NASA-CR-201425

11 SINK

0 - 17. 61 - 635

Final Technical Report Submitted to NASA - Ames Research Center Moffett Field, CA 94035 June 12, 1996

STUDIES OF VESTIBULAR NEURONS IN NORMAL, HYPER- AND HYPOGRAVITY Agreement No. NAG2-446

men

Manning J. Correia, Ph.D. Rrincipal Investigator Jehu M. Robison Distinguished Professor Departments of Otolaryngology and Physiology & Biophysics The University of Texas Medical Branch Galveston, TX 77555-1063 (409) 772-2708

OVERVIEW

GROUND BASED PREFLIGHT STUDIES AT UTMB RELATED TO COSMOS FLIGHT 2229 (BION 10)

11/1/92 - 8/22/92

- Established stereotaxic coordinates for medial vestibular nucleus, abducens nucleus and vestibular nerve then redesigned the head ring platform and microelectrodes to permit recordings from these deep neural structures.
- Completed development of surgical procedures to chronically implant orthodromic stimulation electrodes. Implanted two control rhesus monkeys at UTMB
- Completed evaluation of eye movement measurement using ISCAN. Installed the ISCAN camera on the multi-axis rotator
- Completed development of a system to permit active and passive head motion testing. Installed components on the multi-axis rotator.
- Participated in the development of the flight amplifier used to process neural signals during space flight.
- Evaluated several technologies used to produce a multiple microelectrode array. Developed and tested thin microelectrodes that were implanted as a bundle multiple microelectrode array in several flight candidates.
- Continued to develop computer programs in anticipation of recording from rectifying neurons (vestibular nuclei neurons).

GROUND BASED PREFLIGHT STUDIES AT THE INSTITUTE OF BIOMEDICAL PROBLEMS (IBP) IN MOSCOW RELATED TO COSMOS FLIGHT 2229 (BION 10)

8/22/92 - 9/6/92

- J. David Dickman (JDD), Ph.D. and Manning J. Correia (MJC), Ph.D. implanted microelectrode guide tube carrier platforms stereotaxically in 12 monkey flight candidates. 8/29/92 9/13/92
- Adrian A. Perachio (AAP), Ph.D., Denise Helwig and Samantha Edmonds implanted orthodromic stimulating electrodes in the bony labyrinths of 7 monkey flight candidates.
 - AAP and JDD implanted 5 flight monkey candidates with orthodromic stimulating electrodes.

10/3/92 - 10/29/92

• MJC x-rayed all 12 flight candidates. MJC, AAP and JDD conducted electrophysiological studies to determine the stereotaxic coordinates of the vestibular nerve, the medial vestibular nucleus and the abducens nucleus.

11/11/92 - 11/21/92

 Studies were carried out to obtain preflight data from each of the flight monkey candidates. Recordings were obtained from monkeys 803, 775,151, 907, 1401, and 856. From these monkeys, recordings were obtained from 35 horizontal canal afferents, 8 medial vestibular nucleus type II neurons, 8 medial vestibular nucleus type I neurons, 3 untyped medial vestibular nucleus neurons and one vertical medial vestibular nucleus neuron.

11/29/92 - 12/12/92

Indwelling microelectrodes were implanted in several of the leading flight candidates.

GROUND BASED PREFLIGHT STUDIES AT THE INSTITUTE OF BIOMEDICAL PROBLEMS (IBP) REMOTE FACILITY IN PLESETZ RELATED TO FLIGHT 2229 (BION 10)

12/18/92 - 12/23/92

Indwelling flight microelectrodes were implanted by JDD and AAP in other flight candidates. The location and number of Implants are summarized in the table below

	Flight	Candidate Microelectrode Implan	ts (Dec.1992)
Monkey		Location	
	Nerve	Nuclei	Cerebellum
803	multiple electrode (2)	multiple ale de de la	
907		multiple electrode (2)	single electrode (1)
454	single electrode (1)	single electrode (1)	single electrode (1)
151	single electrode (1)	single electrodes(4)	
775	single electrode (1)	single electrode (1)	
906	single electrode (1)	Single electrodes(6)	
892	multiple electrode (2)		single electrode (1)
		single electrodes(2)	single electrode (1)
476	none	single electrodes(3)	single electrode (1)

INFLIGHT STUDIES RELATED TO COSMOS FLIGHT 2229 (BION 10)

12/26/92 - 12/23/92

•

Studies were carried out in which recordings were made from the vestibular nerve and the vestibular nuclei in the two cosmonaut monkeys, 151 and 906.

GROUND BASED POSTFLIGHT STUDIES AT THE INSTITUTE OF BIOMEDICAL PROBLEMS (IBP) IN MOSCOW RELATED TO COSMOS FLIGHT 2229 (BION 10)

1/5/92 - 1/23/93

Synchronous control studies were made on flight candidate monkeys 803 & 907. Recordings were obtained from 11 horizontal canal afferents from these monkeys (See Appendix 1). Postflight studies were carried out in which recordings were made from the vestibular nerve of the two cosmonaut monkeys, 151 and 906 as well as the vestibular nerve and vestibular nucleus of control monkeys 803, 907, 1401, 892 (See Appendix 1). Recovery was on 1/10/93. First recordings were made on: 1/11/93-13 horizontal afferents recorded from monkey 906 and 5 afferents recorded from monkey 151; 1/12/93-5 afferents recorded from monkey 906 and 13 afferents recorded from monkey 151; 1/14/93-2 afferents recorded from monkey 906 and 10 afferents recorded from monkey 151; and on 1/21/93-10 afferents recorded from monkey 906 and 0 afferents recorded from monkey 151. During postflight tests on the control monkeys listed above, 12 horizontal canal afferents and 6 medial vestibular nucleus type I neurons were studied.

1/23/93 - 1/27/93

Laboratory packed with the exception of the monkey multi-axis rotator.

5/3/93 - 5/7/93

The monkey multi-axis rotator was disassembled, reassembled and packed for shipment to UTMB.

1/23/93 - 11/14/93

Derived usable data from preflight, post flight and synchronous control tests. The results of those analyses are summarized in Tables 1-31 on pages T1-T12 in Appendix 2. Graphical summary of these data are presented throughout the text that follows.

Presentations, abstracts and publications

1. Correia, M.J.; Perachio A.A.; Dickman, J.D. and Kozlovskaya, I.B. Sensitivity changes in semicircular canals following microgravity. *World Space Congress*, F1.2-M.1.02, p. 541, 1992.

2. Correia, M.J.; Perachio, A.A.; Dickman, J.D. The effects of space flight on the inner ear of non human primates. *Eleventh Annual Houston Conference on Biomedical Engineering Research*, p. 131, 1993.

3. Correia, M. J., Dickman, J. D., Perachio, A. A., Kozlovskaya, I.B. and Sirota, M. G. Post-flight responses of horizontal semicircular canal afferents to pulse rotations, Cosmos 2229 symposium, Ames Research Center, 1993.

ABSTRACT

During the past year, pre-, in- and postflight studies were conducted in association with the Axon project for Bion 10 (Cosmos 2229). Recordings were made during pre- and postflight studies, from 118 horizontal semicircular canal afferents and 27 vestibular nucleus neurons in 7 rhesus monkeys; 137 pulse rotation protocols alone were executed (548 acceleration and deceleration responses were curve fit). Usable data was obtained from 127 horizontal afferents concerning their spontaneous discharge. Curve fits and analysis was made of sinusoidal and sum of

sinusoidal responses from 42 and 35 horizontal afferemts, respectively. Also recordings were made from neurons inflight from the two flight animals. The mean spontaneous rate varied from 128 spikes/sec. during preflight to 92 spikes/sec during postflight (day 5) - a change of 28%. In direct contrast to the results of Cosmos 2044, the best fitted neural adaptation operator (k) and the gain of the pulse response were decreased during post flight when compared to preflight. Surprisingly, the best fitted gain and k values for the sum of sines were slightly elevated during post flight tests. The gain and phase of single sine responses were compared for pre- and post flight tests and compared to a larger population of afferents (Miles and Braitman, 1980). In contrast to Cosmos 2044 results where on the first day of post flight testing the gains of the best fitted sine response were skewed toward the higher values of the Miles and Braitman distribution, the gain of the best fitted sine responses during the first day of post flight testing (day 2) during Cosmos 2229 were exactly on the mode of the Miles and Braitman distribution. Thus, at least for the periodic stimuli, (pulses and sine waves) we found no change in gain and neural adaptation during post flight testing following Cosmos 2229. This conclusion is different from the one derived following the Cosmos 2044 flight (Correia et. al., 1992). Cosmos flight 2229 differed from Cosmos flight 2044 in several significant ways: For example, during preflight; (1) The animals preflight training was different (less well trained on the gaze task) and (2) the animals were exposed to more experimental manipulations (surgical and rotational). Inflight, (1) the animals were required to make a pointing gesture (motor response) in association with eye movements to obtain reward, (2) the inflight diet was different (more balanced), (3) the feeder for one of the animals clogged following 9 days of flight resulting in evident dehydration and probably less head motion exposure in that monkey and (4) there was limited video taping of the monkeys in space. During postflight, (1) we were unable to test the flight animals until 26 hours postflight as compared to 14.5 hours during Cosmos 2044, (2) the animals received significantly more exposure to motion stimuli during postflight testing than during Cosmos 2044. These differences in the vestibular environment will require analysis of several parameters other than just neural and eye movement responses. For example, computer programs will have to be written and used to recover and quantitate the number of head movements made by each animal during flight. This activity is critical to the production of neural adaptation and increased gain.

METHODS AND RESULTS

Differences from Cosmos 2044 (Correia et al. 1992)

A summary of the neural recordings and stimulation protocols carried out on five control and two flight monkeys during preflight and postflight tests associated with Cosmos Flight 2229 are presented in Appendix 1. Because of time restrictions, two types of neurons were studied in association with this flight. These two types of neurons were horizontal (lateral) semicircular canal afferents and type I or type II vestibular nuclei neurons found in the medial vestibular nucleus. Rotation protocols used for study of the horizontal semicircular canal afferents where similar to those used during Cosmos Flight 2044 (Correia et al., 1992) except that the number of protocols were abbreviated to include: test of spontaneous discharge, pulse rotation test, sum of signs tests (bandwidth from 0.2 hertz to 1.0 hertz) and sinewave test (0.2 hertz). Rotation protocols for the vestibular nuclei neurons included: spontaneous sinusoidal discharge test, oscillations at 0.2 hertz, 0.5 hertz, 1.0 hertz; a pulse of constant velocity of 60 degrees per second and a sum of sines stimulus covering the band width from 0.02 hertz to 1.0 hertz.

Neurons in the vestibular nuclei and semicircular canal afferents were identified and functionally characterized by their responses to natural vestibular stimulation and to electrical stimulation of the vestibular nerve. The technique for the latter test required that a method be developed for chronic implantation of electrodes for stimulation across the bony labyrinth of

awake rhesus monkeys. In a single monkey, the implantation technique used by Broussard et al (1992) was attempted. This technique requires dissection through the mastoid bone to locate the superior semicircular canal. An opening is made in the canal wall near the ampullae for the placement of one of a pair of stimulating electrodes. The reference electrode is placed near the posterior wall of the ear canal. The technique also involves exposure of the dura overlying the lateral tip of the dorsal paraflocculus. The technique was judge to be too difficult for our application and carried the added risk that vertical canal function might be compromised during the course of the entire project. Dr. Lisberger informed us that cathodal stimulation, such as would be used in our studies, might lead to bone growth and to the eventual occlusion of the implanted canal.

