
NASA Contractor Report 199882

An N-body Tree Algorithm

for the Cray T3D

Kevin M. Olson and Charles V. Packer

MAY 1996

https://ntrs.nasa.gov/search.jsp?R=19960029358 2020-06-16T04:22:03+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42777008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA Contractor Report 199882

An N-body Tree Algorithm

for the Cray T3D

Kevin M. Oison

George Mason University

University Drive,

Fairfax, Virginia 22030

Charles V. Packer

Hughes STX Corporation

4400 Forbes Blvd.

Lanham, Maryland 20706

Prepared for

Goddard Space Flight Center

under Grant NAG5-2652

National Aeronautics and
Space Administration

Scientific and Technical
Information Program

This publication is available from the NASA Center for AeroSpace Information,

800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934, (301) 621-0390.

Abstract

We describe in this paper an algorithm for solving the gravita-

tional N-body problem using tree data structures on the Cray T3D

parallel supercomputer. This implementation is an adaptation of pre-

vious work where this problem was solved using a SIMD, fine-grained

parallel computer. We show here that this approach lends itself, with

small modifications, to more coarse-grained parallelism as well. We

also show that the performance of the algorithm on the Cray T3D

parallel architecture scales adequately with the number of processors

(up to 256). Specific changes to the basic algorithm are also described

which allow greater performance levels to be reached using the Cray

T3D parallel architecture. A peak performance level of 9.6 GflopJs is

reached on 256 processors for the time critical gravity computation.

.°.

111

1 Introduction

For many problems in astrophysics the first order effect determining the dy-

namical evolution of the system is the force of gravity. Further, a large

portion of such systems can be described as a system of gravitationally inter-

acting masses. Some examples are star clusters, galaxies, clusters of galaxies,

and the large scale structure of the universe.

The gravitational N-body problem is defined by the following simple re-

lation. The force on particle i in a system of N gravitationally interacting

particles is given by,

N -Gmimjr_

fi' = _ (r_j + e2)3/2 (1)
j=l

where G is the universal gravitational constant, mi and rnj are the masses of

particles i and j, r_j is the position vector separating them, and e is a smooth-

ing length which can be nonzero and serves to eliminate diverging values in

/_i when rTj is small. This parameter also serves to define a resolution limit

to the problem. The negative sign indicates that the force is attractive. This

equation also shows that the problem scales as N 2. Once the forces above are

computed, the particles positions are advanced in time by integrating New-

ton's equations of motion (an O(N) process). Since the force computation

given by the above equation scales as N 2 the size of a simulation is restricted

to several thousand particles. This is orders of magnitude lower than the real

number of particles in the systems mentioned above and does not even give

the dynamic range that we would like to achieve to answer some of the most

basic scientific questions raised by observations of these systems. Therefore,

we would like to increase the particle number in a typical simulation to be as

large as possible. To do this, approximate techniques have been developed,

one of which employs tree data structures.

Tree codes are a collection of algorithms which approximate the solution

to Eq. 1 [1,2,8]. In these algorithms the particles are sorted into a spatial

hierarchy which forms a tree data structure. Each node in the tree then

represents a grouping of particles. Data which represents average quantities

of these particles (e.g. total mass, center of mass, and high order moments

of the mass distribution) are computed and stored at the nodes of the tree.

The forces are then computed by having each particle search the tree and

pruning subtrees from the search when the average data stored at that node

can be used to compute a force on the searching particle below a user supplied

accuracy limit. For a fixed level of accuracy this algorithm scales as Nlog(N)

although O(N) algorithms are also possible.

Since the tree search for any one particle is not known a priori and the tree

is unstructured, frequent use is made of indirect addressing. This presents

problems for distributed memory, parallel implementations of this algorithm

since one wishes to minimize any off processor accesses of data. On the

other hand, the problem does possess a highly parallel component: each

particle searches the tree structure completely independently of all other

particles in the system. This fact has been exploited by several groups to

develop implementations of this algorithm for vector computers [7] and also

coarse-grained parallel computers [4,11]. Olson and Dorband [10] have also

implemented a tree algorithm for the solution of this problem on a SIMD, fine-

grained parallel architecture. In this implementation a balanced binary tree

structure (the number of children of each parent node in the tree was two) was

used to facilitate the data layout

on which they implemented this

tree also allows the computation

on the processor array of the Maspar MP-2

algorithm. The use of a regular, balanced

of neighboring nodes in the tree as opposed

to following pointers. We discuss in the next two sections how this algorithm

was modified for a coarse-grained, message passing architecture.

