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NOMENCLATURE

A rotor disk area, 7tR 2 , or spar material cross sectional area, in 2

Ae thin-walled spar section enclosed area, in 2

a lift curve slope, rad -1

b blade semichord, c/2, in

6 normalized blade semichord, b/R

c blade chord, in

normalized blade chord, c/R

Cr rotor thrust coefficient, C r = T/pAf22 R 2

C,. section pitching moment coefficient, C., = M 0/_ pV2c 2

C,._ linear model static pitching moment coefficient

C,_ measured static pitching moment coefficient

L 1Cz section lift coefficient, C _ = z / z P V 2c

Cj linear model static lift coefficient

C:_ measured static lift coefficient

D electrical displacement, Coulombs-m -2

E effective Young's modulus of blade structure, lb-in -2, or electric field

intensity, V-rn-

f equivalent fiat plate drag area of fuselage, in 2

G effective shear modulus of blade structure, lb-in -2

flapping inertia, f_ mr2 dr = _ mR 3 (uniform blade)blade

R 2

I0 blade pitch moment of inertia, _ mk m dx

k- average value of inverse of reduced velocity, b/r

K_ blade flapping root spring rate, in-lb-rad _

K 0 blade pitch root spring rate, in-lb-rad -_

L number of out-of-plane bending assumed modal functions

L w section lift force, lb-in t

L--w nondimensional section lift force, L w/mf_2R

m blade mass distribution, lb-sec2-in-l/in

M number of torsional assumed modal functions, or section Mach number

M¢ section pitching moment about c/4, in-lb/in

/_, nondimensional section pitching moment, M,/m_-'22R 2

N number of aerodynamic evaluation points along blade; number of rotor

blades

R rotor radius, in

x blade radial coordinate, in

t time, sec

T rotor thrust, lb

°°°
111



u blade axial elastic deflection, in

_- normalized blade axial deflection, _ - u/R

U section normalized velocity, V/DR

v blade in-plane elastic deflection, in

normalized blade in-plane elastic deflection, F - v/R

V helicopter forward flight velocity, in sec -1

w out-of-plane elastic deflection, in

normalized blade in-plane elastic deflection, _ = w/R

nondimensional radial coordinate, x/R

Yac distance of aerodynamic center forward of pitch axis, in

e distance of mass center forward of pitch axis, in

o_ airfoil section angle of attack, rad

o_s rotor shaft angle, rad

_/ blade Lock number, _ -= pacR4/l_

section nondimensional circulation, F = L z/U

p_ linear model (unstalled) component of section nondimensional circulation

F2 component of section nondimensional circulation due to stall

_2 normalized section pitching moment deviation due to stall, F,_2 - Cm2/U

Ai normalized width of ith aerodynamic segment

e permittivity of piezoelectric material,

" section rotation rate with respect to the air mass, rad-sec -1
E

torsional deflection, rad

_i normalized midpoint position of ith aerodynamic segment

_.r rotor tip-path plane inflow ratio, _'r = v/DR

la rotor advance ratio, V/DR

v rotor uniform inflow induced velocity, in sec -1

p air density, lb-sec2-in-l/in3

c rotor solidity, c = Nc/ru_

0 section pitch angle, 0 = 0 co. + _ , rad

0con blade control pitch setting, 0 _o_ = 00 + 0 _ccos_ +0 _ssin_ , rad

00 blade collective pitch input angle, rad

0_, lateral cyclic pitch input, rad

0tc longitudinal cyclic pitch input, rad

03, nondimensional root pitch natural frequency, ffK,/I 0f_2

f_ rotor rotational speed, rad sec -1

blade azimuth angle, rad

(.) d( l/dr
(Y

iv
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ABSTRACT

A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric

fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists

of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady

aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial

differential equations of motion to develop a system of ordinary differential equations suitable for

dynamics simulation using numerical integration. The twist actuation responses for three

conceptual full-scale blade designs with realistic constraints on blade mass are numerically

evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant

elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight

conditions for interdigitated electrode poling configurations. Twist actuation for the

interdigitated electrode blades is also compared with the twist actuation of a conventionally poled

piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode

actuators was found to be four to five times larger than that obtained with the conventionally

poled actuators.

1. INTRODUCTION

Significant undesirable fixed system and rotating system vibratory loads continue to exist on all

helicopters. These vibratory loads are primarily the result of responses generated by unsteady

aerodynamic loads acting on the main rotor system while the helicopter is in forward flight. Since

high vibratory loads result in increased maintenance requirements and poor ride quality, much

effort has been devoted to finding means to eliminate or reduce them.

Many mechanical devices, mounted either in the fixed system (fuselage), or rotating system (hub,

and occasionally blades), have been developed for this purpose. 1' 2 The majority of these

mechanisms essentially attempt to alleviate the undesirable vibratory loads by introducing

counteracting inertial and damping forces. This approach has the drawback of requiring the

addition of mechanisms, with attendant mass and complexity and sometimes performance

degradation, to the vehicle. In contrast to these methods, the techniques of higher harmonic

control (HHC), 3"4 and individual blade control (IBC), 5' 6, 7, 8 seek to eliminate vibrations at their

aerodynamic source; by directly altering the unsteady aerodynamic forces acting on the rotor

blades. This is accomplished by introducing cyclic variations in the root pitch of each blade, either



by clevermanipulationof theexisting(swashplate)control system,or throughtheuseof auxilliary
pitchactuatorsmountedwithin therotatingsystem.

HHC active control through a swashplate-typemechanismis restrictedby fundamentalrotor
dynamicsto cyclic pitch inputs at the bladepassagefrequency(Nf2), and the next higherand
lowerharmonicsof thebladepassagefrequency((N __+l)f_), only, where N is the number of rotor

blades, and f2 is the rotational speed. HHC can also be limited by the typically low bandwidth

characteristics of swashplate hydraulic actuation systems.

The IBC approach, on the other hand, enables individual control of blade pitch at essentially

arbitrary frequencies. This is accomplished through auxilliary pitch control actuators placed

within the rotating system. With few exceptions, hydraulics based systems have proven to be the

best means of providing the power and bandwidth in the rotating system necessary for useful IBC.

However, the added complexity associated with delivering hydraulic power from the fixed system

to the rotating system has made practical implementation of IBC on production helicopters

prohibitive.

1.1 Smart material IBC actuation schemes.

Methods of using smart materials to deflect trailing edge control flaps, 9' lO, i i or actuate blade

twist _2'13 electromechanically have been advanced as a more practical alternative means of

implementing some form of IBC. Electrical power for smart material actuators has the advantage

of being easily deliverable from the fixed system to the rotating system through conventional

slipring devices. This avoids the complications associated with transferring fLXed system hydraulic

power for individual blade actuators to the rotating system. The bandwidth characteristics of

certain smart material actuators are also superior to those of hydraulic and conventional

electromechanical, or servomotor, actuators.

Currently, trailing edge flap actuation has the advantage over other smart material IBC schemes in

that available smart material power and displacement capabilities are very near those required for

a practical rotor blade flap actuator design. Disadvantages of the trailing edge flap include the

undesirable addition of complicated mechanisms to the rotor system, and to a lesser extent, the

degradation of flap aerodynamic force and moment performance due to hinge lines.

