Overview of CFD Analyses Supporting the Reusable Solid Rocket Motor (RSRM) Program at MSFC

E. Stewart, P. McConnaughey, J. Lin, E. Reske, and D. Doran, NASA/MSFC, R. H. Whitesides, ERC, Inc., Huntsville, AL, and Y.-S. Chen ESI, Huntsville, AL

During the past year, various CFD analyses were performed at MSFC to support the RSRM program. The successful completion of these analyses was realized through the cooperation of ESI, ERC, and The Computational Fluid Dynamics Branch (ED32) at MSFC and involved application of the CFD codes FDNS and CELMINT. The topics addressed by the analyses were; 1. the design and prediction of slag accumulation within the five inch test motor, 2. prediction of slag pool behavior and its response to lateral accelerations, 3 . the clogging of potential insulation debonds within the nozzle by slag accumulation, 4. the behavior of jets within small voids inside nozzle joint gaps, 5. the effect of increased inhibitor stiffness on motor acoustics, and 6. the effect of a nozzle defect on particle impingement enhanced erosion. Topics 1, 2, and 5 will be discussed in some detail by other speakers at the conference and are only mentioned here for the sake of completeness. Thus, the emphasis of this presentation will be to further discuss the work involved in topics 3,4 , and 6 .

Eric Stewart
Computational Fluid Dynamics Branch Fluid Dynamics Division

」әұนวว วЧ8!

verview

- Overview of RSRM CFD analyses at MSFC
- Insulation Debond Analysis
- Potential RTV Flaw Analysis
- Nose Inlet Assembly Wetline Investigation
- Future efforts

Overview of RSRM CFD Analyses at MSFC
- Slag $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ behavior and accumulation
- 5 inch spin motor design and analysis
- Accumulation within RSRM at 67 seconds
- Response of slag pool to lateral accelerations
using VOF methodology

- Code validation for the 8-percent ASRM cold flow model

$$
\begin{aligned}
& \text { Insulation debond analysis } \\
& \text { Potential RTV flaw analysis } \\
& \text { Nose inlet assembly wetline Investigation }
\end{aligned}
$$

Insulation Debond Analysis

Issues	- Prediction of flow/clogging through potentia flow paths during motor operation
Approach	- Use two-phase flow and condensation models to predict propensity for pore clogging during motor operation - prescribed thermal boundary conditions
Results	- Small ($0.01^{\prime \prime}$) pores probably clog quickly (. 05 sec) under severe thermal gradients - Lower probability of clogging during start pressurization transient
Impact	- Joint gap clogging prediction methodology is available to support potential anomalies

-
ults (Problem 1, debond vent to ambient)
gap width time to clog
$0.010^{\prime \prime}$
$0.005^{\prime \prime}$
$0.002^{\prime \prime}$
P National Aeronautics and
Space Administration

Res

gap width	time to clog
$0.010^{\prime \prime}$	0.05 sec.
$0.005^{\prime \prime}$	0.02 sec.
$0.002^{\prime \prime}$	0.006 sec.
- Results (Problem 2, start-up transient through debond)	
- clogging of debond predicted in 0.61 sec. after initiation of particle	
flow	
- lower mass flow rate (4X less) due to cavity fill results in fewer	
particles to condense on pore wall	

Computational Fluid Dynamics Branch Fluid Dynamics Division
 Structures and Dynamics Laboratory
 George C. Marshall Space Flight Center

RSRM CFD Analyses

 at MSFC[^0]

Hot gas jet impingement environments on O-rings within RSRM nozzle due to potential RTV flaws potential RTV flaws aped cavities

- Hot gas jet spreading within joint cavities is smaller than that used in previous non-CFD analyses
-

Jet spread width used in thermal models should be 0.7" (rather than $1.25^{\prime \prime}$) -

Approach
Issues
Results
Impact

Computational Fluid Dynamics Branch Fluid Dynamics Division
Structures and Dynamics Laboratory
George C. Marshall Space Flight Center

Computational Geometry

Geometry of Internal
Nozzle, Joint \#4
National Aeronautics and
Space Administration Nozzle, Joint \#4

[^1]

National Aeronaut
National Aeronautics and Space Administration

Approach
Assume wedge shaped nozzle defect
Use two-phase flow results to assess flo
near defect
Use current data/experience base to as
deviations
Assembly Wetline Investigation
Enhancement of nozzle erosion due to pr of defect Effect of defect on slag particle impingement Effect of defect on slag

Assume wedge shaped nozzle defect
Use two-phase flow results to assess flo
near defect
Use current data/experience base to ass
deviations
Results - Size of defect relative to local boundary layer is not sufficient

Geometry of Nozzle Nose Region

Computational Fluid Dynamics Branch
Fluid Dynamics Division
Structures and Dynamics Laboratory
George C. Marshall Space Flight Center
Future Effort

- Continue code validation
- Continue to enhance modeling capabilities
- two-phase flow
- combustion
- turbulence
- slag accumulation
- unsteady flow Future Effort
- Continue code validation
- Continue to enhance modeling capabilities
- two-phase flow
- combustion
- turbulence
- slag accumulation
- unsteady flow
- Improve readiness to address potential anomalies
- Perform similar analyses at additional burn times

[^0]: National Aeronautics and Space Administration

[^1]: flowrate
 (lbm/s)

 $$
 57.350 .503
 $$

 - Analysis matrix and results

 case
 $\leftharpoondown N M+10 N \infty$
 $\begin{aligned} & \text { domain } \\ & \text { width (in) }\end{aligned}$