The approach we finally used was derived from a method reported by Minor and Goldberg (1991) for galvanic stimulation of the squirrel monkey labyrinth. This involves a placement of a single electrode into a hole drilled into the promontory near the round window. The tip of the electrode seals an opening made into the perilymphatic space. The electrode consists of a platinum plated, teflon insulated silver wire (250 micron uncoated diameter) with a 1.0 mm exposed tip. The reference electrode is of similar material but with a longer tip exposure (3.0 mm). That electrode is placed into a hole drilled deep into the posterior attachment of the zygomatic arch.

Surgery was performed under general anesthesia and sterile conditions. In our facilities at UTMB, we successfully implanted three rhesus monkeys, two unilaterally and one bilaterally. The post auricular incision was made and the platyzma divided. The remaining underlying soft tissue of the ear canal was dissected to expose the external bony auditory meatus and the zygomatic arch. Two self-tapping, stainless steel screws were placed near the ear canal into the parietal bone, dorsal to the parietal-occipital ridge. The soft tissue was carefully dissected along the posterior wall of the meatus to level of the annulus. The tympanic membrane was incised inferiorly and posteriorly to gain entrance to the middle ear. In immature rhesus monkeys, the external meatus is so oriented as to allow direct visualization of the round window via this approach. In more mature animals, the canal is rotated forward relative to the basal skull, thus obscuring the promintory and the long process of the malleus, requiring further dissection.

Exposure of the round window in mature mesus monkeys is achieved by drilling away the deepest most posterior wall of the external auditory meatus. This is best achieved with a diamond coated drill so as to minimize danger to the underlying facial nerve and middle ear ossicles. In a series of eleven unilaterally implanted rhesus monkeys, facial nerve damage occurred in only one animal. Following further exposure, the long process of the malleus and the facial nerve are visualized. The site of implantation of the stimulating electrode is posterior to the malleus. The facial nerve is displaced rostrally to protect it during implantation. The ossicles are not this disarticulated. The surface of the promontory is scraped to remove the periosteum and thinned with a diamond tipped round bur. A hole is then drilled in the center of the resulting concavity and the electrode tip is inserted, seated firmly at the shoulder formed by the teflon insulation. The wire is pushed against the posterior wall of the meatus and formed against the drilled surface. The external portion of the wire is wound around one of the skull screws and cemented to it with dental acrylic. The reference electrode is placed into the hole in the zygomatic arch, wound around the second screw and cemented in place. The two leads are then passed under the temporalis muscle and exteriorized at the head restraint implant with a curve needle. The wound is closed in layers with absorbable suture and the skin closed with silk suture material. Antibiotics are routinely administered perioperatively.

The animals implanted in Moscow generally recovered from surgery with no sequelae. One monkey, that was diagnosed as having meningitis at the time of surgery, was found to have a positional nystagmus postoperatively. Since this animal was tested only during the postoperative period, it was not possible to definitively assess the relationship of those symptoms to the implant. Another monkey was reported to have an ipsilateral head tilt and was acutely ataxic. Those symptoms resolved quickly. No vestibulo-ocular abnormalities were reported by other investigators in that animal. Afferent activity and vestibular nuclear responses were comparable to those of the remaining animals. In Figure 1, an example of an entrained response of a horizontal semicircular canal afferent is illustrated. The latency of the action potential is less than 0.5 msec. This response was obtained during ground based testing and strongly argues that we recorded from primary afferents. No histological verification has been possible. Response thresholds ranged from the 30 to 100 microamps for single monophasic cathodal pulses. Diphasic responses were recorded in neurons located contralaterally at the stereotaxic location of the abducens nuclei. Cells in those areas discharge tonic/phasically with ipsilateral horizontal eye position/movement.

Figure 1. Entrained action potentials from a horizontal semicircular canal afferent. The orthodromic stimulation produced entrained action potentials with latencies less than 0.5 msec. Also observed at the right of the figure is a spontaneously occurring action potential.

Recordings were made from 86 neurons in control animals and 59 neurons in the flight animals. Thus 145 neurons were studied in total during pre- and postflight ground base Neurons studied during flight have not yet been analyzed. The procedures for tests. analysis of the data resulting from the rotation protocols that stimulated the horizontal semicircular canals have been published elsewhere (Correia et al., 1981, Correia et al., Briefly, this analysis can be stated as follows: pulse response analysis-using nonlinear curve fitting techniques, one model was (the adaptation model - Correia et al., 1992) was fit to each of the four pulse responses that occur during a given rotation pulse protocol. In some cases the responses were so noisy that the data was rejected. These responses are denoted by *** in the Tables in Appendix 2. If the protocols were repeated, the protocol that yielded the histogram with the least noise was chosen. Data from repeated protocols was not included. That is, only one set of parameters from the four pulses is included for each neuron. For each sinusoidal rotation, curve fit techniques were used to estimate the gain and phase of each of the sinusoidal responses to head velocity. For the sum of sinusoidal stimuli, the total neural response was exposed to cross Fourier techniques to determine the gain and phase of the cycle histogram re head velocity. Mathematical functions based on the adaptation model (Thorson and Biederman-Thorson, 1974, Correia et al., 1981, Correia et al., 1992) was used to curve fit the pulse response and the frequency response data. The parameters derived from analysis of the time and frequency domain responses of the semicircular canal afferents was clustered into groups along the preflight and postflight time continuum and compared. As yet we have not been able to statistically compare the parameters. This will be the next step. However, descriptive first order statistics have been completed and they are presented in Appendix 2 and in the graphs that

It should be noted that in *all* the figures that follow and in the tables in Appendix 2 that during Cosmos 2229 during Post-flight days 6 and 7 only control animals were tested...

Figure 2 presents mean gain values derived from best fitted responses to pulse stimulation. The numbers in the bars represent the number of afferents that comprise the mean. It can be seen that in contrast to Cosmos 2044 the postflight mean gains are depressed relative to preflight, synchronous and postflight controls (Post-Flight day 6).

Figure 2. Mean Gain values for pulse responses of horizontal afferents during Cosmos 2044 and 2229.

As with the mean gain values, the parameter that represents the degree of neural adaptation (k), plotted in Figure 3 is depressed on postflight days 2, 3, and 5 when compared to preflight and postflight controls and when compared to comparable test days following Cosmos flight 2044.

Figure 3. Mean neural adaptation (k) values for pulse responses of horizontal afferents during Cosmos 2044 and 2229.

Again in contrast to the results derived from the postflight data following Cosmos 2044, the mean long time constant of the semicircular canal deduced from best fitted functions of the

pulse histogram response and shown plotted in Figure. 4. lengthened in the flight animals when compared to preflight, synchronous controls and postflight controls (post-flight day 6).

Figure 4. Mean Tau (deduced long time constant of the semicircular canal) values for pulse responses of horizontal afferents during Cosmos 2044 and 2229.

Like the data following Cosmos 2044, the mean baseline of the frequency of firing between pulses (DC level), plotted in Figure 5, was not much different during post-flight testing when compared to control responses. The mean responses differed from 125 spikes/sec to 95 spikes/sec. These values fall around the mean firing rate determined by other investigators (e.g. ~100 spikes/sec. Mlles and Braitman,1981).

Figure 5. Mean spontaneous values (DC level) obtained as an asymptotic response following pulse rotations during Cosmos 2044 and 2229.

The mean spontaneous firing rate, plotted in Figure 6 was obtained from interspike interval histograms of spontaneous discharge prior to the first pulse rotation. The mean values

showed depression during the post-flight testing but like the mean DC level values, the firing rate was near 100 spikes/sec.

In the control animals the coefficient of variation (CV) for all afferents (see Table 8 in appendix 2) ranged from 0.34 to 0.03. But the mean values for each day, (plotted in Figure 7) ranged from 0.09 to 0.15. That is, the mean CV of the afferents across days would be classified as regularly firing after the distribution of Louie and Kimm (1976). In this statistic our results during flight 2229 were almost identical to the results of flight 2044.

Figure 7. Mean coefficient of variation of spontaneously discharging horizontal afferents during Cosmos 2044 and 2229.

The best fitted parameters plotted in Figures 1-5 were derived from the equation:

$$r(t) = (G/t^{k})[\gamma^{*}(-k,-t/\tau_{L})e^{-t/\tau_{L}}] + DC; \text{ where } \gamma^{*}(a,t) = ((t^{-a}/\Gamma(a))\int_{0}^{t} x^{a-1}e^{-x} dx \quad (1)$$

and $\gamma^{\star}(a,t)$ is the incomplete gamma function (which is single-valued and finite in terms of a and t), G = gain, k = across frequency adaptation, τ_{L} (TAU) = cupula long time constant and DC = non stimulated (spontaneous) firing rate (Correia et al., 1981).

The Laplace transform of Eq. 1 with a term ($\tau_V s$ +1), representing the response to cupula velocity at higher frequencies (Fernandez and Goldberg, 1971), is a transfer function of the form

(2)

$$H(s) = Gs^{k+1}(\tau_v+1)(\tau_1+1)^{-1}$$

where G= the frequency independent gain ; k = the across frequency adaptation operator; s=1+j ω ; $\omega = 2\pi f$; τ_V = velocity time constant and τ_L = the long time constant of the semicircular canals. In the next 3 figures the parameters k, τ_V and τ_L are presented. These parameters represent best fitted values of Eq. 2 to a sum of sines frequency response.

Figure 8. Mean best fitted values of G (frequency independent gain term) of cycle histogram response to sum of sines by horizontal afferents during Cosmos 2044 and 2229.

It is interesting that the frequency domain equivalent of the pulse response produces an increase in gain during post flight days 2, 3, and 5 relative to the pre- and post flight controls. The sum of sines differs from the pulse in that most of the frequency content is below 0.4 Hz and the sum of sines is an unpredictable stimulus.

In Figure 9 (below) it can be noted that while the mean value of k increases on the second post flight day, the increase is not nearly as dramatic as noted during Cosmos 2044 (black bars)

There does not appear to be a systematic change in the mean best fitted parameter τ_V shown plotted in Figure 10 below.

Figure 10. Mean best fitted values of τ_v (across frequency neural adaptation operator) of cycle histogram response to sum of sines by horizontal afferents during Cosmos 2044 and 2229.

During the first day of post-flight testing during Cosmos 2044, the long time constant of the semicircular canal decreased as indicated by the black bars. During the first post-flight day of Cosmos 2229, the parameter τ_L increased.

Figure 11. Mean best fitted values of τ_L (semicircular canal long time constant operator) of cycle histogram response to sum of sines by horizontal afferents during Cosmos 2044 and 2229.

The next 2 three dimensional bar histograms display gain values calculated from the best fitted sine function to the cycle histogram of the afferent response to a sinusoidal yaw rotation of 30°/sec. amplitude and 0.2 Hz frequency. As a reference, the histogram of gains from Miles and Braitman (1980) sinusoidal response to 0.2 Hz are presented. Presented in Figure 12 are the gains for the control monkeys during both Cosmos 2044 and 2229. It can be seen, for example that the distribution of gains from post -flight controls in Cosmos 2229 are similar to those published by Miles and Braitman (1980).

Figure 12. A three dimensional histogram of sinusoidal gains from control monkeys during testing associated with Cosmos 2044 and Cosmos 2229. The data of Miles and Braitman (1980) are presented for comparison.

