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HIGH REYNOLDS NUMBER ANALYSIS OF AN AXISYMMETRIC

AFTERBODY WITH FLOW SEPARATION

John R. Carlson*

David E. Reubush**

NASA Langley Research Center

Hampton, VA 23681

ABSTRACT

The ability of a three-dimensional Navier-Stokes method,

PAB3D, to predict nozzle aflerbody flow at high Reynolds

number was assessed. Predicted surface pressure coefficient

distributions and integrated afterbody drag are compared with

experimental data obtained from the NASA-Langley 0.3 m

Transonic Cryogenic Tunnel. Predicted afterbody surface

pressures matched experimental data fairly closely. The

change in the pressure coefficient distribution with Reynolds

number was slightly over-predicted. Integrated afterbody drag

was typically high compared to the experimental data. The

change in afterbody pressure drag with Reynolds number was

fairly small. The predicted point of flow separation on the

nozzle was slightly downstream of that observed from oil-

flow data at low Reynolds numbers and had a very slight

Reynolds number dependence, moving slightly further down-

stream as Reynolds number increased.

INTRODUCTION

Potential differences between the data obtained through

typically low Reynolds number scale model wind-tunnel test-

ing and that of full scale has historically been a concern and

the present advanced subsonic and high-speed research pro-

grams have renewed this attention. In particular, concern

about potential Reynolds number effects on drag has been

focused in the area of propulsion-airframe integration (PAl)

testing, where high afterbody slopes and long boundary-layer

runs result in large viscous effects on the nozzle boattail.

Additionally, extensive use of computational fluid dynamics

(CFD), from incompressible panel methods through advanced

Navier-Stokes methods, for preliminary design studies in

these same transport programs, with no direct evidence of

their ability to predict correctly the effects due to Reynolds

number, have resulted in similar concerns.
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Previous to the development of cryogenic test techniques

for achieving high Reynolds numbers in wind tunnel test fa-
cilities little fundamental research data had been available

for the evaluation of any CFD methods for their ability to

predict Reynolds number effects in PAl. However, a number

of years ago, during the developmental phase of cryogenic

testing techniques at the NASA Langley Research Center;

two sets of simple axisymmetric nacelle models were built

and tested in what was then known as the 1/3 m Pilot Tran-

sonic Cryogenic Tunnel (now the 0.3 m Transonic Cryogenic

Tunnel); thereby obtaining some of the first test data for a

number of nozzle-boattail configurations over a wide

Reynolds number range, refs. 1-4. The 8 inch long (forebody)

geometry of most of these models was, by design, a scaled

down version of a 48 inch long model that had been tested in

the Langley 16-Foot Transonic Tunnel, thus providing addi-

tional comparisons of quality and repeatability of wind tun-
nel data between facilities, ref. 1.

The multiblock three-dimensional Navier-Stokes method

PAB3D, refs. 5, 6, and 7, was used for all the calculations

and utilized the algebraic Reynolds stress model of Shih, Zhu,

and Lumley for turbulence simulation, refs. 8 and 9. Grid

sensitivity was evaluated for afterbody pressure coefficients

and integrated pressure drag using the performance package,

ref. 10. Afterbody pressure coefficients and drag were com-

pared with experimental data.

NOMENCLATURE

Amax

CD

Cp
dm
L

I

M_

P

poo

qo_

maximum body cross-sectional area, 0.78540 in 2

pressure drag coefficient, F/q_Ama x

pressure coefficient, (p - p_)/qoo

body maximum diameter, 1.0 in.

length of body from nose to nozzle connect station,

8 or 16 in.

length of nozzle, in.
free-stream Mach number

static pressure

free-stream static pressure

free-stream dynamic pressure



NRe Reynoldsnumberbasedonbodylength
u,,. free-streamvelocity
u axialvelocity
x axialdistance
y lateraldistancefrommodelcenterline
z verticalorradialdistancefrommodelcenterline
cc flowangle-of-attack,degrees

angularlocationofpressureorifices,degrees

Subscripts

13 nozzle boattail component contribution

CL centerline

exp experiment
t total conditions

DISI_USSION

Expcrimcnt_| Model and Data

The model used for this study was one of six models

that were built for the original Reynolds number study, refs. 1

and 2. Four models with differing boattail geometry with a

length of 8 inches from the nose to the start of the boattail

(characteristic length) and two models with a length of 16

inches were constructed. The boattail geometries had circu-

lar arc (2), circular arc-conic, or contoured cross-sections.

