _/(x- f)2 _ p2r2

1 [=-/_rV(Z, r) -- --- (Z -- _)ft(f)(_

r Jo ¢(z - f)2 _ #2r2

(8)

(9)

(10)

For n = 0 the solution (Equation 2) to the non-axisymmetric problem reduces to:

_0(x,r, 0) = [ =-_s" -- fo(_)d_ (11)
J0

By comparison with Equation 8 it is seen that the zeroth-order solution in Equation 2 recovers the exact

solution to the axisymmetric problem. Higher-order terms, n > 0, in Equation 2 represent non-axisymmetric

corrections to the zeroth-order axisymmetric solution.



Determinationof thePerturbationVelocities

Returningto thenon-axisymmetricproblem,let:

¢(x,r,o) = _ ¢.(x,r,0)
n_O

Where now:

(12)

=-Or 1¢_(x,r,0) = cos.0
J0

f-g

By change of variable:

(=z-flrcosho.

(13)

(14)

d_
= -/3r sinh o.

do"

dF, = -¢(x - _)2 _ fl2r2da

Note that:

cosh no. =
+

The limits of integration in Equation 13 become:

(15)

(16)

(17)

(18)

Yields a new form of the perturbation potential:



co*h-X(xlPr)Cn(x, r, O) = cos nO fn (x - fir cosh a) cosh nado.
dO

fco6h- t (=/Or)

+ sin nO Jo gn (z - fir cosh u) cosh n_do.

The axial perturbation velocity may now be found by:

uCx,r,0) = _ u.Cx,r,0)
n=0

Where:

(19)

(2O)

u.(x,r,O) 0¢. (21)=-_;

0 fcosh-t(x/flr)
Un(Z, r,O) = cos nO-- I fn (x - fir cosh o.) cosh no.do.

Oz J0

+ sin nO g_ (z - pr cosh o.) cosh no.do.
dO

(22)

Since the upper limit in the integrals in Equation 22 is a function of the variable of differentiation, Liebnitz

rule* must be used. (The following applies to both of the integrals above. Only the first term will be treated

explicitly.)

0 / c°sh-l(x//3r)

_zz J0 /,, (z - fir cosh o.) cosh no'do. =

[cosh-,(./m o [/. (_ _/_ cosh o.)cosh no.]do.
dO _Z

+f.(_-_,coshcosh-_(_/Z_))coshncosh-_(_/Z_)_ cosh-'(_//3_)

For closed nosed bodies, f.(O) = O, and so:

(23)

/ cOsh- x (_/'_r) ___u,, (z, r, O) = cos nO /,, (x - fir cosh o.) cosh no.do.
d0

cosh-t(_//_r) 0 (x fir cosh o.) coshno.da
+ sin nO -_xg, -

JO

Recall the change of variable in Equation 14:

0f, (z -/3r cosh _) = 0 0_ ,
Ox _'fn (_) _x = fn (/[)

(24)

(25)

o f"o j: of , +f oo
0-'_Ja(.) f (x, r/)dx -- _ _ - f (a,7})0--'_



cosh- l(::/pr)

u,_(x, r, O) = cos nO f f" (z - fir cosh o.) cosh nedo.
J0

cosh-ICkier)

+ sin n0 / g" (x - fir cosh o.) cosh no.do.
J0

Reversing the change of variable in Equations 14 through 18 yields:

_.(x, _,0) = cosneL

[x-_- _/( _)2_ ,2r2]"} L"(_)_+ _ _/(x__)2_ _2r2

{[ l.....+sinnOf=-""_ x- _+q_ _)_-_2_
Jo

+ _/(_ - _)_ -/_r_

Similarly, the radial perturbation velocity can be found:

n=0

Where:

0¢.
,.(_,.,e) =

(26)

(27)

(28)

(29)

v_ (z, r, 8) = cos n8 f. (z - fir cosh _) cosh no'do"
JO

_._/cosh-i(xl_r)+ sin n8 gn (z -/_r cosh a) cosh no.do.
J0

And by similar reasoning used in Equation 23:

fcos h-l(_/#r)

vn(x, r,O) = cosne ]0 0f. (z - fir cosh a) cosh no.do.0r

/ c°sh-l(_/flr) O (Z /3rcosho.) cosh no.do.
+sinn_ _Trg. -

J0

Recalling the change of variable in Equation 14:

o O 0_f. (x - fir cosh o.) = _--_f. (e) _r = in' (e) (-/7 cosh o.)