2 The Balanced Tree Algorithm

We briefly discuss here the balanced tree algorithm described by Olson and

Dorband [10]. The tree is constructed using an algorithm termed 'recursively

bisect the longest dimension' (RBLD). In this algorithm the dimension (x,

y, or z) which spans the largest spatial range for all the particles distributed

in space is determined. The particle data are then sorted on this dimension

and the list is divided into two equal halves. This results in two sublists.

This process is then applied to each of these sublists independently of the

other list resulting in four independent lists. This process is then repeated

recursively until each sublist contains the data of only one particle. As a

result of applying this algorithm, particles which are nearby spatially are also

nearby in the sorted list. To construct the first level of parent nodes in the

tree, neighboring particles in the sorted list are paired and their total mass

and center of mass are computed. A size is also associated with each node by

finding the particle with the largest distance from the just-computed center

of mass. The remaining levels in the tree are then constructed in a similar

fashion by using the data stored at the previous level in the tree. Although

the original implementation of this basic algorithm employed a binary tree

structure it hassincebeenfound that usinganoct tree (8children per parent
node) results in roughly a factor of 2 speedup in searchingthe tree. Such
a tree is constructed in the samefashion as the binary tree except that
parent nodesin the tree are constructedfrom 8 nodesat the previous level.
The RBLD procedureguaranteesthat groupingsof 8 particles in the list of
sortedparticles alsorepresenta small locality in space.Sincethe tree is still
balanced,this would requireusingonly powersof 8 numbersof particles. We
overcomethis limitation by simply allowing the first levelbelowthe root node
to havea varying number of nodesso that powersof 2 numbersof particles
can be accommodated.

Oncesucha tree is constructedthe searchis straightforward and differs
little from other searchstrategies.A tree nodeis acceptedfor the computa-
tion of a force if,

2S
r > -_-, (2)

where r is the distance to the node, S is its size as defined above, and _ is

a user supplied parameter which allows the accuracy of the calculation to be

varied. If a node in the tree is accepted then a force is computed using the

data stored at that node and the subtree below that node is pruned from the

search. Otherwise, the node is 'opened' and the children of that node are

tested and either accepted or opened as needed. It is also possible to pipeline

the force computations by storing the accepted node data into a long vector

known as an interaction list. The force computations for a searching particle

are then only performed at the end of its search through the tree [7]. This

approach is advantageous for both vector and cache based architectures.

In the case of implementing this algorithm on the Maspar MP-2, Olson

and Dorband [10] begin the tree search at the leaves of the tree so that data

accesses are more evenly spread throughout the processor array. Further,

they make extra copies of the upper levels in the tree so that data collisions

are minimized. They also compute the address of the next node to search

in the tree rather than following pointers which eliminates several indirect

data accesses. On single processor implementations one may wish to simply

precompute these addresses and store them as a list of indirect addresses

which can be accessed as the tree is searched. This is possible since the

logical structure of the balanced tree remains static (although the data at the

nodes continually change). We describe below our method of implementing

this algorithm on a message passing, coarse-grained parallel architecture.

3

3 Parallel Implementation

The first thing we concern ourselves with is the construction of the tree struc-

ture. The first step in this procedure is to perform a domain decomposition

and distribute the particle data to different processors so that a processor

controls particles within a local subspace of the entire domain. To do this we

simply apply the RBLD algorithm to the distributed list of particles i.e., the

maximum spatial dimension is found in the list, the list is sorted and then

split resulting in two sublists. This algorithm is then applied again to each

sublist independently of the other. This is done recursively until the sublists

are all contained on single processors. In our implementation the sublists on

each processor are of equal length. The sort used is a bitonic/merge sort (see

[5] and references therein) This algorithm is also similar to that described by

Salmon [12].