Blade twist actuation is attractive by virtue of being mechanically simple and aerodynamically

efficient. However, as rotor blade structures tend to be relatively stiff in torsion, induction of

useful levels of twist using smart materials can be difficult. In addition, the added mass of the

embedded smart materials can also be prohibitive when developing practical induced twist blade

systems. Despite these drawbacks, some encouraging developments in twist actuation of smart

material structures continue to be made. Most recently, research in anisotropic twist actuation of

plate structures using piezoelectric fiber composites (PFC) 14' 15 has demonstrated that relatively

high levels of twist actuation are potentially achievable. The application of interdigitated

electrode technology (IDE) _6 can in principle enhance the performance of these materials even
further.
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1.2 Previous work related to analysis of on-blade active control.

To date, relatively little analytical work has been reported detailing the aeroelastic behavior of

rotor blades incorporating either trailing edge control flaps or controllable twist. Millott and

Friedman _7 have given the most comprehensive treatment so far with respect to the unsteady

aerodynamics of rotor blade lxailing edge control flaps, and their employment as vibration

reduction devices. Specific methods for actuation of control flaps were not addressed in their

work however. Use of control flaps to generate higher harmonic controllable twist was

investigated analytically and experimentally in full-scale wind tunnel tests performed in the 1970's.

The analytical portions of this investigation were conducted by Lemnios and Dunn, TM with wind

tunnel results reported by Wei and Weisbrich. _9 Significant vibration reductions were reported

using flap actuation at 0fL l fL 2_, 3£2, and 4f_ frequencies. However, flap actuation was

achieved only by use of a relatively complex system of mechanical linkages, which would not be

generally suitable for flight test or production vehicles. A related investigation of the performance

effects of variable camber was also carried out by Dadone, Cowan, and McHugh. 2° Analytical

results suggested that significant improvements in overall rotor performance were achievable,

especially when airfoil camber changes were used to induce blade twist. Techniques for affecting

camber changes on rotor blades were discussed only in conceptual terms.

Even less has been reported on the analysis of the aeroelastic behavior of rotor blade structures

specifically incorporating embedded smart material actuators. Song and Lebrescu 21 developed the

equations of motion for a rotating, thin-walled, cantilevered beam structure incorporating

embedded piezoelectric actuators. No aerodynamic forcing was included in their study, and

actuation of torsional motion was not considered. Nitzsche and Breitbach recently reported the

results of a study to evaluate the ability of embedded piezoelectric materials to attenuate out-of-

plane bending and torsional vibrations on a rotor blade structure. 22 To accomplish this, they

developed a rotor blade aeroelastic model incorporating quasi-static aerodynamics and a

"directionally attached piezoelectric crystal" bending-torsion actuation scheme similar to that

developed by Barrett. They concluded that the lightly damped torsional blade modes could be

significantly affected on a practical blade structure without saturation of the piezoelectric
materials.

1.3 Scope of this effort.

For the most part, aeroelastic analysis of rotor blades incorporating on-blade actuation is still very

much in its infancy. In particular, there is a lack of simple analytical models suitable for

conducting preliminary conceptual control and design studies for embedded smart material blade

structures. In light of this, and in order to gain greater insight into the control and aeroelastic

response issues related to induced twist smart structure rotor blades, a simple aeroelasticity model

for a piezoelectric fiber composite twist actuated helicopter rotor blade has been developed by the

authors. This model is derived specifically for use in the investigation of phenomena related to

torsional control and response of helicopter rotor blades incorporating piezoelectric twist. In this



paper, a descriptionof the derivation and numerical implementation of this model is given.

Additionally, numerical results demonstrating the twist actuation potential of three conceptual

full-scale helicopter blade designs are shown. The work reported here is thought to be the first

specifically related to the aeroelastic analysis of piezoelectric fiber composite twist actuated

helicopter rotor blades.

2. ANALYTICAL MODEL DESCRIPTION

A rotor blade aeroelasticity model may be thought of as a unification of several basic analytical

submodels. These submodels are, at a minimum, 1) a formulation of the blade structural

dynamics, including all forces related to blade rotation, 2) a formulation of the aerodynamic forces

and moments acting on the blade, 3) an inflow model, and 4) a control formulation. These

submodels may be coupled in many ways depending on the degree of complexity of the overall

formulation. In this development, they will be conceptually linked as shown in Figure 1.

Theoretical descriptions of each submodel are given below.

2.1 Structural formulation

The equations of motion used here to describe the elastic torsion and out-of-plane bending

behavior of an isolated helicopter rotor blade are adapted from the general elastic bending and

torsion deformation equations developed by Kaza and Kvaternik. 23 Due to the complexity of

these equations, and elastic rotor blade equations of motion in general, it is usually necessary to

apply some simplifying assumptions to the complete set of equations in order to obtain a more

mathematically manageable model. An ordering scheme approach is used here to accomplish this.

Use of such a procedure enables one to avoid a great deal of the complicated algebra associated

with retention of "high order" nonlinear terms in the equations, and ensures that the most

physically significant terms are retained.

The in'st step in employing an ordering scheme is to rewrite the equations of motion in a

nondimensional form. An order is then assigned to each nondimensional term in the equations

relative to an assumed scale factor, e, and the equations are rewritten retaining only terms of the

lowest order, and terms of one order greater. Terms of two orders greater and higher are usually

discarded. For this study e will be assigned a value of 0.1 0, which is equal to the assumed order

of magnitude of torsional deformations, hence, 0(0)=1, O(e)=O.lO, O(e2)=O.O1, etc.

Evaluation of the order of each nondimensional term is based on the intended application of the

final equations, e.g., stability, vibration, etc., and representative full-scale helicopter structural and

flight parameters. The ordering of parameters used in this study is based on schemes applicable to
rotorcraft vibrations, and is shown in Table 1.

Three additional assumptions related to the blade geometry are also made. These are, 1 ) that the

blade precone angle and built in twist are assumed to be zero, 2) the blade structural cross-section



is assumedto be doublysymmetric,and 3) the bladepitch radiusof gyration is assumedto be
approximatelyequalto the k,,,2 cross section integral (i.e., k,,Jkm2<<l).

Applying the ordering scheme, with the additional assumptions given above, to the equations of

Reference 23 yields the following partial differential equations of motion for blade out-of-plane

bending and torsion. (Blade coordinates are illustrated in Figure A 1.)

Out-of-plane (flapwise) bending (O(E), O(e.4)):

•_. : T + ..

1++ ++}+++_ m-_-5 _4 + [ InD.,R3 ma2R 2

(1)

Torsional deformation (0(_4,_5)):

E ]+E lk,,__ _ + _" + __RS__¢ _,, mE_ R 2 -_ + _ .y_+ +

YI )GJ G J + M® Qpe +-- m_,_22---R4 _+ -- -_-_--_, -- m_,)z----R2 m_-)2 R 2

kr a 2

R 2

0

(2)

The blade section tension force, T, is based on an 0(1) approximation, and is given by

T -_- _-_2 R 2 _m.x'dx.