5

(30)

(31)

(32)



fcosh-t(x/_r)

¢o_h-_(_/#_)- sin nO fl cosh _g_ (z -/_r cosh _) cosh n_r&r
JO

Reversing the change of variable in Equations 14 through 18 yields:

(33)

v,,(x,r, O) = - cosnO 2--;

_/(=_ _)2_/_2_.2

- sin n0 2-'-r _r

+ _/(x - _)2 _ _2r2

Finally, the aximuthal perturbation velocity can be found:

Where:

oo

n=0

And by direct differentiation:

1 0¢.
w. (x, _, O)= ---

r a8

(34)

(35)

(36)

fo x-fir n I [ n
_.(_, r, o) = - sin nO 2_' _ - _ + _/(_ - _)_ -- _2_"

P_
(37)



Examining the perturbation velocities for n = 0, the lowest order term in the non-axisymmetric formulation,

it is found that:

[.-Zr f_(_)d_
=o(=,r,O) = Jo X/(=__)_ _ _2_2

vo(=,_,O) =-_F -_ (=-_)y_(¢)d_

(38)

(39)

wo(z, r, 0) = 0 (40)

Comparing the above with Equations 9 and 10 shows that the zeroth-order perturbation velocities recover
the exact solution to the axisymmetric problem. Higher-order terms, n > 0, in Equations 27, 34 and 37

represent non-axisymmetric corrections to the zeroth-order axisymmetric solution.

Body Surface Tangent Flow Boundary Condition

The flow along the surface of a body cannot penetrate the body, and must therefore follow the contour of
the body. The requirement that the flow be tangent to the body, on the body surface, can be used as a

boundary condition from which the singularity distributions may be determined. The tangent flow boundary

condition may be written as:

V. VS = 0 (41)

Where S(x, r, 0) = 0 defines the body surface. For cylindrical coordinates in terms of the perturbation

velocities:

- - ( )os _os (421v . vs = 0 + _, T_=+v_-T+-_=°roo

And since fi << U the boundary condition becomes:

BS OS w (9S (43)
_+_+ -or 00

Where v = #/0, etc. Defining the body surface as:

S(=, r, 0) = r - R(z, 0) = 0 (44)

Where R(z, 0) describes the body radius at a given z, 0 location. It then follows that:

as _ aR (45)
Oz Oz

as (46)
Or

OS OR
= (47)

(90 00

Substituting the above into Equation 43 yields:

aR -v + w OR (48)
Oz r 00

Where v, w are the known velocity perturbation functions previously defined in Equations 28 and 35. The

boundary condition is applied on the body surface, r = R(x, 0), and so:



_R(=,e) = v(=,r,e)- w(x,r,e)_(le)_-eRO:,e)

It is convienent to introduce the following change of notation:

u(z, r, O) = _ cos nOZU.[f "1 + _ sin nO:T.,_[g']
n=O n=O

co oo

_os.OZ_[/_1+ _ sinnOZ:[¢1v(x,r,O)= _ ° '
n=O n=O

_o oo

_(_:,,.,e) = _ co_nOZZ[g.]- _ sinnOZ:[I.)
n=O n=O

Where the integral operators for each perturbation velocity are defined as:

(49)

(50)

(51)

(52)

..... =-_r 1 z - _ + _)2 _ p2r2z_ [hi=
JO

+ fir
h(,_)dC_

_/(_ _ 0 2 _ fl2r2
¥

(53)

ar--_l"zZ[h]= ---
JO

( x - ,_) h(,_)d,_

(54)

zZ [hi= _--; fr
JO

Or, using binominal notation:

n=O

: 7"1(/ tv(a:, r,O) y'_' ksin/ _,77_[.q,_l)
n_-O

w(z,r,O) = _ \sin} n. _,_2._[a])
rl----O

hCOd_

_/(_ - _)_ - fl_,._

(55)