This investigation utilized the circular arc with a length-to-

maximum-diameter ratio (fineness ratio - l/dm) of 0.8

boattail. Figure I is a photograph of the model mounted in

the pilot tunnel. The nose of the model was a 28 ° cone, 1.7956

inches long fairing to the cylindrical body via a 1.3615 inch

radius circular arc centered 2.125 inches downstream of the

model leading edge and 0.8615 inches below the model

centerline. The circular arc fairing is tangent at its endpoints

to the conical nose (1.7956 inches from the nose) and cylin-

drical body (2.125 inches from the nose). The model was

sting mounted with the diameter of the sting being equal to

the model base diameter. The length of the constant diam-

eter portion of the sting (6.70 inches measured from the nozzle

connect station) was such that, based on the work of Cahn,

ref. 11, there should be no effect of the sting flare down-

stream of the nozzle trailing edge on the boattail pressure

distributions. The following is a tabulation of the non-dimen-

sional orifice locations.

x/d m for L/Dm = 8 at

(_ = 0o _ = 120 o _ = 240 o

-0.2771

-0.0256

0.0770

0.1765

0.2750

0.3679

0.4675

0.5749

0.6698

0.7746

-0.2761

-0.0731

0.0256

0.1287

0.2257

0.3240

0.4180

0.5166

0.6165

0.7280

-0.2850

-0.0700

0.0345

0.1270

0.2260

0.3279

0.4200

0.5220

0.6376

0.7400

x/d m for L/Dm = 16 at

-0.4491

-0.1637

-0.0600

0.0337

0.1268

0.2279

0.3210

0.4199

0.5231

0.6279

-0.4660

-0.2201

-0.1281

-0.0260

0.0744

0.1729

0.2696

0.3679

0.4640

0.6758

-0.4561

-0.1552

-0.0590

0.0390

0.1342

0.2713

0.3718

0.4680

0.5749

0.7304

The models were constructed of cast aluminum with

stainless-steel pressure tubes cast as an integral part of the

model. The models were instrumented with 30 pressure ori-

fices in three rows of 10 orifices each. The 1 inch diameter

of the model physically precluded the placement of all 30

orifices along the same row. The tunnel has an octagonal test

section with slots at the corners of the octagon and is essen-

tially a scale model of the Langley 16-Foot Transonic Tun-

nel test section, ref. 12. The test medium for the cryogenic

tunnel was nitrogen.

The total temperature and pressure of the pilot tunnel

could be independently controlled. The experiment was con-

ducted over a range of temperatures from approximately 117

K to 308 K and pressures from 1 to 5 times the standard

atmospheric level. Any number of free stream total tempera-

tures or pressures can result in identical settings of Reynolds

number. From experiments conducted at several conditions

which resulted in the same Reynolds number surface pres-

sure coefficients and nozzle boattail drag were shown to be



similarregardlessofthetemperature/pressurecombinations
thatcreatedequivalentReynoldsnumbers,ref.4.Though
datawereobtainedovertherangeofMachnumberfrom0.6
to0.9,onlytheM=0.6dataarecomparedwiththeCFDof
thispaper.Thefollowingisatableofconditionsforexperi-
mentaldataobtainedatM=0.6fortheL/dm=8model.One
atmosphereisdefinedas0.101325MPa.

Tt, K Pt,atm NRex 10-6

117
117
117
117
117
117
117
308
308
308
308
308

5.00
4.00
3.00
2.50
2.00
1.50
1.30
5.00
3.80
3.14
2.50
1.25

43
34
26

21.5
17
13

11.5
11.5
8.5
7.0
5.5
3.0

Computational Procedure

Governing Equations. The code used was the general 3-D

Navier-Stokes method PAB3D-Version 13G. This code has

several computational schemes and different turbulence mod-
els that can be utilized, as described in more detail in refer-

ences 6 and 8. The governing equations are the Reynolds-

averaged simplified Navier-Stokes equations (RANS)

obtained by neglecting all streamwise derivatives of the vis-

cous terms. The resulting equations are written in general-

ized coordinates and conservation form. The implementa-

tion of the full three dimensional viscous stresses are reduced

to thin-layer viscous assumptions, although full Navier-Stokes

simulation is an option. The diffusion terms are centrally

differenced and the inviscid flux terms are upwind

differenced. Two finite volume flux-splitting schemes are

used to construct the convective flux terms. The Roe upwind

scheme with third order accuracy is used in evaluating the

explicit part of the governing equations and the van Leer

scheme is used to construct the implicit operator.

