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1 Introduction

The main focus of this investigation is the understanding of the transition problem
in hypersonic flow. In general, the transition problem can be viewed as a multi-stage
process from an initial laminar state. For low-level background disturbances, and in the
absence of Morkovin bypasses, (whereby the processes leading to transition are bypassed
such that the flow changes directly from a laminar to a turbulent state) the “natural”
transition process is described by 6 serially occurring processes [1]: (1) generation and
occurrence of ambient and body-produced disturbance fields; (2) modification of these
initial disturbance fields by the body flow field; (3) interaction and internalization of this
modified disturbance field by the body viscous flow (also termed “receptivity”); (4)
amplification of this received/internalized disturbance field via normal modes as
described by linear stability theory; (5) the non-linear finite amplitude wave-wave
interaction and spectral broadening; and (6) finally, the end of transition characterized by
the first occurrence of Emmons spots or at least a significant deviation from laminar-like
heat transfer and shear behavior. In the hypersonic boundary layer, the transition process
is accompanied by large changes in both heat transfer and skin-friction drag. These
changes are important to the aerodynamic design of hypersonic vehicles since the
aerodynamic coefficients are very sensitive to the large changes in heat transfer and skin-
friction that accompany transition [2]. Furthermore, the stability and control of the
vehicle, as well as the structural design are also affected due to the increased thermal and
aerodynamic loading.

In attempting to describe the “natural” transition process, either the transition
approach or stability theory are followed. The transition approach is able to locate only

“transition”. That is, either the onset or end of transition, depending on the measurement,
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is identified. This provides only a "transition” Reynolds number. Furthermore, the
transition approach provides po details of either the transition phenomena or the
disturbance mechanisms which cause transition. However, these details are important for
an efficient hypersonic vehicle design, and are obtained from stability experiments.
Thus, the approach used in this investigation utilizes stability experiments.

Stability experiments follow the principles of stability theory. This theory
assumes the existence of small waves, termed normal modes, propagating in a mean flow.
The two modes of interest in the present investigation are termed the first and second
modes [3]. The first mode is associated with velocity or vortical disturbances, an
example of which is the infamous Tollmien-Schlichting wave. On the other hand, the
second mode occurs only in high speed flows, and is present near the boundary layer
edge when the local Mach number is supersonic relative to the wave phase velocity. This
condition occurs around a freestream Mach number of 2.2 for flat plate flow. Physically,
this mode is associated with pressure or acoustic disturbances. Stability experiments
provide knowledge of the development and subsequent growth of these two modes,
which is crucial to understanding the transition problem.

The present stability experiments were conducted in a so-called “quiet” wind
tunnel. Previous hypersonic stability experiments, however, have been conducted in
conventional wind tunnels: i) Kendall [4] examined the Mach 8.5 flow past a sharp 4°
angle cone; ii) Demetriades [5] examined the Mach 8.0 flow past a sharp 5° half-angle
cone; and iii) Stetson et al [6] examined the Mach 8.0 flow past a sharp 7° half-angle
cone. These sharp cone stability studies have provided a fundamental understanding of
the hypersonic boundary layer stability problem. However, in conventional tunnels the
primary source of freestream disturbances is sound radiation. The frequency content of
this incident radiation provides a stimulus to excite disturbances in the hypersonic

boundary layer which may lead to transition.
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Specifically, the influence of the free stream environment is made evident by
comparing the hypersonic cone stability experimental data [6] with the linear stability
analysis of Mack [7]. The experimental data show the presence of a harmonic, which is
approximately twice the second mode disturbance frequency. However, the Linear
Stability Theory (LST) predicts a damping of such disturbances. Kimmel and Kendall
(8] used bicoherence analysis to show that this harmonic was a consequence of nonlinear
wave propagation in the hypersonic boundary layer. Furthermore, unlike LST, emerging
theoretical approaches using the Parabolized Stability Equation (PSE) approach [9,10]
and the Direct Numerical Simulation (DNS) approach [11] are suited for describing these
possible non-linear interactions seen in the experiment. None of these emerging
techniques, however, has shown any direct evidence of dominant higher frequency
harmonics as seen in the experiment. Thus, experimental stability data obtained in a
quiet tunnel is required to determine whether or not this harmonic is due to “high” free
stream disturbance levels. The design of these quiet tunnels is discussed next.

In order to provide a more reliable test environment for the experimentalist, the
NASA Langley Research Center has developed a series of supersonic/hypersonic quiet
tunnels [12]. In these facilities, the free stream noise is controlled at low levels by
maintaining the nozzle wall boundary layer in a laminar state. The quiet tunnel
attenuation of the disturbances typically found in conventional wind tunnels is discussed
next with reference to Figure 1.

Generally, three types of disturbances, Figure 1a, exist in any hypersonic wind
tunnel: i) velocity, or vortical disturbances; ii) temperature, or entropy, disturbances, and
iii) pressure, or acoustic, disturbances. Valve noise introduced into the stagnation
chamber and particles within the stagnation chamber produce vorticity and entropy
disturbances within the stagnation chamber. Filters located upstream of the stagnation

chamber, and conventional meshes and screens within the stagnation chamber attenuate
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these disturbances. The entropy disturbances are usually negligible downstream of the
screens. Whereas, the vorticity disturbances are further reduced in size by designing a
large contraction ratio between the stagnation chamber and nozzle throat. The vorticity
disturbances are then stretched by the nozzle wall boundary layer until the disturbances
are relatively small within the model region. For quiet wind tunnels, “high” density
meshes and screens are used and are more efficient at attenuating the vorticity and
entropy disturbances. Thus, these disturbances are negligible within the test section
which is not always the case for conventional wind tunnels. The acoustic disturbances
are the primary source of freestream disturbances in conventional hypersonic wind
tunnels. These disturbances radiate from convecting eddies generated by the turbulent
boundary layer on the nozzle wall [13,14]. The acoustic disturbances radiate along Mach
lines emanating from the turbulent boundary layer as shown in Figure 1a. The principle
approach for reducing these acoustic disturbances is discussed next with respect to Figure
1b.

In order to reduce the amplitude of the acoustic disturbances, the boundary layer
along the nozzle wall must remain in a laminar state as far downstream as possible. This
is accomplished by the following three design features unique to the quiet tunnel: i) a
suction slot upstream of the nozzle throat to bleed off the boundary layer at the nozzle
throat [15], ii) a highly polished nozzle wall to minimize the transition-promoting effects
of roughness [16]; and iii) a straight contour downstream of the nozzle throat to delay the
development of Gortler vortices [17]. Due to these features, at a fixed freestream unit
Reynolds number transition moves further downstream along the nozzle wall (figure 1b)
relative to the conventional tunnel (Figure 1a), providing lower free stream disturbance
levels in the test section. |

In summary, the quiet tunnel attenuates both the vortical and entropy disturbances

to negligible amplitudes. Furthermore, the acoustic disturbances are severely attenuated
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over most of the test section region where the model is placed. Such quiet tunnels are
ideally suited for stability measurements which assumes small waves propagating in a
mean flow as previously discussed. Thus, the quiet tunnel was used in this investigation
to accomplish the following two primary objectives: i) to obtain hypersonic boundary
layer stability data over a sharp-tip conical body in a quiet tunnel; and ii) to provide
experimental stability data in a low disturbance environment which is better suited for
comparison with stability code data.

A secondary objective of this investigation was to study the effects of nose
bluntness on the conical boundary layer stability in a quiet tunnel. The importance of
bluntness to hypersonic vehicle design is associated with the heating rate. Since the
heating rate is inversely proportional to the square root of the nose radius of hypersonic
vehicles, some degree of nose bluntness is essential on hypersonic vehicles.

A number of transition experiments [18-20] have been conducted to investigate
the effects of nose bluntness. The transition data acquired in these experiments showed
that the transition Reynolds number increases for “small” nose bluntness and decreases
for “large” nose bluntness. Since the nose-tip flow region is mixed (i.e. subsonic,
transonic, supersonic, and hypersonic) the influence of both first and second mode
disturbances is possible, but their competing roles cannot be determined from transition
data. Thus, for the blunt cases of this study, stability experiments are conducted similar
to the baseline sharp-tip conical configuration.

Stetson et al [21] conducted a systematic study of hypersonic boundary layer
stability on blunt nose cones. The blunt cone stability data of Stetson's study showed that
small nose-tip bluntness increases the critical Reynolds number, and that the
amplification rates of the disturbances were increased by the bluntness when compared
with sharp cone data [6]. That is, the sharp cone has a relatively low critical Reynolds

number followed by a region of moderate disturbance growth, while the small nose-tip



6
cone has a relatively high critical Reynolds number followed by a region of rapid
disturbance growth. A companion numerical study to Stetson's experimental work is
provided by the linear stability calculations of Malik ef al [22]. These calculations
showed that bluntness stabilized the high frequency disturbances at low Reynolds
numbers, and broadened the bandwidth of unstable frequencies for high Reynolds
number. The qualitative agreement of the experimental and computational data is good,
in as much as the unstable frequency ranges are relatively well predicted, but the
quantitative agreements in the magnitude of the growth rates is poor. The influence of
the free stream disturbances may partly explain the poor quantitative agreement. In the
linear stability calculation method, there is no means to account for processes prior to the
linear growth stage. Thus, only experiments conducted in a quiet tunnel are suited for
comparison with linear stability theory.

Note that unlike the previous experimental stability studies [4-6,21] where a
straight cone model was tested, in the present study a straight cone with a curved-flare
afterbody was used to promote transition under quiet tunnel conditions. This model as

well as the quiet tunnel are discussed in the next section.



2 Apparatus and Procedure

2.1 Experimental Apparatus

All tests were conducted in the NASA Langley Research Center's Nozzle Test
Chamber Facility. Two models were tested in this investigation: i) a straight cone model
and ii) a flared-cone model. For the flared-cone model, five interchangeable nose-tips
were designed and constructed: i) 4 hemi-spherical nose-tips and ii) a sharp nose-tip.
Also, for the purpose of the present research, a traverse system was designed and
constructed in order to conduct hot-wire boundary layer traverses using a novel, constant
voltage anemometry system. Each of these experimental apparatus components is

discussed below.
2.1.1 Nozzle Test Chamber (NTC) Facility

As shown in Figure 2, the NTC facility was of the open-jet type and heats air to
stagnation temperatures of 350-400 °F. At a freestream Mach number of 5.91, the
maximum nominal freestream unit Reynolds number is 10.3x10%/ft. at a stagnation
pressure and temperature of 475 psia and 350 °F, respectively. The NTC was designed to
test the performance and flow quality of various nozzles which were eventually installed
in other wind tunnels. Thus, this facility was not suited for the detailed measurements
conducted in this investigation. For instance, no universal pitch and yaw system existed
to align the model to the correct test orientation. Therefore, model alignments were
conducted manually.

The present tests were conducted using a slow-expansion, axisymmetric, quiet
Mach 6 nozzle installed in the NTC facility. The nozzle, which is more fully described in

Reference 17, has a throat diameter of 1.00", exit diameter of 7.49", and length from
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throat to exit of 39.76". Practical quiet core length Reynolds numbers of 6.0x10° are
provided at a freestream unit Reynolds number of 2.82 x _106/ft. (The quiet core length is
the streamwise length along the nozzle centerline from the start of uniform flow on the
upstream end to the initial sound mode radiation on the downstream end). The tunnel
was preheated to approximately the test stagnation chamber temperature to avoid

condensation.

Note that the NTC facility, with the Mach 6 quiet nozzle, can be operated in two
modes: i) the bleed valves closed mode; and ii) the bleed valves open mode. The bleed
valves closed mode operates similar to conventional wind tunnels but represents an off-
design case. However, the bleed valves open mode provides suction at the nozzle throat
and represents the quiet mode operation of the nozzle. Both bleed valve orientations
were used in this investigation, but the majority of the tests were conducted in the quiet

mode of operation.
2.1.2 Flared-Cone Model

The model, used in this study, was a 20" long, stainless-steel cone with a curved-
flare afterbody. The model geometry is shown in Figure 3 and the model coordinate
system is shown in Figure 4 where X is measured from the leading edge stagnation point.
For sake of brevity, this model is referred to as the flared-cone. The straight cone surface
extended from X=0" to X=10", with a cone half-angle of 5°. The curved-flare surface
extended from X=10" to X=20" with a radius of curvature of 93.07". The sharp model tip
nominal radius was 0.0001", and the blunt-tip nose radii were 1/32", 1/ 16", 3/32", and
1/8". The model was instrumented with 29 pressure orifices and 51 thermocouple gages
placed along diametrically opposite rays as shown in the side view of Figure 4. The
model skin was 0.03" along the thermocouple and boundary-layer measurement rays, and

0.06" along the pressure measurement rays. This model is considered to be thin-skinned
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for the purpose of thermocouple measurements. Hot-wire boundary layer surveys were
conducted along a ray located 90° from the surface measurement rays as shown in the top
view of Figure 3.

The primary set of tests were conducted using the flared-cone model instead of a
straight cone in order to induce transition on the model under quiet tunnel conditions (i.e.
with bleed valves open and using a “quiet” freestream unit Reynolds number). The flare
generated an adverse pressure gradient resulting in a reduced boundary layer thickness
compared to the straight cone at the same freestream conditions. Thus, in comparison to
the straight cone, the effects of the flare are expected to be as follows [23]: (i) the
amplification rates for both first and second mode disturbances are increased; (ii) the
frequencies of the most amplified second mode disturbances increased; and (iii) the
frequencies of the most amplified first mode disturbances do not change significantly.
These effects should be considered when attempting to use the results presented in this
study to explain the previously observed discrepancies between sharp straight cone
experimental [6] and theoretical data [7] as well as blunt straight cone experimental [21]
and theoretical data [22].

The surface finish quality of the flared-cone model is shown in Figure 5 for 4 rays
spaced at 90° intervals. The hot-wire boundary layer measurements were conducted 30°
clockwise from ray number 1 when viewing the cone base from the upstream direction.
The rms and the maximum deviation of the measured surface profile are shown; the
maximum deviation represents the maximum absolute displacement between the
measured and designed surface coordinates. The maximum rms occurs for ray 4 and is
about 0.1% of the base radius, or about 2.8% of the model boundary layer thickness. The
discontinuities at X=6", 9.5", and 11" were examined with a microscope and represent

measurement error in the machine used to measure the surface coordinates. Also, the
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discontinuities at X=20" are likely machine measurement error since a sharp edge surface
exists at this point along the model.

The installation of the model in the test facility is shown in Figure 6. Except for
the surface pressure and Appendix D measurements, the model boundary layer
measurement ray was aligned with a 0.2° + 0.05° windward yaw angle, and * 0.1° pitch
angle. (Note that these angles are based on the geometric pitch and yaw angles and may
not represent the flow pitch and yaw angles). Also, 3.5" of the aft region of the model
extended downstream of the nozzle exit plane. However, from the leading edge of the
mode] to the most downstream portion of the boundary layer survey region, the model

remained entirely within the uniform mean flow region.
2.1.3 Straight-Cone Model

Prior to this investigation, a 25" long straight cone model with a 5° half-angle was
tested at the same freestream conditions as the flared-cone in the quiet mode of operation.
According to thermocouple measurements, no transition occurred for this model.
However, no determination of instability waves was found from these measurements. In
order to determine whether or not instability waves existed for the same straight cone
model, hot-wire boundary layer measurements were conducted in this investigation at the
same freestream conditions as the flared-cone model.

The coordinate system and boundary layer measurement ray for this model are the
same as the flared-cone model shown in Figure 4. Unlike the flared-cone, the boundary
layer measurement ray was aligned with a 0.1° + 0.05° windward yaw angle, and + 0.1°
pitch angle. Note that 3.94" of the aft region of the model extended downstream of the
nozzle exit plane. However, from the leading edge of the model to the most downstream
portion of the boundary layer survey region, the model remained entirely within the

uniform mean flow region.
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2.1.4 Traverse System

In order to conduct stability and transition boundary layer measurements, a
traverse system was designed and built. The traverse system consisted of four
components: i) two traverse units; ii) a traverse arm assembly; iii) a hot-wire probe tip
and hot-wire; and iv) the contact switch circuitry. Each of these items will be discussed
in detail below.

In order to conduct measurements along a particular ray of the cone, two traverse
units were used. An Aerotec ATS212 traverse unit was mounted perpendicular to an
Aerotec ATS224 traverse unit; these joined units were then fastened to the ceiling of the
NTC. The traverse units had an accuracy of +3.937x10-4 in. and repeatability of
+7.874x10-3 in., or 0.5% and 0.1% of the flared-cone boundary layer thickness,
respectively. This installation allows the hot-wire to traverse both parallel and
perpendicular to the cone axis of symmetry along a specified ray of the cone for either
the flared or straight cone models.

The traverse arm assembly, shown in figure 7, was designed for use with the
Aerotec traverses. This assembly allowed the hot-wire to traverse the model boundary
layer. The main arm could be moved in the vertical direction and rotated about the
cylindrical support to adjust the hot-wire to the correct vertical and angular orientations
for surveying a particular ray of either of the cone models. The mounting plate is used to
mount the entire traverse arm assembly to the Aerotec traverse units. The hot-wire probe
tip is detachable, allowing a new hot-wire to be easily replaced.

The hot-wire probe tip is shown in Figure 8. The hot-wire probes were
constructed of 10% platinum-plated-tungsten wire of 100 pin. diameter. The wire was
soldered onto 0.005" stainless steel broaches which were attached to the main hot-wire
probe body. The nominal length-to-diameter (L/D) ratio of the wire varied from 150 to

210. L/Ds of 150 were used for the flared-cone blunt test cases and the straight cone test
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cases, and L/Ds of 210 were used for the flared-cone sharp test cases. The wire was slack
to minimize the “strain-gage effect” as shown in Figure 9. As shown in Figures 8 and 9,
a contact broach was located approximately 0.005" to 0.007", depending upon the test
case, below the wire broaches. The purpose of this contact broach was to determine the
location of the model surface as described in the next paragraph.

The central component that allows the hot-wire to traverse close to the model
surface is the contact switch circuit system shown in Figure 10. The circuit itself models
the principles of the 555 Timer Circuit. The operation of the contact switch circuit
system was controlled by computer. The computer was connected to a Unidex 11
traverse motion controller. As shown in Figure 10, the controller is connected to both the
contact switch circuit and contact broach through the hot-wire probe tip. When the hot-
wire is traversed towards the model surface, the contact broach will eventually reach the
model surface (refer to figure 8). When the contact broach contacts the model surface,
the circuit is closed and a high voltage is sent from the circuit to the traverse motion
controller. This process enables the computer to stop the traverses before the hot-wire
reaches the surface. In this manner, the model surface can be located at each streamwise

location which is surveyed.
2.1.5 Hot-Wire Anemometer

Three types of anemometers are in existence today: i) the constant temperature
anemometer (CTA) [24]; ii) the constant current anemometer (CCA) [24]; and iii) the
constant voltage anemometer (CVA) which is a new, proprietary system. The CVA
system was used in the present research. The particular CVA system used in this
investigation had a 350 kHz bandwidth with a 40 dB/decade roll-off.