Figure 13 presents the same type plot but post-flight data from different days during Cosmos 2044 and 2229 are presented. The striking difference between the gains during Cosmos 2044 and 2229 can be observed by comparing post-flight day 1 - Cosmos 2044 and

post-flight day 2 - Cosmos 2229. During Cosmos 2044, the gain values are skewed toward the higher end of the Miles and Braitman distribution; during the first post - flight test day (day 2) during Cosmos 2229, the values are directly in line with the central tendency values of Miles and Braitman (1980).

Figure 13. A three dimensional histogram of sinusoidal gains from flight monkeys during post-flight testing associated with Cosmos 2044 and Cosmos 2229. The data of Miles and Braitman (1980) are presented for comparison.

DISCUSSION

In contrast to Cosmos 2044 results (Correia et al., 1992) where on the first day of post flight testing the gains of the best fitted pulse, sine and sum of sine response were skewed toward the higher values of the Miles and Braitman (1980) distribution, the gain of the best fitted sine and pulse responses during the first day of post flight testing (post-flight day 2) during Cosmos 2229 were exactly on the mode of the Miles and Braitman (1980) distribution. Thus, at least for the periodic stimuli, (pulses and sine waves) we found no change in gain during post flight testing following Cosmos 2229. Moreover, during post-flight day 1 during Cosmos 2044 we found an increased level of neural adaptation as reflected by an increased mean k value. After issuing the caveat that we only sampled a small number of afferents, we (Correia et al., 1992) suggested the increased gain could result from some non-vestibular factor secondary to spaceflight such as stress or changes in body calcium levels or some vestibular factor such as a strategy to obtain reward without having to make large head movements by increasing the semicircular canal gain. This latter speculation is predicated on the assumption that the monkeys during spaceflight make numerous head movements. Increase in neural adaptation would also logically follow from numerous head movements. Also, increased gain, increased k and irregular firing are correlated in semicircular canal afferents. Thus, we could have simply sampled a population of neurons with high G and k. But, most of the units we sampled were regularly firing. Analysis of the mean sinusoidal gain data from Cosmos 2229 (summarized in Figure 13), indicated that relative to post-flight controls, the gain and k values were depressed, but relative to the data of Miles and Braitman (1980), the values were on the mean of their distribution. Future statistical comparisons will be necessary to determine if the mean gain and k values from flight 2229 and those of flight 2044 and those of Miles and Braitman (1980) are from the some population. The gain and particularly the neural adaptation observed during Cosmos 2044 was dramatic and showed a reversible trend with time following recovery. Why could these data be different from those of flight 2044? Cosmos flight 2229 differed from Cosmos flight 2044

in several significant ways: First, different monkeys were flight monkeys. Although during both flights the microgravity exposure was similar, several differences existed. For example, during *preflight*; (1) The animals' preflight training was different (the animals were less well trained on the gaze task) and (2) the animals were exposed to more experimental manipulations (surgical and rotational) and in flight 2229 the animals carried an indwelling electrode in one labyrinth. *Inflight*, (1) the animals were required to make a pointing gesture (motor response) in association with eye movements to obtain reward, (2) the inflight diet was different (more balanced), (3) the feeder for one of the animals clogged following 9 days of flight resulting in evident dehydration and probably less head motion exposure in that monkey and (4) there was limited video taping of the monkeys in space. During *postflight*, (1) we were unable to test the flight animals until 26 hours postflight as compared to 14.5 hours during Cosmos 2044, (2) in the intervening interval between recovery and testing, and on subsequent post-flight days, the animals received significantly more exposure to linear and angular motion stimuli than during Cosmos 2044.

Since gravity acts primarily on the otolith organs, It was a surprise that the gain and neural adaptation of the semicircular canals was increased following microgravity during Cosmos 2044. It may ultimately turn out that with a large sample of afferent data that gain and adaptation may not change. However, to fairly compare the results, we must prove that the angular head motion environment in flight was the same for Cosmos 2044 and 2229. To accurately compare the angular head motion environment will require analysis of several parameters other than just neural and eye movement responses. For example, it must be determined that during Cosmos flight 2229 that both monkeys made as many head movements during the gaze test as their counterparts during Cosmos flight 2044. The number of head movements made by each animal during both flight must be quantitated.

One inescapable conclusion that can be drawn from the results presented in Appendix 3 is that the afferent response of the semicircular canals was statistically significantly different following microgravity. In one case (Cosmos 2044), the gain was increased and in the other case (Cosmos 2229) it was decreased. However, in both cases the gain was statistically significantly DIFFERENT from the preflight/synchronous controls.

ACKNOWLEDGMENTS

The P.I. (M. J. Correia) and Co. Is (A. A. Perachio, J. D. Dickman, I. B. Kozlovskaya, and M. B. Sirota) of this work gratefully acknowledge the hard work and dedication of our colleagues at the Institute of Biomedical Problems in Moscow and particularly our American colleagues-James Connolly, Denise Helwig, Samantha Edmonds, Elizabeth Clark, Bill Little, Andy Couch, Carrie Sanchez and Stacie McMahan.

REFERENCES

1. Broussard, DM; Bronte-Stewart, HM and Lisberger, SG. Expression of motor learning and the response of the primate vestibulo-ocular reflex pathway to electrical stimulation. *J. Neurophysiol.*, 67:1493-1508, 1992.

2. Correia, M. J., A.A Perachio, J.D. Dickman, I.B. Kozlovskaya, M.G. Sirota, S.B. Yakushin and I.N. Beloozerova Changes in monkey horizontal semicircular canal afferent responses after spaceflight. *J. Appl. Physiol.*, 73(2):112S-120S.

3. Correia, M. J., J. P. Landolt, M.-D. Ni, A. R. Eden, and J. L. Rae. A species comparison of the linear and nonlinear transfer characteristics of primary afferents innervating the semicircular

canals. In The Vestibular System: Function and Morphology. T. Gualtierotti, ed. (Springer-Verlag, New York, 1981), pp. 280-316.

4. Fernandez, C. and J. M. Goldberg. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. *J. Neurophysiol.* 34: 661-675, 1971.

5. Miles, F. A. and Braitman, D. J. Long-term adaptive changes in primate vestibuloocular reflex. II. Electrophysiological observations on semicircular canal primary afferents. *J. Neurophysiol.* 43:1426-1436,1980.

6. Minor, L and Goldberg, J. M. Vestibular nerve input to the vestibulo-ocular reflex: A functional ablation study in the squirrel monkey. *J. Neurosci.*, 11:1636-1648, 1991.

7. Louie, A. W. and Kimm, J. The response of 8th nerve fibers to horizontal sinusoidal oscillation in the alert monkey. *Exp. Brain Res.* 24: 447-457,1976.

8. Thorson, J. and M. Biederman-Thorson. Distributed relaxation processes in sensory adaptation. *Science*. 183: 161-172, 1974.

APPENDIX 1

A summary of the pre- and post flight testing. The Table on pages T1-T7 chronicles the pre and post-flight testing of all monkeys. The column type denotes whether the neuron was a lat. (horizontal) afferent, a type I or type II vestibular nuclear neuron and whether the neuron could be further classified as a pvp type neuron. The location column denotes the anterior - posterior and the lateral stereotaxic coordinates of the electrode tract. For example, ap0110 means anterior-posterior 0 and lateral 10 mm from the midline of the skull. The protocol describes the test. The terms step and pulse are used interchangeably throughout this report.

Time	celi	time	date	type	side	location	monkey	protocol	tape	footage
preflight	1	pre control	11/14/92	lat. aff.	left	ap0l12	803	spon	1	2200
preflight		pre control	11/14/92	lat. aff.	left	ap0112	803	step	1	2250
preflight		pre control	11/14/92	lat. aff.	left	ap0l12	803	SS	1	2300
preflight		pre control	11/14/92	lat. aff.	left	ap0l12	803	sine0.2	1	2460
preflight	$\left \begin{array}{c} \cdot \\ 2 \end{array} \right $	pre control	11/14/92	lat. aff.	left	ap0l12	803	spon	1	2536
preflight	2	pre control	11/14/92	lat, aff.	left	ap0112	803	step	1	2600
preflight	$\frac{1}{2}$	pre control	11/14/92	lat. aff.	left	ap0i12	803	step-rpt	1	2662
preflight	$\frac{1}{2}$	pre control	11/14/92	lat. aff.	left	ap0112	803	sine0.2	1	2727
preflicht	2	pre control	11/14/92	lat, aff.	left	ap0112	803	85	1	2770
preflight	2	pre control	11/14/92	lat. aff.	left	ap0112	803	sine1.0	1	2855
preflight	3	pre control	11/14/92	lat. aff.	left	ap0112	803	spon	1	2887
preflight	4	pre control	11/14/92	lat. aff.	left	ap0l12	803	spon	1	2946
preflight	4	pre control	11/14/92	lat. aff.	left	ap0112	803	step	1	2946
preflight	5	pre control	11/14/92	lat. aff.	left	ap0l12	803	spon	1	2982
preflight	5	pre control	11/14/92	lat. aff.	left	ap0l12	803	step	1	3001
preflight	a	pre control	11/14/92	lat. aff.	left	ap0l12	803	spon	1	3025
preflight	a l	pre control	11/14/92	lat. aff	left	ap0 12	803	step	1	3040
prenight	8	pre control	11/14/92	lat, aff.	left	ap0112	803	sine0.2	1	3040
prenign	7	pre control	11/14/92	lat. aff	left	ap0l12	803	Spon	1	3170
preflight		pre control	11/14/92	lat. aff.	left	ap0112	803	step	1	3140
preflight	7	pre control	11/14/92	lat, aff.	left	ap0i12	803	sine0.2	1	3190
prenign	7	pre control	11/14/92	lat. aff.	left	ap0112	803	\$8	1	3230
preflight	7	pre control	11/14/92	lat, aff	left	ap0/12	803	ss-rpt	1	3305
preflight	7	pre control	11/14/92	lat aff	left	ap0112	803	sine1.0	1	3370
preflight			11/14/92	lat aff	left	ap012	803	spon	1	3397
prenign	0	pre control	11/15/02	lat aff	left	ap0110	775	SDON	1	3399
preisight	10	pre control	11/15/02	lat aff	left	ap0/10	775	spon	1	3466
preflight	10	pre control	11/15/92	lat aff	left	ap0110	775	spon	1	3470
preflight	12	pre control	11/15/92	lat aff	left	apOI10	775	spon	1	3489
prenignt	12	pre control	11/15/92	lat aff	left	ap0110	775	step	1	3566
preflight	12	pre control	11/15/02	lat aff	left	ap0110	775	step-rot	1	3631
preflight	12	pre control	11/15/02	lat aff	left	ap0110	775	sine	1	3631
preflight	12	pre control	11/15/02	lat aff	left	apolito	775	SDON	1	3697
preflight	13	pre control	11/15/92	lat aff	left	apolito	775	spon	1	3791
premignt	14	pre control	11/15/92	lat aff	right	ap0110	151	spon	1	3780
	10	pre control	11/15/02	lat aff	right	apOI10	151	step	1	3810
pretlight	10	pre control	11/16/02	lat off	left	ap0110	907	spon	1	3880
prenigni	10	pre control	11/16/02	lat aff	laft	ap0/10	907	step	1	3900
premignt	10		11/16/02	lat aff	left	ap0i10	907	sine0.2	1	3950
prenignt	10	pre control	11/16/02	lat aff	left	apOI10	907	88	1	3999
prenignt	17		11/16/02	lat aff	joft	ap0110	907	spon	1	4058
prenignt	17	pre control	11/16/02	lat aff	left	apOl10	907	step	1	4089
	17	pre control	11/16/02	lat off	loft	ap0110	907	stp-rpt	1	4173
prenignt	47	pre control	11/16/02	lat aff	left	ap0110	907	sine0.2	1	4229
	11/	pre control	11/16/02	lat aff		anOI10	907	spon-rot	1	4290
	1/	pre control	11/16/02	lat off	hon laft	ap0110	907	spon	1	4295
premignt	10	pre control	11/16/02	lat off	fail f	anOl10	907	step	1	4313
prenight	10	pre control	11/16/02	lat aff		ap0110	907	step-rpt	1	4360
prenignt	10		11/16/02	lat aff	fial	ap0110	907	spon	1	4392
prenight	19	pre control	11/10/92	lat off	loft	anOi10	907	spon	1	4430
pretlight	20	pre control	11/16/02	lat off		ap0110	907	step	1	4486
pretlight	21	pre control	11/16/02	lat aff	loft	anOl10	907	step	1	4540
prenight	22	pre control	11/10/92	lat aff	laft	ap0110	907	sten		4623
prenight	23	pre control	11/10/92	lat off	loft	an0110	907	sten	1	4643
preflight	24	pre control	11/10/92	lat off		ap0110	007	sten	1	4687
preflight	25	pre control	11/16/92	iat, an.	leit	apono	301	Juch	1	1