The user will typically utilize the Roe scheme procedure

to sweep streamwise through the computational domain and

the van Leer scheme for the solution of the cross-plane (i.e.,

i = constant) of a three dimensional problem. A single-cell

wide, two-dimensional mesh defined with the i direction of

the grid oriented in the conventional streamwise direction will

typically converge slower using the Roe relaxation solution

scheme compared to solving the equivalent problem with the

van Leer scheme. Therefore the i andj directions of the 2-D

mesh are swapped allowing the entire flowfield to be solved

implicitly with each iteration. The explicit sweep is not used

since only one cell exists in the idirection. The implicit scheme

has the potential of a much higher rate of convergence and can

provide a solution using less computational time.

Several near-wall models and compressibility corrections

are available to be used with several formulations of linear

two-equation k-e turbulence model, (e.g. Standard, Jones &

Launder, Yang & Shih). The k-e turbulence model equations

are uncoupled from the RANS equations and can be solved

with a different time step than that of the principle flow solu-

tion. Version 13G of the PAB3D code used in this study has

options for several algebraic Reynolds stress (ASM) turbu-
lence simulations. The standard model coefficients of the k-

equations were used as the basis for all the linear and non-
linear turbulent simulations, ref. 13. Additionally, it is known

that the eddy viscosity models produce inaccurate normal

Reynolds stresses. Flat plate flow, as well as other more com-

plex aerodynamic flows, are anisotropic. Successful imple-

mentation of the algebraic Reynolds stress models required

the solution methodology for turbulent production term of

the underlying linear turbulence calculations to be modified.

Turbulence production depends on high order derivatives of

the turbulent Reynolds stresses. Proper representation of the

stresses should be provided by face centered values, rather

than the cell centered values. Previous attempts to imple-

ment non-linear turbulence models in the context of a cell

centered eddy viscosity model worked only for 2-D prob-

lems and was unable to resolve 3-D flows. The two non-

linear turbulence models used in this paper are the theories

by Shih, Zhu & Lumley, ref. 9, and by Gatski & Speziale,

ref. 14. All flow solutions were developed with PAB3D-

V I3G using the standard formulation of linear k-E as the ba-

sis for the algebraic Reynolds stress calculation. The damp-

ing function of Launder & Sharma, ref. 15, was used to control
the near-wall behavior of k and _ was set to 2_((_/k)/_n) 2 at

solid surfaces. Turbulent flow solutions using either the ASM

or two-equation linear k-e model requires 23 words per grid

point. The code speed was 43 micro-seconds per grid point

(Cray 2 time) solving ASM turbulent flow simulations.

The conservative patch interface package of Pao &

Abdol-Hamid, ref. 7, enables the code to properly transmit

information between mis-matched block interfaces. Integer-



to-oneinterfacesareconsideredasubsetof the arbitrary block

interface and do not need to be specified as such to the patch-

ing code. The patching program writes a connectivity data-

base as a preprocessor prior to execution of the flow solver.

Each entry to the patch database contains cell face areas and

indices relating that cell with all other cells that will share
momentum flux information. The database information is

automatically re-allocated internal to the code during mesh

sequencing. As a result, each block can be sequenced at dif-
ferent levels and the correct interface information is main-

tained at the cell level. However, it is important to note that

features in the flow developed on one side of an interface

should not be obliterated on the other side due to too severe

a grid density mis-match.

Third-order continuity in transmitting the fluxes across

block boundaries is maintained by the code; lower order con-

tinuity may be specified by the user if required. Equal cell

size spacing on either side of an interface in directions nor-

mal to the interface must still be maintained regardless of the

mesh sequencing level of the block.

Boundary (_ondil;ions. For this study, solid walls were treated

as no-slip adiabatic surfaces. The solid wall boundary condi-

tion was satisfied by setting the momentum flux of the solid

wall cell face to zero. The boundary conditions used for the

internal nozzle flow path were fixed total pressure, total tem-

perature and flow angle at the plenum block inflow face. A

boundary condition for the Riemann invariants along the

characteristics was specified for the external freestream in-

flow face and the lateral freestream outer boundary of the

flow domain. An extrapolation boundary condition was ap-

plied on the downstream outflow face where both the free

stream and the nozzle plume exit the computational domain.