(3)

Temporal differentiations (denoted by *) in the above equations are performed with respect to the

rotor azimuth, W, which, for constant rotational velocity f_, is W -Dt. Spatial differentiations

(denoted by +) are conducted with respect to the nondimensional blade radial location, Y - x/R.

Descriptions of the coordinate systems used to describe the blade motions may be found in

Appendix A.

Note that the single underlined terms in Equation 1 are actually of O(F-.4), but are retained in order

to ensure mathematical symmetry in the resulting mass and stiffness matrices. Double underlined

terms in Equation 1 are also of 0(_4), but are kept so that the equation is a more physically

meaningful representation of out-of-plane bending. Technically, retention of all O(e 4) terms

would require inclusion of additional terms associated with the in-plane ("lead-lag") bending

deformation of the blade; terms that have been consistently ignored in this treatment. A higher



order approximationof the tensionforce would be also be necessaryfor consistency. We re-
emphasizethat theseequationsweredevelopedprimarily for usein investigationsrelatedto blade
torsional responseandcontrol. Consequently,studiesof out-of-planevibratory responseusing
thepresentformulationshouldbedonewith somedegreeof caution.

Qee, in Equation 2, represents the piezoelectric induced twisting moment, which will be derived
in the control formulation section below.

A modified Galerkin procedure 24 is used here to obtain modal solutions to Equations 1-3. In this

case, superposition solutions for w and _ of the form,

L

1=1

M

m=]

(4)

(5)

are assumed, where L and M are the number of out-of-plane bending and torsional modal

functions respectively. In the modified Galerkin procedure, these modal functions need only

satisfy the geometric boundary conditions on the blade. Work due to any nonfulf'dled "natural"

boundary conditions is accounted for with additional boundary terms in the equations.

Substituting Equations 4 and 5 into Equation 1, and performing the appropriate integrations,

yields a set of L ordinary differential equations of the following form:

L

/=1

L , 1

l=1 m_g2 R 3 t "" n

Is: s:+ _ T + , El,v1 14<++w++rv+
m_2 R2 Wt W.+dY + t ... --mfiZ R"

M ** 1 _.d f_+Zt_,,, _oE¢PmW,d2 + t_,,, ex--O,,W+dYi
',=' m=l

/** 1 t

(6)

where n = 1, L. A similar procedure performed on Equation 2 yields an additional set of M

ordinary differential equations;



** rl km 2 _ __

m=l

M , fl G'J
_*" Jo *r.,+*+aft

m=l m_'_2 R3

u ( lk 2 1 T ka 2 + + rl GJ

L ** 1 L 1

+Z
l=l 1=1

,, M, f, Qo: =+ ¢")r" lk 2
ao m_ R Jo rn_ R P \ )Jo R

(7)

with p = 1, M.

The K_ and K 0 terms in Equations 6 and 7, which do not appear in Equations 3 and 4, are used

to represent finite stiffnesses present at Y = 0. These terms can be used to account for the

stiffness of a mechanical flapping spring placed at the blade root, or the inherent flexibility of the

pitch control system.

It should be noted that all stiffness, damping, and inertia terms contained in the above equations

represent the structural properties of the combined piezoelectric/passive material blade structure.

The derivation of the stiffness terms is contained in Appendix B.

2.2 Aerodynamic formulation

The sectional lifting forces and moments are calculated using a technique based on the ONERA

dynamic stall model developed by Tran and Petot. 25 The ONERA model uses differential

equations in time to describe the unsteady aerodynamic lifting forces and pitching moments,

including dynamic stall effects, acting upon an airfoil section undergoing arbitrary pitch and

plunge motion.

2.2.1 Section lift formulation

Modifications to the ONERA model for general use in rotorcrafl aerodynamic formulations have

been made by Peters, z6 with nondimensional circulations used as the state variables instead of

aerodynamic coefficients. The simplified lift circulation equations of Reference 26, which are well

behaved in the reverse flow region of the rotor disk, but do not give lift reversal, are used here (8,

9).
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z-,=Lo+.x

£o= Sz v,,

(8a)

(8b)

(8c)

k F, + k zF = _,z aU r +8: (;

1,2r2+ 2azwzkP2+ w 2(1+ dz )r 

=-w _(l +dz2)[UxACz +efi([Jx acz +OaCz U,)]zba

(9a)

(9b)

L 0 in equation (8c) is the nondimensional apparent mass lift. L x and E r are the components of

the nondimensional rift in the airfoil section X and Y directions respectively. The nondimensional

section velocities U, Ur, and Uz, and section angle of attack, _, are derived in Appendix C. e in

equations (9) is defined as the geometric rate of rotation of the airfoil with respect to the air mass

(see Appendix C), and is given here by

,
• de _+.e ---_=_0 +0+

av
(10)

ACz in Equations 9 is the difference between the linear model static lift coefficient, Ca and the

measured stalled lift coefficient, C_, i.e.,

AC z = C a - C a .

Plots of the static lift coefficient data used in this model are shown in Figure 2. These curves are

extrapolated from curves given in References 28 and 29.

The angle of attack dependent coefficients (s, _, & d, w, and e) are derived from experimental

two-dimensional unsteady airfoil tests using the parameter identification scheme described in

Reference 25. Parameter values for the ONERA OA212 rotorcraft airfoil are used in this model,
and are shown in Table 2.

2.2.2 Section Pitching Moment Formulation

8



Improvements to the basic ONERA pitching moment formulation have been made by Petot, 27

with further modifications made by Chouchane 28 (given also by Peters, Chouchane, and Fulton29),

and this is the representation used in this model. In this approach, the unstalled component of C,,

is given explicitly through the static moment coefficient, which is a function of angle-of-attack

only. This results in the elimination of one state per spanwise aerodynamic evaluation point in the

model. Plots of the static pitching moment data used here are shown in Figure 3. These curves

are extrapolated from curves given in References 28 and 29, and from data provided by Tang. 3°

The stalled contribution to the section pitching moment is calculated using a circulation based

model similar to that developed for section lift. The second order differential equation describing

this stalled pitching moment circulation, defined as F_2 = UCm2, is shown below (11 ).

ki 2 FmZi+ amiki Fm2i+ rmiFm2 i = -rmiUiACmi - Emi _ Uy i

(11)

The coefficients a,,, r,,, and E,, in Equation 11 were found by Petot (Reference 27) to have similar

characteristics for many airfoils. Expressions for these coefficients, omitting subscripts, may be

written as

a m=a o+a2ACz 2,

rm =(ro + r2ACz2) 2,

E,, = E2ACz 2

(12a)

(12b)

(12c)

Values of a0, a2, r0, r2, and E2 used in the present formulation are taken from the generic "mean

airfoil" values of Reference 27, and are provided in Table 3.

2.2.3 Airloads calculation

The aerodynamic forcing integrals present in Equations 6 and 7 are calculated by first evaluating

the sectional aerodynamic forces and moments per unit length at N discrete points along the blade

span. Section aerodynamic forces and moments are further assumed to be constant over the

width of each section. Consistent with the ordering scheme assumed in the structural formulation

above, the final expressions for these aerodynamic loading integrals are

6a i=1 i i

(13)



V_ Cm,,+ 2,+c, gU,,+c2U, e +c3g 2 O+
6a i=l [ _, _,

(14)

_, in Equations 13 and 14, is the radial location of the inboard edge of the ith aerodynamic

section,

F/ = xi - Ai/2,

where Yi is the nondimensional radial location of the ith aerodynamic evaluation point, and A i

the associated nondimensional section width.