a an Olash A	05	and control	11/16/02	lot off	lo#	200110	007	eton mt	1	4730
preflight	25	pre control	11/10/92	lat aff		apoirto	907	siep-ipi	1	4739
pretlight	25	pre control	11/10/92			aporto	907	SHIEU.2		4700
preflight	25	pre control	11/16/92	lat. arr.	ien	apulto	907	55		4010
preflight	26	pre control	11/16/92	lat. aff.	ieπ	apullu	907	step		4000
preflight	26	pre control	11/16/92	lat. aff.	left	ap0i10	907	step-rpt	1	4908
preflight	26	pre control	11/16/92	lat. aff.	left	ap0i10	907	sine0.2	1	4950
preflight	26	pre control	11/16/92	lat. aff.	left	ap0110	907	SS	1	4980
preflight	26	pre control	11/16/92	lat. aff.	left	ap0I10	907	sine1.0	1	5046
preflight	27	pre control	11/16/92	lat. aff.	left	ap0l10	907	step	1	5063
preflight	27	pre control	11/16/92	lat. aff.	left	ap0I10	907	SS	1	5105
preflight	27	pre control	11/16/92	lat. aff.	left	ap0I10	907	spon	1	5150
preflight	27	pre control	11/16/92	lat. aff.	left	ap0110	907	sine0.2	1	5170
preflight	27	pre control	11/16/92	lat. aff.	left	ap0 10	907	sine1.0	1	5200
preflight	27	pre control	11/16/92	lat. aff.	left	ap0l10	907	sine0.5	1	5246
preflight	28	pre control	11/16/92	lat. aff.	left	ap0l10	907	step	1	5262
preflight	29	pre control	11/16/92	lat. aff.	left	p1I10	1401	step	1	5290
preflight	29	pre control	11/16/92	lat. aff.	left	p1110	1401	sine0.2	1	5317
preflight	29	pre control	11/16/92	lat. aff.	left	p1110	1401	55	1	5348
preflight	29	pre control	11/16/92	lat. aff.	left	p1110	1401	spon	1	6394
preflight	29	pre control	11/16/92	lat. aff.	left	p1110	1401	sine1.030	1	5410
preflight	29	pre control	11/16/92	lat. aff.	left	p1110	1401	sine0.5	1	5435
preflight	29	pre control	11/16/92	lat aff.	left	p1 10	1401	step-rot	1	5457
preflight	20	pre control	11/16/92	lat aff	left	p1110	1401	step-rot	1	5500
preflight	23	pre control	11/16/92	lat aff	left	p1110	1401	step	1	5553
preflight	30	pre control	11/16/92	lat aff	ft	p1110	1401	step-rpt	1	5570
preflight	30	pre control	11/16/92	lat aff	left	n1/10	1401	sine0.2	1	5620
preflight	30	pre control	11/16/02	lat aff	loft	p1110	1401	step-rot	1	5658
prenign	30	pre control	11/10/92	lat aff		p1110	1401	ee ee	1	5696
pretlight	30	pre control	11/10/52	lat off		p110	1401	sine1 0	1	5743
pretlight	30	pre control	11/10/92	Idi. dil.	left	p110	1401	sine1.0	4	5761
preflight	30	pre control	11/16/92	sat. all.		p1110	1401	sineo.o	4	5775
preflight	31	pre control	11/10/92	idi. dil.		p110	1401	alep	4	5823
preflight	31	pre control	11/16/92			p110	1401	33		5967
preflight	31	pre control	11/16/92	Hat. att.	неπ	p1110	1401	sine0.2		5007
preflight	31	pre control	11/16/92	lat. aff.	left	p1110	1401	sine0.5		5090
preflight	32	pre control	11/17/92	mvnii	left	p4l2	151	sineu.2	1	2962
preflight	33	pre control	11/17/92	mvnii	left	p4l2	151	sine0.2	1	6000
preflight	34	pre control	11/18/92	mvni	left	p4l3	856	field pot.	1	6050
preflight	34	pre control	11/18/92	mvni	left	p4l3	856	sine0.2	1	6190
preflight	34	pre control	11/18/92	mvni	left	p4l3	856	sine0.5	1	6220
preflight	34	pre control	11/18/92	mvni	left	p4l3	856	sine1.0	1	6236
preflight	34	pre control	11/18/92	mvni	left	p4l3	856	elec. stim.	1	6249
preflight	35	pre control	11/18/92	mvnvert	left	p4l3	856	elec. stim.	1	6340
preflight	36	pre control	11/18/92	mvni	left	p4l3	856	elec. stim.	1	6360
preflight	36	pre control	11/18/92	mvni	left	p4l3	856	sine0.2	1	6370
preflight	37	pre control	11/18/92	mvni	left	p4l3	856	elec.stim.	1	6400
preflight	37	pre control	11/18/92	mvni	left	p4l3	856	sine0.2	1	6420
preflight	37	pre control	11/18/92	mvni	left	p4i3	856	sine0.2	1	6457
preflight	37	pre control	11/18/92	mvni	left	p4l3	856	sine0.5	1	6490
preflight	37	pre control	11/18/92	mvni	left	p4l3	856	sine1.0	1	6502
preflight	37	pre control	11/18/92	mvni	left	p4l3	856	sine1.0	1	6512
preflight	38	pre control	11/18/92	mvnii	left	p5l3	856	spon	1	6563
preflight	39	pre control	11/18/92	mvnii	left	p5l3	856	spon	1	6570
preflight	39	pre control	11/18/92	mvnii	left	p5l3	856	sine0.2	1	6592
preflight	39	pre control	11/18/92	mvnii	left	p5l3	856	sine0.2	1	6613
preflight	39	pre control	11/18/92	mvnii	left	p5l3	856	sine0.5	1	6633
preflight	39	pre control	11/18/92	mvnii	left	p5l3	856	sine1.0	1	6651
L Premyric	00	procontrol					·		l	

preflight	39	pre control	11/18/92	mvnii	left	p5 3	856	sine 1.0	1	6661
preflight	39	pre control	11/18/92	mvnii	left	p5l3	856	sine0.5	1	6674
preflight	40	pre control	11/19/92	mvnii	left	p3l3	803	elec.stim	2	0
preflight	40	pre control	11/19/92	mvnii	left	p3l3	803	sine0.2	2	0
preflight	41	pre control	11/19/92	mvn	ieft	p3l3	803	elec.stim	2	148
preflight	42	pre control	11/19/92	myn	left	p4l3	803	elec.stim	2	300
preflight	42	pre control	11/19/92	myn	left	p4l3	803	sine0.2	2	300
preflight	43	pre control	11/19/92	mvni	left	p4l3	803	elec.stim	2	405
preflight	43	pre control	11/19/92	myni	left	p4l3	803	sine0.2	2	474
preflight	44	pre control	11/10/02	mvni	left	p4l3	907	sine0.2	2	528
prenight	44	pre control	11/15/52	munii	loft	p413	907	spon	2	643
prenigra	40	pre control	11/19/92	muni	loft	p413	007	spon	2	654
prenight	40	pre control	11/19/92		loft	p-113	007	8000	2	711
prenignt	4/	pre control	11/19/92			-313	907	spon anon ^g aloo	2	800
preflight	48	pre control	11/19/92			200 2010	907	spondelec	2	827
preflight	49	pre control	11/19/92	mnvipvp		p313	907	spondelec	4	027
preflight	49	pre control	11/19/92	mnvipvp	μεπ	p3i3	907	sine0.2	2	02/
preflight	49	pre control	11/19/92	mnvipvp	ιεπ	p3 13	907	sine0.5	2	027
preflight	49	pre control	11/19/92	mnvipvp	left	p3 3	907	sine1.0	2	827
preflight	50	pre control	11/19/92	mvn	left	p3 3	907	spon	2	1140
preflight	50	pre control	11/19/92	mvn	left	p3l3	907	elec.stim	2	1140
preflight	50	pre control	11/19/92	mvn	left	p3l3	907	sine0.2	2	1140
preflight	51	pre control	11/19/92	mvnii	left	p3 3	907	sine0.2	2	1304
preflight	52	pre control	11/20/92	lat.aff.	left	ap0i10	1401	step	2	1537
preflight	52	pre control	11/20/92	lat.aff.	left	ap0I10	1401	step	2	1625
preflight	52	pre control	11/20/92	lat.aff.	left	ap0110	1401	sine0.2	2	1707
preflight	52	pre control	11/20/92	lat.aff.	left	ap0110	1401	88	2	1749
preflight	52	pre control	11/20/92	lat.aff.	left	ap0110	1401	sine1.0	2	1823
preflight	52	pre control	11/20/92	lat.aff.	left	ap0110	1401	spon	2	1844
preflight	53	pre control	11/20/92	lat.aff.	left	ap0l10	1401	step	2	1866
preflight	53	pre control	11/20/92	lat.aff.	left	ap0110	1401	sine0.2	2	1925
preflight	53	pre control	11/20/92	lat.aff.	left	ap0110	1401	\$ \$	2	1966
preflight	53	pre control	11/20/92	lat.aff.	left	ap0110	1401	sine1.0	2	2034
preflight	53	pre control	11/20/92	lat.aff.	left	ap0i10	1401	spon	2	2054
preflight	53	pre control	11/20/92	lat.aff.	left	ap0i10	1401	sine0.5	2	2078
preflight	53	pre control	11/20/92	lat aff	left	ap0/10	1401	step rot	2	2103
preflight	54	pre control	11/20/92	lat aff	left	ap0i10	1401	step rot	2	2240
preflight	54	pre control	11/20/02	lat aff	left	ap0110	1401	sine0 2	2	2298
prenign	54	pre control	11/20/02	lat aff	left	ap0110	1401	88	2	2336
prenignt	54	pre control	11/20/92	lat off		ap0110	1401	sine1 0	2	2401
prenign	54	pre control	11/20/92	let off		ap0/10	1401	sine0.5	2	2418
prenight	54	pre control	11/20/92	lat aff		apointo	1401	8000	2	2442
prenignt	54	pre control	11/20/92	lat off	left	ap0110	1401	eten	2	2461
prenignt	50	pre control	11/20/92	lat off		ap0110	1401	eine0 2	2	2518
pretlight	55	pre control	11/20/92	al.all.		apoirto	1401	54160.2	2	2558
preflight	55	pre control	11/20/92	lat.an.	ien		1401	38	2	2000
preflight	55	pre control	11/20/92		ιεπ		1401	sine1.0	4	2019
sync. cont.	56	sync control	1/9/93	lat.aff.	ιεπ	apun2	803	step		100
sync. cont.	56	sync control	1/9/93	lat.aff.	Heft -	apul12	803	step rpt		130
sync. cont.	56	sync control	1/9/93	lat.aff.	left	ap0112	803	step rpt		404
sync. cont.	57	sync control	1/9/93	lat.aff.	left	ap0112	803	step		500
sync. cont.	58	sync control	1/9/93	lat.aff.	left	ap0l12	803	step	1	629
sync. cont.	59	sync control	1/9/93	lat.aff.	left	ap0112	803	step	1	720
sync. cont.	59	sync control	1/9/93	lat.aff.	left	ap0l12	803	step rpt	1	797
sync. cont.	60	sync control	1/9/93	lat.aff.	left	ap0112	803	step	1	876
sync. cont.	61	sync control	1/9/93	lat.aff.	left	ap0112	803	step	1	1209
sync. cont.	62	sync control	1/9/93	lat.aff.	left	ap0I12	803	step	1	1307
sync. cont	63	sync control	1/9/93	lat.aff.	left	ap0112	803	step	1	1440