After the domain decomposition phase each processor holds an equal num-

ber of particles. At this point a tree is constructed on each processor in

parallel using its local list of particles. For our purposes, these subtrees are

constructed using the RBLD algorithm as described above. However, we note

that any single-processor tree-building scheme could be used (e.g. Barnes-

Hut) at this stage. Using the balanced trees that result from applying the

RBLD algorithm has the advantage that the subtrees need not be constructed

at each time step of a simulation while only the node data of the subtrees

needs to be updated. At this point the tree build is complete and a 'forest' of

subtrees (one per processor) results. Each tree has a logical structure which

is logically identical to all other subtrees and each represents a local region of

space. In the implementation discussed here the center of mass, total mass

and size are stored at the nodes of the subtrees. A representation of the

domain decomposition algorithm is shown in figure 1.

Each of these subtrees must now be searched by each particle and the

appropriate forces computed. This is done by first broadcasting all the tree

data on one of the processors to all the other processors. The algorithm

then proceeds by having all the particles on all the processors search this

subtree which has just been broadcast to them. In other words, all particles

are searching the same subtree at the same time. The algorithm is made

complete by looping over all processors with a broadcast and search within

the body of the loop. This algorithm is given in the following pseudocode.

DO i = 0, NPROCS - 1 / NPROCS is the number of processors

Y
o

I
1,2 I °

• I
I

• I
I

i
I
I
I '
I
I

3,4

21F:,,'
..... • 1 I',, '_

.-" ".': I,.: .-_, ', :. "-.
:..- ,.I, , "" " ' ' " "

',,_ , :;,-" L_'---.. "'"J
[.,' ['.]

I" , ,

t

I
I I

4 -----I_

Figure 1: Schematic of the domain decomposition algorithm on a hypothet-

ical four processor machine. The first panel shows the particles in a two

dimensional space. The second panel shows the particles after one pass of

the RBLD algorithm. The dashed line indicates the physical separtion which

results by splitting the sorted list into two equal halves. The last panel shows

the space after the final pass of the RBLD algorithm. The processor num-

bers associated with each domain are shown in the upper right corner of that

domain. Note that after the final step the space was split along different

dimensions. The dotted ovals indicate the particles which are grouped to-

gether in the first level of the each subtree and the small square boxes in the

lower right corner of the figure show the balanced trees which are built on

each processor (sho_n as binary trees for clarity).

5

BROADCAST Tree Data from Processor 'i' to all Processors

CALL SEARCH ! Particles on each processor search i'th tree

END DO

Now, since the particles have been sorted into processors to represent local

regions of space and particles in different regions of space will have differ-

ent, spatially dependent search path lengths through each individual subtree,

the computational load of the algorithm as described above can become !m-

balanced for particle distributions which are irregular. We overcome this

problem by first making copies of the particle data. \Ve then apply the fol-

lowing algorithm on each processor in parallel to shuffle the copied particle

data between processors:

ix = my_proc ! my_proc is the local processor number

DO j = 1,N/NPROCS ! N = number of particles

if (ix.ne.j) then

fetch particle j's data from processor ix

end if

ix = ix + 1

if (ix.gt.NPROCS - 1) ix = 0

END DO

In this way each processor controls the tree searches for a set of parti-

cles which are distributed throughout the spatial domain of the simulation.

Hence, the processors contain, on average, an equal amount of work since

each searches the same subtree at the same time using a sampling of particles

which represent the entire spatial domain of the calculation. The individual,

on-processor tree searches were optimized for the Cray T3D by using an in-

teraction list approach as described above and in [7]. Also, a routine written

in assemblylanguagewhich computesthe reciprocal squareroot was also
utilized [14].

The scalingwith processornumber(Np) and particle numberN we would

expect for this algorithm is then simply given by

t=/(1Nlog(g) +/(2Nptbro,ac,,t, (3)

where tbro_dcast is the time to perform one broadcast and /(1 and I(2 are

constants. If we further assume that tbroadcast scales as _.U (since the amount
Np
N

of data being broadcast per cycle of the loop scales as _-r_). We arrive at the
expected scaling of

N

Kl og(N) + I¢2N. (4)

Hence, the time to solution of this algorithm scales linearly with processor

number only if/(1 >> K2. This will only be true if the total time to do the

broadcasts of the individual trees is small compared to the time to search
that tree.

4 Performance

The above described algorithm was initially implemented using PVM [6] on

a local experimental message passing architecture known as Beowulf [13].

The debugged code was then ported to the Cray Research T3D at the Jet

Propulsion Laboratory. Where the message passing performance employing

PVM was poor, the communication calls were replaced with the Cray shared

memory calls (e.g. the broadcast of the subtrees). The code has been written

entirely in Fortran and uses the default Cray 64 bit arithmetic.