The principles of constant voltage anemometry are described in detail in

Reference [25). Reference 25 states that the CVA has three main advantages over the
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CCA and CTA: i) the CVA has higher sensitivity and higher signal-to-noise (S/N) ratio
(at least 20 dB) than the CCA and CTA under the same overheat conditions; ii) the radio
frequency interference of the CVA is small relative to both the CCA and CTA; and iii)
long cables and changes in cable lengths had negligible effect on the CVA operation
whereas they had a significant adverse effect on the stability of the CCA and CTA
systems.

The basic CVA uncompensated- and compensated- circuits are shown in Figure
11. The main component of both circuits is an operational amplifier. The measurable
bandwidth of the uncompensated-circuit is approximately the reciprocal of the wire time
constant which is on the order of 1 kHz. However, the compensated-circuit provides
bandwidths on the order of 200 kHz. This bandwidth is not sufficient for high speed
flows and thus a composite amplifier stage is added to the compensated-circuit. The
composite-amplifier-compensated circuit yields bandwidths on the order of 600 kHz.
The CVA circuit used in this research was similar to the composite-amplifier-
compensated circuit. However, a disadvantage of the CVA system used in this
investigation is that quantitative measurements are difficult due to the fixed time-
compensation of this system.

In general, for a CVA system, the wire time constant is a function of the mean
flow, wire properties (specific heat, mass, etc.) and geometry, and the voltage across the
wire. Reference 25 states that for “high” wire Reynolds numbers, the wire time constant
as a function of wire Reynolds number converges to a narrow band irrespective of the
L/D ratio of the wire. This statement implies that time constant changes are small at high
Reynolds numbers. Furthermore, Reference 25 states that high speed wind tunnel results
show that the wire Reynolds number is within this “high” Reynolds number range so that

fixed time compensation can be used for high-speed wind tunnel tests.
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However, at least two problems may exist with the fixed time constant approach
for high-speed flows when quantitative fluctuation measurements are sought. (No
problems exist for the mean mass flux and total temperatures which can be correctly
measured with the fixed time constant CVA). First, experimental data from reference 26
shows that the wire time constant changes by a factor of 2.5 in a typical hypersonic
boundary layer. Second, assuming the wire time constant changes only a “small
amount”, the sensitivity of the CVA output voltage to small changes in the time constant
is unknown. If the voltage output sensitivity to “small” changes in the time constant is
“small”, then fluctuation measurements would be reasonably accurate, otherwise large
€ITOrs may OCCUr.

Another problem with the CVA system used in this investigation is the wire time
constant setting and subsequent compensation provided by the developers of the CVA.
Using wires of similar material, length, and diameter as those tested in this investigation,
the CVA time constant was found by placing the wire in incompressible flow and tuning
the CVA for a “flat” frequency response. However, the time constant in hypersonic flow
differs from incompressible flow based on heat transfer considerations. Further, a first
order compensation was assumed to compensate for the wire roll-off. More
appropriately, the wire should have been placed in the hypersonic flow and the CVA
tuned for proper compensation. This approach would have provided a more appropriate
fixed time constant setting.

Since one wire was used for a given test case, the approach taken by the CVA
developers does not present a problem for qualitative fluctuation measurements.
However, errors may occur for strictly quantitative fluctuation measurements. Although,
quantitative rms fluctuation measurements should be more accurate than strict

quantitative fluctuation measurements.
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Based on Navier-Stokes calculations, over the streamwise range that was
traversed at the maximum energy locations, the mass flux and total temperatures changed
about 34% and 4%, respectively. Thus, the time constant changes due to mass flux
changes may present a problem for quantitative fluctuation measurements, and more
conventional anemometry techniques maybe warranted. However, CCA could not be
practically used for the present tests since the CCA would have to be tuned at each
location traversed in the boundary layer making the traverse surveys too long. On the
other hand, the automatic compensation provided by the CTA makes this system ideally
suited for hypersonic boundary layer measurements in conventional tunnels. However,
both the CTA and CCA were initially tested in the freestream of the quier tunnel, but the
S/N ratio of both systems was approximately 1. Since the only anemometer which
provided a S/N > 1 was the fixed time compensation CVA, this system was the only
system feasible for the present experiments.

In this study, uncalibrated amplification rates are used as the primary analysis
tool. According to Kimmel and Kendall [8], since logarithmic growth or decay of the
output voltage fluctuations are expected in the linear stability region, the wire sensitivity
to the individual components is not needed for determination of the amplification rates.
This uncalibrated approach has been verified from controlled stability experiments [27].
Further, the amplification rates computed in linear stability theory are the same for any
flow variable. This suggests that the experimentally derived uncalibrated amplification
rates will compare well with numerical amplification rates in the linear stability regime
for an automatic compensation anemometer such as the CTA. However, for the fixed-
time constant CVA, an additional condition is needed for comparing the uncalibrated
amplification rates with numerical amplification rates. This condition is that the wire-
sensitivity changes due to changes in the mean flow should be small relative to the

exponential growth. For the present experiments, this condition is met as shown in
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Section 3.7.1. Therefore, the uncalibrated experimental amplification rates should

compare well with the numerical amplification rates in the linear stability regime.

2.2 Experimental Test Matrix

All tests were conducted at a freestream stagnation temperature and pressure of
810 + 2 °R and 130 % 0.2 psia, respectively. The measured freestream Mach number was
5.91. These conditions yield a freestream unit Reynolds number of 2.82x105/ft. At this
Reynolds number, quiet flow exists over a majority of both model surfaces when the
bleed valves are open.

Measurements were conducted in both the freestream and over the two cone
model configurations. The freestream measurements consisted of both pitot-pressure and
hot-wire measurements. These measurements will be discussed below in the
Experimental Data Acquisition section. The cone model measurements consisted of both
surface and hot-wire boundary layer measurements over the straight cone and flared-cone
configurations. These measurements are summarized in Table 1 which is presented in
Section 8. As indicated previously, a r,=3/32" nose-tip was also constructed for the
present tests. However, during the testing phase of the experiment, preliminary results
from the other nose-tip cases indicated that the r;=3/32" tip would yield no new
information. Therefore, this particular nose-tip was not tested. In addition to the
measurements listed in the Table 1, calibration measurements were also conducted for all

test configurations.

2.3 Experimental Data Acquisition

2.3.1 Freestream Measurements

Freestream measurements were conducted to quantify the mean and unsteady flow

field of the freestream flow. These measurements consisted of pitot pressure (Mach
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number) measurements, and hot-wire measurements consisting of both rms and wave
trace, or spectra, measurements. All freestream measurements presented in this work
were conducted with the bleed valves open. Only the essential elements of the freestream
measurements are discussed below, but further details of the freestream flow field is
found in reference [28]. The coordinate system for the freestream measurements is
shown in Figure 12. The pitot probe and hot-wire probe orientations are also indicated in
the figure as the “probe”.

The freestream pitot pressure measurements were conducted in order to quantify
the uniformity and axisymmetry of the quiet nozzle via of the freestream Mach number.
Pitot pressures were measured by a Druck transducer with 10 psia maximum pressure
and +0.006 psia error, and stagnation chamber pressures were measured using a Druck
transducer with a 300 psia maximum pressure and + 0.18 psia error. The pressure signals
were scanned by a Hewlett Packard Data Acquisition and Control Unit (HP-DACU) and
recorded by computer. Both transducers were calibrated using a vacuum pump and had
linear characteristics over the calibration range tested.

The stagnation pressure ratio across the normal shock in front of the pitot tube is a
function of only the Mach number in front of the shock for a given perfect gas. That is,
for air, ppjoyPo..=fNC(M,,)=stagnation pressure ratio function. Assuming the freestream
flow is isentropic, the stagnation pressure in front of the pitot tube normal shock is the
same as the stagnation chamber pressure. Thus, the stagnation pressure ratio function
was iterated to obtain M,, using the measured values of pyj;o; and p,,. These freestream
Mach number values were used to quantify the mean character of the freestream flow.

The uniformity and axisymmetry of the freestream flow was ascertained by
conducting pitot measurements in the centerline plane of the nozzle (Zn=0), and in planes

located at Zn=1.5 and Zn=1.5". Each plane was divided into 4 separate rectangular
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blocks (a block designates one wind tunnel run) as shown in Table 2. Note that adjacent
blocks were overlapped in order to evaluate the repeatability of the data from run to run.

In order to conduct the pitot surveys, the pitot-tube was mounted to two Aerotec
traverses which were controlled by a Unidex 11 Motion Controller. A computer
controlled the traverse movement, conducted the pitot pressure and stagnation chamber
pressure measurements, and monitored the freestream conditions of the tunnel throughout
the pitot-survey. The hot-wire measurements were controlled by the same traversing
equipment, and these measurements are discussed next.

The hot-wire rms measurements were conducted to quantify the laminar to
transitional nature of the nozzle wall boundary layer. These measurements were
conducted using the CVA and 0.0001" diameter platinum-plated tungsten wires on the
order of 100 wire diameters long. Data acquisition was obtained using a LeCroy 9424 8-
Bit Digital Oscilloscope (LeCroy) as the analog-to-digital (A/D) converter. These
measurements were conducted in the centerline plane of the nozzle and were sub-divided
into 3 separate rectangular blocks (runs) as shown in Table 3.

The last set of freestream measurements were the hot-wire wave trace
measurements conducted to quantify the spectral content of the freestream. The same
wire L/Ds and data acquisition equipment used for the rms measurements were also used
for these measurements. A/D conversion was obtained by the LeCroy using a sampling
rate of 400 kHz. In order to avoid aliasing, the measurements were high- and low- pass
analog-filtered (i.e. prior to A/D conversion) at 100 Hz and 125 kHz, respectively, using
an Ithaco 4302 Filter (Ithaco). These measurements were conducted in the centerline
plane of the nozzle and were sub-divided into 3 separate rectangular blocks (runs) as
shown in Table 4.

Calibration measurements were also conducted for the hot-wires used for the

freestream measurements. However, due to the relatively low S/N ratio of the freestream
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noise, calibrated freestream rms fluctuations were not possible. Thus, the calibration
measurements for the hot-wires used for the boundary layer measurements over the cone-

models will be discussed next.
2.3.2 Calibration Measurements

Static calibration of the CVA was conducted for the primary purpose of obtaining
mean mass flux and mean total temperature profiles through the boundary layer at various
streamwise locations. A secondary objective of the static calibration was to obtain
approximate rms mass flux and total temperature profiles to quantify the nature of the
boundary layer disturbances.

Hot-wire calibration data consisted of the following matrix of data: i) freestream
stagnation temperature values; ii) freestrearn mass flux values; and iii) mean CV A output
voltage values. This information was obtained for each hot-wire over a range of wire
voltages. The calibration was conducted by varying the stagnation chamber pressure in
increments of 10 psia from 100 to 190 psia at nominal stagnation temperatures of 790,
810, and 830°R. An additional pressure of 200 psia was also used for the 830 °R case,
providing a total of 31 total temperature and pressure pairs, or 31 total temperature and
mass flux pairs. The stagnation conditions were measured using the HP-DACU. The
Mach number was also measured using a pitot tube following the same method
previously outlined for the pitot freestream measurements. From the stagnation values
and the Mach number, the mass flux was computed. At each stagnation condition, the
CVA wire voltage was varied over 13-15 levels; the level magnitude was optimized for
the individual wires used. A Keithley 199 Digital Multimeter (Keithley) was used to
measure the mean output voltage of the CVA at a particular wire voltage, and stagnation
chamber pressure and temperature. An HP3400A true RMS Voltmeter (RMS-meter)

monitored the rms of the freestream flow field throughout the calibration process.



20

The completed calibration matrix included a CVA output voltage corresponding
to each freestream stagnation temperature and mass flux pair at each operating point of
the CVA. The calibration data along with measured output voltages in the cone boundary
layer yields mass flux and total temperatures in the boundary layer. The procedure used
to obtain calibrated boundary layer quantities will be discussed below in the

Experimental Data Reduction and Analysis Section.
2.3.3 Surface Static Pressure Measurements

Surface static pressure measurements could be used to quantify the pressure
distribution for each nose-tip configuration, and to align the model at zero pitch and yaw
angles with respect to the flow field. Thus, the original test matrix included the pressure
measurements to be conducted prior to the boundary layer hot-wire measurements.
However, pressure measurements were conducted after the boundary layer measurements
and for only the flared-cone/sharp-tip case due to problems in bringing the novel pressure
system on-line.

For the pressure measurements, the sharp-tip flared-cone boundary layer
measurement ray was aligned at approximately a 0.1° + 0.05° lee yaw angle and a+ 0.1°
pitch angle. These measurements were conducted using MKS 690 Absolute Pressure
Transducers and MKS 670A High Accuracy Signal Conditioners. The maximum
pressure of the transducers was 3.94 in. Hg., and the error of the pressure system was +
0.0012 in. Hg. All measurements were made through 0.04" diameter pressure taps
connected to the transducers by 5' long stainless steel tubing. The measurement locations

were at X=5, 9.5, 13, 14, 15, 16, 17, 18, and 19 inches.
2.3.4 Stability and Transition Measurements

The stability and transition measurements consisted of three types of

measurements: i) schlieren measurements, ii) surface static temperature measurements,
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and iii) boundary layer measurements. The boundary layer measurements consisted of
hot-wire traverses that included rms, mean, and spectra measurements. Each of these
measurements is discussed below.

Schlieren measurements were conducted to establish whether the flow was
laminar, transitional, or turbulent. Also, the existence or nonexistence of the second
mode was verified from these measurements. The schlieren data were recorded using an
on-line video camera. These video records were freeze-framed and digitized by
computer. Note that the schlieren field of view included only the aft 3.5" of the model.

The surface static (mean) temperature measurements were conducted to verify
that the model was in thermal equilibrium, and to provide an estimate of the onset of
disturbance growth. The temperatures were measured using 51 K-type thermocouples
located from 2" to 9" in increments of 1", and from 9" to 19.75" in increments of 0.25".
The thermocouples were scanned by the HP-DACU and recorded by computer. Model
thermal equilibrium was verified by conducting 40 minute wind tunnel runs (after
preheat) while monitoring the thermocouple temperatures with time. This process
established the equilibrium temperatures of the thermocouples for each streamwise
location. Knowing the equilibrium temperatures allowed the tunnel preheat to be
optimized in order to bring the model to equilibrium as quickly as possible prior to
conducting the boundary layer traverse measurements. The model was “thin-skinned” to
reduce conduction along the model surface so that the thermocouple measurements would
respond “relatively quickly” to the transitional nature of the boundary layer.

For the flared-cone, hot-wire boundary layer rms surveys were conducted at 0.5"
streamwise increments at the following locations: X=10.97"-18.97", X=10.65"-18.65",
X=10.32"-18.32", X=9.66-17.66" for the sharp-tip, 1/32" nose-radius, 1/16" nose-radius,
and 1/8" nose-radius test cases, respectively. (Note that X is measured with respect to the

leading edge stagnation point and thus X=12" for the sharp-tip case does not correspond
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to the same streamwise location as X=12" for a blunt-tip case, etc.). The R-locations
corresponding to each X-range are listed in Tables 5-8. Surveys were also conducted
from X=16.97"-23.47" for the straight cone model. At each streamwise location, the wire
was traversed perpendicular to the cone axis of symmetry.

The mean and rms of the CVA output voltage were both measured at 13 points
clustered near the boundary layer edge at 6-7 CVA wire voltages The rms signal was low
pass filtered at 1kHz and high-pass filtered at IMHz using a Stanford Research Systems
SR560 Preamplifier (Stanford). As described in the next section, the mean voltages were
reduced to obtain the boundary layer thickness, and the rms profiles were reduced to
obtain the rms mass flux and total temperature profiles. In addition, the rms profiles were
inspected to determine the maximum rms, or the maximum energy point, at each
streamwise location for the purpose of conducting wave trace measurements at such
locations.

Wave traces were measured at the maximum energy point at the same streamwise
locations as the rms boundary layer surveys; three wire voltages were used at each
measurement location. The maximum energy point was used for two primary reasons: i)
this location corresponds approximately to the location of maximum second mode
amplitudes; and ii) the S/N ratio is a maximum here. The wave traces were used to
obtain spectra and growth rates as described in the next section. Note that the LeCroy
was used for A/D conversion of the wave traces. The sampling rates were 1 MHz and 2
MHz for the straight cone and flare-cone, respectively. Also, in order to avoid aliasing,
the wave trace signals were low-pass analog-filtered at 400 kHz and 640 kHz for the
straight cone and flared-cone, respectively. The high-pass setting was 1 kHz for both
cones. The Ithaco was used for filtering.

A description of the data acquisition and control process, used to obtain the

boundary layer measurements that were outlined in the above two paragraphs, will now
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be discussed. The global data acquisition and control system for the boundary layer
measurements is shown schematically in Figure 13. In Figure 13, the CVA, power
supply to the CVA, and unsteady and mean CVA output equipment are shown added to
the traversing components of Figure 10. The CVA was discussed previously, but the
other devices listed will now be briefly discussed.

The power supply was used to change the input voltages to the CVA. This varies
the wire operating voltages of the CVA. The DC-CVA output was averaged to obtain the
mean CVA output for both the rms and wave trace boundary layer surveys. The unsteady
CVA output was measured differently depending on whether the rms surveys or wave
trace surveys were being conducted. For the rms measurements, the DC-CVA output
signal was AC-coupled by the Stanford filter, and then input into the RMS-meter. For the
wave trace measurements, the DC-CVA output was AC-coupled by the Ithaco filter, and
then input into the LeCroy. Both unsteady and mean output voltage measurements were
conducted over a range of 6-7 wire voltages at each survey point in the boundary layer.

Further details of the rms boundary layer survey equipment are shown in Figure
14; the accompanying program that was written for this system is listed in Appendix A.
In addition to the measurements mentioned in the above paragraph, the chamber
stagnation pressure and temperature as well as three select thermocouples were monitored
at each streamwise location that was traversed. The monitored thermocouples were used
to verify approximate model thermal equilibrium during the boundary layer surveys.
Two options were initially used to conduct the rms surveys. The first option utilized the
RMS-meter to measure the rms output voltage; also, the time traces were viewed on-line
using the LeCroy. The second option utilized the LeCroy to measure the rms. The
dynamic range of the LeCroy was not large enough to conduct the full boundary layer
surveys and the measurements took too long with the LeCroy. Thus, the RMS-meter was

used for all of the measurements presented in this work. The mean CVA output was
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measured using the Keithley as shown in Figure 14; the Keithley was also used to record
the RMS output signal from the RMS-meter.