sync. cont.	64	sync control	1/10/93	lat.aff.	left	ap0l10	907	step	1	1500
sync. cont.	64	sync control	1/10/93	lat.aff.	left	ap0I10	907	step rpt	1	1600
sync. cont.	65	svnc control	1/10/93	lat.aff.	left	ap0l9	907	step	1	1668
sync. cont.	65	sync control	1/10/93	lat.aff.	left	apolg	907	step rpt	1	1734
sync. cont	65	sync control	1/10/93	lat.aff.	left	ap019	907	SS	1	1792
sync cont	65	sync control	1/10/93	lat.aff.	left	ap0l9	907	sine0.2	1	1871
sync.cont	65	sync control	1/10/93	lat aff	left	ap0i9	907	Spon	1	1940
sync. cont	66	sync control	1/10/93	lat aff	left	ap0i9	907	58	1	1960
sync. cont.	66	sync control	1/10/03	lat aff	laft	anOlQ	907	sten	1	2046
Sync. cont.	66	sync control	1/10/03	lat aff	left	apolo	907	snop	1	2106
Syric. Corit.	00	Sync Control	1/10/95	lat off	loft	ap010	007	spon sine0 2	1	2100
sync. cont.	00	sync control	1/10/93	let off	108	ap019	902	sineu.z	no1	5540
postcont	67	post control	1/15/95		left		003	step	p01	5579
postcont	68	post control	1/15/93	lat.arr.	ien		003	step	por	5576
postcont	68	post control	1/15/93	lat.arr.	ιεπ		803	55	ροι	5020
postcont	68	post control	1/15/93	lat.aff.	left	ap0112	803	sine0.2	p01	5663
postcont	69	post control	1/15/93	lat.aff.	left	ap0112	803	step	p01	5689
postcont	70	post control	1/15/93	lat.aff.	left	ap0l12	803	step	p01	5713
postcont	71	post control	1/15/93	lat.aff.	left	ap0l12	803	step	p01	5756
postcont	71	post control	1/15/93	lat.aff.	left	ap0112	803	step rpt	po1	5781
postcont	72	post control	1/15/92	lat.aff .	left	ap0I11	907	step	po1	5819
postcont	72	post control	1/15/92	lat.aff.	left	ap0i11	907	8 8	po1	5870
postcont	72	post control	1/15/92	lat.aff.	left	ap0l11	907	sine0.2	po1	5913
postcont	72	post control	1/15/92	lat.aff.	left	ap0I11	907	spon	po1	5937
postcont	72	post control	1/15/92	lat.aff.	left	ap0l11	907	step	po1	5948
postcont	73	post control	1/15/92	lat.aff.	left	p1I10	907	step	po1	6005
postcont	73	post control	1/15/92	lat.aff.	left	p1110	907	step	po1	6015
postcont	73	post control	1/15/92	lat.aff.	left	p1/10	907	55	po1	6046
postcont	73	post control	1/15/92	lat.aff.	left	p1110	907	sine0.2	po1	6058
postcont	74	post control	1/15/92	lat.aff.	left	p1i10	907	step	po1	6113
postcont	75	post control	1/15/92	lat.aff.	left	D1110	907	step	po1	6144
postcont	76	post control	1/15/92	lat.aff.	left	p1 10	907	step	po1	6153
postcont	76	post control	1/15/92	lat aff	left	p1110	907	85	DO1	6194
postcont	77	post control	1/15/92	lat aff	left	p1110	907	step	po1	6268
postcont	77	post control	1/15/02	lat aff	left	n1110	907	55	po1	6304
posiconi	70	post control	1/15/02	lat aff	left	p1110	907	66	p01	6350
posiconi	70	post control	1/16/03	Mat.ani.	laft	n512	807	elec stim	po1	6500
posiconi	79	post control	4/46/02	muni		p512	902	eine0 2	p01	6549
posicont	79	post control	1/10/93			p512	802	sine0.2	p01	6579
postcont	79	post control	1/10/93	TEVIN		-512	902	sine0.5	p01	6501
posicont	/9	post control	1/10/93			- poiz	900		p01	6600
postcont	/9	post control	1/10/93	mvni		P012	09Z	ыер		6640
postcont	79	post control	1/16/93	mvni		poi2	092	55	pol	0042
postcont	79	post control	1/16/93	mvni	ieft		892	step rpt	p01	0081
postcont	79	post control	1/16/93	mvni	left	pol2	892	step	po 1	6/10
postcont	80	post control	1/16/93	mvni	left	p3 3	1401	elec stim	po1	6730
postcont	80	post control	1/16/93	mvni	left	p3 3	1401	sine0.2	p 01	6791
postcont	80	post control	1/16/93	mvni	left	p3 3	1401	sine0.5	po1	6817
postcont	80	post control	1/16/93	mvni	left	p3 3	1401	sine1.0	po1	6839
postcont	80	post control	1/16/93	mvni	left	p3l3	1401	step	po1	6859
postcont	80	post control	1/16/93	mvni	left	p3l3	1401	58	po1	6892
postcont	80	post control	1/16/93	mvni	left	p3 3	1401	step	po1	6936
postcont	81	post control	1/16/93	mvni	left	p3 3	1401	elec stim	po1	6980
postcont	81	post control	1/16/93	mvni	left	p3l3	1401	step	po1	7010
postcont	81	post control	1/16/93	mvni	left	p3 3	1401	sine0.2	po1	7063
postcont	81	post control	1/16/93	mvni	left	p3l3	1401	sine0.5	po1	7088
postcont	81	post control	1/16/93	mvni	left	p3i3	1401	sine1.0	po1	7103
postcont	81	post control	1/16/93	mvni	left	p3l3	1401	55	po1	7119

postcont	81	post control	1/16/93	mvni	left	p3l3	1401	elec stim	po1	7160
postcont	82	post control	1/16/93	mvni	left	p3l3	1401	elec stim	po1	7185
postcont	82	post control	1/16/93	mvni	left	p3l3	1401	sine0.2	po1	7207
postcont	83	post control	1/16/93	mvni	left	p3l3	1401	elec stim	po1	7231
postcont	83	post control	1/16/93	mvni	left	p3l3	1401	sine0.2	po1	7246
postcont	83	post control	1/16/93	mvni	left	p3l3	1401	sine0.2	po1	
postcont	83	post control	1/16/93	mvni	left	p3l3	1401	sine0.5	po1	7317
postcont	83	post control	1/16/93	myni	left	p3l3	1401	sine1.0	po1	7330
postcont	83	post control	1/16/93	mvni	left	p3l3	1401	step	po1	7348
postcont	83	post control	1/16/93	myni	left	p3i3	1401	88	po1	7380
postcont	84	post control	1/17/93	myni	left	p3l3	907	elec stim	po2	0
postcont	84	post control	1/17/93	myni	left	p3l3	907	sine0.2	po2	93
postcont	84	post control	1/17/93	myni	left	p3 3	907	sine0.5	po2	185
postcont	84	post control	1/17/93	myni	left	p3l3	907	sine1.0	po2	237
postcont	84	post control	1/17/93	myni	left	p3l3	907	step	po2	294
postcont	84	post control	1/17/93	myni	left	D3 3	907	step rpt	po2	360
postcont	1	fit animals	1/11/93	lat aff	right	ap0i11	906		1	
postflight	2	fit animals	1/11/03	lat aff	right	a1i11	906	sten	1	0
	2	fit animale	1/11/02	lat off	right	a1i11	906	sten		100
postflight	2	fit animale	1/11/02	lat aff	right	a1i11	906	SR SR	1	220
postilight	2	fit animale	1/11/02	lat eff	right	a1 11	906	step rof	1	322
postilight	2	fit animals	1/11/03	lat aff	right	a1 11	906	sine0 2	1	413
postflight	2	fit animals	1/11/03	lat aff	right	a1 11	906	spon	1	481
postilight	3	fit animals	1/11/03	lat aff	right	a1/11	906	step	1	523
posinight	5	fit animals	1/11/03	lat aff	right	a1/11	906	step	1	600
postnight	5	fit onimals	1/11/03	lat aff	right	a1i11	906	sten	1	723
postnight	5	fit. animals	1/11/93	lat off	right	a1111	906	88	1	796
postilight	5	fit animals	1/11/93	lat off	right	a1i11	906	sine0.2	1	890
postnight	5	fit animals	1/11/03	lat off	right	a1 11	906	5000	1	942
postnight	3	fit, driiffidis	1/11/93	lat off	right	a1111	906	eten rnt	4	083
positight	0	fit. animals	1/11/03	lat off	right	a1111	906	sten	1	1057
postnight	0	nt. animals	1/11/03	lat off	right	a1 11	906	88	1	1138
postnight	6	fit. animals	1/11/03	lat off	right	a1 11	906	5000	1	1217
postnight	7	fit. dhimals	1/11/93	lat off	right	a1 11	906	sine0.2	1	1250
postingni	,	fit. animals	1/11/03	lat aff	right	a1 11	906	sten	1	1304
postflight	0	fit animals	1/11/03	lat off	right	a1 11	906	sten		1376
postnight	0	fit enimals	1/11/03	lat off	right	a1 11	906	88		1447
postnight	0	fit animals	1/11/03	lat aff	right	a1 11	906	8000	1	1517
postnight	0	At animals	1/11/03	lat off	right	a1 11	906	sine0.2	1	1544
postilight	3	fit animale	1/11/02	lat aff	right	a1 11	906	sten	1	
postilight	44	fit animale	1/11/02	lat off	naht	a1111	906	sten	1	1650
postilight	11	At animate	1/11/03	lat off	right	a1 11	906	sten	1	1709
postnight	12	At animale	1/11/02	lat aff	right	a1111	906	sten	1	1762
postignt	12	At animale	1/11/02	lat aff	right	a1 11	906	 	1	1824
posinight	12	nt. animals	1/11/02	lat off	right	a1111	906	sten mt	1	1893
postnight	14	nt. animala	1/11/02	lat off	right	a1111	906	sine() 2	1	1956
postilight	12	nil. animale	1/11/02	lat off	right	a1111	906	spon		1995
positigne	13	nt. animala	1/11/03	lat off	right	a210	151	sten		2012
postilight	14	nt. animale	1/11/02	lat off	right	a210	151	sten		2070
postnight		fit animale	1/11/02	lat aff	right	a210	151	5.00		2127
postnight			1/11/02	lat off	right	a210	151	sinel 2	1	2193
postnight	14	nt. animals	1/11/93	lat off	right	2213	151	Shop	1	2236
postnight	15	fit enimals	1/11/93	lat off	right	a210	151	sten		2248
postriight	15	nic. aminais	1/11/90	lat off	right	2210	151	ee	1	2315
postriight	10	nit. animals	1/11/93	idi.dii.	right	2213	151	sine() ?	1	2385
postriight	16	III. animais	1/11/93	idi.dii.	right right	a213	151	etan	1	2305
postflight	17	Int. animais	1/11/93	l latan.	Ingnt	azia	1 131	alep		2300