(56)

(57)

(58)



It is also appropriate to write R(z, 0) as a Fourier series:

R(x,O) = __. a,,(x)cosnO-t- __. b,_(x)sinnO
n=O ri=O

°° (c°S_no(an)R(x,O) = _ ksin / b.
rl_0

Then:

= ks nn 't,ab./O:J
n=O

R(x, 0) = _ ksin / k-na,_/
n=0

Substituting Equations 57, 58, and 60 through 62 into Equation 49 results in:

(59)

(60)

(61)

(62)

(cOS_nO(CganlOz, _ : _ (cOS_n0¢i_[f_], _ _ _ sin nOt-:T._[f,,])" _.=0 .=0 ks/n/ k-nan� (63)

.=0 ks/n/ \c9b,_/c9=,/ ,_=0 ks/n/ \:T._[g_]/I %_-, (cos'_ nt7 Can" _

.=0z'-'" " \]ksin / bn

The above equation is the exact boundary condition for tangential flow on the surface of a body. The last

term consists of products and quotients of infinite series, and presents a problem in attempting to determine

f:,,g.. If the body surface is very nearly axisymmetric, then 0RIc9_7 _- 0 andthe singularity distributions ' '
w << v. This limitation will be called the quasi-axisymmetric boundary condition. In this case the last

term in Equation 63 can be dropped and the following boundary condition results:

__, (c°S'ln,(Oa"lOz - Z"_['f:}_=0 (64)
,,=o ,,sin/ \ab.la_ z._b'])

Note that the above boundary condition is exact for axisymmetric bodies, and is an approximation for non-

axisymmetric bodies. In Equation 64, since cosine and sine are orthogonal functions, and since the infinite
series are equal to zero, it necessarily follows that each term in the series must be equal to zero also. Thus

Equation 64 reduces to the following pair of independent sets of linear equations:

On,, o , (65)
_- =z;,[/.], .=0,1,2,...oo

ab.
c_---_= 2"_.[g_], n = 1, 2, 3, ...ex_ (66)

The above equations provide unique relations between the singularity distributions and the derivatives of

the body Fourier coefficients. For known singularity distributions, a body surface is defined. For a defined
body surface, a unique set of singularity distributions must exist. To determine the singularity distribution

from a known body, start by expanding Equation 65. A similar analysis exists for Equation 66.

ti

/:-"" I [=:-_- X/( _)_ - n_"_.]"- _rr _7 (x - E,)]'_(_)dE.
_o _1(_ - _)2 _ _2,._

(67)



Discretizationof theSingularityDistributions

Thereisarelativelysimpletechniquewhichcanbeusedto determinef'(``) if Oa,(z)/Oz is known. If .f'(``)

is assumed piecewise constant over a small interval (``i-l,``i), then f'(``i) can be pulled out of the integrals
as follows.

_ _ _ 1"(``,) _ _,.
i=1 ,-1

2 j_' 1 [Z--
i=1 ,-L

``+ _/(= _ ,)2 _ Z2,.2
n

(= - ``)d_

_/(x - ``)2_ Z2r2
n

(x - ``)d_

_/(x _ ``)2_ Z2r2

(68)

Where:

``o =0 (69)

``2= • - #r (70)

Note that z, r are fixed locations on the body surface. It is convient to introduce another integral notation.