The wave trace meaéurement surveys consisted of the same components shown in
Figure 14, except no direct rms measurements were conducted. Instead, the wave trace
measurements were conducted using the LeCroy. A separate computer program was
written to conduct these surveys.

The calibration measurements, freestream measurements, and thermocouple
measurements were all conducted using the same data acquisition and control equipment
used in Figure 14 plus the Ithaco filter (not shown). Similar programs were written for
each of these measurements. The same methodology and approach for data acquisition
and control outlined above for the rms boundary layer surveys was also followed for

these measurements.

2.4 Experimental Data Reduction and Analysis

2.4.1 Boundary Layer Thickness Calculations

The mean voltages measured during the rms surveys were used to obtain an
estimate of the boundary layer thickness. As will be shown in Section 3.7.1, at “low”
CVA wire voltages the anemometer responds mostly to total temperature fluctuations,
and at “high” CVA wire voltages the anemometer responds mostly to mass flux
fluctuations. For hypersonic conical flow, neither the derivative of mass flux with
respect to the normal distance from the wall, nor the derivative of mass flux with respect
to Y approach zero as the boundary layer edge is approached. However, these derivatives
do approach zero for the total temperature as the boundary layer edge is approached.
Thus, the “low” CVA wire voltages, which are mainly sensitive to total temperature, were

used to determine the boundary layer thickness. Using the low CVA wire voltages
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corresponds to estimating the thermal boundary layer thickness as opposed to the velocity

boundary layer thickness. That is, the total temperature relation:

- T4 102
To—T+2cp

ATo_ 3T, U
Y dY Cp oY

implies that
but, g—g =5 0 before % => 0 [29] and thus using the condition % =» 0 (i.e. using the
low CVA voltages) defines the thermal boundary layer thickness.

Therefore, the (thermal) boundary layer thickness was estimated using the
following approach: i) the voltage profiles at the lowest wire voltage were fit using a
cubic smoothing spline routine; and ii) since dTo/dY => 0 at the boundary layer edge,
the point in the boundary layer where the voltage was 0.995 times the voltage furthest
from the wall was chosen as the boundary layer thickness. This process was
implemented for each streamwise location. The boundary layer thicknesses calculated in
this manner were perpendicular to the cone axis of symmetry. So, a coordinate transform
was then used to transform these values to values normal to the local cone surface. The
corresponding X-location was also transformed. This procedure yielded the thermal

boundary layer thickness distribution - § as a function of streamwise distance, X. The
thermal & is approximately 10-15% [29] larger than the velocity 8. The latter was
determined from the CFD.

Note that the a similar procedure for the mass flux profiles (i.e. for the high wire
voltage data) would be implemented using the condition dU /dY =» const. in place of
step (ii.) above. In addition, the measurement point furthest from the wall at each
streamwise locations would have to be behind the conical shock since the mass flux
changes discontinuously across the conical shock. That is, a different constant for
dU/dY, at the boundary layer edge, would occur in front of the shock and the wrong

boundary layer thickness would be calculated. Thus, if the measurement points furthest
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from the wall were in front of the shock, then using the “low” wire voltages may present
slight errors since the mass flux contributes “slightly” to the voltage output at “low” wire
voltages. However, all boundary layer measurements were conducted only behind the

shock in this investigation and thus such errors should not occur.
2.4.2 Power Spectral Density Calculations

The time traces conducted for the freestream and boundary layer wave trace
surveys were used to compute the power spectral density (psd). The psd was computed
using Welch's method [30]. For both sets of surveys, two time records consisting of
40,000 points/record were recorded for each measurement point surveyed.

Due to the low freestream disturbance levels, the freestream psd was computed
with twice as many averages as for the boundary layer data. For the freestream
measurements, the psd was computed using a Hanning window, record length of 256
points, and 156 averages for each 40,000 point record. The psd of each 40,000 point
record was then averaged. The free stream psd data are used for qualitative purposes only
$0 no test for stationarity was conducted for these measurements.

However, the boundary layer wave trace data were tested for stationarity since
these data were used to compute the amplification rates. For the boundary layer
measurements, the psd was computed using a Hanning window, record length of 512
points, Fourier transform length of 1024 points, and 78 averages for each 40,000 point
record. The psds of the two 40,000 point record were then averaged. To test for
stationarity, each 40,000 point time record was divided into record lengths varying from
128-24,576 points. The mean of each time record was computed. This process gave 312
mean values for the 128 length record set, 156 mean values for the 256 length record set,
etc. The standard deviation of the mean values relative to the mean of the entire 40,000

point trace was then computed for the 128 record length set, 256 record length set, etc.
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This standard deviation should approach zero for the AC-coupled time traces. However,

due to the filter noise, CVA noise, and surrounding environmental noise picked up by the

filter and/or the CV A, the standard deviation approached an asymptotic finite value as the

record length was increased. Record lengths of 512 points gave standard deviations on

the order of 6e which was within 2% of the asymptote. Thus, each 40,000 point record
length was verified to be stationary in the mean using 512 point record lengths.

Psd computations were computed for each streamwise location. Thus, the final

psd solution matrix consisted of the psd amplitudes as a function of frequency at each X-

location (streamwise distance), or more appropriately, S-location (surface distance). This

data was used to compute the spatial amplification rate as described below.
2.4.3 Amplification Rate Calculations

From the psd data, the non-dimensional, spatial amplification rate was computed.
The non-dimensional amplification rate was computed using the following approach: i)
the non-dimensional amplification rate function=fnc(psd amplitudes, stability Reynolds
number) was derived from the dimensional amplification rate function=fnc(psd
amplitudes, S); ii) the amplitude data as a function of stability Reynolds numbers was
curve fit using a cubic smoothing spline at each frequency; and iii) the non-dimensional
amplification rates were computed. Each of these steps is discussed below. (In the
following equations 2.1-2.6, the asterisks denote dimensional quantities, but in other
sections of this work the asterisks are removed for simplicity)
Step I: By definition, the spatial amplification rate, —ai‘, is:

+_10A
' AQS

(2.1)

where A is the square root of the psd amplitude, and S* is the surface length along the

cone from the leading edge stagnation point.
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Define the stability Reynolds number, R, based on a reference length scale, ¢°, as
follows:

R= (%ﬁ) (2.2)
ref

where U:ef is the reference velocity, v:ef is the reference kinematic viscosity, and ¢" is
defined as follows:
. g 12
= ["Lf—) 23)
Uref

Substituting equation 2.3 into 2.2, to eliminate Z*, yields an alternate form for R as

follows:

. _x 172
R=(S lf'ffj = R2=Res. =(%)*s‘ (2.4)

where S* is in feet.

By inspection of equation 2.4, R=f(S*) if the reference quantities are appropriately chosen
as constants. Thus, the amplitude derivative with respect to S” is given by the following
equation:

oA _2A R
3S" 9RaS°

The non-dimensional amplification rate, -Q;

(2.5)

» was derived by using freestream values as

reference quantities, non-dimensionalizing the amplification rate by the reference length

scale, and combining equations 2.1, 2.2, 2.4 (to obtain %Q—), and 2.5. The final result is

given by:

1 A
— =298 2.6
% 2A dR (26)

where R is given by equation 2.4 and was computed for each S-location using a

freestream Reynolds number, Re_/ft, of 2.82x105/ft.
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Step 2. For each frequency, the amplitude, A, was curve fit with respect to S. Since
the functional dependence of A with respect to R differed greatly for individual frequency
bands, a fairly general curve fit was chosen for the purpose of fitting the A vs. R data
(amplitude profile). The curve fit was a cubic smoothing spline that contained a
parameter to control the amount of data smoothing. At one extreme, the smoothing
parameter could be specified so that maximal smoothing, i.e. a least-squares straight-line
fit, was applied to the data. On the other extreme, the smoothing parameter could be
specified so that no smoothing was applied to the data; this parameter setting resulted in
the standard cubic spline interpolant with the so-called 'natural' end conditions. For the
present data, the smoothing parameter was chosen so that the cubic smoothing spline
interpolant contained as much of the essential characteristics of the amplitude profile as
possible but as little of the supposed noise. Thus, the fitted function was smooth with
minimal noise. The fitted function was then used to compute the derivative, g—g, for each
frequency.

Step 3. The final step was to compute -o; using equation 2.6 and the %-values
which were computed in step 2 for each frequency. In this manner, comparisons of -0y as
a function of R at select f, and comparisons of -o; as a function of f at select R were
made. Selected frequency bands pertaining to the first and second modes were also
examined to determine the maximum first and second mode growth rates as a function of

R. The second mode maximum -0 at each R-location corresponded to the maximum -
for all frequencies in the second mode frequency-band, etc. for first mode and possible

(sub)-harmonics.
2.4.4 Mean and RMS Mass Flux and Total Temperature Calculations

As mentioned in Section 2.3.2, the calibration data for a given hot-wire included

the CVA output voltage corresponding to each freestream stagnation temperature and
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mass flux pair at each CVA (mean) wire voltage, Vw. In order to use this calibration data
to calculate the mean total temperature and mass flux profiles the following procedure
was followed: i) using the calibration data, a functional relationship that relates the mean
CVA output to the total temperature and mass flux at each Vwwas formulated and solved
to obtain calibration constants; ii) the rms-surveys were conducted to obtain CVA mean
output voltages at 6-7Vw's at each point in the boundary layer for each streamwise
location; iii) using the calibration constants calculated in step 1 and the data obtained in
step 2, a mean mass flux, pU, and mean total temperature, To, matrix equation, and an
rms mass flux, (pU)'ms, and rms total temperature, T, ., matrix equation were both
formulated; and iv) these 2 matrix equations were solved to obtain pU, To, (pU)'mls, and
T'(,,m,s at each point surveyed. Each step of this procedure is outlined in detail below.
(This procedure is for a given hot-wire).

Step 1:  Using the hot-wire calibration data, a power law fit was assumed to relate the

CVA mean output voltage to the corresponding freestream To and pU at each Vw. The

power law fit has the form:
(V) =B(pU)" +DTo+E 3.1

where n is a specified parameter between 0.1-1, B, D, and E are constants for a given Vw,

and V_s is the mean CVA output. Applying equation 3.1 over a range of freestream T_o

and pU at a fixed Vw results in the following matrix system:

[6or], w1 (@] ]

GO, [, 1] (2] [(727] .
: | : : E _52

_r(p—ﬁ)njm [T°]m 1 | _[(Vs) ]md

where m=31 since 31 freestream mass flux and total temperature pairs were obtained

during the calibration phase of the experiments as previously discussed in Section 2.3.2.
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After specifying n, the matrix system given by equation 3.2 was solved using a least
squares matrix solver to obtain B, D, and E for a given fixed Vw. This procedure was
repeated for each Vw such that a set of B, D, and E calibration constants are obtained for
the Vw range. 15 Vw values were used for the flared-cone sharp-tip case and 13 Vw
values were used for all other test cases.

In order to maximize the accuracy of the calibration data fit, equation 3.1 was

applied over a range of Vw's at a fixed pU and To, resulting in the following matrix

system: . -
B, D] :(_s')z]1 ~Ei
G
B, D 2]
- (7]~

where k=13 or 15 and a particular row of this matrix is simply equation 3.1 at a constant
Vw. (Each row represents a different Vw-value). Using the measured pU -values
obtained as part of the calibration data and the computed B, D, and E calibration
constants, equation 3.3 was solved to obtain pU and To. These solutions correspond to
the predicted pU and To. (This process mimics solving for pU and To in the boundary
layer given only V and will be described below). The correlation between the measured
pU and To and the predicted pU and To was then calculated. This correlation indicates
the accuracy of the assumed fit as discussed below.

For the hot-wire used for the flared-cone sharp-tip measurements, the predicted
pU and To values and the predicted-vs-measured correlations were calculated over a
range of n-values from 0.1-1. An n of 0.3 gave the correlations closest to 1: a 0.9989
correlation between the predicted-vs-measured To and a 0.9969 correlation between the

predictcd-vs-measured ﬁ Thus, this value was used for further data reduction. Note
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that the accuracy in terms of the correlation did not change much from n=0.3-0.8. Over
this range the mass flux and total temperature correlations were within 0.01% of the best
correlation at n=0.3. Values of n in the range 0.5-0.6 work best within the calibration
range of the data which compares well with Mach 3 CTA results [31] obtained at constant
overheat and stagnation temperature conditions. But, n=0.3 provides the best fit for the
entire data set since some of the data is outside of the calibration range. (The predicted-
vs-measured correlations were also calculated for other wires tested in this investigation
and similar correlations and best-fit n-values were also determined).

Step2:  This step was completed by conducting the rms surveys previously outlined in
Section 2.3.4. Note that during the calibration phase of the experiments, 13-15 Vw-values
were used but 6-7 Vw-values were used at each location in the boundary layer for the rms
surveys. The greater number of values used for the calibration data provided more
accurate matrix solutions and these 13-15 Vw-values included the same 6-7 Vw values
used for the rms surveys.

Steps 3 & 4: For the mean total temperature and mean mass flux boundary layer
quantities, equation 3.3 was also used. In this case, k=6 or 7, and the 6 or 7 Vs'-values
now represent the mean voltage of the CVA obtained during the rms surveys. Equation
3.3 was solved using a least squares matrix solver to obtain pU and To at each point in

the boundary layer.

However, (pU)'mns and T, .. cannot be obtained as directly as the mean

values. First, the sensitivities of the CVA output voltage to the mass flux and total

temperature were found. From equation 3.1, the following sensitivities were derived:

—_ ——n-]
V| ___2Bn(pU) (.4)
%U |7 /B(pT)" + DTo+E

and
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A
0 B(pU) +DTo+E

dTo

(3.5)

where ( )|z, and ()| g denote the partial derivatives of the term in parenthesis with
(To) (pD)

respect to total temperature and mass flux, respectively, and the equations are valid at

constant Vw.

The sensitivities are for a fixed Vw and represent points upon the surface fit curve
given by equation 3.1 at a constant Vw. The CVA output voltage fluctuation, V'S, is a
function of the mass flux and total temperature fluctuations at a fixed Vw and thus to first

order accuracy:

A A '
Vo==—=| (pU) +—=8 T (3.6)
apU TO aTO p_U( 0)
Substituting equations 3.4 and 3.5 into equation 3.6:
. 1 —n- . ,
Ve = 5={nB(p0)" " (pU) + DT, | 3.7)
2V,

Squaring 3.7 and taking the time average yields the governing rms equation:

(—";_)2=4(v1;) [nZBz(p—u)z"'ZW+2nBD(p—u)“"(pu)‘(T;,)+Dz(T;,)Z] (3.9)

which is restricted to a constant Vw. Applying equation 3.8 over the range of Vw-values

yields the following matrix equation:

See Adjacent Page
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where k= 6 or 7. This matrix system was solved using a least squares matrix solver to

obtain [(pU)']z, (pU) (T, ). and (TT)Z .

By applying equation 3.3 and 3.9, as described above at each boundary layer
point, the mean mass flux and total temperature profiles as well as the rms mass flux and
rms total temperature profiles were calculated. Note that due to the considerations

discussed in Section 2.1.5, the rms profiles are only approximate.

2.5 Theoretical Data Analysis

In order to compare the experimental mean mass flux and total temperature
profiles with theoretical predictions, solutions using an implicit multi-grid 2D Navier-
Stokes code [32] were obtained. A low diffusion flux splitting approach is employed to
yield accurate solutions. An implicit Gauss-Seidel algorithm is used to advance the
solution to steady state. Solutions were obtained for both the flared-cone sharp-tip case

and the r,=1/32" nose-tip case.
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Typical CPU times to solution convergence on a Cray Y-MP were about 35
seconds as shown in Appendix B. A grid refinement study was also conducted for the
sharp-tip case as shown in Appendix B. Reference 32 shows excellent comparison with
two other state-of-the-art CFD (computational fluid dynamics) codes for the sharp-tip
flared-cone configuration. A 241x145 grid was used in Reference 30 which is the same
grid size that was used for the present calculations for both test cases. Approximately 57
grid points were clustered in the boundary layer.

The NASA Langley developed code, CFL3D [33], was used to examine the effect
of flow asymmetry in the present work. In these computations the flow over the flared-

cone at an angle of attack of 0.2° was examined.
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3 Results and Discussion

3.1 Test Conditions and Test Cases

All tests were conducted at a freestream unit Reynolds number of 2.82x105/ft. At
this Reynolds number, quiet flow extended over most of the model surface and uniform
mean flow extended over the entire model surface for both model configurations. The
nature of this freestream quiet flow is discussed in Section 3.2.

The complete matrix of tests conducted in this investigation is presented in Table
1. The results from the tests, listed in Table 1, are described below in the following
order. First, the freestream measurements are discussed. Next, the straight cone
measurements are discussed. Finally, the blunt-nose flared-cone measurements are
discussed. The latter measurements consist of 5 primary data sets: i) the noisy vs. quiet
surface temperature and spectra data; ii) the surface temperatures for all flared-cone test
cases; iii) the spectral data for the stable blunt-nose test cases; iv) the surface and

boundary layer data of the sharp-tip case; and v) the surface and boundary layer data of

the r,=1/32" case.

3.2 Freestream Measurements

Freestream measurements were conducted to quantify the mean and unsteady flow
field of the freestream flow. These measurements consisted of Mach number
measurements, rms measurements, and spectra measurements conducted with the bleed
valves open. Each of these measurements is discussed next. (The freestream
measurement coordinate system is shown in Figure 12.)

Figure 15 shows the Mach number contours in the centerline plane (Zn=0) of the

nozzle. The freestream flow is from left to right. The contours suggest that the flow is
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quite uniform. On average, the Mach number is 5.91 + 1.4% throughout the domain
shown. More importantly, the model placements were entirely within this domain. A
small Mach number gradient exists along the centerline (Yn=0) which is believed to be
due to the replating of the original nozzle [12]. Overall, the flow is uniform in the
centerline plane. However, in order to determine whether or not the flow field was
axisymmetric, further measurements were conducted in vertical planes of the nozzle.