postflight	18	fit. animals	1/11/93	lat.aff.	right	a2l9	151	step	1	2440
postflight	19	fit. animals	1/12/93	lat.aff.	right	a1111	906	step	1	2475
postflight	19	fit, animals	1/12/93	lat.aff.	right	a1 11	906	step	1	2500
postflight	19	fit animals	1/12/93	lat aff	right	a1111	906		1	2545
postflight	20	fit animale	1/12/03	lat off	right	a1 11	006	eten rot	4	2606
postflight	20	fit animals	1/12/03	lat.all.	right	01111	006	step tpt		2000
postflight	20	Int. animais	1/12/95	Idl.dil.	nyn		900	siep		2040
postnight	21	nt. animais	1/12/93	lat.arr.	ngnt	a1111	900	55		2/23
postriight	22	fit. animais	1/12/93	iat.aff.	ngnt	a1111	906	step		2/85
postflight	22	fit. animals	1/12/93	lat.aff.	right	a1i11	906	step	1	2834
postflight	23	fit. animals	1/12/93	lat.aff.	right	a1 11	906	step rpt	1	2889
postflight	24	flt. animals	1/12/93	lat.aff.	right	a2i9	151	step	1	2944
postflight	24	fit. animals	1/12/93	lat.aff.	right	a219	151	step	1	2950
postflight	24	flt. animals	1/12/93	lat.aff.	right	a 219	151	85	1	3007
postflight	24	fit. animals	1/12/93	lat.aff.	right	a219	151	step	1	3063
postflight	25	fit. animals	1/12/93	lat.aff.	right	a2i9	151	sine0.2	1	3101
postflight	25	fit, animals	1/12/93	lat.aff.	right	a219	151	step	1	3140
postflight	25	fit animals	1/12/93	lat.aff.	right	a2 9	151	85	1	3185
postflight	25	fit animals	1/12/93	lat aff	right	a219	151	step rot	1	3248
postflight	26	fit animals	1/12/03	lat aff	right	a210	151	sine() 2	1	3301
postflight	27	fit animale	1/12/03	lat aff	right	a210	161	eten	4	3339
postnight	21	M. animals	1/12/95	lat off	night	a213	454	step		2295
postnight	21	nt. animais	1/12/95		- rigni	azi9	151	slep		3365
postriight	2/	trt. animais	1/12/93	lat.arr.	right	a219	151	88		3430
postflight	28	fit. animals	1/12/93	lat.arr.	right	8219	151	sine0.2	1	3483
postflight	28	fit. animals	1/12/93	lat.aff.	right	a219	151	step	1	3518
postflight	28	fit. animals	1/12/93	lat.aff.	right	a219	151	step	1	3571
postflight	28	fit. animals	1/12/93	lat.aff.	right	a219	151	5 5	1	3617
postflight	29	fit. animals	1/12/93	lat.aff.	right	a219	151	sine0.2	1	3669
postflight	30	fit. animals	1/12/93	lat.aff.	right	a2l9	151	step	1	3730
postflight	31	fit. animals	1/12/93	lat.aff.	right	a219	151	step	1	3823
postflight	31	flt. animals	1/12/93	lat.aff.	right	a219	151	step	1	3871
postflight	32	fit. animals	1/12/93	lat.aff.	right	a219	151	\$5	1	3912
postflight	33	fit. animals	1/12/93	lat.aff.	right	a219	151	step	1	3962
postflight	33	fit. animals	1/12/93	lat.aff.	right	a219	151	step	1	3978
postflight	33	flt. animals	1/12/93	lat.aff.	right	a219	151	S 8	1	4018
postflight	33	fit animals	1/12/93	lat.aff.	right	a219	151	sine0.2	1	4069
postflight	34	fit animals	1/12/93	lat aff.	right	a219	151	SDOD	1	4103
postflight	35	fit animals	1/12/93	lat aff	right	a219	151	sten	1	4117
postflight	35	fit animals	1/12/03	lat aff	right	a210	151	sten	1	4157
postilight	35	fit onimals	1/12/03	lat off	right	a213	151	okep ee		4200
postnight	30		1/12/93	idi.dii.		a213	454	33	-	4200
postnight	30	m. animais	1/12/93		rignu	- 219	131	step		4230
postflight	37	fit. animais	1/12/93	lat.an.	ngnt	a219	151	85	1	
postflight	37	fit. animals	1/12/93	lat.aff.	right	a219	151	step	1	4331
postflight	38	fit. animals	1/14/93	lat.aff.	right	a118	151	5 8	1	4374
postflight	38	fit. animals	1/14/93	lat.aff.	right	a118	151	step	1	4370
postflight	38	fit. animals	1/14/93	lat.aff.	right	a118	151	5 8	1	4416
postflight	39	fit. animals	1/14/93	lat.aff.	right	a118	151	sine0.2	1	4463
postflight	39	flt. animals	1/14/93	lat.aff.	right	a 1l8	151	step	1	4511
postflight	40	flt. animals	1/14/93	lat.aff.	right	a1 18	151	88	1	4553
postflight	40	fit. animals	1/14/93	lat.aff.	right	a118	151	step	1	4590
postflight	40	fit. animals	1/14/93	lat.aff.	right	a118	151	5 5	1	4640
postflight	40	fit. animals	1/14/93	lat.aff.	right	a118	151	sine0.2	1	4683
postflight	41	fit, animals	1/14/93	lat.aff.	right	a118	151	step	1	4716
postflight	41	fit animals	1/14/93	lat aff	riaht	a118	151	step	1	4760
postflight	<u></u>	fit animale	1/1/03	lat aff	right	a118	151	55	1	4800
postflight	<u></u>	fit animale	1/1/03	lat off	right	a118	151	step my	1	49.41
postflight	42	fit animals	1/14/02	lat aff	right	2119	151	sinal ?		4979
posinigni	+∠	nt. animais	1/14/93	ial.aii.	i ngint	ano	101	311 ICU.Z	1	-010

.

postflight	42	fit. animals	1/14/93	lat.aff.	right	a1l8	151	step	1	4930
postflight	43	fit. animals	1/14/93	lat.aff.	right	a1l8	151	step rpt	1	4947
postflight	44	fit. animals	1/14/93	lat.aff.	right	a1l8	151	step	1	4981
postflight	44	fit. animals	1/14/93	lat.aff.	right	a118	151	step	1	4989
postflight	44	fit. animals	1/14/93	lat.aff.	right	a118	151	88	1	5026
postflight	44	fit. animals	1/14/93	lat.aff.	right	a118	151	step rpt	1	5060
postflight	45	fit. animals	1/14/93	lat.aff.	right	a118	151	sine0.2	1	5105
postflight	45	fit. animals	1/14/93	lat.aff.	right	a1l8	151	step	1	5132
postflight	45	flt. animals	1/14/93	lat.aff.	right	a1l8	151	88	1	5173
postflight	45	fit. animals	1/14/93	lat.aff.	right	a118	151	sine0.2	1	5216
postflight	46	fit. animals	1/14/93	lat.aff.	right	a1l8	151	spon	1	5240
postflight	47	fit. animals	1/14/93	lat.aff.	right	a1l8	151	step	1	5253
postflight	47	fit. animals	1/14/93	lat.aff.	right	a1i8	151	step	1	5295
postflight	48	fit. animals	1/14/93	lat.aff.	right	a1 11	906	\$ \$	1	5330
postflight	48	fit. animals	1/14/93	lat.aff.	right	a1 11	906	step	1	5370
postflight	49	fit. animals	1/14/93	lat.aff.	right	a1 11	906	step rpt	1	5414
postflight	49	fit. animals	1/14/93	lat.aff.	right	a1 11	906	step	1	5434
postflight	49	fit. animals	1/14/93	lat.aff.	right	a1 11	906	S \$	1	5470
postflight	50	fit. animals	1/21/93	lat.aff.	right	a2i11	906	sine0.2	2	5510
postflight	50	fit. animals	1/21/93	lat.aff.	right	a2l11	906	55	2	
postflight	50	fit. animals	1/21/93	lat.aff.	right	a2l11	906	step	2	
postflight	51	fit. animals	1/21/93	lat.aff.	right	a2 11	906	sine0.2	2	
postflight	51	fit. animals	1/21/93	lat.aff.	right	a2l11	906	step	2	
postflight	51	fit. animals	1/21/93	lat.aff.	right	a2 11	906	55	2	
postflight	52	fit. animals	1/21/93	lat.aff.	right	a2 11	906	sine0.2	2	
postflight	53	fit. animals	1/21/93	lat.aff.	right	a2 11	906	step	2	
postflight	53	fit. animals	1/21/93	lat.aff.	right	a2 11	906	step	2	
postflight	53	fit. animals	1/21/93	lat.aff.	right	a2 11	906	\$8	2	
postflight	54	fit. animals	1/21/93	lat.aff.	right	a2 11	906	?	2	
postflight	54	fit. animals	1/21/93	lat.aff.	right	a2i11	906	step	2	
postflight	55	fit. animals	1/21/93	lat.aff.	right	a2l11	906	\$ 5	2	
postflight	55	fit. animals	1/21/93	iat.aff.	right	a2i11	906	step	2	
postflight	56	fit. animals	1/21/93	lat.aff.	right	a2 11	906	55	2	
postflight	57	fit. animals	1/21/93	lat.aff.	right	a2l11	906	step	2	
postflight	57	fit. animals	1/21/93	lat.aff.	right	a2l11	906	step	2	
postflight	58	fit. animals	1/21/93	lat.aff.	right	a2 11	906	55	2	
postflight	58	fit. animals	1/21/93	lat.aff.	right	a2l11	906	step	2	
postflight	59	flt. animals	1/21/93	lat.aff.	right	a2 11	906	step	2	
postflight	59	fit. animals	1/21/93	lat.aff.	right	a2l11	906	58	2	

APPENDIX 2

The 31 tables on pages T1-T12 summarize data for each of the test procedures. The tables are further organized to summarize the responses to each of the test procedures (listed by afferent) on each test day such as during the preflight tests, during the synchronous control tests and during each of the post-flight test days when data were obtained. At the bottom of each table are presented first order summary statistics where appropriate.