The axisymmetric flow assumption for the single-cell grids

was implemented by placing flow symmetry conditions to

the lateral side boundaries of the computational domain.

Solution Process. Total afterbody drag, nozzle pressure drag,
and solution residual were used to determine the solution

progress at the coarse (144), medium (122), and fine (111)

grid levels of the axisymmetric afterbody. The 144 abbre-

viation means the number of i-cells, j-cells, and k-cells were,

internal to the code, reduced by I, 4, and 4 respectively to

develop a coarse grid solution. Afterbody drag variance of

less than 0.50 percent for several hundred iterations was
achieved for all test cases.

Computational Grid Setup. The axisymmetric afterbody grid

utilized H-O type mesh topology with all block dimensions

that were sequencable by 4. The mesh was gridded with a

single cell wide 5 degree wedge grid with the streamwise

flow direction oriented along the j index to utilize the im-

plicit flow solver in the code for faster solution convergence.

Figures 2 through 4 are overall and detail views of the cell

centered grid. The body was described using 100 cells ex-

tending from the leading edge of the nose to the nozzle con-

nect station. There were 80 cells extending from the nozzle

connect station to the nozzle boattail trailing edge.

The first cell height typically decreased with increasing

Reynolds number of the freestream. The following schedule
was used for the freestream conditions of M = 0.6 and

T t = 560* R and the model reference length of L/d m = 8.

These data are also plotted in figure 5 and are compared with

a I-D isentropic flat plate curve of the variation of the first

cell height with Reynolds number for a flat plate (solid line)

for a y+ = 1.0. Therefore, the flow in the first cell center

above the surface using a grid generated with guidance from

fiat plate theory would then be y+ = 0.5.

NRe × 10-6 Pt0, psi h l, in x 106 y+

11

25.6

43.1

100.0

73.

171.

287.

665.

2O

8

2

2

0.50

0.27

0.18

0.39

The first physical cell height for the different Reynolds

number grids for this model are indicated by the solid circles.

The open circle symbols are the y+ of the flow and show that

the y+ for converged solutions were generally between 0.5

and 0.18. The low Reynolds number grid calculation was

done at y+ = 0.5. The ASM turbulence simulations have bet-

ter convergence trends when at least 2 cells are below y+ = 1.

Therefore, for the higher Reynolds number grids the first cell

spacing was slightly below the flat plate predictions. The

range of acceptability is generally between a y+ of 0.2 and

0.5, hence the two higher Reynolds number grids actually

had the same physical spacing but the y+ was still inside the

acceptable range.

Results

Figures 6 through 10 are the sensitivity of the CFD

method to grid density with Reynolds number. Figure 11 is

the change in predicted nozzle pressure coefficient distribu-

tion with Reynolds number. Figure 12 shows the experimen-



taltrendinnozzlepressurecoefficientswithReynoldsnum-
ber.Figure13isa comparisonof CFDwithexperimental
dataobtainedin twodifferentwindtunnelsaroundthe
Reynoldsnumberof5million.Figure14isacomparisonof
predictedandexperimentalnozzlepressuredragwith
Reynoldsnumberandfigure15isacomparisonoftwoana-
lytictechniquesforpredictingskinfrictiondragonthenozzle
boattailwithReynoldsnumber.Figure16isthepredicted
trendofthepointflowseparationonthenozzlewithReynolds
number.Figure17isaphotographofanoil-flowatM=0.85
andfigure18isananalysisofintegratedpressuredragerror
build-upbetweenexperimentaldataandCFD.

Infigures6through10repeatexperimentaldatapoints
wereplottedalongwithsolutionsatthreegridlevels(coarse
(144),medium(122),andfine(11!)) toevaluatetheexperi-
mentaldatascatterandCFDgridsensitivity,respectively.
Thecoarsegridcomputationwasconsistentlylowinthere-
coverypressureintheregionofseparatedflowdownstream
of x/dm= 0.55forthecompleteReynoldsnumberrange.
Gridconvergencewascloselyattainedasthemediumand
finegridswereverysimilar,butnotidentical,ateachofthe
Reynoldsnumbers.Thelevelof flowexpansionaroundthe
boattailshoulderwaspredicted.Thepressurerecoverywas
generallyunderpredictedatReynoldsnumbersbelow40
million,whilethepressurelevelwasgenerallymatchedabove
40million.