2.3 Inflow model

A uniform rotor inflow model, based on momentum theory (e.g., Gessow and Myers31), is used in

this formulation. A uniform inflow assumption, i.e., the assumption of constant inflow velocity at

every location across the rotor disk, is not unreasonable for hovering or vertical flight conditions,

although it is not very realistic for forward flight. Nevertheless, it is used here for computational

simplicity in the numerical model. More complex inflow representations will be incorporated into

future versions of this analysis.

For an implicitly trimmed rotor operating at thrust coefficient Cr, and forward flight advance ratio

I.t, the uniform induced velocity ratio with respect to the tip-path-plane may be written as

_'reP = _ttana_ +_._,

(15)
where

_.i _

C T

241_ 2 + _,Tpp 2

(16)

An Newton-Raphson iterative approach, from Johnson 32 is used to numerically evaluate _,rep in

the above expression, i.e. (1 7)

10



=

CT (.2 +2)_rpf)

bt tan O_ + )3/22 (i.t 2 + )Vrpf

1 + CT _'TPP

- 2 x3/2

2 (la2+_,rm,)

(17)

Usually only two or three iterations are required for the calculation to converge, starting with

)v_e = gtano¢ -+
C T

2_/g 2 + C r/2

(18)

2.4 Control formulation

2.4.1 Trim control

Swashplate control angles are calculated using trim equations adapted from the harmonic balance

equations of Reference 32. These equations, rewritten assuming zero blade twist and no first

harmonic flapping with respect to the rotor shaft, are given by

( 31a2_(6Crl 3 ( 1 2)+ _'rPp 1- bt
1+2 )\ _a J 2 2

0o=

Ols =--

9g 4
l-g2+ 4

4  t13o
Olc -- 1 2 '

1+ bt
2

(19a)

(19b)

(19c)

where 13o in equation 19c is the estimated blade coning angle given by

11



7

E(,19213o= - 9 t4 +  4 6cT+r,7.214)12 j- -a z P"

(19d)

The control settings predicted using these trim equations are reasonably effective at eliminating

first harmonic flapping in unstalled flight. However, under heavily stalled forward flight

conditions, these equations will fail to trim the rotor effectively.

2.4.2 Piezoelectric twisting moment

The piezoelectric actuator equation development detailed here borrows heavily from the approach

used by Bent, Hagood, and Rogers. 15 Their equations, however, have been rewritten here

explicitly for the case of in-plane polarization of the piezoelectric lamina material, or interdigitated

electrode (IDE) poling. _6 Such an IDE configuration, in principal, allows the so-called "d33

effect" to be used to maximum advantage to enhance the inplane strain actuation capabilities of

the piezoelectric lamina. This in turn should result in an increase in torsional actuation capability

of the lamina with respect to conventionally poled schemes.

Development of the actuator equations begins with an alternate version of the standard linear

piezoelectric constitutive relations. 33 Assuming structural orthotropy in the piezoelectric material,

and applying the plane stress assumption (/'3= 1"4=7"5=0) to the constitutive relations yields

"D1
D2

D3

$1

S2
. $6

0

0

d33

d31

0

0 0 d33 d31 0

r 0 0 0 disE 22

T

0 e33 0 0 0

E s_ 00 0 sl_

e 00 0 S E $22

E

d_5 0 0 0 s66

FEI

E2

E3

r6

(20)

The Ss, $4, and S5 strains, although not necessarily zero, will be neglected here.

The poling direction of the piezoelectric material will be defined to be in the material 1-axis

direction (see Figure 4), rather than in the more familiar out-of-plane direction (3-axis). The usual

indexing nomenclature in the piezoelectric free-strain coupling coefficients will be retained here

however. This is solely to allow the d33, and d_3, piezoelectric material coefficients to be more

readily identified in the resulting equations. (Note that the conventionally poled case may easily

be obtained from these equations by setting d33 equal to d3_.)
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RewritingEquation20with strains(S)asindependentvariables:

Dl

02

D3

r6

0

0

-e33

-e31

0

0 0 e33 e31 0

s 0 0 0
E 22 el5

s
0 e,33 0 0 0

e 00 0 c_ c_2

0 0 c_ c_2 o
E

-el5 0 0 0 C66

E2

E 3

$1 I'
$2

$6

(21)

or more compactly,

_e T C E

(22)

where

CE=(SE) -' e=dc e Es=Er-dce(d) r.

(23)

The relationships between field components given in the global, or beam coordinate system, and

those in a system rotated by an angle 0 about the 3 direction (actuator system) are given by (see

Figure 5)

D=RED E=ReE S=RsS T=(Rsr)-_T,

(24)

where

t°'} ti}D- D 2 E- E 2 S-- S 2 T-

D 3 E 3 S 6

(similarly for D, E, S, and "r ).

(25)
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The appropriate transformation matrices for this coordinate rotation are

COS 20 sin 2 0 cos0sin0 ]R e = sin 2 0 cos 20 -cos0 sin0 J ,-2 cos0 sin 0 2 cos0 sin 0 cos 2 0 - sin 2 0

(26)

R E  cososino= -sin0 cos0 •

0 0

(27)

In terms of the actuator coordinate system, Equation 22 then becomes

(28)

Substituting Equations 24 into Equation 28 yields constitutive relations expressed in terms of the

global field variables.

{D}
(29)

For convenience, electric fields and displacements will be defined as being specified along the

actuator system 1-direction only. The electric field within the piezoelectric material will also be

assumed to be an average of the field strength between alternating electrodes. (See Reference 16

for a complete description and discussion of the actual electric field distributions produced using

IDE schemes.) Equation 29 is then

Rsr cERs.JL S J"

(30)

A material orientation angle that maximizes the actuator induced shear stress is desired here. This

will occur for orientation angles of 0 =_+45 ° . For the case of 0 = +45 ° , the rotated material

matrix of Equation 30 becomes

14



i gF, _R_-Rsr'_ r Rsr_ERs

_(_ +e-_)
t (e'33 +e31 )

-_(e_+_,)
l _E _E _E _E

"_'(Cll +2C12 +C22)+C66

1 _E _E _E _E

_(Cll + 2C12 +C22)--C66

I(--E--E)Cll -- C22

½@33 + b'31)
1 _E _E _E_(Cl,+2c,2+_22)--_C66

1 _E _E _E _E_(Cll+2c,_+c_)+c6_
1 _E _E (Cll

½(e_3-e3_)l-e -E )]

 (Cll
1 _E _E (Cll

1 _E _E _E

@11 -- 2Ct2 + C22

Extracting the torsional terms yields

To l-_(e:_-_,)

(31)

i -E -e + _.e ["
)

(32)

At this point, for simplicity, we will assume that the structurally effective portion of the blade is a

closed, rectangular, thin-walled section (Figure 6). Following a mechanics of materials approach,

the piezoelectric induced shear flow, qeE,, for such a structure may be written as

aPE = T6tpE •

where tee is the piezoelectric lamina thickness.

then be expressed as

= l (_'33-e3, .Qee = rqeeds = 2hwqpe -2Ae -_ - )F"'teE

where h and w are the height and width of the rectangular cross-section, and A e

enclosed by the wall centerline.