Figure 16 presents the freestream Mach number contours in two vertical planes of
the nozzle located at Xn=23.26" and Xn=36.76". The flow is coming out of the page
along lines perpendicular to the page. Figure 16a shows Mach number data in the
vertical plane containing the leading edge stagnation point of the flared-cone model
(Xn=23.26"). Figure 16b shows Mach number data in the vertical plane located near the
downstream end of the boundary layer traverse measurement regime (Xn=36.76"). The
data presented in both figures suggest that the flow field is nearly axisymmetric. The
degree of asymmetry is within 1% of the mean Mach number for any given radius at both
Xn-locations, and for several other Xn-locations presented in Ref. 28. Furthermore,
during the Mach number traverses of the freestream flow, the Xn-traverse path was about
0.5° relative to the nozzle centerline in horizontal planes (i.e. Xn,Yn-plane) of the nozzle.
This slight angularity is consistent with the slight asymmetry shown in the figure, so the
0.5° angularity is partially responsible for the slight asymmetry shown. Thus, the degree
of asymmetry is less than 1% of the mean Mach number for any given radius at a
particular Xn-location. Overall, the freestream flow field is quite axisymmetric.

Figure 15 indicated that the flow field in the centerline plane of the nozzle was
nearly uniform, and Figure 16 indicated that the flow field was quite axisymmetric.
Furthermore, the flow volume formed by rotating the centerline plane about the nozzle
centerline encompasses the surfaces of both models. Thus, the presented results suggest

that the entire model surfaces were within a uniform mean flow region.
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The freestream rms contours in the centerline plane of the nozzle are shown in
Figure 17. Again, the flow is from left to right. For the test freestream unit Reynolds
number, transition onset occurs around Xn=26" along the nozzie wall. Each contour line,
therefore, represents acoustic disturbances radiating from the nozzle wall transitional
boundary layer. The lines closest to the wall (i.e. large Yn) radiate at an angle that
compares well with the local Mach angle. This verifies that the disturbances are radiating
along Mach lines. At Xn=37.5", the flared-cone model surface is just outside the acoustic
radiation field. This location corresponds to X=14.25" along the model. Thus, upstream
of X<14.25", the flared-cone model surface is within quiet flow. (Similar results also
apply for the straight cone).

Note that the transition onset location, Xn=26", was based on a more sensitive
criterion [28] than reference [34] where transition onset was estimated at Xn=36". If the
latter estimate was used then the acoustic radiation field would remain outside the entire
model surface region. Thus, though the radiation shown in Figure 17 is finite, the
disturbance levels are “very small”,

The freestream spectra along the nozzle centerline (Yn=Zn=0) are presented in
Figure 18. The signal-to-noise ratio is greater than one at the furthest downstream
location, Rey,=9.35x106, for f<6 kHz and at all streamwise locations in the frequency
range, 12-18 kHz. (Note that Rey,=9.35x10 corresponds to Xn=39.76", the nozzle exit).
However, the S/N=1 for all other regions. These results suggest that the acoustic
radiation is negligible at the nozzle centerline for Xn<39.76" as verified in Figure 17
from the rms contours.

The normalized freestream spectra in the centerline plane are shown in Figure 19
at Yn= £ 1.25" as a function of streamwise distance. The instrumentation noise psd was
subtracted from the full signal psd to obtain the “noiseless” spectra shown in the figure;

both A and Aysx represent “noiseless” spectra. Also, the Yn=1.25" spectra are shifted
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0.25" upstream relative to the Yn=-1.25" to separate the spectra at the two Yn-locations
from each other. The data indicate that the spectra are very similar on either side of the
centerline which verifies the uniformity of the disturbances in the centerline plane.
Again, the S/N>1 only for the last streamwise location, Xn=39.76", where the freestream
disturbance energy is predominantly in the frequency range, 0-20 kHz. This compares
well with Figure 17 which shows an acoustic radiation field present at Yn= 1.25" at this
location. Overall, the spectra show uniform low-level disturbances in the centerline plane
for Yn= =+ 1.25" which is expected if the flow is axisymmetric.

The normalized freestream spectra in the centerline plane are shown in Figure 20
at Yn= % 2.5" as a function of streamwise distance. The data were treated in the same
manner with respect to noise subtraction and streamwise shifting as previously outlined
for the Yn=+ 1.25" case. Similar to the Yn= % 1.25" case, the data show uniformity for
all Xn-locations. The S/N>1 for the last 2 streamwise locations, Xn=39.76" and
Xn=35.76", comparing well with the acoustic radiation field presented in Figure 17 at
Yn=2.5" at the same 2 Xn-locations. Furthermore, the disturbance energy is
predominately in the 0-50 kHz frequency range at these last two streamwise locations.
Overall, the spectra show uniform disturbances in the centerline plane for Yn= £ 2.5"
which compares well with the Yn=+ 1.25" spectra.

Summarizing the fluctuation data, the data at Yn= £ 1.25" compares well with
Yn=-1.25", and the data at Yn=+ 2.5" compares well with Yn= -2.5". Furthermore, the
Yn>0 rms contour data shown in Figure 17 are very similar to the Yn<0 rms contour data
which were not presented. These observations suggest that the acoustic disturbances are
axisymmetric and radiate in a conical pattern from the nozzle wall. The apex of this
conical disturbance field is downstream of Xn=45" along the nozzle centerline.

In summary, a uniform free stream flow with a conical-shaped quiet core, within

which the test models may be placed, has be identified and documented. A uniform mean
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flow is important for stability experiments to ensure that instability waves are not
generated due to mean flow gradients in the flow field. Furthermore, the quiet flow field
is important for stability experiments to eliminate spurious instability waves in the
boundary layer, which are generated by a “large” disturbance “noisy” freestream
environment. That is, for “quiet” flow, the freestream disturbances are imposed on the
boundary layer as “small” amplitude disturbances. Only the latter disturbances can
generate instability waves in the boundary layer that develop and grow in a relatively
“slow” process (i.e. natural transition process). Thus, the quiet nozzle is well suited for
the present stability experiments. These experiments will be discussed next, after a brief
discussion concerning the S/N ratio.

Note that though the “noise” was subtracted for the Yn= %+ 1.25" and Yn=+2.5"
spectra, S/N problems (i.e. S/N<1) occurred at distinct but arbitrary frequency bands in
the entire 0-150 kHz range for the freestream measurements. (Note that S/N<] areas are
observed by A/Ap,x<0 values.) Though such problems are expected at low Rey,, these
S/N problems were also evident at the maximum Rey,. Thus, an explanation of the
possible reasons for these S/N problems is needed.

Some possible explanations for the S/N problems are: i) the noise spectrum
measurements were conducted with the tunnel and all the data acquisition and control
equipment powered on but with the hot-wire out of the main freestream flow field, so the
noise spectrum may contain some flow components induced by secondary flow in the
NTC; ii) a more thorough analysis of the CVA system may warrant that simple
subtraction of the psd amplitudes, at Vw-values corresponding to the test Vw's, is not the
best approach for subtracting noise; and iii) for a transitional boundary layer in a quiet
tunnel, the S/N=1 for frequency bands outside the low-frequency, first mode, second
mode, and harmonic frequency ranges. The relevancy of these S/N problems for the

boundary layer stability hot-wire surveys is discussed next.
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For qualitative presentation of the spectra, which is the case for the freestream
spectra, these S/N<1 problems are not crucial in evaluating the energy content of the
freestream flow field. However, an attempt was also made to subtract the noise for the
boundary layer spectra and similar problems occurred for these spectra. Since the
boundary layer fluctuation measurements were used for ‘“quasi-quantitative”
amplification rate, and rms mass flux & total temperature data, the noise was not

subtracted for the remaining spectra presented in this work.

3.3 Straight Cone

The straight cone fluctuation spectra are presented in Figure 21 for the range
R=2002-2355. Upstream, the disturbance energy is distributed mainly in the 0-10 kHz
frequency range, but this frequency range widens in the downstream direction, becoming
0-20 kHz at the most downstream location. Similar low frequency disturbances are also
present in the freestream spectra previously discussed. Therefore, this low frequency
disturbance energy may represent the footprint of the freestream spectra since the
widening and growth of the low frequency band is consistent with the increased
freestream acoustic radiation levels in the downstream direction.

However, the higher frequencies, f > 40 kHz, are of main concern in this
investigation. To determine whether the integrated growth rates of either the first or
second modes were sufficient for transition onset, which should be measurable, LST [23]
was relied upon. Based on LST calculations, the maximum N-factors at R=2173 (X=20")
are 5 and 5.3 for the first and second modes, respectively. (For the LST calculations, a
20" long straight cone model was used). For the quiet tunnel, N-factors on the order of 8
are estimated for transition onset. Thus, no transition is expected for X < 20", which is
consistent with the data of Figure 21. However, these N-factors may be sufficient for

measuring first or second mode disturbances. Furthermore, the existence of instability
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waves is difficult to discern from Figure 21 due to the low frequency energy which
severely distorts the amplitude scale for f > 20 kHz. Consequently, the 40-65 kHz band,
or most unstable first mode band [23], and the 160-190 kHz band, or most unstable
second mode band [23], were examined more closely.

The results of this closer examination are presented in Figure 22 for the range
R=2000-2355. The data of Figure 22a represent a frontal view of the fluctuation spectra
of Figure 21 over the most unstable first mode frequency range, 40-65 kHz. The first
mode is centered around 51 kHz from 47-54 kHz which is within the most unstable
frequency range predicted by linear stability theory [23]. (Note that the LST N-factors
are about 5 at R=2173 for frequencies in the range 50-70 kHz.) The first three R-locations
are essentially at the noise level of the CVA system. But, from R=2060 to the last
measurement location, the 51 kHz center frequency amplitude grows by a factor of about
2.7, comparing reasonably well with the (linear) extrapolated LST result of 3.0.
However, the disturbance amplitude growth is masked at the last R-location by the
disturbance energy at the low frequencies.

The integrated growth rates of the second mode most unstable frequency band,
160-190 kHz, are presented in Figure 22b. (Not that the maximum N-factor at R=2173 is
about 5.3 and occurs for f=180 kHz.) In the upstream region, R < 2200, no “real” growth
is apparent, as expected, and thus all the growth rates for each frequency are comparable.
However, for R 2 2200, the 161 kHz grows exponentially (i.e. linear stability regime)
over the small region, 2250 < R < 2300, but the 171 kHz and 190 kHz frequencies show
no clear exponential growth. The most unstable frequency, 180 kHz, grows
exponentially from R=2225 to R=2330. Over this linear stability regime, the change in
In(A/Ao), for f=179 kHz, is approximately 0.58, comparing well with the linear

extrapolation [23] of 0.56 for f=180 kHz. Overall, the experimental results show the
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presence of second mode disturbances for the straight cone. Furthermore, the LST and

experimental data compare reasonably well in the linear stability regime.

3.4 “Noisy” vs. “Quiet” Tunnel Comparison

Surface Temperature Data

The flared-cone, sharp-tip surface temperature data with the tunnel operated in
both bleed valve closed (“noisy”) and open (“quiet”) modes are compared with Navier-
Stokes predictions [32) in Figure 23. For the upstream locations, X < 5", the bleed valves
open (bvo) data compare better with the Navier-Stokes data than the bleed valves closed
(bvc) data, verifying that the bvc mode represents an off-design mode. Yet, the recovery
factor for both modes is about 0.84 at X=2" which compares well with the laminar
recovery factor. Comparing the sharp temperature rise regions for each mode, the bvc
transition onset location is at least 7" upstream of the bvo mode. (A similar trend was
observed in Mach 3.5 flow by Beckwith et al [35]).) The sharp temperature rise indicates
the transitional nature of the boundary layer since a transitioning boundary layer is heated
and this heat is convected to the wall by turbulent vortices that heat the cone surface.
Thus, the boundary layer is clearly transitional at about X=11" for the bvc mode and this
tunnel operating mode was not used for stability experiments since the stability
measurements were conducted for X > 10.97".

Along the nozzle wall, the boundary layer is fully turbulent for the bvc mode,
producing substantially higher levels of acoustics disturbances relative to the bvo mode
where the boundary layer is only laminar-to-transitional. This causes transition to move
upstream along the model for the bvc mode relative to the bvo mode. Thus, similar
upstream movement would occur in a conventional tunnel at the same test Reynolds
number and Mach number as the present investigation. To circumvent this problem,

stability experiments conducted in conventional tunnels are conducted at lower Reynolds
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numbers where the nozzle wall acoustic radiation is minimal. Consequently,
interpretation of the bvc data as indicating a similar test environment as conventional
tunnels is only the case if the conventional tunnel is operated at relatively high Reynolds
numbers where acoustic radiation is substantial. Overall, however, the quiet tunnel
allows stability experiments to be conducted at higher Reynolds numbers than

conventional wind tunnels for a given Mach number flow.
Spectral Data

The flared-cone, sharp-tip fluctuation spectra are presented in Figure 24 from
X=10.97" to X=18.97" with the tunnel operated in bvc mode. The spectra measurements
were conducted at the maximum disturbance energy (i.e. maximum rms) location in the
boundary layer at each X-location. From X=10.97" to X=16.97", the boundary layer is
clearly transitional with disturbance energy distributed over a fairly wide frequency-range
from O to 400 kHz and peak energy (i.e. maximum amplitudes) in the 0-20 kHz range.
Observing Figure 23, this X-range corresponds to both the sharp temperature rise region
associated with transition onset and the subsequent temperature decrease associated with
the initial stages of fully turbulent flow. For X > 16.97 ", the peak disturbance energy
initially in the 0-20 kHz range is shown dispersed to higher frequencies. The disturbance
energy is spread more broadly suggesting a fully turbulent boundary layer. This turbulent
region compares well with the thermocouple data of Figure 23. For the bvc data of
Figure 23, the temperature is relatively constant for X > 16.97", reflecting a fully
turbulent boundary layer. Also, the recovery factor is about 0.884 which is within 1% of
the theoretical turbulent recovery factor of 0.892. This concludes the discussion of the
measurements related to the nature of the quiet tunnel, and the flared-cone results are

discussed next.
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3.5 Surface Temperature Measurements for All Flared-Cone
Test Cases

The wall temperatures normalized by the freestream total temperature are
presented in Figure 25 as a function of R for each flared-cone nose-tip tested in this
investigation. In general, relative to the sharp-tip case, "small" nose-tip bluntness moves
transition rearward. But, at a certain nose-tip bluntness the transition point moves
forward and eventually is located forward of the sharp-tip transition location for "large"
nose-tip bluntness [18-20]. (These trends are for straight cone and biconic geometries but
similar trends should also hold for the flared-cone geometry.) Based upon the surface
temperature trends outlined in Section 3.4, inspection of Figure 25 indicates that nose-tip
bluntness has stabilized the boundary layer since transition has moved downstream
relative to the sharp-tip case. Furthermore, since no evidence of a forward movement of
transition is evident, the nose-tip bluntness at which transition moves forward cannot be
ascertained from this data. The upstream temperature levels increase with nose-tip
bluntness, suggesting that the surface temperature approaches the stagnation temperature
at the leading edge stagnation point as r,, increases. The heating rate in the vicinity of the
leading edge stagnation point is proportional to Tr-Tw ~ To_-Tw (Tr = recovery temp).
Thus, as Tw/To,, = 1, the heating rate = 0. The increases in Tw/To,, (i.e. decreased
heating rate) with increasing r;, is consistent with theory which states that the heating rate
is proportional to the inverse of the square root of the nose radius.

For the r,=1/8" case, the temperature decreases montonically, indicating that the
boundary layer is laminar over the measurement region. For the r,=1/8" case, the
temperature increases slightly for R > 1600 yet remains essentially constant for R > 1900,
which is consistent with expected laminar profile over this region. However, for both the

sharp-tip and r,=1/32" cases, the temperature rises for R > 1550, reflecting the
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transitional state of the boundary layer. The sharp-tip rise is more rapid than the 1/32"
case, since small bluntness moves transition downstream and thus the 1/32" case is only
in the initial stages of transition relative to the sharp-tip case. Overall, the nose-tip
studies in this investigation are relatively "small" as reflected by their stabilizing nature.
To verify the stability of the boundary layer for the 1/16" and 1/8" cases, spectra were

also measured for these cases and are presented in the next section.

3.6 Spectral Measurements for Flared-Cone Stable Blunt
Cases

As previously discussed, the low frequency energy, in the 0 to 10 kHz range,
distorts the amplitude scale. In addition, the LST calculations [23] predict the first mode
range, 50-80 kHz, for the sharp-tip case. (This frequency range is also the approximate
frequency range for the blunt cases). Based on these considerations, the spectra presented
in this section as well as the spectra presented throughout the remainder of this work are
presented for f > 13.6 kHz.
r,=1/16" Spectra

The fluctuation spectra for the r,=1/16" nose-radius test case are presented in
Figure 26 for the range 166 < s/r, < 296. These data were measured at the maximum
energy location in the boundary layer for each streamwise location. A second mode
disturbance is not evident from this data. (The energy content for f > 100 kHz represents
instrumentation and tunnel operational noise because: i) the amplitudes are fixed with
respect to s/r, (no growth); ii) the amplitudes are at a fixed frequency; and iii) the
amplitudes are “low” level.) A closer examination of the spectra in the f=100-300 kHz
range for the downstream regions, s/r,=225-300, also indicated the non-existence of
second mode disturbances. However, over the first three upstream locations, 166 < s/t, <

182, first mode disturbance growth is evident in the 55-65 kHz frequency range. These
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first mode disturbances are then attenuated from 190 < s/r, < 255. For the most
downstream locations, 263 < s/r, < 296, the first mode grows again. However, this
growth is masked by the lower frequency disturbances, similar to the straight cone
spectra, and is not substantial. Overall, the r,=1/16" case is definitely stable for the
second mode and mostly stable for the first mode. These conclusions are consistent with
the thermocouple data previously discussed and the schlieren data (not presented) since
both data sets provide no evidence of a transitional boundary layer.

Based on blunt, straight cone analytical relations [36], the entropy layer
swallowing location is at approximately s/r,=272. Theoretically, the entropy layer
swallowing region is a site for receptivity but the spectra of Figure 26 show no evidence
of increased disturbance levels in the s/r,=272 region. (Also, the hot-wire rms profiles
were conducted to locations outside the boundary layer and no increased disturbance
levels were evident.) Thus, no evidence of a receptivity site, located in the vicinity of the
entropy layer swallowing region, was found for the 1/16" test case.
r,=1/8'' Spectra

The fluctuation spectra for the r,=1/8" nose-radius test case are presented in
Figure 27 for the range 78 < s/r, < 143. Again, these data were measured at the
maximum energy location in the boundary layer for each streamwise location. (Note that
the s-range surveyed for both the 1/16" and 1/8" test cases is about 8.1".) Similar to the
1/16" case, both the presented data in Figure 27 and a closer examination of the data
show no evidence of a second mode disturbance. (Only instrumentation and tunnel
operational noise is evident in the higher frequency range, f> 100 kHz.) However, over
the first four upstream locations, 78 < s/r, <90, first mode disturbance growth is evident
in the 55-65 kHz frequency range, a similar range to the 1/16" case. For this s/r, range,
the maximum amplitude occurs at s/r,=90, or s=11.28". In contrast, for the 1/16" case,

the maximum amplitude occurs at s/r,=166, or s=10.39", over the upstream growth



48

region. More importantly, the maximum amplitude is greater for the 1/8" case relative to
the 1/16" case, reflecting larger growth. (Note that the same hot-wire was used for both
cases and the small difference in locations, 10.39" compared to 11.28", could not account
for the amplitude differences). The 1/8" case has a lower local Reynolds number than the
1/16" case in the vicinity of s=10=11". Furthermore, the growth of the first mode is more
prominent at these lower Reynolds number conditions since the first mode is a viscous
instability. Thus, the greater first mode growth for the 1/8" case is consistent with theory.