-
E
5
9
-
•
64
-
~
~
Υ.
-
<i>6</i>
w7
A
-
-

		-	-		- ,				-				-	~		-		- ,		- ,		-	-	~~				,	- ,	- 30			- ,		~	~~	~	_	·	-	-	Ĩ	25	4
		01 a 2	01.02	01.02			01.		0	2 2	9	9	01.	01.1	07.1	07.	07.	07.		0/0	07.	07.	07.	0741	07.	07.	07.	i	Ż	15			3 4	ដ្ឋ	03.	03.	03.	010	010	010	9	Ň		1
MEAN ST. DEV. SEM	1121122	007a	006	006a		0040	2004		003a	16021	802	1 0 01i	1001e	1001a	1613a	l612a	16110	1011.		1909a	1608a	1607a	1806a	1803.	1603a	1602e	1001.			1501		407	405	1404	1402e	1402a	1401.	1702a	1701i	1701.	1701.	COLO:	- P	•
0.4631 0.4631 15 0.0454	140	-1.0981	-0.4892		-0.3193	-0.8592	:		-0.3152	0.594	-0.5779	:	:	:	:	-0.5397	:	:		: :	:	:	:	:	-1.6439	-0.6705	-1.752		:	: :		-0.823		;	;	:	-1.123	-0,415	:	;	:	CANN.		
6.228 2.866 11 0.112		2.391	11.66		8 255	3.500	:	ę	, m	3,440	9.691	:	:	:	:	6.324	:	:	: :	::	:	:	:	:	4.026	6.141	10.23		:	::		3 1995		:	:	:	1 7.845	5 7.132	:	:			(10-17-5	
5 0.114 2 0.155 5 1 9 0.026		4 0.020	6 0.443	• 0.000	5 0 0 5	3 0.074	:		7 0.000	3 0.000	7 0.156	:	:	:	:	1 0.056	:	:		::	:	:	:	:	1 0.000	8000	9 0.487		•	::				:	:	:	ະ ວິດ.196	28 0.086	:	:			92 A 11-1	
3 142. 0.1	Đ	9 164.	3 153.0	-	 3	0 155.	•		0 111	0 142.	7 145	•	•	•	•	140	•	•	• •		•	•	•	•	120	1	4 124		•		į	5 0 151.	•	•	•	:	36 183	32 101.	:	•			14-92 to	
1417 1 8397 0 15 3101 0		0958 O	0725 0	2050	1040	0960	:			8078	0000	:	:	:	:	9330	:	:			:	;	:	:	5870 1		8675 1	-	: :		0,50	5878	:	:	:	::	5273 1	5858 0	:	:	-	2	12-9-93	
.0425 15 0493 0	1ALM	.9417 8	.9133	./314		.1598	;	.02.00	3330	; ;	.5235	:	:	:	:	.8254 1	:	:		:	:	:	:	:	.5306 9	7781 5	.7409 9		.01.34	:		200	:	:	:	2067 9	.4998	.3920	:	:	:	ANO 2)	
1.7194 1.7194 15 1.1286		.4114 0	3.746 (C/E/		5.959	:		2307	: :	3.128	÷	÷	:	:	2.757	:	: :		:	:	::	:	:	0822		0291			:	0.440		:	:	:	9.6983	5.5245	8.5779	:	:	:			
0.0966 0.1080 15 0.0219		0.0750	0.0458	0.0250		0.0917	:	0.0000		: :	0.0000	:	:	:		0.0512	:			:	:	:	:	:	0.1698		0.4024	-	0.1598	:	0.03/4		:	:	:	0.2033	0.0157	0.0163	÷	:				
129.3905 29.385 11 0.3614	DC	161.300	155.765	111.304		154.131	;	110.130	110 100	::	147.087	:	:	:		135 R70	: :	: :	::	:	:	:	:		117.446		122.256	:	20.932	:	141.013		:	:	:	98.292	156.380	102.848	:	:				
5 0.9669 1 0.522 4 0.0482	S BOLL	7 0.9790	0.8826	0.393		4 1.146	:	0.334		0.580		;	:	:					:	;	;	:	:		2 U.830		6 1.584		0 1.294	:	0,010		:	:	:	6 2.142	4 0 993	2 0.450	:	:		Curve		
5 7.372 1 3.14 5 1: 2 0.118		4.805	3 12.24	8.150	:	1 7.487	:	3 8.810		5 3.790	:	:	:	:		1345	::	::	:	:	:	:	:	::	9.032		5 6.885		7 6.108	:	0 4.719	:	:	:		9 10 31	2 0 0 0 2	7 8.429	:	:				
9 0.117 7 0.124 5 1 3 0.023		8 0.040	8 0.163	9 0.000		5 0.152	:	9 0.000		9 0.000	:	:	•	:	• •			::	:	:	:	:	:	• • •	5 0.24		2 0.392		5 0.284	•	a 0.000		•	•	•	3 0.03	3 0 0 3	6 0.000	:	:				
5582 130 0.	C.	3 157.	0 145	• 127.		9 151.	•	0 112		. 0 143	•	÷	÷	•	• •	5 1 20			÷	·	÷	·	·		0 101. 0 101.		1 131.		5 68	•	70 145.		÷	•	: :		152	101	:	:				
8086 -0 1836 0 15 3411 0		1922 -0	1741 -0	0.101.6	:	5107 -1	:	0-12016		2554 -0	;	;	;	:				:	:	;	:	:	:		4111 -0	:	2002 -1	:	8725	:	3409 -0	:	:	:		8A0A	2	2178 -0	:	:		0		
1.7350 1.4013 3 12 1.0528 0		.6792 5	.8970 1	.3630	:	.0263	:	.2654	:).5988 4	:	:	:	:				:	:	:	:	:	:		0.8532 C	:	.6067	;	:	:	0.6437	:	:	:	:	:	:	0.3642	;	:		4		
7.663 1.9083 12),1647 (.8074	1.961	.5403	:	5.2686 (:	7.303	:	1.2401	:	:	:	:				÷	:	:	:	:	:		3.8177	:	10.714	:	:	:	5.8132	:	:	:	:	: :	:	5.3998	:	:				
0.1033 0.1043 12 0.0269		0.0948		0.0808	:	0.1477	;	0.1277	÷	0.0000	:::	:	÷	:	0.0333		:	;	:	:	:	:	:		0.0293	:	0.3766	:	:	÷	0.0577	:	;	:	:	: :	:	0.0715	÷	:				
134.907 20,193 1: 0.374	ĐC	155.129	100.368	127.002	:	151.122	:	111.120	:	138.433	:	:	:	; ;	1.30.034	:	:	:	:	:	:	:	:		159.881	:	119.091	:	:	:	143.876	:	:	:	:	: :	:	99.318	:	: :				
5 0.422 2 0.422 1 0.043	CAN	-0.888	5	-0.34		-0.942	•	1 -0.290	:	0.596	-0,577	•	•		0.4.90			:	•	;	;	•	•	•••	-0.001	:	-1,080	:	•	:	8 -0,633	-1,325	•	•	•	-1.128		6 .0.389			8 C 1 S 1	Averag		
5 6.870 2.892 5 113		4.099	1	7.8937		4.384	•	11.50	;	3.843	9.691	•	:	:	1.222	:	•	:	•	:	;	•	:		4.979		5 10.47	:	;	:	7 4,848	3 3.18	•	•	•	7,845		9 8,288	•			inc.		
1 0,110 5 0,123 1 0.023		0.057	3	0.087	:	5 0,110	•	2 0.063	:	2 0.000	0.158	•	•		0.054		:	*	•	•	•	:	•	0.000	0.063	:	1 0.432	:	*	:	9.0.28	2 0.000	:	*	:	3 0,198		3 0.078	•					
a 141. 5 21. 4 0.	9	9 158,1	ŝ	128.		9 153,	•	9 111.		0 140,	7 145.	•	•		. BEL 6			•	•		•	•	•	0 119,	161,		0 121.1	•	•	•	B 143,	0 151.	•	•	•	0 183.		8 ,00		••				
0378 0378 0378 0		25		0 5669	:	1094 1	:	0 1.602	;	0207	88	:			0 06.81	;	;;	ţ	:	:	;			A BOSC	B914 0	;	9795 1	:	***	;	0 8945	5870	:	**		1273		421 0	:			5		
.9762 .5226 .0452 .9000		.9604 5		5625	:	.1531 6	:	3287 \$		5005 3	5235	*	:		1.0130	:	*	:	•••	;	:	•		10060	-8084 J	***	. 665)	:	C THON	;	.0832 !	:	;	;		2400		4214	: :		SAT N	Tarage D		
7.313 (7.313 (1980		3.063		1.7133 (:	1.0748	:	1.7909	3.128 .	•	: :		2.006	:	••••	•	*	;	# •			.4334	1.8039	:	(B672 (:	. 9948		5.5799	:	•••	•	•••	3,2589		5038	•			R		
0.1002 0.1120 16 0.0209 0.1081	*	0.0577		0.0125	•	0.1223	•	0.0000	***	0.0000	2000	: :			0.0916	;	•••	;;	•	ŧ	:	:		0,1309	0.2020	:	0.3973	;	0.2222	:	0.0187	÷	:		1212.0	0.0242		0.0082	; ;	-				
131.0416 26.9652 16 0.3246 134.2808	80	159,2465		119.6677	•••	152.8211	•	111.5537	;	143.2554	147 0874			•	137.4778				:	;	•			120.5946	183,2932	•	126.7284	;	84.9023	;	143.5833	•	•••		1184'/6	156.3708		102.0330	•	•••	50			

Puise Response

TABLE 2 Auto Response -Synchro nous Control (1-9-9.7 to 1-10-9.3)