To test the basic algorithm we have set up several test problems ranging

from a highly uniform case to ones which have a high degree of clustering.

To set up the uniform distribution the particle positions (x, y, and z coor-

dinates) were simply chosen randomly from a uniform distribution between

0 and 1. To set up the clustered cases some number of clusters of particles,

chosen by us, were randomly distributed in space. Each of these clusters

was composed of an equal number of particles and the number density of

particles as a function of radius within a cluster was chosen to vary as r -2.

A view of the resulting particle distribution for a case when the number

of separate clusters was chosen to be 10 is shown in figure 2. Cases with

1 ' ' ' " . /

0.8

0 0._ 0.4 0.6 O.B 1

Figure 2: The particle distribution used for the tests of the tree searching

algorithm. 32,000 particles are shown here and their positions have been

projected onto the x, y plane. The density within each cluster varies with

radius as r -2.

1000 such clusters were also run. The performance results for the different

particle distributions differed little and we report here only the performance

measurements employing the 10 cluster case shown in the figure.

We first consider how the search algorithm described above scales with8q

the number of processors. In figure 3 we show how the number of gravita-

tional interactions computed per second scales with the number of processors.

An interaction is defined to be the points during a tree search where an ac-

tual force computation is made on a searching particle. In the figure we show

the results for 3 different problem sizes, 65,536 particles, 262,144 particles,

and 1,048,576 particles. To obtain the number of interactions computed per

second we took the total number of interactions computed and divided by the

maximum of the times taken by each individual processor to perform their

own tree searches. The tree search times include both the time to perform

the on-processor tree searches plus the time to do the necessary broadcasts.

From this figure we see that the scaling of the algorithm is better for larger

6

o-60

c_

0

°40

0
.,.._

0

_ 0

' I I I I

N = 262,144 ÷-_..._

N = 1,048,576 ,. ,_'_.'+'-

y;;;

50 100 150 200 250

Number of Processors

Figure 3: The number of interactions computed per second vs. the number

of processors. The total number of interactions computed is a measure of

the total amount of work that the algorithm performs independent of the

number of processors and is divided by the total time to perform the tree

search algorithm, including interprocessor communication, as described in

the text. The tree search time for the entire algorithm is taken to be the

maximum time among all the processors.

particle numbers. The times to execute using 256 processors which were

measured for the 16,384 and 262,144 cases were 1.048 seconds and 5.54 sec-

onds respectively. Therefore, for these cases the condition of K1 >> I(2 given

above may not hold.

Speedups are plotted vs. the number of processors used in figure 4. For

the 65,536 particle case speedups are computed relative the times measured

using 2 processors. The speedups for the 262,144 particle cases and the the

256 processors cases are computed relative to the timings using 16 and 32

processors respectively. Here, we see that speedups are only near linear for

processor numbers less than or equal to 64. Again, this indicates that the

broadcasts of data becoming are probably a larger fraction of the cost for the

cases with larger processor numbers.

2O0

_J

_00

o
o

J
N = 65,536 o //

N -- 262,144 4-

N = 1,048,576 _.

. . -":i

I i I i I I I I i I I I I I I 1 i I I I

50 100 150 200 250

Number of Processors

Figure 4: Speedup curves for the tree search algorithm described in the text.

Ideal linear speedup is shown with the solid line. Results are shown for three

different problem sizes as indicated. The curve for the 262,144 particle case

was normalized relative to the result using 16 processors while the curve

for the 1 million particle case is normalized relative to the result using 32

processors.

10

To estimate the useful floating point rate of the Cray T3D using the tree

search algorithm described here we not that one gravitational interaction

costs roughly 30 floating point operations. This gives floating point rates

using 256 processors 1.9 Gflop/s, 1.8 Gflop/s, and 2. Gflop/s using 16,384,

262,144, and 1,048,576 particles respectively. Since the peak speed of a Cray

T3D with 256 processors is near 15 Gflop/s, we clearly can do better. Im-

provements to the basic algorithm given above are discussed in the following
sections.

5 Quadrupole Moments

Each node in the tree data structure need not be treated as a mass point

as was done above. It has been shown that one can compute higher ordcr

moments of the mass distribution (i.e. quadrupole moments) and use them

to increase the accuracy of the calculation. Further, the efficiency of the

algorithm is improved since the addition of such high order terms does not

affect the tree search and only adds additional floating point computations

to each interaction list [7].