Moving further downstream, as shown in Figure 27, the disturbances are
attenuated from 94 < s/r, < 115. But, over the most downstream locations, 119 < s/r, <
143, the first mode amplitudes grow again yet this growth is masked by the lower
frequency disturbances. Similar to the 1/16" case, the downstream growth is not
substantial. Overall, the r,=1/8" case is stable for the second mode and mostly stable for
the first mode. Again, these conclusions are consistent with the thermocouple and
schlieren data. Based on reference [36], the entropy layer swallowing location is at about

s/r,=345 and thus the possible receptivity site cannot be ascertained from this data.

3.7 Sharp-Tip Flared-Cone Case

The most extensive analysis of this investigation was conducted for the sharp-tip
flared-cone test case. As a result, this section is divided into 3 subsections as follows: i)
presentation of the hot-wire calibration data ; ii) presentation of the schlieren and surface
data; and iii) presentation of the boundary layer data. The surface data consists of both
thermocouple and pressure data, and the boundary layer data consists of both mean and
fluctuation CVA output data. Mean and rms mass flux and total temperatures are also
presented for this test case. Note that, except for the qualitative data presented in Figure

46, one hot-wire was used for all the results presented in this section.



49

3.7.1 Calibration Data

Calibration data were obtained for the primary purpose of obtaining mean and rms
mass flux and total temperature profiles. However, these profiles are deferred to section
3.7.3. This section, instead, focuses on the fluctuating data used to calculate the psd data.
There are three main areas of focus in this section. First, the calibration range of the
tunnel and the significance of this calibration range will be discussed. Second, the mixed
mode sensitivity (i.e. sensitivity to both mass flux and total temperature) of the CVA
output voltage is shown for the operating range of the CVA used in this investigation.
Thus, proper interpretation of the psd data must take into consideration this mixed mode
sensitivity. The final area of focus is the presentation of the overall mass flux and total
temperature sensitivities as a function of R at the maximum energy locations. This data
can be used to determine the overall change in the CVA output voltage to both the mass
flux and total temperature over the entire R-range surveyed. (Note that throughout this

section, the term sensitivity is used to denote the static sensitivity of the CVA).
Calibration Range

In this investigation, only about the outer one-third of the sharp-tip boundary layer
was surveyed. The corresponding boundary layer survey region extended over the range
(0.61-1.36)8 at R=1785 (X=13.47") and over the range (0.68-1.48)0 at R=2120
(X=18.97"). For the remaining R-locations, 1785<R<2120, the lower boundary layer
survey point is in the range (0.61-0.68)d, and the upper boundary layer survey point is in
the range (1.36-1.48)3. Based on these survey regions, CFD calculations were used to '
determine the corresponding total temperature and mass flux ranges that were needed to
calibrate over these survey regions. For the freestream conditions conducted in this
investigation, ranges of 0.98 (To)..< To < 1.03 (To)., and 0.3 (pU).. < pU <22 (pU).,

were needed for the total temperature and mass flux, respectively. However, the
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allowable ranges of the tunnel are 0.97 (To)..< To < 1.03(To).. and 0.96 (pU)._< pU <
1.9.(pU).. for the total temperature and mass flux, respectively. Thus, the tunnel was
capable of providing the needed total temperature range but was not capable of providing
the needed mass flux range. So, in this investigation, extrapolation of the calibration data

was conducted in order to calibrate over the entire boundary layer survey region.
However, to calibrate over the (0.8-0.9)8 range for each streamwise location, a

mass flux range of 1.1 (pU),, < pU < 1.9 (pU), was needed. Thus, no extrapolation of
the calibration data was needed in the crucial critical layer region, (0.8-0.9)5. (Note that
a calibration tunnel which provided the needed mass flux and total temperature ranges for

the entire boundary layer was not available for the present experiments.)
Mixed Mode Sensitivity

The normalized total temperature sensitivities (ordinate) as a function of
normalized total temperature are presented in Figure 28 at a constant mass flux. The data
are presented for 7 Vw-values. The abscissa scale from 0.976 (To).. < To < 1.03 (To),,
represents the total temperature range used for the calibration data. As shown, only 3
total temperatures were used for calibration which was practically sufficient for the small
total temperature range of interest. Beginning at the lowest Vw, the difference in
sensitivities between successive Vw=constant curves decreases as Vw increases. For the
largest 3 Vw-values, the total temperature sensitivity differences are minimal. These
trends suggest that as Vw increases the total temperature contribution to the full CVA
output voltage becomes smaller. That is, the CVA is more sensitive to total temperature
fluctuations at low Vw. Similarly, the CTA system is more sensitive to total temperature
at low overheat ratios [31].

The normalized mass flux sensitivities (ordinate) as a function of normalized mass
flux are presented in Figure 29 at a constant total temperature. Again, the data are

presented for 7 Vw-values; each curve represents a different Vw value. (The actual Vw-
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values are listed in the box of Figure 28). In contrast to the total temperature sensitivity,
starting at the lowest Vw, the difference in mass flux sensitivities between successive
Vw=constant curves increases as Vw increases. This suggest that as Vw increases the
mass flux contribution to the CVA output voltage becomes larger. That is, the CVA is
more sensitive to mass flux fluctuations at high Vw. Similarly, the CTA system is more
sensitive to mass flux at high overheat ratios [31].

Comparing both Figures 28 and 29, two additional trends are common for both
the mass flux and total temperature sensitivities. First, as Vw increases the net change in
total temperature sensitivity and mass flux sensitivity for each Vw=constant curve
increases over the full abscissa range. This indicates that the CVA is more sensitive to
both fluctuations as Vw increases. Furthermore, the overall magnitudes of mass flux and
total temperature sensitivities increases with Vw. This trend also suggests that the CVA
1s more sensitive to both fluctuations as Vw increases. Although both of these trends
suggest a higher mass flux and total temperature sensitivity at higher Vw, the crucial
point is that the CVA is more sensitive to mass flux at igh Vw and more sensitive to total
temperature at low Vw. Also, since the Vw-range presented, represents the Vw-range used
for the boundary layer surveys, the mixed mode sensitivity (i.e. sensitivity to both mass
flux and total temperature) is apparent even for the highest Vw.

The relative sensitivity as a function of Vw is presented in Figure 30 for three total
temperatures. The relative sensitivities are presented for a constant mass flux of
1.442(pU),.. Based on CFD calculations, this value corresponds to the mass flux near
the boundary edge at R=1785 (X=13.47") which represents the most upstream location
for the sharp-tip fluctuation measurements presented in this work. Since the boundary
layer thickness decreases with R, the 1.442(pU).. mass flux will occur lower in the
boundary layer as R increases but should remain in the critical layer region. The data of

Figure 30 suggest that the CVA is more sensitive to mass flux as Vw increases since the
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relative sensitivity decreases with Vw. Likewise, the data suggests that the CVA is more
sensitive to total temperature as Vw decreases. Similar results are also observed at mass
flux values different than 1.442 (pU)...

In order to calculate the mass flux and total temperature rms and mean profiles,
the entire Vw-range shown was used. However, the fluctuation amplitude measurements,
used to calculate the power spectral density, were conducted at only the maximum Vw.
At this Vw, the CVA was sensitive to both total temperature and mass flux as previously
discussed. But, the relative sensitivity data indicates that the fluctuation amplitude is
more sensitive to changes in mass flux as opposed to changes in total temperature at the
maximum Vw. Thus, all spectra and amplification rates presented in this investigation

were calculated at the highest practicable Vw.
Overall Sensitivities

The normalized total temperature (left ordinate) and normalized total temperature
sensitivities (right ordinate) are plotted as a function of R in Figure 31. These values are
plotted at the maximum energy locations at each R-location. Also note that the
sensitivities are calculated at the maximum Vw. The maximum energy locations are in
the range (0.8-0.9), so these points are within the calibration mass flux and total
temperature range (refer to Calibration Range section). By inspection of the left ordinate
data of Figure 31, the total temperature changes only about 4% for the full R-range. In
addition, the change in total temperature sensitivity due to changes in both total
temperature and mass flux is only about 5% over the full R-range as seen from the right
ordinate data. Thus, any change in total temperature sensitivity are small for the entire R-
range surveyed. Furthermore, the largest change in total temperature sensitivity between
any two successive station occurs between R=1945 and 1975. This change is only about

2%.
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The normalized mass flux (left ordinate) and mass flux sensitivities (right
ordinate) are plotted as a function of R in Figure 32. These values are also plotted at the
maximum energy locations at each R-location. Also note that the sensitivities are
calculated at the maximum Vw. From the left ordinate data, the mass flux changes about
34% over the full R-range. However, the change in mass flux sensitivity due to changes
in both total temperature and mass flux is only 11.5% over the full R-range as observed
from the right ordinate data. These changes are relatively small when compared to the
expected exponential disturbance growth in the linear region. Furthermore, the largest
change in mass flux sensitivity between any two successive stations occurs between
R=1945 and 1975. This change is only about 7.4%.

In summary, the maximum change in total temperature sensitivity and mass flux
sensitivity between any two successive stations is about 2% and 7.4%, respectively.
Thus, the total change in voltage fluctuation due to changes in both total temperature and
mass flux is on the order of 8%. Since the CVA used in this investigation is a fixed time
compensation unit, a maximum error of about 8% in the CVA output voltage fluctuation
is due to changes in the mean mass flux and/or total temperature that occur from one
streamwise location to another at the maximum energy location. In the linear stability
region, the fluctuation disturbances grow exponentially which is much larger than the
maximum 8% change in CVA output voltage fluctuation due to changes in the mean
flow. That is, the measured fluctuation voltage growth is comprised mainly of the
instability wave disturbance growth. Thus, the condition outlined in Section 2.1.5 for
comparing uncalibrated amplification rates with numerical amplification rates is met.
Therefore, the amplification rates derived from these uncalibrated fluctuation
measurements should compare well with numerical amplification rates in the linear

stability region.
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On the other hand, in the non-linear stability region, the amplification rates differ
depending on the flow variable (i.e. mass flux, total temperature, etc.). Furthermore, for
strongly non-linear disturbances, where disturbance growth becomes saturated, the
maximum 8% change in the output fluctuation voltage due to changes in the mean flow is
likely on the order of the disturbance growth. Thus, fluctuation measurements in this
regime would be erroneous unless an automatic compensation anemometer was used.
Thus, amplification rate measurements in this regime were not considered in this
investigation.

However, in the weakly non-linear regime where the disturbance growth is
substantial relative to the 8% change in output fluctuation voltage, the uncalibrated
amplification rates can be validly compared with the PSE [9-10] or DNS [11] approaches.
As discussed in the mixed mode sensitivity section, the CVA was operated under
conditions where changes in output voltage fluctuations were mostly comprised of
changes in mass flux fluctuations. Thus, the experimentally-derived amplification rates
in the weakly non-linear region are mainly of a mass flux nature. Comparisons with
theoretically-derived mass flux amplification rates using either a PSE or DNS approach
would then be appropriate. Since the experimental amplification rate data presented in
this investigation extended only to the weakly non-linear region, these data should

compare reasonably well to theoretical mass flux amplification rates.

3.7.2 Schlieren Data and Surface Data

Surface Pressure Data

The surface static pressure profile is presented in Figure 33. Experimental data
are presented along three rays spaced as shown in the figure; these data were obtained for
different wind tunnel runs. Navier-Stokes [32] axisymmetric (i.e. 0° pitch and yaw)

pressure data, Navier-Stokes [33] 0.2° windward pressure data, and the Taylor Maccoll
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inviscid straight cone surface pressure data are also presented. Note that the experimental
pressure error of Pw/P.= + 0.0064 is approximately the height of the symbols, so error
bars are not shown. Over the straight cone region, X < 10", and at X=13", the
experimental data compare better with the axisymmetric CFD data, except for Ray 1 at
X=9.5". The windward tendency of the experimental data is not observed until
downstream of the flare-cone junction, X > 13". Thus, the straight cone region is not as
sensitive to model misalignments as the flared region. Generally, for X > 14", the
experimental data compare better with the 0.2° CFD data. The experimental data
increase above the 0.2° wind CFD data for X > 16", reflecting the transitional nature of
the boundary layer. Thus, the only useful range for determining the effective flow angle,
between a given ray and the freestream, is the 14" < X < 15" range.

The yaw misalignment is estimated by comparing both sets of CFD data with Ray
3 over the range 14" < X < 15". Over this X-range, the pressures for Ray 3 are
approximately halfway between the axisymmetric and 0.2° windward CFD pressure,
reflecting a 0.1° windward tendency. As previously discussed, for the pressure
measurements, the boundary layer measurement ray (6=180°) yaw angle was estimated at
a geometric 0.1° + 0.05° leeward angle. This estimate is consistent with Ray 3 (8=0°),
reflecting a 0.1° windward character. Furthermore, the estimated geometric yaw angle
corresponds well with the flow yaw angle of the present data. Therefore, estimating the
boundary layer measurement ray at a flow 0.1° + 0.05° windward yaw angle is
reasonable. Furthermore, the boundary layer measurement ray was estimated at a
geometric 0.2° £ 0.05° yaw angle for all non-pressure measurements presented in this
investigation. Based on the above conclusions, an estimate of a flow 0.2° + 0.05° yaw
angle is reasonable for the non-pressure measurements.

The pitch misalignment is estimated by comparing Rays 1 and 2 with both sets of

CFD data over the range 14" < X < 15". For this X-range, Rays 1 and 2 both reflect a
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windward tendency, though Ray 1 reflects a slightly larger windward tendency relative to
Ray 2. However, these conclusions are misleading. Since Rays 1 and 2 are spaced 180°
apart then either both rays are at 0° yaw (case 1), or one ray is at a 3° windward pitch
angle while the other is at a $° leeward pitch angle (case 2). If the transitional boundary
layer effects the wall as far upstream as, 14" < X <15, then case 1 would follow since
both rays would rise above the axisymmetric CFD and the pressures would be
comparable as shown in Figure 33. Since Rays 1 and 2 are not relevant to the boundary
layer measurements conducted opposite Ray 3 (6=180°), no further explanation will be
given for these anomalies. However, based on the present data, using the pressure data to

align the model at 0° pitch and yaw may be a difficult task.

Surface Temperature Data

Prior to discussing the surface temperature measurements, transition onset
estimated using the surface temperature measurement ray is first discussed in relation to
transition onset estimated using the boundary layer measurement ray. (Refer to the
circular diagram inset of Figure 33 for the O-orientation.). The surface temperature
measurements of Figure 34 were conducted at ©=270°. But, the boundary layer
measurements were conducted at 6=180°, a ray with a 0.2° + 0.05° yaw angle.
Subsequent thermocouple measurements at 6=240° indicated that transition shifted
downstream by AR=30 relative to the 6=270° ray but all other aspects of the temperature
profiles were the same. Thus, a AR=30 is added to the transition onset estimate of Figure
34 to approximately adjust the ©=180° estimate to the 8=270° boundary layer
measurement ray.

Figure 34 presents the experimental and computational surface temperatures along
the left ordinate and the flared-cone surface coordinates along the right ordinate. The

experimental surface temperature error is + 2° R and the CFD values represent laminar
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adiabatic wall temperatures. The laminar and transitional regions determined from this
data are described below.

Over the range, R=690-1700, the flow is laminar and the experimental data
compare well with the CFD data. From R=1700 to 1800, the experimental temperatures
increase slightly above the predicted adiabatic wall temperatures. However, only the
sharp temperature rise region, R=1800-2110, is associated with transition since heat from
this region is conducted along the model surface to the region, R=1700-1800, thereby
increasing the temperature over the region, R=1700-1800. Thus, the R=1700-1800
region also represents a laminar region but with an equilibrium temperature greater than
the predicted adiabatic wall temperature.

Another region of interest is the transition onset region. An estimate of transition
onset was determined from the intersection of two straight lines passing through the
laminar region and sharp temperature rise region using the recovery temperature as a
function of X method as outlined in Appendix C [37]. Based on this criterion, transition
onset is estimated in the range R=1960-1990. The estimated onset of transition compares
well with linear stability theory [23] which predicts an N-factor for the most unstable
frequency of about 8 to 8.5 over the range, R=1975-2005. (Note that transition onset
correlated well with N=10 for a straight cone in a Mach 3.5 quiet tunnel [38]).
Downstream of R=2110, the temperature decreases due to the combined effect of a
relatively cold model base and the flow field tending to fully transitional flow. However,
unlike the closed bleed valve data presented in Figure 23, an asymptote designating fully

turbulent flow cannot be ascertained from the present measurements.
Schlieren Data

Schlieren data are presented in Figure 35 over the aft region of the model. The
insert in Figure 35 shows an enlargement of the downstream field of view, R=2085-2180.

A wavy structure can be identified near the edge of the boundary layer. The wavelength
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of these waves is measured to be approximately twice the boundary layer thickness.
These waves (i.e. wave packet) are associated with second mode disturbances [6,21].
The second mode disturbances are first detected at about R=2025 according to a closer
examination of the video records used to construct Figure 35. This location is slightly
downstream of the onset of transition as estimated from the surface temperature

measurements.
3.7.3 Boundary Layer Mean Data

Based on the considerations of Section 3.7.2, all of the data presented in this
section were conducted with the boundary layer measurement ray located at a flow 0.2° +
0.05° windward yaw angle. Thus, all comparisons with theory, presented in this section,
will consider the effects of this “small” windward angle when appropriate.

The uncalibrated mean CVA output voltage profiles are presented in Figure 36 for
17 streamwise locations. The mean voltage measurements were conducted at the
maximum practicable Vw. The profiles are similar in character to typical mass flux
profiles which is expected based on the considerations outlined in Section 3.7.1.
However, these profiles are only representative of the boundary layer edge region, where
the mean voltage variation is only 18%, or less, at any given streamwise location.