Converting to standard piezoelectric coefficients, via Equation 33, yields

QPE -ae(d33(clEl ~E ))= -- c12)_1_d31(_.I_ _ C22--E _itp E"

For further convenience, we will rewrite Equation

produceable piezoelectric strain, Am_, yielding

(33)

The total piezoelectric torsional moment may

35 in terms of the assumed

(34)

is the area

(35)

maximum
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-Aerie1 1 cl2]+ Amaxtee

= ) d,,tc-, L-m=

where A max m. d3 3El max"

(36)

Substituting Equation 36 into the expression for the generalized nondimensional piezoelectric

control moments, from Equation 7, yields

l Qee _ll+dT?=_i _ A.c-i{2R3 [( _'l_] d31(c'l_Io m_..) 2R2 1 - +
ma c',ElJ da3 t. c',_

c22 A max tee O_dY?.
_E glmaxC]l

(37)

If the electrode layers are divided into P independently energizable sections, the average electric

field intensity within the pth section is given by

ff.l p (_l , X ) = ff.lmax e p (_l ) , rp< x < rp+ l

(38)

where ep is the electric field generalized field strength, Fp is the radial location of the inboard

edge of the pth electrode segment, and ff7_max is the maximum electrical field permissable without

depolarization of the piezoelectric material.

Substituting Equation 37 into 38 yields the generalized piezoelectric control moments in their final
form

Io P ._r.'+' A'c'lel' QeE _+..d37= -E e
m_-_2 R2 p m_22 R 3

p=l
Cii) +-~E d3 3 tCll

c22 A ÷-e m_xteEOm d_"
Cll

(39)

Material properties appearing in Equation 39 for the piezoelectric laminae used in the numerical

portion of this study are given in Table 4.

3. NUMERICAL IMPLEMENTATION

The equations of motion for the structural and aerodynamic degrees of freedom are rewritten in

state variable form for numerical integration. The structural state derivatives thus will be of the

following form:
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[q s_fucl +foo}),o

(40)

with the structural state vector defined as

t i i

qs,,_, = I x _.
lxl

(41)

The definitions of M, C, K, etc., may be found in Appendix D. For each aerodynamic evaluation

point along the blade, three state variables are required to define the lifting force and two to

define the pitching moment. The aerodynamic state derivatives for each such point are

qaeroi

f,,?_, +L,

I *__ F2i

= _ f3, F2,+,f4/F2, + fs, ,

'I -* r' L
[gli Fm2iq- g2iF,_2_ + g3i

(42)

with aerodynamic state vector

qaeroi =-" F2i

Fm2i

Fm2i

(43)

Expressions for the f and g coefficients appearing in the aerodynamic state space equations are

given in Appendix E.

The combined state vector is defined as
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(44)

For N radial aerodynamic points, the resulting state space model will consist of a system of

2(L + M) + 5N first order differential equations with, in general, time varying coefficients. These

state variable equations are numerically integrated using a fourth and fifth order Runge-Kutta-

Fehlberg algorithm, with the integrations performed with respect to rotor azimuth angle, _.

For the numerical case studies presented in this report, we have used one out-of-plane bending

mode and three torsional modes. Here, W_ (_) was defined as

W_ =_=x/R,

which is the rigid body flapping deflection mode shape.

(45)

• m(Y) were assumed to be the first three torsional comparison functions developed by

Karunamoorthy and Peters, 34 i.e.,

(I) l = 1,

(46)

The odd numbered torsional comparison functions in Equation 46 have been found to be good

approximations of the exact torsional nonrotating mode shapes for pinned blade-root boundary

conditions. The even numbered polynomials approximate the cantilevered boundary condition

nonrotating mode shapes. Use of polynomial approximations instead of the exact nonrotating

mode shapes is done solely to simplify calculation of the integral coefficients appearing in

Equations 6 and 7.

4. RESULTS AND DISCUSSION

4.1 Piezoelectric twist actuated rotor blade conceptual design
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Three conceptualpiezoelectricinducedtwist rotor bladedesignswere examinedin this study.
Thesedesignsweredevelopedin order to illustratethe twist actuationcapabilitiesof the three
generalcasesof piezoelectricactuationsuggestedby inspectionof Equation36. Thesethree
generalcasesare:

Case 1:d31 _ d33, cl~el= c22-E. This is the case of actuation lamina possessing piezoelectric free-

strain anisotropy, and in-plane stiffness isotropy. This corresponds to a configuration where

actuation layers are composed of solid, or monolithic, PZT materials, and are polarized according
to the IDE scheme. This case will be referred to as IDE/MON for the remainder of the

discussion.

Case 2:d31 =it=d33, cI--E1_ C22_E.This is the case where the actuation lamina possess both free-strain

and stiffness anisotropy. This would be true of a piezoelectric fiber composite, interdigitated

electrode actuation scheme. This case will be referred to as IDE/PFC.

Case 3:d31 = d33, CI~E__ C22-e. This is the case of free-strain isotropy (or near isotropy) but with

stiffness anisotropy in the actuating layers. This would be the case for a piezoelectric fiber

composite structure utilizing a conventional poling scheme, or a case similar to the Directionally

Attached Piezoelectric scheme, originally proposed by Barret _2 and developed experimentally by

Chen and Chopra. 13 This scheme will be refered to as DAP/PFC in the following sections.

Stiffness, inertial, and actuation parameters for three conceptual helicopter blade designs, each

representing one of the three cases above, were developed using full-scale helicopter parameters

similar to those of the Sikorsky H-34 main rotor blade. The H-34 main rotor blade is a relatively

simple, closed-section spar structure, and was easily idealized as a rectangular box section for the

purposes of this study. These baseline blade parameters are summarized in Table 5.

Structural parameters not identical to the baseline blade parameters are shown for each of the

piezoelectric twist blade designs in Table 6. Uniform blade properties were assumed in each case

for simplicity. The piezoelectric material thickness fractions, tee,, given here were calculated

assuming that the blade total mass of each design could be no greater than 120% of the baseline

full-scale helicopter blade mass. (The choice of 120% was essentially arbitrary, but represents a

reasonable weight constraint on the design of the conceptual piezoelectric twist blades.) As a

result, the torsional natural frequencies of the blade structures vary somewhat from the baseline

design. The resulting natural frequencies of all of the blade designs are given in Table 7.

Aerodynamic parameters used for the numerical case studies were not varied between the designs

and are shown in Table 8.

4.2 Numerical twist actuation authority results

Numerically generated twist actuation authority results for each of the three piezoelectric induced

twist blade designs are shown in Figures 7-9. These results are for a typical one-g hovering flight

condition, which corresponds to a thrust coefficient of Cr = 0.00465. One electrode segment
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extendingfrom _ = 0,1 is assumedfor all threestructures. A sinusoidalelectricfield input with
linearly increasingfrequencyand peak amplitudeof El r_x was used to generate the frequency

responses (amplitude and phase with respect to the electric field input signal) shown in the figures.