Assuming that the potential is softened as in equation 1 the traceless

quadrupole moment tensor is not applicable and the potential at any point

outside the sphere containing all the particles which belong to a tree node is

approximated by,

331(3xkxl¢(r) __ -G (r 2 + _2)1/2 + _ _ _qJ_.t _2)5/2 - e2)3/2 (5)z=l k=l " (r 2 -b (r 2 -t- '

where the observation point, r, is measured with respect to the center of

mass of the tree node (in which case the dipole moments are zero). The

sums over k and l indicate sums over the 3 coordinate axes, M is the total

mass of the node, 5kl is the usual delta function (5 = 0 if k _= l, 5 -- 1 if

k =/), and qk,l are the quadrupole moments which are given by,

q ,l = Z (6)
i

The sum is over all particles belonging to the tree node, rr_ are the particle

masses, and xi,k are their positions measured with respect to the center of

mass of the tree node. The accelerations are then found from a = -_7¢.

During the tree build phase of the tree algorithm the quadrupole moments

are computed for the mass distributions represented by each node in the tree

11

in much the same way as are the center of mass and the total mass. There

are 6 distinct moments and they are represented by the sums over i in the

above relation. The quadrupole moments at each level in the tree can be

computed fi'om those computed at a lower level (towards the leaves) rather

than computing the sums over all particles by using the relation,

• ,'childr child childZ + , (71
children

where the sums are over the child nodes of a parent, Mchild is the mass of

the child node, and x child are the centers of mass of the child nodes measured

with respect to the center of mass of its parent node. Hence, the quadrupole

moment of a parent node can be found from its children by first summing

the quadrupole moments already computed for its child nodes and adding

to this sum an additional set of terms which are the quadrupole moments

computed fi'om its child nodes treating them as if they were mass points.

Figure 5 shows the number of interactions computed per unit time as

function of the number of processors for the case that the number particles

was set to 265,144 and the value of 0 was set to 1. In determining the

total number of interactions it is assumed that each quadrupole interaction

is equivalent to 6 monopole interactions. From this plot we see that the

performance as measured by the number of interactions computed per unit

time is indeed increased relative to the cases where quadrupole moments

are not included. Again assuming 30 foating point operations per force

interaction we arrive at a Mflop rating 5.4 Gflop/s for the case when 256

processors are used.

Speedup curves are sho_m in figure 6 for the same cases as those shown in

figure 5. The speedups are somewhat better here than those shown in figure 4.

This indicates that the additional floating point operations associated with

the computation of the quadrupole interactions partially offsets the addi-

tional communications involved with broadcasting the additional quadrupole

moment data.

Even though these performance levels are increased by the addition of

quadrupole terms to the algorithm, we still need to consider overall running

time of the algorithm as well as the accuracy reached within that time. For

the case where 256 processors and 256,144 particles were used and quadrupcle

corrections were not included required 5.54 seconds to execute. The identical

case which includes quadrupole corrections required 11.72 seconds.

As a measure of the accuracy of the algorithm we use the relative RMS

12

6
200

0

C_

"0

QJ

150

0

U

100
0

0

qJ
.,J

50

0

"_ 0

/
J

-p

71,. •

s J

s J

i i

50 100 150 200 250

Number of Processors

Figure 5: The number of interactions computed per second plotted vs. pro-

cessor number when quadrupole corrections are included. The interactions

are counted as described in the text. The number of particles used was

262,144 and # was set to 1. The number of interactions per second using 256

processors corresponds to a performance of roughly 5.4 Gflop/s.

13

2OO

aJ

_oo

0
0

i i , _ I ' ' T ,

1 i i i i , , i q t , I _ , t , L i ,

50 100 1,50 200 250

Number of Processors

Figure 6: Speedup curve for cases when quadrupole corrections are included.

The number of particles used was 262,144 and _ was set to 1. Results are

normalized relative to the case when the number of processors is equal to 16.

14

error of the particle system.This is definedas,

RMS error = . [a--_x-_ct[---_ , (8)

where aezaai represents the acceleration vector for particle i computed us-

ing the direct sum of all particle pair interactions and atreei represents the

acceleration vector for particle i computed using the tree. The two cases dis-

cussed above reached relative RMS errors of 5.99 x 10 -2 for the case without

quadrupole corrections and a relative RMS error of 4.98 x 10-3. Therefore,

even though the case with quadrupole corrections requires roughly a factor

of 2 more CPU time to execute, the accuracy achieved is at least a factor of
10 better.