Figures11and12showthepredictedchangeinnozzle
surfacepressurecoefficientswith Reynoldsnumber
computationallyandexperimentally,respectively.Theex-
perimentaldatacurvesaresmoothed,averageddataoverthe
threeangularrowsof orifices.In general,theCFDshows
lowerpeakpressurecoefficientsattheflowexpansionpeak
nearx/dm= 0.15withincreasingReynoldsnumber.Also
higherrecoverypressuresin theregionof separatedflow
downstreamofapproximatelyx/dm=0.6arepredictedwith
increasingReynoldsnumber.Thesetrendswerequalitatively
thesamewiththeexperimentaldata,thoughtheCFDover-
predictedthechangein recoverypressurein theseparated
flowregionwithReynoldsnumber.

A comparisonof CFD(computedfor the5.7million
Reynoldsnumberofthecryogenictunneldata)withexperi-
mentaldataobtainedfromboththe16-footTransonicTun-
nelandthecryogenicTunnelandtwodifferentwindtunnel
models,ref.16,isshowninfigure13.Thedifferencesinthe
flowduetotheReynoldsnumbervariation3.6million to
6.9millionshouldnoteffectthevalidityofthecomparison.
Therearedataforthe16inchmodelfrombothtunnels,refs.

1and16,anddataforthe8inchmodelfromjustthe0.3m
tunnel,ref.1.Ingeneraltheredoesnotappeartobeasignifi-
cantfacilityrelateddifferenceinthepressurecoefficientdis-
tributions.Asmentionedintheprevioussectionconcerning
gridsensitivityatthedifferentReynoldsnumbers,theCFD
solutioncapturestheflowexpansionaroundtheboattail
shoulderfairlywell,butslightlyunder-predictsthepressure
recoveryin theseparatedflow regiondownstreamof
x/dm=0.5atthislowaReynoldsnumber.

Figure14isacomparisonofpredictednozzleboattail
pressuredragcoefficientswithseveralexperimentaldatasets.
Likebefore,datafromboththe0.3mand16-foottunnelsfor
severaldifferentmodelswiththesamenozzleboattailge-
ometryarepresented.Additionally,datafromthe48inch
modelwiththesameboattailgeometry,ref.17,is included.
Ingeneral,thepredictedpressuredragwashigherthanthe
dataobtainedfromthe0.3mfacility,ref.1.A bettercom-
parisonisobtainedwiththe16-footdatawhicharetheopen
triangle,diamond,(ref.16)andxsymbols,ref.17,at11mil-
lionReynoldsnumberandbelow.Theopendiamondin fig-
ure14istheintegratedpressuredragobtainedfromtheopen
circlesymbolsof figure13.Theopensquarearound6mil-
lionReynoldsnumberinfigure14istheintegratedpressure
dragobtainedfromthesolidcirclesymbolsof figure13,
whichappearfairlyinterspersedwiththeopencircles.Ref-
erence1notedthatveryslightdifferencesinpressurecoeffi-
cientdistributionsappeartoinducesignificantshiftsin the
levelof pressuredrag.Theissueof assigningareasforthe
pressure-areaintegrationprocesswillbedealtwithinasub-
sequentsection.AlsoincludedinFigure14isacomparison
ofpredictednozzleboattailpressuredragforthe105million
Reynoldsnumbertestconditionutilizingtwoalternativetur-
bulencemodels,a linearmodelandthatof Gatskiand
Speziale.Therewasnotasignificantdifferencein thedrag
coefficientspredictedbythethreemethods.

ArelatedissuewhencomparingCFDwithexperimen-
taldataistheassessmentofskinfrictiondrag.Typicallythe
experimentassignsawettedareatoaportionof themodel
and,withtheassumptionsof constantMachnumberand
measuredfree-streamconditions,aflat-plateequivalentskin
frictioncoefficientiscalculated.Thecomputationalmethod
hasavailableconsiderablymoreinformationconcerningthe
localflowonthemodelandcouldtheoreticallymakeanex-
actcalculationoftheskinfrictionforces.Threesignificant
factorsareaccountedforinthecomputationalmethod.First
thestreamwisevariationin thelocalviscousstressatthe
wallcanbecalculated.Second,theeffectofflowseparation
occurringonthelatter40percentoftheboattailcanbebet-



teraccounted.Lastly,dueto the curvature of the boattail, the

component forces of the skin friction can be separately ac-

counted. Despite these differences, the calculated skin-fric-

tion drag compared to the estimation from the wind tunnel

investigation was roughly 5 boattail drag counts off at 5 mil-

lion Reynolds number and 2 boattail drag counts off at 100

million Reynolds number, shown in figure 15.