In these figures the elastic twist is defined as the difference between the elastic torsional deflection

at the blade tip and that at the blade root.

Figure 7 illustrates the structural response of the IDE/MON case. A sustained oscillatory elastic

twist magnitude of approximately +1.25 ° to +1.5 ° is generated for excitation frequencies below

the first torsional frequency. At the First torsional resonance, which is predominately an elastic

torsional response, the amplitude increases to approximately +_2.25 °. A smaller torsional response

occurs at the second and third torsional resonance frequencies.

The resonant response at the second and third torsional frequencies was found to vary widely

depending on the amount of material and aerodynamic damping present in the structure. As the

torsional aerodynamic damping, from Equation 14, is in general proportional to _-2, the

corresponding aerodynamic damping for these two modes is almost negligible. Some additional

form of damping is desirable then at these higher frequencies to avoid unrealistically large

torsional deflections. As such, a level of material damping equivalent to 0.5% of critical damping

was assumed for each of the cases presented here.

The actuation results for the IDE/PFC lamina design are shown for the same flight condition in

Figure 8. A level of actuation capability on the order of +1 ° to +1.25 ° of elastic twist below the

first torsional resonance, and +1.5 ° at the first torsional mode resonance frequency is shown here.

This is a level of performance slightly less than that demonstrated with the IDE/MON

configuration. Although this may seem to imply that monolithic PZT laminae are more desirable

for inclusion in piezoelectric actuated structures, manufacturing and poling nonplanar composite

structures with solid PZT layers may not be practical. Piezoelectric fibers on the other hand could

be incorporated into complex composite aerospace structures using, for the most part, established

fiber composite construction techniques.

Figure 9 displays the twist actuation capabilities of the DAP/PFC blade design. Structurally, the

DAP/PFC blade is identical to the IDE/PFC blade design, although the DAP/PFC blade utilizes

conventional poling of the piezoelectric fibers. Relatively low nonresonant twist actuation is

demonstrated for this actuation case, i.e., around _+0.2 ° to _+0.25 ° of elastic twist.

Comparison of the elastic twist actuation response of all three cases is shown in Figure 10. The

effect of the large free-strain anisotropies present in the IDE schemes on the magnitude of elastic

twist is readily apparent. Both IDE poling cases exibit generally four to five times the twist

actuation magnitudes of the conventionally poled configuration. Such magnitudes of elastic twist

are generally regarded as being sufficient for practical use in a vibration reduction scheme using
individually controllable blade twist.
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5. CONCLUSIONS

A simple helicopter rotor blade aeroelasticity analysis was developed and used to numerically

demonstrate the twist actuation potential of embedded piezoelectric actuators for three nominally

full-scale helicopter rotor blade designs. It was numerically demonstrated that useful nonresonant

levels of oscillatory blade twist, i.e., on the order of +1 °, can potentially be produced without the

addition of an excessive amount of piezoelectric actuator mass or saturation of the piezoelectric

actuator materials, using an interdigitated electrode poling scheme with either a piezoelectric fiber

composite or monolithic PZT actuation design.

The analysis and numerical model in its present form (i.e., with rigid flapping, elastic torsion and

stall aerodynamics), should be sufficient for an examination of the potential of piezoelectric twist

actuation to alleviate high oscillatory control loads induced by blade stall flutter. 35 Such a study is

underway by the authors. Improvements to this model, such as the addition of multiple flapwise

bending modes and a simple nonuniform inflow model, are also being undertaken.
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APPENDIX A. COORDINATE SYSTEMS AND TRANSFORMATIONS

Several coordinate systems are used to describe the flap-torsion kinematics of the rotor

blade. These coordinate systems are shown in Figure A1 , and described below.

, XIYIZI is an inertial reference frame with origin at the hub center of rotation, Xl axis

oriented in the direction of forward flight, and negative Zt axis aligned with the rotor

rotation vector.

, X_Y_Z_ is a hub-fixed rotating reference frame, with the Z1 axis in the direction of the

rotor rotation vector. The X_Y_Z_ system is rotated about the Zo axis by the blade

azimuth angle _g. The X_ axis is coincident with the undeformed blade elastic axis.

3. x0y0z0 is a blade-fixed reference system located at an arbitrary point (x) along the blade

undeformed elastic axis.

4. xyz is a reference system fixed in the deformed blade, and translated with respect to

the x0y0z0 system.

5. x2y2z2 is an intermediate system obtained by rotation of the xyz system about y by the

angle w'.

. x3Y3Z3is a reference system fixed in the deformed blade obtained by rotating the x2y2z2

system about y2 by the total rotation angle 0 = 0 co, + _b. x3 is tangent to the deformed

elastic axis.

Coordinate transformations due to rotations between the various systems are given below.

Transformation from the inertial system (X_Y_ZD to hub-fixed rotating system(X_Y_Zl):

ITo=

- cos_g sin_g 0 |

Jsin_ cos_g 0

0 0 -1

(A1)

Transformation from the blade-fixed xyz system to the intermediate deformed system

xzy2z2 (rotation about y by w' ):

2T1= ['7" o,sv,]
L-sinw' 0 cosw']

(A2)
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Transformation from the x2y2z2 system to the x3Y373 system (rotation about y2 by 0):

Ii0 013T2= cos0 sin0

-sin0 cos0

(A3)
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APPENDIX B. GENERALIZED FORCE DISPLACEMENT RELATIONS FOR A

COMPOSITE THIN WALLED BEAM STRUCTURE

Rehfield 36 presents a general theory for characterizing the structural properties of thin

walled composite beam structures. Portions of this theory necessary for deriving the beam

stiffness properties of an idealized rectangular thin walled rotor blade structure are given
below.

Membrane resultant stresses and strains for a composite laminate are related by the

membrane stiffness matrix, A, as follows,

I l}[AIaaal61fS01N 2 = A,2 A2z A-,6HS°_

g 6 a16 A26 a66A[S°J

The elements of A are

according to Classical Laminated Plate Theory 37, i.e.,

(B1)

formed from the individual laminate plane stress stiffnesses

?1

Z( e)_ t_A,j = c,j ,
k=l

(i,j = 1,2,6),

(B2)

where n is the number of plies of the laminate.

With the assumption that the hoop stress, N2, is zero, the hoop strain, S ° , may be written

as

(AIzS ° + A26 S°)

A22

(B3)

so=

Applying equation B3 to B 1, and rewritting the extensional and shear stresses in terms of

the remaining strains yields

(B4)

where the K stiffnesses are given by
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KII _ All

AI2)2

A22

(B5)

Klz = At6
AI 2A26

A22

(B6)

K22 = A66
(A26)2

A22

(B7)

The relation between the generalized elastic beam forces and generalized displacements

used in the blade equations of motion of this paper may then be expresed as

{Nx}c4cslruM x : C14 C44 C45i_ ¢" _

m, c45 % Jlw ;
(B8)

The elements of matrix C correspond to the beam stiffnesses of the blade equations of
motion as follows:

Cll = _ Kt_ds = EA ,

4A e 2 r

C_ = --_-_ K22ds -- G J,

C55 = K11Z ds=Eln,,

C14 = 2Ae $ K12ds"
C

(B9)

(B10)

(Bll)

(B12)

Integrations in equations B9-12 are performed around the contour of the beam section,

with Ae the area enclosed by the contour perimeter, and c the contour length.