6 Group Searching

Since particles which are spatially nearby one another will have search paths

through the tree which are similar, arranging particles into spatial groupings

which then search the tree would reduce the number of items which would

need to traverse the tree data structure. This idea was first advocated by

Barnes [3] and later applied to MIMD parallel machines by Dikiakos and

Stadel [4] and by Olson [9] for SIMD machines.

The implementation of this idea used here exploits the sorted list of par-

ticles used to create the tree data structure. Here, all searching groups have

equal numbers of particles and are created by dividing up the sorted particle

list into sections of size ngro_p. For each group the center of mass is computed

as well as a size of the group. As for the nodes in the tree we take the size

of the group to be the maximum distance of the particles in that group as

measured from the center of mass of that group.

Each of these groups then searches the tree in much the same way that

individual particles searched the tree in the description given above. Here,

however, the acceptance criterion must take into account the fact that the

searching group of particles inhabits a finite region of space. For the imple-

mentation discussed here a node is accepted for the computation of a force

if,
2Snode

r > -7- + s ro p, (9)
where r is the distance between the center of mass of the searching group

and the center of mass of the tree node currently being visited, S,,ode is the

15

size of the tree node, Sgr_p is the size of the searching group, and 8 is a

user supplied parameter which allows variable force accuracies. In the event

that this condition is met, the data for the accepted node are placed in the

interaction list. Once the tree search is complete for a searching group, forces

are computed for all particles within that searching group by cycling through

its interaction list.

The code has been written to allow the size (in particles) of the searching

groups to be varied. Since we do not know what number of particles per

searching group will result in the greatest efficiency, we attempt to arrive at

its value empirically. Therefore, we plot in figure 7 the number of interactions

computed per CPU time vs. the number of particles in each searching group.

Here, results are shown for cases where the number of processors was 128,

the number of particles was set to 262,144 and _ was set equal to 1. This

plot shows that the peak in this curve occurs where the number of number

of particles in a searching group equals 16. This peak corresponds to a

performance number of 4.1 Gflop/s.

The results shown in figure 7 suggest that the optimal value for the num-

ber of particles per searching is 16 (although it is only marginally better than

some of the other cases shown using this measure of performance). Still, we

must consider whether the running time of the code relative to the force

accuracy achieved is improved as well. Therefore, we plot in figure 8 the

running time of the tree search and force computation vs. the logarithm of

the RMS error. The lines in the plot are for values of the number of particles

per searching group of 1, 4, 16 and 64. To obtain different values of the

accuracy _ was varied between 1. and .4. Again, 128 processors were used in

each case. This plot shows that the 16 and 64 particles per searching group

cases give the best results and that they are virtually identical and are only

marginally better than the case where the number of particles per searching

group equals 4.

7 Loop Blocking

Due to the small size of the on-processor cache of the T3D, we may expect dif-

ferent performance levels if do loops are written so that they can be blocked.

To do this for the code considered here, we vary the size of the interaction

list by never allowing its size to get larger than a pre-chosen value. When

this number is exceeded the tree search is temporarily stopped and the in-

teraction list is flushed. Several cases were run which included quadrupole

16

6

200

0

0

O

(_100

_)

0

_ 0

' • ' ' r i L i

20 30 40 60 70

Number of Particles per Group

Figure 7: Number of Interactions computed per second plotted vs. the num-

ber of particles per searching group. The number of particles used was

262,144 and _ was set to 1. The number of processors was held fixed for

each case at 128.

17

8O

_'60

0
0

"40

2O

I

#4
I I I

o!

0 , I , , , , I _ , , , I , , L , I a , , ,

-4 -3.5 -3 -2.5 -2

log (RMS Error)

Figure 8: Running times of the tree search and force computation algorithm

plotted vs. the logarithm of the relative RMS error. The number of particles

used was 262,144 and the number of processors used 128. The different curves

indicate results for different values of the number of particles per searching

group as indicated by the number associated with each curve.