The experimental (thermal) boundary layer thickness distribution, estimated from
the mean voltages at minimum Vw -Section 2.4.1, are presented in Figure 37. Note that
the CFD [32] (velocity) boundary layer thickness distribution was curve fit using a
second order polynomial, and the experimental error = + 2% of the plotted values.
Except for a couple locations over the range, R=1610-1915, the experimental & is slightly
lower than the CFD §, reflecting a windward tendency consistent with the windward
boundary layer measurement ray. That is, along a windward ray, the pressures are higher

relative to a 0° ray, producing a decreased boundary layer thickness relative to a 0° ray
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which is represented by the CFD data. From R=1945 to R=2120, the experimental &
becomes greater than the CFD 8, confirming the transitional nature of the boundary layer
over this region. For 1610 < R < 1915, the close agreement between the laminar flow
CFD predictions and the experimental data suggests that, experimentally, the mean flow
is laminar over this region (i.e. no mean flow distortion). This laminar character is

confirmed with the aid of Figures 38 and 39 which are discussed next.

The experimental mean total temperature profiles, calculated from the data of
Figure 36 using the approach of Section 2.4, are presented in Figure 38 at 4 streamwise
locations. Also, CFD laminar total temperature profiles, computed from the Navier-
Stokes code of Ref. 32, are presented as the solid lines in Figure 38. At R=1785, the
experimental and computational data compare well; no effect of the small yaw angle in
the experiment is evident. The good agreement with CFD at R=1785 is typical of all total
temperature data over the range, 1610 < R < 1915. This is consistent with the boundary
layer thickness, confirming the laminar flow region, R < 1915. However, at R=1945, the
transitional nature of the boundary layer becomes evident due to the slight total
temperature distortion from m=5.27 (0.706 &) to n=6.62 (0.887 8). This distortion
becomes more evident further downstream. At R=2035, the total temperature is distorted
from about 1=5.09 (0.734 8) to 1=6.39 (0.921 §). At the most downstream location,
R=2120, the entire presented lower boundary layer region is distorted from n=4.49 (0.680
d) to N=6.18 (0.935 &), marking a "high fluctuating disturbance" region. Overall, the
total temperature distortion occurs in the range, (0.71-0.93) 8, which is in the vicinity of
the critical layer.

The experimental mean mass flux profiles, calculated from the data of Figure 36
using the approach of Section 2.4, are presented in Figure 39 at 4 streamwise locations.
Also, CFD [32] laminar mass flux profiles are presented as the solid lines in Figure 39.

At R=1785, the experimental and computational data compare well. No effect of the
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small yaw angle in the experiment is evident from the mass flux data which is consistent
with the total temperature data at this same location, The good agreement with CFD
shown at R=178S5 is typical of all mass flux data over the range, 1610 <R < 1915. This is
consistent with the boundary layer thickness, confirming the laminar flow region, R <
1915. However, at R=1945, the transitional nature of the boundary layer becomes
evident due to the mass flux distortion from M=5.61 (0.751 3) to =6.93 (0.928 ).
Similar to the total temperature data, this distortion becomes more evident further
downstream. At R=2035, the mass flux is distorted from about N=5.09 (0.734 3) to
N=6.39 (0.921 3). At the most downstream location, R=2120, the entire presented lower
boundary layer region is distorted from N=4.49 (0.680 8) to N=6.18 (0.935 ), marking a
"high fluctuating disturbance” region. Similar to the total temperature distortion, the
mass flux distortion occurs in the vicinity of the critical layer.

The uncalibrated rms profiles are presented in Figure 40 at the maximum Vw.
The hashed region, from R=1610 to R=1750 represents the measurement range over
which the rms S/N was approximately 1. So, data at these five streamwise locations were
not considered further in this study. Also shown in Figure 40 is the locus of the
maximum disturbance energy. The position of the maxima are at about 80 to 90% of the
boundary layer thickness which is in good agreement with the eigenfunction maxima
locations predicted by stability theory. For the range, 1785 <R < 1945, the S/N > 1, but
no clear indication of rapid maximum rms amplitude growth is evident. However, Just
downstream, the rapid growth region occurs over the range, 1975 < R <€ 2120. The
location of R=1975, is in good agreement with the transition onset location estimated
previously from the temperature data.

Using the data of Figure 40 and the approach of Section 2.4.4, the mass flux and
total temperature rms were calculated. These data are normalized by the mean mass flux

and total temperatures and presented in Figures 41-43. For brevity, the normalized rms
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quantities are termed rms fluctuations in the discussion below. (Note that the
instrumentation noise was not subtracted for these data and thus only regions where the
signal-to-noise is greater than 1 represent the true fluctuation levels).

The mass flux and total temperature rms fluctuations are presented as a function
of R in Figure 41. The rms fluctuations are presented at the maximum energy locations.
At the most upstream location, R=1785, the mass flux and total temperature rms
fluctuations are 2.1% and 0.5%, respectively. Over the region, 1785 < R < 1945, the
mass flux and total temperature rms fluctuations increase only slightly from their
upstream values. However, over this region, S/N=1, and thus the actual mass flux and
total temperature rms fluctuations are lower than the values shown. Further downstream,
S/N >1, and the disturbance levels increase for both flow variables. At the most
downstream location, R=2120, the rms fluctuations reach a maximum of 11% and 2.3%
for the mass flux and total temperature, respectively. Thus, from R=1975 to R=2120, the
mass flux rms fluctuation increases by a factor of 5.2 (11/2.1), comparable to the total
temperature increase of 4.6 (2.3/0.5). However, considering each location over the full
R-range, the mass flux rms fluctuation is a factor of 4-8.5 larger than the total
temperature rms fluctuation. Combining this latter result with the fact that the CVA is
operated at the maximum practicable Vw suggest that the disturbance amplification rates
approximate the mass flux amplification rates to first order. (Note, as previously
discussed, this approximation is only important in the non-linear stability regime).

The mass flux and total temperature rms fluctuation profiles are presented in
Figure 42 at R=2035. This location is in the rapid disturbance growth region. For both
the mass flux and total temperature, the rms fluctuation maximum occurs at N=6.17, or
0.889 8. Thus, the rms fluctuation maxima occur in the critical layer region, (0.8-0.9) §,

as expected. In addition, over the critical layer region, the mass flux rms fluctuations are
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greater than the total temperature rms fluctuations by a factor of 8.5. Consequently, the
second mode disturbances are predominantly of a mass flux nature.

The mass flux and total temperature rms fluctuation profiles are presented in
Figure 43 at R=2120, the most downstream location surveyed for the sharp-tip case. For
both the mass flux and total temperature, the rms fluctuation maximum occurs at 1=5.97,
or 0.903 8. Thus, the rms fluctuation maxima occur in the vicinity of the critical layer
region as expected, comparing well with the R=2035 location. In the critical layer region,
the mass flux rms fluctuations are greater than the total temperature rms fluctuations by a
factor of about 4.5 compared with 8.5 for R=2035. Thus, the mass flux dominance of the
second mode disturbances decreases for R > 2035; this trend is also suggested from the

data of Figure 41.
3.7.4 Boundary Layer Fluctuation Data

The fluctuation data are presented in 3 sections: i) presentation of the amplitude
data; ii) presentation of the amplification rate data; and iii) presentation of the global
characteristics of the fluctuation data. The amplitude data provide an overall perspective
of the nature of second mode disturbances and suggest the additional disturbance modes
of interest. The amplification rates provide the local rate of growth of the relevant
disturbance modes and aid in establishing the experimental data in the context of stability
theory. Finally, the fluctuation disturbance wavelengths and integrated growth rates

provide a global perspective of the fluctuation data.
Amplitude Data

The fluctuation spectra are presented in Figures 44 and 45 at the maximum energy
locations. Figure 45 represents the frontal view of the fluctuation spectra of Figure 44.
Before outlining the instability waves of interest from this data, the following

phenomena, concerning second mode disturbances, are discussed over the next four
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paragraphs: i) the boundary layer tuning of the second mode disturbances; ii) the
transition onset location obtained from the spectra data; iii) the shifting of second mode
frequencies due to the small yaw angle of the model; and iv) the second mode disturbance
through the boundary layer at a fixed R-location.

As shown in Figure 44, for R > 1975, the amplitude of the disturbances increases
in the streamwise direction. Furthermore, the frequency of the most amplified
disturbances increases in the streamwise direction as observed from Figure 45. This
observation verifies the boundary layer tuning of the disturbances and also confirms their
second mode character [6]. Specifically, over the range, 1975 <R < 2060, the frequency
of the second mode most amplified disturbances increases, corresponding to the boundary
layer thickness decrease over this same range as observed in Figure 37. Over the range,
2060 < R < 2120 (last 3 streamwise locations), the second mode most amplified
disturbance frequency remains constant at 254 kHz, suggesting a reduction in disturbance
growth rate over this range. This is consistent with the “small” change in boundary layer
thickness over this same range as observed from Figure 37. Overall, the boundary layer
tuning of the disturbances is consistent with the boundary layer thickness data of Figure
37.

Although the disturbance growth rate decreases over the last 3 streamwise
locations, the amplitudes grow to the last measurement station of R=2120 as observed
from Figure 44. Since Kimmel [6,39] defines transition onset over a straight cone as the
streamwise location where the second mode amplitudes reach a maximum before
decaying, transition onset does not occur for R<2120. Downstream of R=2120 the
disturbance amplitudes could decrease, but this cannot be ascertained from the present
data. However, the estimated transition location from the thermocouple, boundary layer
thickness, and mean flow data is about R=1960-1990. Thus, the transition onset location

as defined by Kimmel may not work well for a flared-cone configuration due to the rapid
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growth of the flared-cone disturbances relative to straight cone disturbances. (Kimmel's
definition seems more appropriate for defining the end of transition as opposed to the
beginning). In summary, the transition onset location of about R=1960-1990 corresponds
to the most upstream location of second mode rapid disturbance growth, R=1975.

Since the data presented in Figures 44 and 45 were conducted along a 0.2° + 0.05°
yaw windward ray, an increase in the second mode frequency is expected. That is, along
a windward ray, the surface pressure increases, decreasing the boundary layer thickness
and increasing the frequency relative to the 0° case. For 1945 < R < 2120 the most
unstable frequencies in terms of the maximum N-factor is in the frequency range, 245-
255 kHz. Based on LST [23], the most unstable frequency range over the same R-range
is 220-230 kHz. In order to determine the source of this frequency shift, an additional
test was conducted with the boundary layer measurement array aligned as close to a 0°
yaw angle as possible; the results from this test are presented in Appendix D. The
analysis of the data from this test clearly indicated a most unstable frequency range of
218-228 kHz, confirming that the frequency shift in the present data is caused by model
misalignment. Furthermore, as shown in Appendix D, this frequency shift is attributed to
a corresponding change in boundary layer thickness, and experimental data compare well
with LST in the linear stability regime.

The fluctuation spectra through the boundary layer at a fixed streamwise location,
R=2120, is presented in Figure 46. (This data was measured using a different hot-wire
than other data presented in Section 3.7.) For R=2120, the second mode frequency band,
210-290 kHz, is constant throughout the boundary layer as expected. In addition, the
amplitude profile of the second mode band, with respect to distance from the wall, is
similar to the stability theory eigenfunction profile. The second mode amplitudes
approach zero at both the wall and boundary layer edge, which is consistent with the

boundary conditions of second mode, subsonic, neutral eigenfunction profiles [3].
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The amplification rates in 3 frequency bands of interest are discussed in Figures
47-61. The first frequency band of interest is from f=65 kHz to f=85 kHz. This
frequency band is associated with first mode disturbances but these disturbance
amplitudes are not clearly discernible in Figure 44, The second band of interest, f=110-
130 kHz, is associated with a sub-harmonic of the second mode. This band is discernible
in Figure 44 over the last three R-locations. The last band of interest, f=210-290 kHz, is
associated with the second mode and is clearly discernible in Figure 41. (Note that an
additional frequency band of interest, f=495-515 kHz, is associated with the second mode
first harmonic as outlined in Appendix E, but is not present from the spectral data

presented in this section.)
Amplification Rate Data

Figures 47-58 present the spectra of the amplification rates, fluctuation
amplitudes, and noise amplitudes at 12 streamwise (R) locations on the model flare.
(Note that the right ordinate amplitude scales are 0-0.14 (Figs. 47-50), 0-0.21 (Figs. 51-
54), and 0.70 (Figs. 55-58), and the ratio of amplitude fluctuations to noise spectra are
used to estimate the S/N ratio.) The amplification rate data of Figures 47-58 are
discussed separately below in the following order: first mode, second mode, second mode
sub-harmonic.

In the frequency band 65 kHz to 85 kHz, the existence of the first mode is
established from Figures 47-58. The first mode remains unstable throughout the entire
streamwise range surveyed but the amplification rate remains below 0.005. These
observations compare well with LST [23]. Since the obligue first mode disturbances are
most unstable in supersonic flows [3], only a component of the first mode waves are
measured using the present experimental configuration which is capable of measuring
only 2D waves. Thus, the 65-85 kHz band is lower than the true first mode frequency

range, but the dégree of frequency shift cannot be determined from the present data.
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The frequency range, f=210 kHz to 290 kHz, is associated with the second mode.
For R=1785 and R=1880, the S/N=1 for the second mode disturbances except near f=220
kHz. Thus, the second mode is barely detectable as far upstream as R=1785. At R=1850,
the second mode becomes unstable (-o;>0) in a small band around =225 kHz. From
R=1880 to 1915, the amplification rates are nearly constant in the vicinity of 225 kHz.
However, at R=1945, the second mode amplification rates increase substantially over a
fairly large frequency band. The amplification rates increase at the next location,
R=1975, but decrease montonically in the downstream direction for R > 1975. However,
the second mode remains unstable to the last measurement location, R=2120. As seen
clearly in Figures 52-57, the frequency band associated with the second mode maximum
amplification rate and maximum amplitude do not coincide. This occurs since the
unstable second mode amplitudes shift steadily to higher frequencies due to the overall
thinning of the boundary layer in the downstream direction (i.e. boundary layer tuning).
Thus, the maximum amplification rate is shifted to the higher frequency side of the
unstable second mode frequency band. A similar observation was made by Stetson [6].

Note that the frequency band, 110-130 kHz, associated with the second mode sub-
harmonic was not clearly identifiable from Figure 46. The hot-wire sensitivity to small
disturbances, such as the sub-harmonic, may have been insufficient to measure the sub-
harmonic for the Figure 46 data. However, the sub-harmonic was present in some of the
repeat data conducted for the sharp-tip test case using the same wires. Thus, the sub-
harmonic is not an anomaly of the particular hot-wire used. Since the sub-harmonic was
not present for all repeat runs, it's presence may depend on slightly changing initial
amplitude conditions in the freestream from run to run which affects the subsequent
growth of instability waves in the boundary layer. This process is similar to changing the
Jforcing frequencies using PSE methods [10]. (However, the authors of Ref, [10] believe

that increasing the amplitudes of the forced sub-harmonic disturbances will not increase
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the sub-harmonic growth rate sufficiently for the sub-harmonic to become a “dominant”
instability mode). Due the abstruse nature of this disturbance, further analysis is
presented in the 110-130 kHz frequency range.

The possible sub-harmonic of the second mode is represented by the frequency
band, f=110 to 130 kHz. Note that unlike harmonics, which are associated with
nonlinearities [8] of the second mode, the sub-harmonic is considered a separate mode of
oscillation similar to the secondary, sub-harmonic, helical disturbances used as forcing
frequencies in previous PSE [10] and DNS [40] studies. For the range, R=1785-1945, the
S/N=1 in the sub-harmonic frequency band. At R=1945, the S/N is slightly greater than
1, locating the most upstream detection of the sub-harmonic. Slightly downstream,
R=1975, the sub-harmonic first becomes unstable. In contrast, initial instability of the
second mode occurs at R=1850. Furthermore, R=1975 marks the location of a rapid rise
in amplification rates. In contrast, the second mode rapid rise in amplification occurs at
R=1945. The sub-harmonic amplification rates increase for the next location, R=2005,
but decrease montonically for R > 2005. However, the sub-harmonic remains unstable to
the last measurement location, R=2120. Similar trends are observed for R > 1975 for the
second mode. Thus, the overall downstream character of the sub-harmonic is similar to
the second mode. However, the maximum amplification rate shifts downstream by about
AR=30 for the sub-harmonic relative to the second mode.

The PSE study of reference 10 indicates that mild secondary instability of the
forced sub-harmonic helical mode occurs at 10% mass flux fluctuations. From Figure 41,
the mass flux is 10% or greater for the last 3 streamwise locations, R > 2060,
corresponding to the sub-harmonic growth observed over the same 3 locations as
observed in Figure 44. However, due to the obliquity of these disturbances, only a
component of the sub-harmonic is measured in the present investigation. Thus, the

possible obliquity of the second mode disturbances in the present experiment cannot be
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ascertained. As a result, previous PSE [10] and DNS studies [11,41], which use a kelical
pair of second mode disturbances as forcing inputs may not be suited for direct
comparison. Rather, PSE or DNS studies using a 2D second mode as the forcing, or
additional experimental measurements, are needed for direct comparisons.

In the following figures, 59-61, the amplification rates as a function of R are
presented. Since the "noise” could not be subtracted from the full CVA output voltages,
the amplitudes over the upstream regions, R < 1910, will approach the constant noise
level of the CVA. Thus, in this region, the amplification rates are zero since the
derivative of a constant is zero. However, these upstream regions, R < 1910, do not
represent points on a neutral stability diagram. Only the region, R > 1910, should be
considered representative of the "true” growth of the flow.

Several amplification rate curves vs. R are presented for a few frequencies in
Figure 59. The selective amplification of particular frequencies as the boundary layer
thickness decreases in the downstream direction is shown. The frequency, f=80 kHz, is
within the frequency band associated with the first mode and, f=254 kHz, is within the
frequency band associated with the second mode. In the linear stability region, R=2020,
the 80 kHz experimental dimensional amplification rate is approximately 4.34/ft,
comparing within 11% of the LST result of 4.85/ft. At the location of maximum LST
second mode -a; , R=2020, the LST [23] dimensional amplification rate is approximately
13.88/ft for f=230 kHz which compares within 7% to the experimental dimensional
amplification rate of 12.89/ft for f=234 kHz. Furthermore, for R < 2120, the location of
maximum amplification rate for the most unstable frequency (i.e. maximum N-factor)
occurs at R = 1975 for both experiment (f=254 kHz) and LST (f=220 kHz). Overall,
these comparisons are relatively good considering the small yaw angle of the model.

Several amplification rate curves vs. R are presented for frequencies associated

with the second mode in Figure 60. Three pairs of frequencies (244,264), (234,273), &
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(225,283) kHz centered at approximately 10, 20, & +30 kHz about f=254 kHz are
shown along with f=254 kHz. For each frequency pair, the data show that the higher
frequency has a peak amplification rate further downstream than the lower frequency.
These trends confirm the boundary tuning of the disturbances. That is, as discussed
previously, the amplification rates shift to higher frequencies due to the overall decrease

in the boundary layer thickness in the downstream direction.