For the blade structural configurations discussed in this paper, coupling stiffnesses C_5 and

C45 are identically zero. The extension-torsion coupling stiffness, C14, is zero for the

monolithic PZT actuation structure. The fiber composite structures will inherently contain

28



some extension twist coupling, resulting in a nonzero C_4. This coupling, however, is

relatively small for the particular configurations studied in this paper and was not included

in the blade equations of motion. Future, more extensive, developments of the blade

equations will include these elastic couplings.
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APPENDIX C. DEFINITION OF SECTION ANGLE OF ATTACK AND

SECTION ROTATION RATE WITH RESPECT TO THE AIR MASS

C. 1 Section angle of attack:

The two dimensional angle of attack of the ith airfoil section (o0 is defined by

(CI.1)

where Ux and Ur (omitting subscripts) are the components of the nondimensional section

airflow velocity normal and parallel to the section chord. Ux and Ur expressed in the

customary airfoil coordinate system (Figure C 1) are

-v,
U x = - Uy, U r - -Uz"

D.R D.R '

with the total nondimensional section airflow velocity given by

U = 4Ux 2 Jr Uy 2 .

Spanwise flow, i.e., flow in the x3 direction is neglected.

(C1.2)

(C1.3)

Vz and Vy are the components of the section airfoil velocity with respect to the air mass in

the x3y3z3 system (see Appendix A), viz.

tVxt= Va 3VbV= Vy 3

Lv J

=3T2 2T11 T-o °v-a -- 3T--22T11Vb

(C1.4)

°V_ and 1V b are, respectively, the velocity of the air mass in the inertial system, and the

velocity of the airfoil section due to blade motion with respect to the XoyoZo system, given

by
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-V= coso__t
°V_ = 0 ,

v

Making appropriate small angle assumptions for oq,

_), yields for V:

(C1.5)

w', and 0 (and implicitly for Oco. and

V, = .i-V: sin_ - V w'O, cos_ 0 - J xf_ + xw'O
V [ V0sin_-V:wcos_ -v [-x.0+xff'J

V. cos_ -vw'x - xw'Cv" ]

= ]-V:(w'O cosy + sinv)-vO - x(f2 + w'O)
[ V (Osinv -w cosv)-v +x(DO-w') J

(C1.6)

Dividing by D.R yields the components of the nondimensional section velocity in the blade

coordinate system (3-system)

gcos_ - repW + +w + w + Y

Uy = -g sin_ - gw+0 cos_ - )_rep0 - .g 1 + w ÷0 ,

U: ()g0 sin_ - gw + cos_g - _rpe + y 0 - w ÷

(C1.7)

where (*) denotes differentiation with respect to the rotor azimuth, and (+) differentiation

with respect to x/R. Substituting Uz and Uy into equation C 1.1 and then into equation

C1.2 yields the section angles of attack.

C.2: Section rotation rate:

The rotation rate of the airfoil section with respect to the air mass will be defined as

" de * "
E --= --EO+Ew',

dw
(C2.1)
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wheree0 is the rotation rate of the airfoil due to blade pitch motion, andew, is the

effective rate rotation of the airfoil due to the component of the rotor rotation vector lying

along the section pitch axis, x3.

e 0 is given simply by

ee =--= =0co,+_.
0v

(C2.2)

ew, may be found by examination

along the x3, i.e.,

of the vector component of the rotor rotation lying

w, - _ _£ w, _ _E w" = _')k 1 . i 3 ,
bt 0lit

(C2.3)

where k_ is a unit vector in the direction of the positive Z_ axis, and i 3 a unit vector in the

direction of the positive x3 axis. Rewriting C2.3 yields

£ w, = k I • i 3 = sin w' = w +,

(C2.4)
for small rotations.

The total rotation rate with respect to the air mass may then be written as

=6co.+_+ w +.

(C2.5)
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APPENDIX D. SYSTEM MATRICES

Equations 6 and 7 may be rewritten as a system of M + N ordinary differential equations

of the form

M x+ C x+ Kx = faero -_" fPE -[- fo'

(D1)

where x is a vector of structural generalized displacements, given by

x:{_, w_ .-._L ,, _2 ... _}T.

(D2)

The symmetric mass matrix, M, in equation D1 is given by

with

I O0 = r 11°_ oo ool

Ii2 "" IlL

i °°

LI_ _J

j0o _
J,7 j o_ ... jlOOM]
g_ g2°_ °°° '_

Lg_ ...... g_j

g_- _W_C_od_

(D3)

(D4)

(D5)

(D6)

(D7)
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- 00 00 00

K11 Kl2 "'" KIM

KOO= K_ K2°_
: ".. :

IKM_ ...... K_M

_km 2
Km_ = -._--di)rn (Dndx.

C is a symmetric structural damping matrix,

c L[°] ['K" '

with

(D8)

(D9)

(D10)

*i22 =

[-'122 '122 ... *i 22
/" -12 --IL

1"122 *i22

"2' "22: ".. :

l*122 ...... *122
L --LI --LL

* 22 f" E*I_
I_,. - Jo Wm++W'++dYim_.R 4

*K 11 =

",,'_'K?_..21*" '""'--22""2 "'"]'"':• ".. :

• k,'l I ...... *jffll
• =MI _=MM

"K"=f' G'J
m,, Jo mD.,R 40m+_+a_"

K is a linear stiffness matrix of the form

(Dll)

(D12)

(D13)

(D14)
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where

g tlxI_

Ft,S] tl:Jl
] [K-]J'

(TI_ +°I_ + 1212)IV*W=

/(rpl . o.ll zz_
L' "LI* ill + ILl)

... ( r l_ +°I:_ + I_ ) l

*'* * I

... (T,,,.o.,,__+,_ +/_)j

T 11 fl T + +

1'_.- Jo WmW"d_m_E R2

o111 = Kp

,.. E_ZRE]:md3? Wm+(O)W.+ (O) '

[l EI, l,1 W ++W++d2122 __
m. Jo m_'22 R 4 "TM "'" '

,J_O ... ,J_°]
jlo = : .. :

l "

L,jLo ... I JLM,O

+,J2- _w,,, ,t,.d_,

O0 T O0 11 , 0 r.,-00\

Kll + KII + Ktl -e /$'11)

(KMO01 T O0 _ll . 0,.,-00+ Ku_ +"M_ + ^M_)

... 00 T 00 T(ll . 0r:00 "_ "
KLM+ KIM + "=IM* ^tM)

",°

... 00 T 00 i(-11 . 0rT00 _t
KMM + KUM + =_MM+ ^MM )

lk 2
K,._ - OmO.d_,

T 11 _ T ka20 +0 + ,K,,, =- m_._2R2 R 2 m n d._

(D15)

(D16)

(DI7)

(D18)

(D19)

(D20)

(D21)

(D22)

(D23)

(D24)

35



f! GJ
do m_)2 R 4

OK°° =_ Ko_

m. aER2 S_maff *. (0)O. (0).