Figure 16 is a comparison of predicted point of flow sepa-

ration on the boattail compared to flow visualization data
obtained in the 16-Foot tunnel. Flow visualization for this

model were only available at approximately 12 million

Reynolds number. The 8, 16, and 48 inch models were run

computationally and are shown by the solid symbols. The

point of flow separation experimentally was determined from

picking points from photographs of oil-flow runs in the 16-

Ft. tunnel. The point of flow separation computationally was

the sign reversal of the local skin friction coefficient. Though

no statement can be made concerning the experimental trend

of the point of flow separation with Reynolds number for

this model, computationally, a slight downstream shift in the

separation point is observed with increasing Reynolds num-

ber. At 12 million Reynolds number, the CFD is slightly

downstream of the experimentally estimated point. Figure

17 is a photograph of the oil flow over the solid plume model

at M = 0.6. As can be observed by the mildly wandering dark

line part way down the nozzle boattail, some three-dimen-

sionality existed in this flow that was not in the computa-

tional solution. The dark line is assumed to be the flow sepa-

ration point and the variation in location was estimated and

is denoted by the vertical spread in open triangle symbols in

figure 16.

As an attempt to clarify the difference between the inte-

grated pressure drag on the boattail computationally com-

pared with the experimental data when the pressure coeffi-

cient distributions appear fairly similar, several methods of

integrating the computational data were investigated. The

CFD drag numbers plotted in figure 14 were obtained by

using the areas and pressures obtained directly from the com-

putational grid. Due to the availability of the experimental

areas used for the pressure integration, tabulated below, in-

terpolated CFD pressure data were obtained at the exact ex-

perimental orifice locations and subsequently integrated us-

ing the experimental areas. The open circle symbols in figure

18 are the experimental data and the x symbols are the inter-

polated CFD solutions at the same physical locations. The
filled diamonds are the difference between the CFD and ex-

perimental pressure coefficients multiplied by the axial area

for that orifice location. Several locations have a large dif-

ference between the CFD and experiment but a very small

projected area so the combination makes little difference in

the error. The flow further downstream, between x/d m = 0.2

to 0.5, experiences a rapid recompression trend that, though

there is only a very slight downstream shift in the predicted

recompression, created a consistently positive increment be-

tween the data and CFD. This difference multiplied by the

increasing axial area contribution biased the predicted pres-

sure drag. Overall, while there appeared to be a good com-

parison between the pressure coefficient data, the integrated

drag numbers can be substantially different.

Areas for L/D m = 16 at

¢=0 o ¢= 120 o _= 240 °

0.0

0.0

0.0

0.00051

0.0

0.02354

0.03332

0.04049

0.05384

0.05493

0.0

0.0

0.0

0.00051

0.00999

0.01858

0.01346

0.01880

0.02369

0.05705

0.0

0.0

0.0

0.00051

0.01366

0.01346

0.01880

0.02369

0.05487

0.10745

A comparison of the integrated drags obtained from ex-

periment, CFD, and CFD using the experimental areas for

four values of Reynolds number can be found in the follow-

ing table. As can be seen, the CFD consistently predicted

bighter drag than the experiment, no matter which area as-

signment was used.

CDCFD

NRe x 10 -6 CDexp CDCFD exp area

25.6

43.1

67.0

105.0

0.0123

0.0100

0.0118

0.0102

0.0214

0.0208

0.0184

0.0181

0.0218

0.0274

0.0194

0.0189

However, it must be pointed out that these drag values

are for an isolated nacelle and when applied to an actual air-

craft the drag coefficients would be relatively lower. If the

rule of thumb that when applied to a typical fighter the drag

from an isolated nacelle should be divided by 20 is used the



nexttableresults.Withone exception, the drag predicted by

CFD is within 5 airplane drag counts of that from the experi-

ment, reasonably good agreement.