The maximum amplification rates associated with the first mode, sub-harmonic of
the second mode, and second mode are presented in Figure 61. The maximum
amplification rates were calculated by determining the maximum -o; over the 65-85 kHz
(first mode), 210-290 kHz (second mode), and 110-130 kHz (sub-harmonic) ranges for
each R-location. Over the upstream region, R < 1910, the S/N = 1 and therefore the
amplification rates are unreliable. Further downstream, the sub-harmonic growth is
similar in character to the second mode, but the maximum amplification rate is shifted
downstream by about AR=30, as previously discussed. However, the sub-harmonic
growth rate is not explosive and is on the order of the second mode growth rate, also
comparing well with PSE [10]. Furthermore, transition onset, R=1960-1990, occurs in a
region where the second mode is dominant and thus transition is not caused by sub-
harmonic secondary instability, also comparing well with PSE [10]. However, relatively
“far” downstream of transition onset, R > 2060, all the amplification rates are

comparable.

Global Characte;’istics of the Fluctuation Data

The normalized second mode amplitudes are presented as a function of f at 4
select R-locations in Figure 62. Note that Ao represents the amplitudes at the most
upstream location surveyed, R=1610. These normalized results indicate a shift in the

second mode frequency. For the range 1880 < R < 1945, the frequency of the maximum
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normalized amplitude occurs at f=223 kHz. However, at R=1975, the frequency of the
maximum normalized amplitude shifts to f=254 kHz and remains at this frequency to the
last measurement location, R=2120 (not shown). (Note that this frequency shift is also
observed by comparing Figures 52 and 53.) The frequency shift range, R=1945-1975,
compares well with the transition onset location determined from the thermocouple
measurements, R=1960-1990.

The wavelengths for the second mode and second mode sub-harmonic,
normalized with respect to the boundary layer thickness, are presented in Figure 63. The
error in A/8 = 4% of the plotted values. The disturbance wavelengths were estimated
assuming the phase velocity is 90% [11] the average (over the range 1610 < R < 2120)
boundary layer edge velocity predicted from CFD. Upstream, 1785 < R < 1945, the
second mode wavelength scales as: A = 2.2 8. Further downstream in the transitional
region, 1975 < R <2120, the second mode wavelength scales as: A = 2 8. The shift in \/$
scaling from 2.2 to 2 reflects the shift in frequency previously noted in Figure 62 for R >
1945. For the transitional region, the A = 2 § scaling compares well with sharp straight
cone data [6,42]. Over the range, 1975 < R < 2120, the sub-harmonic scales as,A=433.
This is expected since the sub-harmonic frequency is approximately half the fundamental
(second mode). Since the sub-harmonic is oblique, only a component of the disturbance
is measured and thus the measured frequency is lower than the actual frequency.
Furthermore, the actual phase velocity for the oblique wave is unknown. Thus, the A =
4.3 & scaling should be considered approximate.

The integrated growth rates, In(A/Ao), are presented in figure 64 at select
frequencies in the second mode frequency band. (For a fixed frequency: the LST "N-
factor"=In(A/Ac)+In(A/A,) where A, represents the amplitude along the lower branch

neutral stability curve and Ao represents the amplitude at R=1785). Two stability regimes
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are suggested from the data of Figure 64: i) the linear stability regime; and ii) the weakly
non-linear stability regime.

The linear stability regime is represented by constant, positive slope lines in
Figure 64. That is,

%[ln(-;%)] =const. > 0

which implies,

+48=-20,>0
therefore,

—0; > 0, unstable
which states that constant, positive slope lines in Figure 64 represent unstable regions on
the neutral stability diagram. For the frequency, 255 kHz, with the maximum integrated
growth, the linear stability regime spans the range, 1970 < R < 2050, while for the
frequency, 210 kHz, with the minimum integrated growth, the linear stability regime
spans the range, 2010 < R < 2120. Thus, the boundaries of the linear stability regime
depend on frequency. However, the downstream boundary of the linear stability regime
extends downstream of R=2045 for all second mode frequencies, 210-290 kHz (255 < f <
290 kHz not shown in Figure 64).

The weakly non-linear regime extends from the downstream end of the linear
stability regime to the location where 1n(A/A.)=>0. This downstream asymptote
condition represents the upper branch of the neutral stability curve. For all the curves of
Figure 64, and the additional second mode frequencies not presented, the asymptote
condition is nor met. Thus, all second mode frequencies do not extend past the weakly
non-linear stability regime into the strongly non-linear regime.

Overall, the second mode disturbances extend from the linear regime to the
weakly nonlinear regime. As previously discussed in Sections 2.15 and 3.7.1, the

uncalibrated amplification rates should compare well with LST in the linear stability
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regime and with PSE or DNS mass flux amplification rates in the weakly non-linear
regime. Thus, the experimental amplification rates and “N-factors” should compare well
with numerical predictions, provided the 0.2° + 0.05° windward yaw angle is considered
and the numerical amplification rates are computed along paths similar to the maximum
energy path of the present study. Also, data should only be compared with numerical
data for R > 1910 where S/N > 1.

Note that the change in N-factor for a given frequency is equal to the change in
In(A/Ao) over a given X or R range, i.e.

aN|? = d(m%):

Thus, experimental data plotted in the form of Figure 54 can be compared to LST (S2)2
data in the linear stability regime. However, as shown in Appendix D, the data of Figure
64 are shifted approximately 30 kHz above the 0° case. Furthermore, this frequency shift
was attributed to a corresponding shift in boundary layer thickness. Since each frequency
is tuned to a particular boundary layer, comparing a particular frequency from Ref. 23 (0°
pitch and yaw) with the present data would not reflect a proper comparison. Thus, the
linear data of Figure 64 should be compared with LST data which has been computed

from a mean flow that accounts for the = 0.2° windward yaw angle.
3.8 rp=1/32" Flared-Cone

The r,=1/32" test case is the only blunt test case that showed evidence of a second
mode instability. This test case is discussed in the following three sections: i)
presentation of the surface data; ii) presentation of the boundary layer mean data; and iii)
presentation of the boundary layer fluctuation data. Only uncalibrated mean and
fluctuation data are presented. However, the boundary layer survey region extended from
the upstream, "stable” region to the linear stability region only. Thus, as previously

discussed, the uncalibrated amplification rates should compare well with LST



73

amplification rates. Note that one hot-wire was used for all the results presented in this

section.

3.8.1 Surface Data

Figure 65 presents the experimental and computational surface temperatures
along the left ordinate and the flared-cone surface coordinates along the right ordinate.
The experimental surface temperature error is + 0.00247 To.. (+ 2° R), and the CFD
values represent laminar adiabatic wall temperatures. Over the far upstream region, s/t <
100, the experimental data are shifted below the CFD data but remain within 0.5% of the
CFD. Further downstream, 100 < s/r, < 380, the experimental data remain slightly
below but within 0.3% of the CFD data. At the flare-cone junction, s/r, = 311,
Tw/To.=0.865, comparing well with Tw/'To..=0.865 at the same location, R=1537, for the
sharp-tip case. However, the CFD Tw/To..-values at this location are 0.865 and 0.867 for
the sharp-tip and 1/32" test cases, respectively. Thus, for the 1/32" case, the slight shift in

temperature between experiment and CFD is attributed to numerical errors in the 1/32"

CFD data. Over the downstream region, 380 < s/r, < 600, the experimental data are
slightly below the CFD data, but remain within 0.3% of CFD data. For s/t, > 600, the
experimental temperature rises slightly, reflecting the onset of transition. Though this
rise is quite small, the relatively cool model base tends to lower the surface temperature
of the model near the base. Thus, the temperature rise, due to this "barely" transitional
flow, is attenuated. In summary, the experimental temperatures compare well with the

CFD adiabatic wall temperatures, and evidence of transitional flow is suggested.
3.8.2 Boundary Layer Mean Data

The uncalibrated mean CVA output voltage profiles are presented in Figure 66
for 17 streamwise locations. The mean voltages were conducted at the maximum

practicable Vw. The profiles are characteristic of typical mean mass flux profiles.
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However, these profiles are only representative of the boundary layer edge region, where
the mean voltage variation is only 14%, or less, at any given streamwise location. The
constant voltage region in the boundary layer edge region, 7 < N < 12, becomes larger in
the downstream direction, suggesting a decrease in boundary layer thickness with s/, as
shown in the next figure.

The experimental (thermal) boundary layer thickness distribution, estimated from
the mean voltages at minimum Vw-Section 2.4.1, are presented in Figure 67. Note that
the CFD [32] (velocity) boundary layer thickness distribution was curve fit using a
second order polynomial, and the experimental error = + 2% of the plotted values. Over
the upstream region, 342 < s/r,, < 440, the experimental 3 is lower than the CFD o, which
is expected since the boundary layer measurement ray is windward. Further downstream,
450 < s/r, < 510, the experimental 8 compares well with the CFD §. For s/r, 2 520, the
boundary layer thickness increases, reflecting a transitional boundary layer. The
departure of the experimental § from the CFD & occurs over a larger range compared to
the sharp-tip case, yet the sharp-tip case was more unstable. This discrepancy is not
explained by entropy layer swallowing since the entropy layer edge intersects the
boundary layer edge at approximately s/r,=214 [36]. Generally, the data suggest a
laminar flow region for s/r, < 500. Furthermore, the maximum difference, 7%, between
experiment and computation occurs at s/r, = 600, reflecting a transitional boundary layer.

The uncalibrated rms profiles are presented in Figure 68 at the maximum Vw.
Similar to the sharp-tip case, the maximum rms (maximum energy) locations at each
streamwise location, were used as the path for subsequent spectra measurements. For
blunt cones, Stetson [21] showed that, in the unstable region, the generalized inflection
point occurred in the outer boundary layer region, (0.8-0.9)8. Furthermore, the inflection
point was not located at the hot-wire rms maxima. Instead, Stetson's hot-wire rms

maxima corresponded to a maximum in dM/dy (y is the normal distance from the cone
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surface) outside the boundary layer, showing the presence of an unstable entropy layer.
The present measurements, however, were conducted downstream of the estimated
entropy layer swallowing region, s/r, > 214, so determination of a possible unstable
entropy layer cannot be ascertained from the present data. The experimental data show
energy maxima locations in the range (0.8-0.9)8. These locations compare well with the
eigenfunction maxima of stability theory and Stetson's inflection point locations. Overall,
the rapid disturbance growth region occurs in the range 490 < s/r, < 600, corresponding
well with the departure of the experimental and computational boundary layer

thicknesses.
3.8.3 Boundary Layer Fluctuation Data

The fluctuation data are presented in 3 parts: i) the amplitude data; ii) the
amplification rate data; and iii) the global characteristics of the fluctuation data. The
amplitude data provide an overall perspective of the nature of second mode disturbances
and suggest the additional disturbance modes of interest. The amplification rates provide
the local rate of growth of the relevant disturbance modes and aid in establishing the
experimental data in the context of stability theory. Finally, the fluctuation disturbance
wavelengths and integrated growth rates provide a global perspective of the fluctuation
data.

Amplitude Data

The fluctuation spectra are presented in Figures 69 and 70 at the maximum
energy locations. Figure 70 represents the frontal view of the fluctuation spectra of
Figure 69. The instability modes represented in Figures 69 and 70 are associated with the
following frequency ranges: i) 55-70 kHz - first mode; and ii) 205-260 kHz - second
mode. The first mode is clearly discernible in the upstream region, s/r, < 390, of Figure

69. But, the first mode downstream growth is not clearly discernible due to the growth of



76

the low-frequencies in a band which extends to =100 kHz at the most downstream
location. The second mode boundary layer tuning observed from Figure 70 is consistent
with the overall decrease in boundary layer thickness observed from Figure 67.
However, the second mode disturbances increase for s/m > 550, unlike the rapid
disturbance growth region, s/r, 2 475, of Figure 68. This discrepancy is explained by
observing the low-frequency growth region, s/r, = 475, of Figure 68 which contributes to
the rms of Figure 68. This low-frequency growth may be attributed to the footprint of the
low-frequency, 0-50 kHz, freestream growth over the range, s/r, > 475. Unlike the sharp-
tip case where the low-frequency growth mimics the second mode disturbance growth,
the low-frequencies of the blunt case grow upstream of the second mode growth region.
The different hot-wires, used for these two cases, are partially responsible for these
differences in low-frequency growth.

Amplification Rate Data

Figures 71-82 present the spectra of the amplification rates, fluctuation
amplitudes, and noise amplitudes at 12 streamwise locations on the model flare. (Note
that the difference in s/, between successive figures varies for Figures 71-74 but remains
constant, A(s/r,)=16, for Figures 75-82.) The amplification rate data of Figures 71-82
are discussed separately below for the first and second modes.

From Figure 71, the first mode is clearly evident at s/r,=343 in the range 55-70
kHz. At this location the first mode is unstable. However, for 375 < s/r, < 407, the first
mode remains stable which is consistent with Figure 69. At s/r, =472 the first mode is
barely stable, but becomes unstable at s/r,=488 and remains unstable to the last
measurement, s/r,=601. Due to the large growth of the lower frequencies for s/r, = 488,
the first mode and low frequency growths cannot be separated for s/r, > 488.

Over the range, 343 < s/r, < 520 - Figures 71-77, no clear evidence of the second

mode is established. Even though the S/N > 1 at 220, 240, & 260 kHz, at several
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streamwise locations within this range. (Note that the narrow band peaks at 220, 240,
and 260 kHz are noise peaks and thus establishing the second mode existence is difficult
in regions where S/N is only slightly greater than 1). However, further downstream,
s/r,=536, the second mode becomes unstable, and is more clearly discernible. At
s/r,=552, the amplification rates increase, becoming more unstable; the two separate
narrow band peaks in the amplification rate data at this location are due to the noise peaks
previously discussed. Further downstream, s/r,=569, the amplification rates increase but
remain essentially constant to the next streamwise location, s/r,=585. For the last
streamwise location, s/r,=601, the amplification rates decrease even though the second
mode amplitudes increase. Similar to the sharp-tip case, the frequency band associated
with the second mode maximum amplification rates is higher than he frequency band
associated with the second mode amplitudes. Thus, boundary layer tuning is also evident
for blunt-nosed flared-cones.

Several amplification rate curves as a function of R are presented at select
frequencies in Figure 83. The "higher" frequencies, 355 kHz and 390 kHz, are stable and
show no growth as expected. The frequency, 232 kHz, is associated with the second
mode. Upstream, 240 < s/r, < 520, the 232 kHz frequency is stable with no growth.
However, for s/r, > 520, the 232 kHz frequency grows rapidly, remaining unstable to the
last measurement location, s/r, = 601. The 232 kHz growth rate decreases downstream of
s/r,=575 but remains unstable. The frequency, 61 kHz, is associated with the first mode.
This frequency has distinct troughs at s/r,= 460 & 550. However, at the same 2 s/r,
locations, similar troughs occur in the low-frequency band, 0-100 kHz, as shown in
Figure 69. As a result, the 61 kHz data was further smoothed to eliminate the troughs,
and is presented as the solid line in Figure 83. The smoothed curve more clearly
represents the overall trend of the first mode growth but the - magnitudes are attenuated

due to the smoothing process. For s/r, 2 570, the "true” 61 kHz -a; curve should
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approach the 61 kHz -o; curve represented by the (--) symbols. The 100 kHz data are
representative of the low-frequency growth. Low-frequency growth extends to
frequencies as high as 140 kHz as shown. The smoothing process applied to the 61 kHz
data was also applied for the entire first mode band, 55-70 kHz, to determine the

maximum first mode amplification rates which are presented next.
The maximum amplification rates associated with the first and second modes are

presented in Figure 84. The maximum -o; were calculated by determining the maximum
-@; at each s/r, location over the 55-70 kHz and 205-260 kHz ranges for the first and
second modes, respectively. Both modes are approximately stable for s/t, < 450.
However, the first mode was initially unstable for s/m < 360, as previously shown in
Figure 71; the smoothing process attenuated this small slightly unstable region. On the
other hand, the small second mode unstable region for s/r, < 360 is attributed to noise
since the S/N=1 for s/, < 540. Thus, the inherent problems with smoothing and
calculating where the S/N~1 are easily overlooked and must be considered for proper
interpretation of the data. However, downstream of s/r,=540, the second mode grows
rapidly at a rate much larger than the first mode; the less-smoothed first mode data shows
the same trend. Thus, the transitional boundary layer was dominated by second mode
instabilities.
Global Characteristics of the Fluctuation Data

The scaling of the disturbance wavelength as a function of R is presented in
Figure 85. The error in A/8 = 4% of the plotted values. The disturbance wavelengths
were estimated assuming the phase velocity is 90% the average (over the s/r, range
shown) boundary edge velocity predicted from CFD. From s/r,=536, where the second
mode is barely perceptible, to s/t,=555, where the second mode grows rapidly, the
disturbance wavelength scales as: A ~ 2.0 8. Further downstream, s/, >= 585, A& > 2,

but remains less than 2.15. For blunt, straight cone data [21], A/6=2.24-2.7, spanning
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from laminar to transitional flow. However, in Ref. 21 the phase velocity was
approximated using the boundary layer edge velocity unlike the present study. If the
present A/d range, 2.0-2.15, was estimated in the same manner as Ref. 21 then the A/&
range would be, 2.22-2.39, which is more comparable to the blunt, straight cone data.
Furthermore, in the vicinity of transition onset, the present data compare well with Ref.
21; A/8=2.33 in this region.

The integrated growth rates, In(A/Ao), are presented in Figure 86 at select
frequencies in the second mode frequency band. (For a fixed frequency: the LST "N-
factor"=In(A/Ac)+In(A/A,) where A, represents the amplitude along the lower branch
neutral stability curve and Ao represents the amplitude at s/r,=407). Ao was chosen at
s/r,=407 due to the first mode growth region from 342 < s/r, < 390). As previously
discussed, the linear stability region is represented by constant, positive slope lines. For
the most unstable second mode frequency, f=230 kHz, the linear stability regime spans
the range, 550 < s/r, < 600. For the most stable frequency represented in the figure, the
linear stability regime spans the range, 555 < s/r, <600. The linear stability regime spans
a similar range for all other frequencies associated with the second mode, 205-260 kHz.
In addition, the downstream boundary of the linear stability regime extends to the last
measurement location, s/r,=601. Thus, the non-linear stability regime is not encountered
for the blunt case. Consequently, the experimental amplification rates and "N-factors”
should compare well to LST in the linear stability region, provided the small yaw angle is
considered. The maximum energy path should also be followed numerically, though this

is not essential in the linear stability region where disturbance growth is exponential.