18

corrections and the group searching algorithm described above. The value of

0 was set to 1. It was found empirically that the best results are achieved

when the maximum length of the interaction list is --_ 25. For this value the

code computed 167 million interactions per second (5.0 Gflop/s) using 128

processors. This is a modest improvement of a factor of 1.2.

8 Scaling

As we commmented above, we do not expect the scaling of the algorithm

to be linear for indefinitely large number of processors. This seems to be

born out be the results presented above. In other words, the time spent

in the individual searches of the trees is reduced as the processor number

is increased, but the time to do the broadcast in the algorithm remains

roughly constant. We find that timings of the broadcast overhead bear out

this conjecture. Cases identical to those shown in figure 6 were run and the

overhead associated with the broadcast was timed separately. Cases using

from 16 up to 256 processors were used. The broadcast time varied little

from case to case and ranged from values of 2.35 seconds using 16 processors

to 2.77 seconds using 256 processors. Figure 9 shows the scaling curve which

results by subtracting off the broadcast times from the total running times

of the tree search as compared to the scaling of the total time to execute

the tree search algorithm. This plot indicates that while the broadcast is

a major reason for the lack of linear scaling, other factors prevent further

improvement. The major reason for this is probably algorithmic. Since

each tree on each processor becomes smaller as the number of processors

is increased, each searching item will in effect search deeper in the overall

tree structure than it otherwise would need to as compared to the equivalent

problem run on a single processor.

We further note that one way to get better scaling of the overall tree search

algorithm is to give more work to each on processor tree search. This can be

accomplished by setting 0 to a smaller value. Figure 10 shows scaling curves

for cases where 0 was set to values of 1 (long dashed curve) and .6 (short

dashed curve). The performance at 256 processors and 0 = .6 corresponds

to a real performance level of 9.6 Gflop/s.

19

2OO

Q)

q)

_oo

' ' ' ' I ' ' ' ' I ' " ' ' I ' ' ' ' t ' ' ' ' I

i i I I _ i i i A i i i i

50 100 150 200 250

Number of Processors

Figure 9: Scaling curves with and without broadcast times included. The

long dashed curve is the same as in figure 7 while the short dashed curve

does not include the broadcast time.

2O

2O0

_oo

o
o

.... I I

.,......II"

50 100 150 200 2,50

Number of Processors

Figure 10: Scaling curves using different accuracies. The long dashed curve

shows results using _ = 1 and the short dashed curve shows results using

0 = .6. 262,144 particles were used, quadrupole corrections were included

and the group searching algorithm with 16 particles per searching group was

used. The curves are normalized to results obtained at 16 processors.

21

9 Conclusion

We have described an extremely simple algorithm for implementing a gravi-

tational N-body tree code on a coarse-grained parallel computer architecture.

Performance measurements of the algorithm ha_'e also been taken using the

Cray Research T3D parallel computer located at the Jet Propulsion Labo-

ratory. The algorithm relies heavily on interprocessor broadcasts of data,

and scaling with the number of processors is shown to be affected by this.

Still, overall real performance of the code is good and roughly 9.5 Gflop/s

are achieved using 256 processors of the Cray T3D.

This research was supported, in part, by NASA grant NAG5-2652 to

George Mason University and also NASA's High Performance Computing

and Communications Initiative.

22

References

1. Appel, A. W. An Efficient Program for Many-Body Simulation.

SIAM J. Sci. Stat. Comput. 6, (1985), 85-103.

2. Barnes, J. E., and Hut, P. A hierarchical O(Nlog(N)) force-calculation

algorithm. Nature 324, (1986), 446-449.

3. Barnes, J. E. A Modified Tree Code: Don't Laugh, it Runs

J. Comput. Phys. 87 (1990), 161-170.

4. Dikaiakos, M. D. and J. S. A Performance Study of Cosmological

Simulations on Message-Passing and Shared-Memory Multiprocessors' (1995),

submitted to the International Conference on Supercomputing '96,

(http: / /www-hpcc.astro.washington.edu/papers/marios/perform/perform.html)

5. Dorband, J. E. Sort computation. Proc. Frontiers of Massively

Parallel Computation. IEEE Computer Society, Washington D. C., 1988,

137-141.

6. Geist, A., Beguelin, A., Dongarra, J., Weicheng, J., Manchek, R., and

Sunderam, V. Parallel Virtual Machine: A Users' Guide and Tutorial

for Networked Parallel Computing. MIT Press, Cambridge, 1994.