(D25)

(D26)

forces,ffae,o' flee and _0 are, repectively, the nondimensional aerodynamic

nondimensional piezoelectric induced twisting moments, and nondimensional steady state

inertial propeller moments, and are shown below:

L w.Wld2

is;-;_ l
f_,o = L. d_

/ /M,y _d_

ts;- JM,¢Ma_

(D27)

(D28)

ZwL-
m.QZ R '

Me

M'* mL-)2 R 2 '

(D29)

0

0

I-- +

[o Qee aPMd3?

(D30)

(D31)
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.jo . j_

jo .o.__j _
fo =-' K o K o ,

K ° K °

j o = _-( WmdYi

1 Jim =- -e'xWm '

,,k 2
K ° - dYi

m ,10 m "

(D32)

(D33)

(D34)

(D35)
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APPENDIX E. AERODYNAMIC STATE SPACE COEFFICIENTS

Coefficients associated with lift formulation:

k

f2 = (a_'z U y + be "8 z )/k

f3 = -2azwz/k

:, ---Wz_O+d/)/__

* bAC_ •

Coefficients associated with pitching moment formulation:

g_ = -a,./k

g_ =-r /_ _

_3--g2uac.- e. J,/_.

(El)

(E2)

(E3)

(E4)

(E5)

(E6)

(E7)

(E8)
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Table 1. Ordering of nondimensional parameters appearing in equations of motion.

(e - 0.10).

./_--o(__)
,,/_--o(__)
w/R=O(e)

, = o(_)

o =o(_)

e/R=O(E 3)

em/e=o(E 3)

x/R=O0)

EI/_,I_2R 4 =O(1_ 3 )

a/ran_=o(_)
EA/ma 2R 2 = O(e-2)

k2 /e 2 '_ O(_ 4 )

2 2

km/g =O(_ 4 )

B;/AR 4 = O(_ 4 )

B;/AR_=o(_)
J/g 4 _-._-O(_ 9 )
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Table 2. Lift based ONERA stall coefficients for the OA212 airfoil.

Parameter Value Ph sical Description

S

8

W

d

e

time delay parameter

apparent mass quantity

lift coefficient to pitch rate
relation

damping factor

(u is a unit step function.)

stall natural frequency

phase shift parameter
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Table 3. Coefficients for stalled pitching moment circulation equation. Values are for the
"mean airfoil" of Reference 27.

Parameter Value

ro 0.2

r2 0.2

O.25

a2 0.1

E2 0.573
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Table4. Laminastructuralproperties.Piezoelectriclaminapropertiesarederivedfrom
valuesreportedby RogersandHagood.

Property passiveblade monolithicPZT IDE/PFC DAP/PFC
structure lamina lamina lamina

cll 12.8e6 psi 9.6e6 psi 4.5e6 psi 4.5e6 psi
c22/cj_ 1 1 0.60 0.60

cJcH 0.375 0.29 0.24 0.24

C66 4.0e6 psi 3.4e6 psi 8.3e5 8.3e5

d31/d33 -0.5 -0.4 1

p 0.1 lbs/in 3 0.27 lbs/in 3 0.21 lbs/in 3 0.21 lbs/in 3

A._x 500 I.te 500 kte 250 l.te
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Table5. Baselinehelicopterrotorparameters.

Parameter Baselinebladevalue
E2(rad/sec) 23.2

R (in) 336
_/ 9.44

c/R 0.0488
n 4

0.0622

CT 0.00465

f /rtR 2 0.015

_o =4Ko/n2Io 16.0

m (slinch/in) 0.00142

mk_ (slinch-in2/in) 0.0175

Io/I_ 0.000327

e/c 0

GJ 0.00552

l_ZR

h (in) 1.84

w (in) 6.11

t (in) 0.141
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Table6. Structuralparametersfor numericalexamples.

Parameter IDE/MON IDE/PFC DAP/PFC
GJ 0.00447 0.00365 0.00365

I_f_2 R

Y 8.28 8.28 8.28

tee/t 0.1875 0.300 0.300
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Table7. Calculatednondimensionalbladenaturalfrequenciesfor numericalexamples.

Parameter Baselinebladevalue IDE/MON IDE/PFC DAP/PFC

_ 1.0 1.0 1.0 1.0

_,, 6.10 5.60 5.14 5.14

_,2 18.19 16.64 15.22 15.22

_,3 61.02 59.67 58.58 58.58
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Table8. Aerodynamicparametersfor numericalexamples.

Parameter value

C, /t (1+1.4M2)
4

C 2 = C 1

cx 3/t (_1.26 _ 1.53 tan_l (15(M _ 0.7)) )
16

M 0.30

Yac 0

N 5

{0.28 0.44 0.60 0.76 0.92}

A {0.16 0.16 0.16 0.16 0.16}
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._ DYNAMICS
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IN FLOW ] ;L Tee

Figure 1. Conceptual diagram for a unified rotor blade piezoelectric aeroelastic analysis.
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Figure 2.

4
Lift coefficient data:

i

-- Cz_sCz_l

1

==
0

-1

-2

-3

-4 i t i t i i i

-150 -100 -50 0 50 100 150
alpha, deg

Static lift coefficient curves (linear model and stalled) for the OA212 airfoil.
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Pitching moment coefficient data:

i i f i f i

-- Cm_s

Cm_l

/
-0.2 I i / I L I

--150 --100 --50 0 50 100 150

alpha, deg

Figure 3. Static pitching moment curves (linear model and stalled) for the OA212 airfoil.
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3

piezoelectric fibers

embedded in matrix

E

2

interdigitated electrode (IDE)

layers, top and bottom

Figure 4. Material axis system for piezoelectric fiber composite assuming interdigitated

electrode poling scheme.
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1, x0

2, YO

1

Figure 5. Rotation of piezoelectric fiber composite material system with respect to the

global (blade) system.
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blade cross section:

structurally effective cross section:

t

Z3

piezoelectricfiber

composite lamina

Y3

"passive"substructurelaminae

Figure 6. Idealized rectangular, thin-walled, closed-section piezoelectric blade structure.
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Figure 7. Blade frequency response: monolithic PZT (MON) twist actuation with

interdigitated electrode poling scheme; Cr = 0.00465, _ = 0.0.
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Figure 8. Blade frequency response: PFC twist actuation with interdigitated electrode

poling scheme; Cr = 0.00465, kt = 0.0.
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Figure 9. Blade frequency response: PFC twist actuation with conventional electrode

poling scheme (DAP); Cr = 0.00465, la = 0.0.
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Figure 10. Comparison of elastic twist frequency response for IDE/MON, IDE/PFC, and

DAP/PFC actuation schemes; Cr = 0.00465, kt = 0.0.
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Zl

f_

Zl

Xl, x0

Figure A1. Rotor blade coordinate systems. Note that the blade undeformed elastic axis

lies along X_. (Section pitch angle, 0, is not shown.)
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Figure C1. Airfoil section coordinate system.
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