Fluctuating Pressure Analysis of a 2-D SSME Nozzle Air Flow Test

Darren Reed
Induced Environments Branch
NASA Marshall Space Flight Center, Huntsville, Alabama 35812
Homero Hidalgo
SSME Assurance Office
NASA Marshall Space Flight Center, Huntsville, Alabama 35812

Abstract

To better understand the SSME startup/shutdown transients, an airflow test of a 2-D nozzle was conducted at MSFC's Trisonic wind tunnel. Photographic and other instrumentation show during a SSME start large nozzle shell distortions occur as the Mach disk is passing through the nozzle. During the earlier development of the SSME, this startup transient resulted in a low cycle fatigue failure of one of the LH_{2} feedlines. The 2-D SSME nozzle test was designed to measure the static and fluctuating pressure environment and color schlieren video during the startup and shutdown phases of the run profile.

The model consisted of two identical blocks having the same inner contour of the SSME nozzle. The sides of the nozzle were made of glass for schlieren photography. The upper block was instrumented for static pressure measurements. The lower block was instrumented with thirteen Entron fluctuating pressure transducers. Steady state and slow sweep flows were tested for three back pressure conditions ($0.5-2.0 \mathrm{psi}, 7 \mathrm{psi}, 14 \mathrm{psi}$) The static pressure data was acquired by a scanning pressure system. The fluctuating pressure data was recorded onto a VHS analog tape recorder. The video, static pressure, and fluctuating pressure data were time synchronized for data correlation.

The shlieren video clearly shows a lambda (λ) shock foot moving down the throat during the slow sweep. The fluctuating pressure RMS time histories show the levels increase as the downstream foot of the lambda shock approaches. When the shock foot is directly above the transducer, levels decrease about 50%. When the upstream leg of the lambda shock approaches the transducer the level quickly jumps up to twice the downstream leg values. After the upstream leg of the lambda shock passes the transducer, the level falls down to the noise floor of the measurement.

Schlieren video, model configuration, fluctuating pressure time histories, power spectrum densities of the test will be shown. Future 2-D nozzle tests and plans for a 3-D nozzle facility will be addressed.

NOZZLE BLOCK MODEL AND PRESSURE PORT LOCATIONS

N/SN
Hat tonal Aeronautics anil
Space Administration
Test Section With 2-D SSME Nozzle Contour Model Installed

George C. Marshall Space Filght Center
Sclence and Enylneering Directorate
Structures and Dynamics Laboratory
Acionhysics Diviston
lindiced Enviromments Branch ED33

응

Marshall Space Flight Center SGYJ / oбןep!H oramor Darren Reed / ED33

\[

\]

$\begin{array}{cc}\text { Fluctuating Pressure Analysis of a 2-D } & \begin{array}{c}\text { Marshall Space Filight Center } \\ \text { Homero } \\ \text { Divalogo } / \text { C555 } \\ \text { Daren Reed } / \text { RD33 }\end{array} \\ \text { SSME Nozzle Air Flow Test } & \end{array}$
Rocketdyne Tripropellant Nozzle Contour

LMS 2/23/95