NRe x 10-6

25.6

43.1

67.0

105.0

CDexp

0.0006

0.0005

0.0006

0.0005

CDCFD

0.0011

0.0010

0.0009

0.0009

CDCFD

exp area

0.0011

0.0014

0.0010

0.0009

SUMMARY

The ability of a three-dimensional Navier-Stokes method,

PAB3D, to predict nozzle afterbody flow at high Reynolds

number was assessed. Predicted surface pressure coefficient

distributions and integrated afterbody drag are compared with

experimental data obtained primarily from the NASA-Lan-

gley 0.3 m Transonic Cryogenic Tunnel with some data from

the Langley 16-Foot Transonic Tunnel. Predicted afterbody

surface pressures matched experimental data fairly closely.

The change in the pressure coefficient distribution with

Reynolds number was slightly over-predicted. Integrated

afterbody drag was typically high compared to the experi-

mental data. The change in afterbody pressure drag with

Reynolds number was fairly small. The predicted point of

flow separation on the nozzle was slightly downstream of
that observed from oil-flow data at low Reynolds numbers

and had a very slight Reynolds number dependence, moving

slightly further downstream as Reynolds number increased.
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FIGURES

Figure 1.- Model installed in cryogenic tunnel.
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Figure 3.- Cell centered grid for model.
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Figure 4.- Detail of afterbody and sting grid.
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Figure 5.- Variation of first physical cell height (y I ) and y+

for converged solutions with Reynolds number for freestream

conditions ofM = 0.6, T t = 560 ° R, and model with L/d m = 8

compared with variation for a 1-D isentropic flat plate.
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Figure 6.- Comparison of pressure coefficient distributions

from solutions at 3 levels of grid density for configuration

with L/d m = 16 with experimental data for a Reynolds number

of about 5.8 million.
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Figure 8.- Comparison of pressure coefficient distributions

from solutions at 3 levels of grid density for configuration

with L/d m = 8 with experimental data for a Reynolds number

of about 43 million.
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Figure 7.- Comparison of pressure coefficient distributions
from solutions at 3 levels of grid density for configuration

with L/d m = 8 with experimental data for a Reynolds number

of about 11 million.

0.3

0.2

0.1

o

Cp

-0.1

-0.2

-0.3

..... PAB3D, SZL, L = 16, coarse grid

.... PAB3D, SZL, L = 16, medium grid

PAB3D, SZL, L = 16, fine grid

• L = 16, M = 0.6, 66.7M, _=0.

I • L = 16, M = 0.6, 66.7M, ¢=120.• L = 16, M = 0.6, 66.7M, ¢=240.

O L = 16, M = 0.6, 66.9M, d:--'0.

O L = 16, M = 0.6, 66.9M, ¢=120.

O L = 16, M = 0.6, 66.9M, ¢=24 ._" .

-0.2 0.0 0.2 0.4 0.6 0.8

_d m

-0.4
-0.4

Figure 9.- Comparison of pressure coefficient distributions

from solutions at 3 levels of grid density for configuration

with L/d m = 16 with experimental data for a Reynolds number
of about 67 million.
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Figure 10.- Comparison of pressure coefficent distributions

from solutions at three levels of grid density for configuration

with L/d m = 16 with experimental data for a Reynolds number
of about 105 million.
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Figure 11.- Comparison of computed pressure coefficient

distributions at four Reynolds numbers.
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Figure 12.- Comparison of smoothed, averaged experimental

pressure coefficient distributions at two Reynolds numbers.
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Figure 13.- Comparison of computed pressure coefficient

distribution with experimental distributions from both the

cryogenic and the 16-Foot Transonic tunnels at Reynolds
numbers from 3.6 million to 6.9 million.
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Figure 14.- Comparison of computed afterbody drag

coefficient variation with Reynolds number with several sets

of experimental data.
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Figure 16.- Comparison of predicted point of flow separation
with that obtained from flow visualization in the 16-Foot

Transonic Tunnel.
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Figure 15.- Comparison of computed afterbody skin friction

drag coefficient variation with Reynolds number for both

CFD and flat plate methods (used with experimental pressure

drag coefficient data).

Figure 17.- Oil flow photograph from the 16-Foot Transonic

Tunnel.
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Figure 18.- Comparison of computed and experimental

pressure coefficients at the same locations on the afterbody

at a Reynolds number of 105 million and an indication of the

contributions of the differences to drag coefficient differences.
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