~ _

Fluctuating Pressure Analysis of a 2-D SSME Nozzle Air Flow Test

Darren Reed Induced Environments Branch NASA Marshall Space Flight Center, Huntsville, Alabama 35812

Homero Hidalgo SSME Assurance Office NASA Marshall Space Flight Center, Huntsville, Alabama 35812

Abstract

To better understand the SSME startup/shutdown transients, an airflow test of a 2-D nozzle was conducted at MSFC's Trisonic wind tunnel. Photographic and other instrumentation show during a SSME start large nozzle shell distortions occur as the Mach disk is passing through the nozzle. During the earlier development of the SSME, this startup transient resulted in a low cycle fatigue failure of one of the LH₂ feedlines. The 2-D SSME nozzle test was designed to measure the static and fluctuating pressure environment and color schlieren video during the startup and shutdown phases of the run profile.

The model consisted of two identical blocks having the same inner contour of the SSME nozzle. The sides of the nozzle were made of glass for schlieren photography. The upper block was instrumented for static pressure measurements. The lower block was instrumented with thirteen Entron fluctuating pressure transducers. Steady state and slow sweep flows were tested for three back pressure conditions (0.5-2.0 psi, 7 psi, 14 psi.) The static pressure data was acquired by a scanning pressure system. The fluctuating pressure data was recorded onto a VHS analog tape recorder. The video, static pressure, and fluctuating pressure data were time synchronized for data correlation.

The shlieren video clearly shows a lambda (λ) shock foot moving down the throat during the slow sweep. The fluctuating pressure RMS time histories show the levels increase as the downstream foot of the lambda shock approaches. When the shock foot is directly above the transducer, levels decrease about 50%. When the upstream leg of the lambda shock approaches the transducer the level quickly jumps up to twice the downstream leg values. After the upstream leg of the lambda shock passes the transducer, the level falls down to the noise floor of the measurement.

Schlieren video, model configuration, fluctuating pressure time histories, power spectrum densities of the test will be shown. Future 2-D nozzle tests and plans for a 3-D nozzle facility will be addressed.

Fluctuating Pressure Analysis of a 2-D Space Shuttle Main Engine (SSME) Nozzle Air Flow Test

Darren Reed Homero Hidalgo NASA / MSFC Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology Huntsville, Alabama 26 April 1995

		Fluctuating Pressure Analysis of a 2-D Marshall Space Flight Homero Hidalgo Analysis of a 2-D Marshall Space Flight Homero Hidalgo Analysis of a 2-D Marshall Space Flight Homero H
I		Introduction / History
	SSME Nozz during engi	es are subjected to significant unsteady aerodynamic forces le start and shutdown transients
	 High loads (High Stress Actuator 	re associated with the start / shutdown nozzle transients ss in Nozzle Aft Region (Excitation of nozzle flexural modes) Sideloads
	 These trans large coolar First failt fatic 	ents were severe enough to cause two major test failures of the t supply tubes, downcomers (steerhorn failures) re: Test 750-041 (14 May 1979) Engine E0201 ue load failure
	- res(Second f	lved by increasing steerhorn thickness ilure: Test SF6-03 (4 Nov 1979) Engine E2002
	- inco - reso	rrect weld material Ived by adding nickel plating to tee weld joints. added steam loop to coolant line

•

To b usin Test Mod colo	Test Objectives better understand the unsteady nozzle flows, a wind tunnel experiment ing a scaled 2-D (planar) contour model of the SSME nozzle was run sts were conducted at MSFC's 14 inch Trisonic Wind Tunnel facility del was instrumented to measure static, fluctuating pressures, and loured schlieren videotapes
* * *	Recording schlieren video of the shock structure as it move out of the nozzle during startup and back in during shutdown was one of the main objectives The static pressure ports would help define the relative strength of the shocks The fluctuating pressure transducers were used to measure the unsteady levels and the show the spectrum shape

	VERN	Fluctuating Pressure Analysis of a 2-D SSME Nozzle Air Flow Test	Marshall Space Flight Center Homero Hidalgo / CR55 Darren Reed / ED33
		Model and Test Descriptions	
	 2-D SSME 	contour shape	
	» Area F	atio = 8.8:1	
	» Nozzle	<pre>> Length = 11 inches (6.8 inches from throat to exit)</pre>	
	» Nozzle	Width = 5.0 inches	
	» Nozzle	<pre>Exit Height = 5.0 inches</pre>	
	» Throa	t Height = 0.568 inches	
728	Model Ins	strumentation	
	» 18 Pol	ts - 12 Fluctuating Pressure Transducers Recorded (Lowe	r Block)
	» 18 Sta	tic Pressure Ports (Top Block)	
	 Facility M 	easurements	
	» Total	Pressure, Total Temperature, and Static Pressure at Nozzle	Exit
	» Schlie	ren Video	
	 Test Cont 	ditions	

- » 3 Nozzle exit pressure conditions (2 psia, 7 psia, and atmospheric)
 - » Slow sweep runs
- » 5 steady state runs at predetermined shock locations

Structures and Dynamics Laboratory Actiophysics Olvision Induced Environments Branch ED33

10/02/89

BW= 5.000 Nozzle 5/0/S Location 5 Y-INC=.200E+00 sec X-INC= 50. Hz

BBME NOZZLE BRELL BROCK WAVE LOCATION

 shock wave patterns Data from this experiment have helped describe the unsteady aerodynamic forces a nozzle experiences during startup and shutdown 	 Nondimensional amplitude, △Cp, levels are similar to external flow conditions The plane flow nozzle with side windows is a good method to observe the shock wave patterns 	 Fluctuating pressure levels decrease "inside" the shock foot Spectrum shapes show mostly low frequency energy - this is consistent with similar flow conditions (external bow shock impingement) 	 Fluctuating Pressures are highest at the upstream edge of the lambda shock 	Fluctuating Pressure Analysis of a 2-D Marshall Space Flight Center Homero Hidalgo / CR55 Darren Reed / ED33
--	--	---	--	--

		SSME No:	zzle Air Flow Test	Homero Hidalgo / CR5 Darren Reed / ED3
	Future Fluctuati	ng Pressu	re Analyses of Nozzle	Transients
•	The Fluid Dynamics E with the following cap	Division has pabilities:	developed plans for 3-D sub	scale nozzles
	» Maximum test prest	sure	350 psi (nitrogen)	
	» Maximum flow rate	primary	12 lb/s @ 810 °	
		secondary	50 lb/s	
	» Minimum back pres	ssure	0.05 psia	
	» Maximum run durat	tion	360 sec. @ 12 lb/s	
	» Maximum supply te	mperature	350 °F	
	» Maximum testable s	area ratio	230	
	» Test Cabin Size		3 ft diameter x 5 ft	
•	Two different nozzle special test section the	contours are his July	to be tested in the Trisonic	wind tunnel
٠	The new nozzles will	be instrume	nted and tested similar to the	e SSME nozzle

Fluctuating Pressure Analysis of a 2-D Mars SSME Nozzle Air Flow Test

Marshall Space Flight Center Homero Hidalgo / CR55 Darren Reed / ED33

Fluid Dynamics Division's 3-D Nozzle Test Facility

EB33-6

ED33-7

743