Let:

(_ - ``)d``

_/(_ _ ``)2_ Z2:
v

(71)

Then Equation 68 becomes:

(72)

0a.(x) 2 (I:+ {,o=--E::<_,)÷':-)I,,_,
i=i

By breaking up the above summation:

(73)

2-1

Oa,,(_) (i_+ _, ,0.-:'_(_')+'X-)I._,÷_:_(_')0:+÷I:-)l::_,
i=l

(74)

Or finally:

2-1 0..(x)z:'_,)(,:+_-)I::_,÷ o---;-
/',,(``k)= i=l

0:÷':-)I::_,
(75)

Thus f'(``2) can be found in terms of known integrals and f_,(``2-1),fn'(``2-2),...- Therefore, the entire

singularity distribution can be determined by marching down along the body axis. The corresponding

relation for the gin terms is:

10



k-: ab,,(_)

g_(_)= ,=1

O:+':)(L
(76)

With the singularity distributions known it is possible to calculate the pressure coefficient field on and about

the body. A first order pressure coefficient is defined as:

_p(x,_,o)= -2,,(=,.,o) (77)

And from Equation 50:

tA !c,(x,.,el = -2 _ cosnez,_If'] - 2_ sinneZ.[g.]
n=0 n=0

(78)

Since ]_, g_ are discrete:

c,(_,,.,O)=-2_eos,,O_:'(e,) f_ : x .... :" e_
n=O i-----I i-t

n

' _, 1 [_ - e - _/(_- el_- _:"- __ cosnO_ :"(_,lf_ : _.
n=0 i=l i-I

-2_sinnO_g:((i) :.=0 i=l '-' (_ - :)_ - _:
n

. ,,1 .-,- ,,.=0 i:1 '-' _- 2_ B_2,'_

Simplifying the above expression by the following integral definitions:

.,-, : _, _/(_ _ _)2 _ _2

rL

_,_, = ,_, : _(x _ _)_ _ ¢_2

Yields the following expression for the pressure coefficient:

_/(z-()_-fl2r 2 (79)

(80)

(81)

k I"-'_[ _' ZsinnO_g.((i)' I,_+ +I."-\':')[_A_,,.,e)=-__cos,_O__,f:(_,) r.++. :i_,_-2 _,_,
n=0 i=1 n=0 i=1

(82)

Evaluation of the Integrals

All that remains is to find closed form solutions for the integrals IV + _ , I_- _ , I_ + I _- f_ , given
[_i--I I_i--I --1 ) n _i--I

in Equations 71, 72, 80, and 81. Starting with the evaluation of the integral in Equation 71, where now

C = _r:

11



Introducingthefirst changeof variable:

(83)

O''- X--_ (84)

Yields:

,:1,,&-I = - 2rc-'-'_ o"+
i--1

Introducing the second change of variable:

p= _---c 2

ado"

._r_" C2
(85)

(86)

d_- 4W=-_dp (ST)
O"

Yields:

i--I

Introducing the third change of variable, and utilizing one of the indefinite integrals found in the CRC
Standard Math Tables* :

A = tan -1 _ (89)
C

Yields:

iv+I(, __ c [_"

n Ici=l 2rc" JA,_I

IV+" c _xl [l+sinA] nn _-t = --_r _-x cosA --

Introducing the fourth, and final, change of variable:

1 + sin A

q = cos A

[ctan A + cseeA]" sec2Aria (90)

dA

cos2A (91)

(92)

dA=cos_ d_ (93)

Yields:

i_+le, c _" "-_= dT/
'_ I_,_, 2r ,__

(94)

/f(x,_)dz=a/f(atanu, asecu)sec2udu,
1u : tan- )

a

a>0

12



FromEquation92,andutilizingsimpletrigonometricidentities,it canbeshownthat:

cosA- 2,1 (95)
r/2+l

Substituting Equation 95 into Equation 94, and recalling that c = fir, yields a simple expression which can

be directly integrated in closed form:

- -fl {0' ,7"-2 (,72 + 1) dr/ (96)
1_'+ ¢_:__ - 4 J,,_,

For 12 = 0:

IZ+ ¢,_, =-_- _.,,,_,
(97)

For n = h

For n > 2:

=-'4 r/2 + In r/ 0,-,
(98)

r/,i_+l_, /3 [ 1. r/n+ 1 1 ,7._1 (99)
" I_,_,= -4- Ln + 1 +n-I _,_,

Reversing the change of variables in Equations 92, 89, 86, and 84 yields the limits of integration in Equations