80

4 Conclusions

The first hypersonic boundary layer stability measurements in a quiet tunnel have
been obtained. All test cases were conducted at a freestream Mach number of 5.91 and
freestream unit Reynolds number of 2.82x105/ft in the NASA Langley Research Center's
Nozzle Test Chamber Facility. An axisymmetric, quiet Mach 6 nozzle was installed in
the Nozzle Test Chamber for the purpose of this study. All tests were conducted within a
uniform free stream flow with a conical-shaped quiet core. The primary measurements
included schlieren, surface static temperature, and boundary layer traverses. The
boundary layer traverses consisted of point measurements with a single hot-wire using a

novel constant voltage anemometry system.

The following significant conclusions were determined from the flared-cone sharp-tip
measurements including the measurements presented as Appendices D and E.

1. The second mode of instability is the most unstable disturbance mode.
Furthermore, this mode is responsible for transition onset which is estimated in
the range R=1960-1990.

2. The second mode integrated growth rates compare within 1.5-5% of LST in the
linear stability regime.

3. The second mode wavelength is measured to be approximately twice the
boundary layer thickness verifying the boundary layer tuning observed in
conventional tunnels.

4. In the vicinity of maximum amplification of the second mode, the first mode

amplification rates are within 11% of LST despite a 0.2° windward yaw

angularity.
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The sub-harmonic (of the second mode) rapid disturbance growth region occurs at
10% mass flux fluctuations, comparing well with PSE. Furthermore, the sub-
harmonic wavelength scaling is approximately a factor of 4.3 greater than the
boundary layer thickness over the range, 1975 < R < 2120.
Both first and second harmonics of the second mode are present downstream of
the rapid disturbance second mode growth region. Thus, these non-linearities are

not attributed to “high” freestream disturbance levels.

The following significant conclusions were determined from the flared-cone r,=1/32"

measurements.

1.

The second mode is the most unstable mode and is responsible for transition
onset.

The second mode wavelength is approximately twice the boundary layer
thickness. This scaling is comparable to blunt straight cone data when the same

approximations for the phase velocity are implemented.

The following significant conclusions were determined from a compilation of all the

measurements conducted in this investigation.

1.

As wire voltage increases, the CVA output voltage increases with both the total
temperature and mass flux. However, the CVA is more sensitive to mass flux at
“high” wire voltages and more sensitive to total temperature at “low” wire
voltages. The wire voltage is essentially analogous to the wire overheat for CTA.
Both the first and second modes are present in the linear stability regime for the
straight cone. The first mode growth at f=50 kHz compares reasonably well with
LST over the range, 2060 < R < 2355. The second mode growth at f=180 kHz
compares well with LST over the small range, 2225 < R <2330.

Surface temperature measurements for the flared-cone indicate that the r,=1/16"

and r,=1/8" cases show no evidence of transition. Over the range tested,
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1565 < R <2085 for the r,=1/16" case and 1515 < R < 2050 for the r,=1/8" case,
“gradual” first mode growth is evident, but the second mode disturbances are not
present. These observations suggest that the r,=1/16" and r,=1/8" are “small”
nose-tip bluntnesses for the flared-cone.

The departure of the experimental boundary layer thickness from the CFD occurs
over a larger range compared to the sharp-tip case despite the larger disturbance

growth for the sharp-tip case.
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5 Recommendations for Future Work

The NTC facility used in this investigation has been disassembled, and a new

NTC facility is currently under construction. However, the new NTC will not be able to

accommodate the quiet Mach 6 nozzle used in this study. As a result, the following

recommendations are made for the Mach 8 quiet tunnel which is also currently under

construction.

1.

A stability study using a 5°-7° half-angle straight cone with a sharp-tip is
recommended. Measurements should extend from upstream of the location where
N=5 as predicted by LST (for the most unstable frequency) to downstream of the
linear stability regime, N=10. If measurements over the straight cone do not
extend downstream of the linear stability regime then a flared-cone may be used
for this purpose. A thermal insulator should be installed in the base of the models
that are tested.

An automatic compensation CVA should be used to conduct quantitative
measurements. This system should provide the ability to measure at *high” wire-
voltages without incurring a wire burn-out problem.

Detailed comparisons of the data obtained from the above experiments as well as
the data of this study should be made with LST, PSE, and DNS. Comparison
between theoretically calculated integrated growth rates with experimentally
measured integrated growth rates should be emphasized. Such a comparison is
less prone to error than comparing amplification rates. This is so, since
theoretical computation of the integrated growth rates should produce less error
than experimental computation of amplification rates from measured integrated

growthtrates.



A control experiment introducing a pair of oblique disturbances at frequencies
comparable to the second mode should be conducted. A companion experiment
introducing a pair of oblique disturbances at the sub-harmonic frequency along
with a 2D second mode disturbance is also recommended. A traverse system,

allowing measurements in the azimuthal direction, is needed for this purpose.



10.

11.

12.

13.

14.
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7.2 Appendix B - Axisymmetric Flared-Cone Navier-Stokes
Solutions

The computer code, designated HTC2D, was used to obtain CFD solutions of the
axisymmetric flow past the sharp-tip, flared cone. The HTC2D code solves the
axisymmetric and two-dimensional Navier-Stokes equations with a finite volume
formulation. A multigrid cycling strategy is used to accelerate convergence to steady-
state. The code is described in detail in Reference 32, but a few salient features are
presented here. The HTC2D code is an upwind code. The viscous flux terms are central
differenced to second order accuracy. The inviscid flux terms are upwind biased, using a
blend of flux-difference and flux-vector splitting. Approximate flux Jacobians,
approximate linearization of the viscous terms, and approximate factorizations are used to
obtain an efficient, implicit Gauss-Seidel algorithm for solution of the discretized Navier-
Stokes equations in time. The convergence of the algorithm is enhanced through the use
of a full multigrid cycle method.

A typical convergence history obtained on a 241x145 grid is presented in Figure
Al; here the log residual is plotted as a function of time. (The notation 241x145 denotes
241 and 145 streamwise and surface-normal grid points, respectively.) The residual
decreases approximately 5.5 orders of magnitude in about half a minute. This decrease
in magnitude is sufficient to establish solution convergence. A grid independence study
was also conducted to establish consistency of the solution. The results of this grid
independent study are presented in Figures A1-A4.

The surface static pressures as a function of x are presented in Figure A2 for the
four grids examined. The surface pressures are identical for all grids, suggesting grid

independence in terms of the pressure. However, since the surface pressure is not as
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sensitive to the grid as other flow properties, the velocity and total temperature profiles
were also examined.

The velocity and total temperature profiles are presented in Figure A3 at three
streamwise locations along the model flare. At each streamwise location, the solution for
the 225x113 grid differs from the solutions on the other three grids, especially at the more
downstream locations. As shown in Figure A4d, the total temperature profiles for the
225x129 grid differs from the 225x145 and 241x145 grids, which compare well.
Furthermore, the solutions for the 225x145 and 241x145 grids compare well for x=11"
and x=15" too. Thus, grid independence is established for the solutions on these two
grids. Due to the relatively short CPU times required to obtain a solution, the finer
241x145 solution was used for all comparisons with experiment presented in this study.
This grid provided approximately 57 point in the boundary layer over the region of

interest.
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7.3 Appendix C - Transition Onset Estimate

The transition onset location for the flared-cone sharp-tip configuration was
estimated using the recovery factor method of Ref. 37. This method is outlined in the

present Appendix with the aid of Figure AS. The recovery factor, r, is defined as:

r=-—L——i¥ W:I (C1)
oe €

where T,y=adiabatic wall temperature, T.=boundary layer edge static temperature, and
Toe=the boundary layer edge total temperature. At the boundary layer edge, the
stagnation temperature is given by:

T Y-1

—0e 14+ 2
T 1+ 5 (M,) (C2)

Combining equations C1 and C2 to eliminate T, yields:

Iaw( Y 1 2)
AW (14 M -
Toe 2 ( e) !

r= (C3)

=,
Since the total temperature is constant across the conical shock, Te=T,.. is known from
the tunnel operating conditions. T,, was assumed equal to the measured surface
temperatures. Although some conduction along the thin-skinned model occurs; this
assumption is justified in the upstream region, X < 12.25". The edge Mach number, M.,
was not measured experimentally and thus this quantity was obtained from the CFD
solutions, described in Appendix B.

The results of equation C3 are presented in Figure AS. Note that the recovery
factor is approximately 0.84 for X < 5" which compares well with the laminar recovery
factor, 0.845. The recovery factor method estimates transition onset as the location where

the two lines, shown in Figure AS, intersect. These two lines are drawn through the
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approximately straight portions of the recovery factor distribution upstream and
downstream of the location of a rapid change in slope. Their intersection is
approximately 16.2" (R=1960) for the flared-cone sharp-tip configuration. In previous
work this method has been shown to work well for a straight cone. In the present work,

the validity of the method was ascertained by comparison with the schlieren and hot-wire

anemometry data.
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7.4 Appendix D - Axisymmetric Flared-Cone Experimental
Data

An additional test was conducted for the sharp-tip case with the model boundary
layer measurement ray aligned as carefully as possible to zero degrees yaw. The yaw
angle for all data presented in this Appendix is 0.1° + 0.05° towards the leeward side.
Furthermore, the data presented in this Appendix were conducted with a new
experimental system that differed from the original system in 4 main aspects: i) a new
CVA with a S/N ratio approximately a factor of 10 larger than the original CVA was used
- also, the new CVA bandwidth was 400 kHz compared to 350 kHz for the original CVA;
ii) a new A/D converter with lower quantization error was used; iii) a new hot-wire
(L/D=150), platinum-10% rhodium, with an increased resistance and thus lower noise
was used; and iv) a new, lower noise filter, with the low-pass cut-off frequency set at
IMHz (opposed to 630 kHz), was used. All of these components allow for an increased
S/N ratio relative to the original experimental system. Furthermore, the higher low-pass
cut-off frequency will not attenuate the harmonic frequency range as much as the original
filtering. The results, using this new system, are presented in Figures A6-A9. (Note that
these data were conducted at Y=0.0531" which was located in the vicinity of the
maximum energy locations.)

Figures A6 and A7 present the fluctuation spectra along a Y=0.0531" constant
line over the range, 1880 < R < 2120. The second mode is clearly discernible in the
range, 180-260 kHz, suggesting a 30 kHz decrease in frequency relative to the data
presented in Section 3.7.4 (210-290 kHz). This is consistent with a more leeward angle
since the pressure decreases and the boundary layer thickness increases, resulting in a
decrease in second mode frequency relative to the more windward effect seen in the

spectra presented in Section 3.7.4. Specifically, the present (0.1° leeward) boundary
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layer thickness is estimated at approximately 11% greater than the boundary layer
thickness presented in Section 3.7.4 (0.2° windward). This corresponds well with the
decrease in frequencies of approximately 12% for the present (leeward) spectra relative to
the (windward) spectra presented in Section 3.7.4. (Note that in Fig. 37, the more
windward data is seen to be about 1% lower than that of the axisymmetric CFD data.
This is so, since the thermal boundary layer in the experiment, which is approximately
10% thicker than the velocity boundary layer [32], is reduced by approximately 11% due
to the effect of model yaw.)

From Figure A7, the first harmonic is evident in the range, 410-480 kHz. Though
not clearly discernible in Figure A6, the first harmonic begins growing at R=1990. This
is upstream of the initial growth of the first harmonic as seen in Appendix E for the
windward data. This is also consistent with a more leeward angle since transition moves
upstream along the windward side.

The first harmonic is shown more clearly in figure A8 at the last measurement
location, R=2120. At this streamwise location, the maximum amplitudes for the second
mode and first harmonic occur at 226 kHz and 449 kHz, respectively. Thus, the first
harmonic frequency is approximately twice the fundamental as expected. Furthermore, a
second harmonic of the fundamental is also shown in the figure. The maximum
amplitudes of the second harmonic is 670 kHz which is approximately a factor of 3 larger
than the fundamental, f=226 kHz, as expected. Overall, the larger non-linear region for
this case, relative to the more windward data of Section 3.7.4, is consistent with transition
moving downstream along the windward side of the model.

The “N-factor”, or integrated growth rates, are presented at select frequencies in
Figure A9. (To compare LST with the experimental data, the LST N-factor, 6.015, at the
most upstream measurement location was added to the experimental integrated growth

rates). An exponential growth region exist for each frequency shown. For the
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frequencies, 215-230 kHz, an exponential growth region (i.e. linear stability regime -
constant slope region) is shown for 1880 < R < 2060. Over this streamwise range, the
change in N-factor is 3.05 and 2.94 for =219 kHz and f=230 kHz, respectively. This
compares remarkably well with LST. For f=220 kHz, the change in LST N-factor is 3.10
for the range 1880 < R < 2060, comparing within 1.5% of the experimental data. The
slope for this frequency also compares well with LST which is presented as the solid line
in the figure. For =230 kHz, the change in LST integrate growth rate is 3.09 for the
range 1880 < R < 2060, comparing within 5% of the experimental data. In summary,
these results suggest that excellent comparison in terms of integrated growth rates are

obtained in a quiet wind tunnel in the linear stability regime.
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7.5 Appendix E - Windward Flared-Cone Non-linearities

The data of Section 3.7.4 showed no evidence of a harmonic of the second mode.
As discussed in the introduction, the first harmonic of the second mode was seen in
conventional tunnels but PSE calculations indicated no dominance of higher harmonics.
Due to the importance of establishing the possible existence of the first harmonic, an
additional test was conducted for the sharp-tip flared-cone configuration. However, the
maximum Vw was increased above the maximum Vw-value used for the results presented
in Section 3.7.4. This increased Vw increases the sensitivity of the CVA to both mass
flux and total temperature as outlined in Section 3.7.1. This effectively increases the
maximum S/N ratio of the system.

The results of this test are presented in Figures A10 and A11. (Note that Ao
represents the amplitudes of the disturbances at R=1610). The second mode is clearly
discernible in the 210-330 kHz frequency range. For R > 2035 (i.e. the four most
downstream locations shown), the most unstable frequency is 260 kHz, comparing well
with 255 kHz for the Section 3.7.4 fluctuation data. (Note that the scaling of the z-axis,
In(A/Ao), appears to shift the spectra, at each R-location, downstream by about AR=70
and thus R=2035 appears to be located at R=2100.) For 2035 < R < 2090, the first
harmonic of the second mode is barely discernible in a small frequency range centered
about 523 kHz. However, the first harmonic most unstable frequency shifts to f=552 kHz
for the most downstream location, R=2120, as clearly shown in Figure All. In summary,
these data establish the existence of the first harmonic for the sharp-tip flared-cone
configuration with the boundary layer measurement ray aligned at 0.2° + 0.05°,

windward.
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8 Tables and Figures
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Table 1: Experimental Test Matrix

Configuration Surface Measurements Bﬁg;gﬁznllg,yér
Sch.| Temp. | Pres. JRMS | Mean | Spectra

Bleed Valves Closed

Flared-Cone, Sharp X X X X
Bleed Valves Open
Straight Cone X X X X
Flared-Cone, Sharp X X X X X X
Flared-Cone, r,;=1/32"| x X X X X
Flared-Cone, r,=1/16"] x X X X X
Flared-Cone, r,=1/8" X X X X X

Note that the row 2 headings of Sch., Temp., Pres., designate schlieren,
wall static temperature, and wall static pressure measurements.

Table 2: Pitot Pressure Measurement Survey Locations

Plane Surveyed, Block # Xn (in.) Yn (in.) dXn (in.) | dYn (in.)
Zn=0, Block 1 16.76-23.76 -2.25-2.25 0.25 0.25
Block 2 23.76-30.76 -2.75-2.75 0.25 0.25
Block 3 30.76-37.76 -3.00-3.00 0.25 0.25
Block 4 37.76-44.76 -3.00-3.00 0.25 0.25
Zn=+1.5, Block 1 16.76-23.76 -1.75-1.75 0.25 0.25
Block 2 23.76-30.76 -2.25-2.25 0.25 0.25
Block 3 30.76-37.76 -2.50-2.50 0.25 0.25
Block 4 37.76-44.76 -2.50-2.50 0.25 0.25
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Table 3: RMS Measurement Survey Locations

Xn (in.) Yn (in.) dXn (in.) | dYn (in.)
19.76-27.76 -2.5-25 2 0.5
27.76-35.76 -2.5-2.5 2 0.5
35.76-43.76 -2.5-2.5 2 0.5

Table 4: Wave Trace Measurement Survey Locations

_dYn(in)
22.26-23.76 -2.5-2.5 0.75 1.25
23.76-31.76 -2.5-25 4.00 1.25

31.76-39.76 -2.5-2.5 4.00 1.25




Table 5: X vs. R Boundary Layer
Measurement locations for

flared-cone, sharp-tip

X (in.) R

10.97 1609.9
11.47 1646.2
11.97 1681.7
12.47 1716.5
12.97 1750.7
13.47 1784.2
13.97 1817.2
14.47 1849.5
14.97 1881.3
15.47 1912.7
15.97 1943.5
16.47 1973.9
16.97 2003.9
17.47 2033.4
17.97 2062.5
18.47 2091.3
18.97 2119.7

Table 6: s/r, vs. R Boundary Layer
Measurement locations for
flared-cone, rp=1/32"

s/t, R
342.58 1586.9
358.66 1623.8
374.75 1659.8
390.85 1695.1
406.96 1729.7
423.08 1763.6
439.21 1796.9
455.35 1829.6
471.51 1861.8
487.67 1893 .4
503.85 1924.6
520.86 1955.3
536.26 1985.5
552.48 2015.3
568.71 2044.7
584.97 2073.7
601.23 2102.4
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Table 7: s/r, vs. R Boundary Layer Table 8: s/r; vs. R Boundary Layer
Measurement locations for Measurement locations for
flared-cone, rp=1/16" flared-cone, r,=1/8"
s/r, R sty R

166.32 1563.8 78.19 1516.3
174.36 1601.1 82.21 1554.8
182.40 1637.6 86.23 1592.3
190.45 1673.4 90.25 1629.1
198.51 1708.4 94.28 1665.0
206.57 1742.7 98.31 1700.3
214.63 1776.4 102.34 1734.8
222.70 1809.5 106.38 1768.6
230.78 1842.0 110.42 1801.9
238.86 1874.0 114.46 1834.6
246.95 1905.5 118.50 1866.7
255.05 1936.5 122.55 1898.3
263.15 1967.0 126.60 1629.5
271.27 1997.1 130.66 1960.1
279.38 2026.8 134.72 1990.3
287.51 2056.0 138.78 2020.1
295.64 2084.9 142.85 2049.5
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