7. Hernquist, L. Vectorization of tree traversals. J. Comput. Phys. 87,

(1990), 137-147.

8. Jernigan, J. G. and Porter, D. H. A tree code with logarithmic rediJction

of force terms, hierarchical regularization of all variables, and explicit

accuracy controls. Astrophys. J. Suppl. 7'1, (1989), 871-893.

9. Olson, K. M. Efficient Tree Code on SIMD Computer Architectures.

submitted.

10. Olson, K. M. and Dorband, J. E. An Implementation of a Tree Code

on a SIMD Parallel Computer. Astrophys. 7. Suppl. 94

(1994), 117-125.

11. Salmon, J. K. Parallel hierarchical N-body methods. Ph.D. thesis,

California Institute of Technology, 1991.

12. Salmon, J. K. and \¥arren, M. S. Skeletons from the treecode closest.

J. Comput. Phys. 111, (1994), 136-155.

13. Sterling, T., Becker, D. J., Savarese. D, Dorband, J. E., Ranawake, U. A.

and Packer, C. V. BEOWULF: a parallel workstation for scientific

computation. Proc. of the International Conference on Parallel

Processing. submitted, 1995.

23

14. Ranawake,U. A. V_SQRT:A Library Routine for Computing SquareRoots
of Double-PrecisionVectorson Cray MPP
(softwareavailableat: http://sdcd.gsfc.nasa.gov/ESS/exchange/
contrib/udaya/v_sqrt.html)

24

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reportingburden for this collectionof informationis estimated to average 1 hour per response, includingthe timefor reviewing instructions,searchingexisting data sources,
gathering and maintainingthe data needed, and completing and reviewing the collection of information. Send comments regardingthis burden estimate or any other aspect of this
collectionof information, includingsuggestionsfor reducingthis burden, to WashingtonHeadquarters Services, Direclorate for InformationOperations and Reports, 1215 Jefferson
Davis Highway,Suite 1204, Arlington,VA 22202-4302, and to the Office of Management and Budget, PaperworkReduction Project(0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

May 1996
4. TITLE AND SUBTITLE

An N-body Tree Algorithm for the Cray T3D

6. AUTHOR(S)

Kevin M. Olson and Charles V. Packer

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

Goddard Space Flight Center

Greenbelt, Maryland 20771

9. SPONSORING! MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

3. REPORT TYPE AND DATES COVEREDContractor Report
5. FUNDING NUMBERS

G-NAG5-2652

Code 934

8. PEFORMING ORGANIZATION
REPORT NUMBER

96B00085

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR- 199882

11. SUPPLEMENTARY NOTES

Olson: Institute for Computational Science and Informatics, George Mason University, 4400 University

Drive, Fairfax, Virginia; Packer: Hughes STX Corporation,4400 Forbes Blvd., Lanham, Maryland.

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 90

Availability: NASA CASI (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

We describe in this paper an algorithm for solving the gravitational N-body problem using tree data

structures on the Cray T3D parallel supercomputer. This implementation is an adaptation of previous

work where this problem was solved using an SIMD, fine-grained parallel computer. We show here

that this approach lends itself, with small modifications, to more coarse-grained parallelism as well.

We also show that the performance of the algorithm on the Cray T3D parallel architecture scales

adequately with the number of processors (up to 256). Specific levels to be reached using the Cray

T3D parallel architecture. A peak performance level of 9.6 Gflop/s is reached on 256 processors for the

time critical gravity computation.

14. SUBJECT TERMS

Computational Techniques, Particle Methods, Gravitatio_ Parallelization

17. SECURITYCLASSIFICATION18. SECURITYCLASSIRCATION 19. SECURITYCLASSlRCATION
OFREPORT OFTHISPAGE OFABSTRACT

Unclassified Unclassified Unclassified

N_N 7540-01-280-5500 _1

15. NUMBER OF PAGES

36

16. PRICE CODE

20. LIMITATION OF ABSTRACT

L_

lnoarcl Porm zuu U-lev. z-tJuj
Prescr/L_KIby ANSI Sld. Z39.18

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

Official Business

Penalty for Private Use, $,300

SPECIAL FOURTH-CLASS RATE

POSTAGE & FEES PAID

NASA

PERMIT No. G27

POSTMASTER: If Undeliverable (Section 158.

PostaJ Manual) Do Not Return