97, 98, and 99:

x - _i-1 + _/(z - (i__)2 -/32r2 (100)
r/i-, = /3r

/

'71 = _r

Continuing on with the evaluation of the integral in Equation 72:

,-, V(_ - _ ¢2

Using the same change of variable in Equations 84, 86, and 89 yields the following relations:

I_ - 2rc" _- V/_- c 2
i--I

I" 1]j, ]ov- 2 + c 2 _ p dp
I" ¢,_, - 2rc_ ___

i:-1_, _ c fA x. [csecA_ctanA]nsec2AdA
(,_, 2rc n ,_,

- ¢' e fxi IX-sinAI" dAInv
,,_,=-2rJx,_ '- cosA J "cos2A

Introducing a new fourth change of variable:

1 - sin A

/_= cosA

(101)

(102)

(103)

(104)

(105)

(106)

(107)
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Yields:

dA= -cosA dp (108)

_[_i c /_ _,_-i
I: _,-,. = 2-_j_,_,. _osA d/J (109)

From Equation 107, it can be shown that:

2p (110)
cosA - p2 % 1

Substituting Equation 110 into Equation 109 yields a simple expression which can be directly integrated in
closed form:

For n = O:

r- I"' z ["' :_,_ (;+ i)d.
" I¢,_, = 4 J.,_,

(111)

For n = 1:

1_ =- p-- (112)

For n> 2:

,:,," _,__ = _ P2+lnp _,,-_
(113)

-,,_e, L 1 .n+, 1 (114)
n - 1 Jp,-i

Reversing the change of variables in Equations 107, 89, 86, and 84 yields the limits of integration in Equations
112, 113, and 114:

x - _i-i- _f(x - _i_l)2- f2r2

Pi-1 = fir
(115)

-_i -_/(_-_i)2_Z2:
Pi= fir (116)

Proceding with the evaluation of the integral in Equation 80:

Using the same change of variable in Equations 84, 86, 89, and 92 yields the following:

,_,_, = 2;" ':"+ V_- c2
i--I

1:'[,+

(117)

(118)

(119)

14



1 L x'i,_ + _' = __c _ [ctanA + csecA] nsecAdA
_i-I i-I

" ,e,-, =-7 ,_, l _X cosa

lU+ (, 1 L oi" __, =-2 On-ldq
i--I

(12o)

(121)

(122)

For n=O:

I u+ _' =- lnr/ (123)
n G-x rTi-s

For n = 1:

For n > 2:

=_ _ (124)

I_ + ::_, = __ [ l__._rln]"' (125)
Lzn J_,_,

The limits of integration for Equations 123, 124, and 125 are the same as those given in Equations 100 and

101. Finally, the evaluation of the last integral in Equation 81:

1_ e,-, = 2c-----z z - _ - z - _)2 _ c2 _/,-, (x - _)_ - c_

Using the same change of variable in Equations 84, 86, 89, and 107 yields the following:

In G-1 2cn ,-I

For n = 0:

P' dp

-_:-1 1 L x' [csecA-ctan2]"secAdAI_ - 2c n ,-,

I"_ e,_, =-_ ,_, _o_ J eos'----S

(126)

(127)

For n = 1:

(128)

(129)

(130)

(131)

1_ I --- lnp (132)

/Ji-s

15



Forn > 2:

-::_,12 = p (134)

The limits of integration for Equations 132, 133, and 134 are the same as those given in Equations 115

and 116. This completes the evaluation of all the integrals necessary to formulate the problem solution

numerically.

Summary

An analysis technique has been developed employing supersonic linearized small perturbation theory which
is not restricted to slender bodies of circular cross section. The method developed here can be employed in

the analysis of wave drag for slender, arbitrary cross section bodies. The method permits the calculation of

the first-order pressure coefficient on or about the body. The pressure coefficient can be integrated over the
surface of the body to compute the wave drag resulting from the body. Also, the pressure coefficient field

can be calculated about the body, and this pressure field can then be used in other existing analyses and

computer programs to determine the aerodynamic interference drag for complex aircraft configurations.
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