									_	-	-	_		_	-	~	~	178]
	07c1		07c1	07c1	036	0300	0300	0300	0300	0300	0300	0300	0300	0300	0300	0300	0300	3	
MEAN ST. DEV. N SEM	0034		0010	0014	9084	907.	906e	906a	905.	904e	904a	903.	902.	901 m	901;	901.	901.		L
-0.8903 0.3781 12 0.0512	-0.9410	0 2602	: :	-1.0179	-0.3323	;	-0.4553	;	-0.8752	-0.9643	-1,1497	-1.6117	-0.9136	-1.1119	;	:	-1.0421	2414	Curve 1
3.942) 1.4779 1.4711 1.4779	4.0216		: :	4.8937	3.1711	:	1.7019	:	4.7275	4.17	1.8713	4.546	2.0836	5.3636	:	:	4.2521		
0.0803 0.0842 0.0242	0.0341			0.0517	0.0000	:	0.0988	;	0.2964	0.1170	0.0580	0.0497	0.0000	0.1526	:	;	0.1051		
128.286 29.549 1. 0.453	128.561		::	146.0611	104.087	:	53.102	:	136.130	120.254	130.8699	153.347	164.5710	140.1345	:	:	138.0470	00	
0 0.479 0 0.479	a 1.059		<u> </u>	8 1.225	0.306	:	:	:	:	:	9 1.054	5 1.493	:	0.181	:	:	0.945	-	Curve
3 9.331 2 7.857 7 9 0.400	4 8 64 1	::	::	2 7.370	3 2.919	:	:	:	:	:	8 9.967	8 3.404	:	8 6.855	:	:	5 26.16	*	
8 0.08 1 0.09 7 0.09			•••	2 0.107	3 0.000	:	:	:	:	:	4 0.244	3 0.012	:	2 0.000	:	:	3 0.140		
5 128. 7 13. 0 0.	5			134.	0 105.	•	i	÷	·	·	15 121.	3 147.	·	0 140.	·	÷	6 127.	Đ	
7781 0 8170 7 5310 0	2216 0			3185 0	2517 0	:	:	;	;	:	3475 1	1 6668	:	800	;	:	4103 1		5 L
.0662 C	9807 6		8294 4	.9640 6	.3585 5	.3871 1	:	;	:	:	.1319 4	.2172 7	:	:	:	.0446 8	.0488 5		Ye 3
0.778 0.964 10).3311			0.352 0	1.8274 (.4577 (6.869 (:	:	:	;	.6241 (4228 (:	:	:	.6511 (.8041 0	•	
0.0709 0.0850 10 0.0292	0.0000		0.0000	0.1005	0,0000	0.2556	;	:	:	:	0.1393	0.1230	:	:	:	0000	0.0209	E	
120.9167 15.4889 10 0.3936	107 0030		102.3157	137.0171	103.3527	114.4782	:	:	:	:	116.9927	142.0520			•••	130.0422	134.8712	ĐC	
-1.2215 0.2496 0.09999				-0.9977	:	-1.1847	:	:	:	:	-1.1941	-1,6443	:	:	;	:		0.11	Curve 4
4.3447 1.071 5 0.207	4 9759			3.2084	:	4.2404	:	:	::	:	3.5058	5.8428	:	:	:	:	:	•	
0.0425 0.0716 5 0.0535			::	0.0470	i	0.0000	:	:	:	::	0.0000	0.1053	:	:	:	:	:		
131.118 10.052 0.834	197 011	: :	::	127.569	:	122.595	:	:	:	:	129.955	148,480	:		:			8	
0.047	-0.200			1.007	0.332		-0.455		-0.875	-0,984	1.171	-1,828	ELE'O'	1.111		;	1.042	et et	Avenage
1 0.069	2 0.31U			9 4.051	3 3,171	1 4,240	1.701	•	4.727	•1	2,088	5,194	2.083	5,303	•	:	4,2521		line,
3 0 074 3 0 065 3 0 085				0.049	1 0.000	0.000	0.098	*	5 0.296	0.117	3 0.029	0.107	0.000	0.152		*	0,105		
6 125. 6 27	197.			1 138.1	0 104.1	0 122.1	8		1 136.1	120.2	0 130,4	5 150,5	164.5	3 140,1			138.0	Đ	
12 0 0				1 995 1	0	1959 1	õ	:	1300	24	1128 1	1 000	5718	345	;	;	2470 0		Av
.9380 1 .9380 1 .9850 1 .9222 7			1294 4	0948 0	.3324 4	1 1/96	;	:	:	•••	0934 7	3555 5	:	•••	:	•••	1 2468		enage Dev
2 292 1 452 1 452 0 370 .1218			0.352 0	99989 (Ĩ	0.808 0					.2958 (4138 0		*	***		5,983 0	•	2
3,0853),0853),0883),0331),0331			1.0000	1,1038	1.0000	1.2550	:	*	•	;;	1.1919	1.0677	;;	•	•••	• * * *	B080%		
119.8783 15.8397 9 0.4422 125.9306	100.14.20		102.3157	135,6008	104.3022	114,4782	•	:	•	•	119,1701	144,9757	•••	•	•	•••	131,1408	00	

Pulse Response

TABLE 3 Pulse Response - Part-Flight Day 2 (1-11-53)

00611034 00611054 00611055 00611056 00611056 00611054 00611054 00611108 00611110 00611112 00611112 00611112 00611112 00611113 51c11014 51c11024 51c11024 51c11054 51c11054 51c11054 51c11054 51c11054 51c11054 51c11054 51c11054	06611026	06c1	
11034 11054 11055 11056 11066 11066 11106 1112 1112 1112 1112	1026		
		101	
0.3834 0.3834 0.3945 0.3915 0.4323 0.2893 0.2893 0.2893 0.2893 0.2491 0.2496 0.2496 0.48450000000000000000000000000000000000	0.5008	0.3671	Curve 1
	9.2185	9.3428	
0.0526 0.0526 0.05526 0.05585 0.05585 0.0685 0.0824 0.01320 0.1320 0.1320 0.01320 0.01320 0.01321 0.0687 0.0687 0.0489	0.0287	0.000	
124.1807 124.1807 125.4427 140.7817 140.7837 140.7837 140.8318 61.0000 114.9863 61.0000 114.9863 61.0000 114.9863 61.0000 1106.4936 24.8077 24.8077 107.4151	112.0816	90 129.6178	
-1.0035 -0.4062 -0.2287 -0.1717 -0.1717 -0.1891 -0.1886 -0.1886 -0.1997 -0.2068 -0.1997 -0.2068 -0.1997 -0.2068 -0.1997 -0.2068 -0.206	-0.3728	-0.1181	Ciarve 2
1.8266 1.8266 10.427 7.6198 4.5007 8.5007 8.5007 8.4459 8.4459 8.4459 8.4459 8.4459 14.578 3.6406 0.1908	4.9926	t 6.2437	
0.2287 0.0000 0.11131 0.0000 0.0152 0.0094 0.0154 0.0154 0.0154 0.1104 0.1104 0.1104 0.1104 0.0776 0.0260	0.0386	0.0582	
68.4754 120.0000 119.7221 119.7221 90.0000 90.0000 91.3222 59.0000 91.3222 59.0000 10.511	108.5857	0C	
	-0.3708	0.2503	Curve 3
9.6673 117.477 117.477 1.1062 7.1062 5.2922 7.5999 5.2922 7.5999 4.2006 4.2006	7.7244	9.8951	
0.0389 0.0389 0.0795 0.1570 0.0000 0.0553 0.1847 0.0000 0.0553 0.1847 0.00643 0.06472 0.0254	0.0999	0.0052	
116,4590 112,1283 1124,1283 85,4837 85,4837 102,529 59,6991 102,529 24,537 24,537 24,537 24,537	110.1778	BC 127.0000	
0.38905 0.38905 0.38905 0.38905 0.38906 0.39906 0.39906 0.39906 0.39906 0.39906 0.39906 0.39906 0.39906 0.39906 0.39906 0.39906 0.3995 0.59555 0.59555 0.59555 0.59555 0.59555 0.59555 0.59555 0.59555 0.59555 0.59555 0.59555 0.59555 0.59555 0.59555 0.59555 0.59555 0.595555 0.595555 0.5955555555 0.595555555555	0.4796	0.3503	Ciava 4
10,6195 6,6155 8,595 4,08494,0949 4,09494,0949 4,0949 4,0949 4,0949 4,09494,0949 4,0949 4,09494,0949 4,0949 4,09494,0949 4,0949 4,09494,0949 4,0949 4,09494,0949 4,0949 4,09494,0949 4,0949 4,09494,0949 4,0949 4,09494,0949 4,0949 4,09494,0949 4,0949 4,09494,0949 4,0949 4,09494,0949 4,0949 4,09494,0949 4,09494,0949 4,0949 4,09494,09494,	11.939	13.537	
0.0000 0.01755 0.0000 0.01755 0.0000 0.0000 0.0000 0.0000 0.1366 0.1366	0.0433	0.0208	
120.0000 120.0000 120.0000 112.7193 112.7193 114.3209 114.3209 110.868 20.465 20.465	110.0000	00 127.0000	
0.3031 0.4800 0.30370 0.30370 0.30370 0.30371 0.4803 0.2310 0.2310 0.2310 0.2310 0.48432 0.48432 0.48432 0.1785	0.4902	0.3587	Avanna
9.2131 9.2131 9.2131 9.2131 9.2131 9.2131 9.2131 9.2001 11.021 11	10.579		1
0.0124 0.0325 0.0325 0.06770 0.06770 0.06770 0.07580 0.07580 0.07582 0.07582 0.07582 0.07582 0.07582 0.07582	0.0360	0.0104	
122.080 122.080 122.080 122.221 102.347 102.347 102.347 102.347 103.85 24.15 2	111.040	128.308	
	8 -0.371	0.187	Avanno
	6.358	8.089	2
2 0.035 2 0.055 2 0.055 2 0.055 2 0.055 2 0.055 2 0.055 2 0.055 2 0.055 2 0	0.0693	0.0317	
08.475 118.229 121.000 122.325 87.74111 87.74111 87.74111 87.74111 87.74111 87.74111 87.741110	109,381	0c 125.5513	

Page T3

,

Pulse Response

TABLE 4 Pulse Response - Post-Fight Day 3 (1-12-83)

		7	P	70	R	R	R	R	R	P	Ð	B	Ð	в	Э	70	R	R	7	סבר מ	R	R	R	30	R	P	1	
	31	51c1	51c1	51c1	51c1	51c1	51c1	51c1	51c1	51c1	51c1	51c1	51c1	51c1	51c1	51c1	51c1	5101	0001	000	0 0 c1	00c1	06c1	00c1	06c1	00c1	12.5	
ST. DEV.	ins nes	220a	219.	218a	217.	216.	215a	214a	213a	212a	2100	210.	209.	2084	2070	207.	206e	2064	2184	217.	2178	216.	2150	215a	2140	214a		L
0.2037 0.0322	CAN.	0.4447	0.3509	0.8513	:	0.5615	:	:	0.1994	:	:	0.5503	0.7861	0.7131	:	0.1282	0.5049	:			0.3872	0.4379	:	0.4804	:	0.3772	9.6	Curve 1
4.6809 4.6809 14 0.1545		19.85	5.8637	16.845	:	7.2442	:	:	15.582	÷	:	7.8308	22.256	14.097	:	11.19	111	:	1		14.98	14.923	:	11.088	;	11.878		
0.0879		0.1915	0.0176	0.0988	:	0.0322	÷	:	0.0652	;	:	0.0000	0.2722	0.1515	÷	0.1912	0.1230	:	-		0.0000	0.0083	:	0.1302	:	0.0000		
27.220 0.37	ÐC	101.000	70.889	144.221	:	99.397	:	:	51.355	:	:	98.055	68.903	77.081	:	00.000	86.845	:	;	::	105.085	109.873	:	137.172		111.530	DC	
27 4 35 27 0.1		0.3	-0.2	5 -0.5	:	13 -0.5		-	3-0.1	<u> </u>		-0.54	-0.78	8 -0.44		0 -0.13	8 -0.5;	•			4 -0.21	3 -0.20	<u>.</u>	9 -0.32	<u>.</u>	3 -0.23	24	Curve
941 4.1 14 315 0.1		095 9.4	548 5.4	950 3.3	:	027 5.5	:	:	189 11.	:	:	101 1.7	998 3.9	118 3.4	:	300 5.3	222 12	:			172 8.2	317 11.	:	238 3.2	:	137 14.		N
1451 0.		473 0.	715 0.	352 0.	:	549 0.	:	:	021 0.	:	:	222 0.0	073 0.	934 0.0	;	517 0.0	2.77 0.0	:	1		278 0.0	498 0.:	:	983 0.0	:	756 0.0		
0835 14 0206	*	0915 1	0354	0944 1	:	0130	:	:	1230	:	:	0559 1	2893	0269	:	000	0631	:	1		1 0000	2273 1	:	0761 1	:	0954 1		
27.5007 27.5007 14 0.3750	DC	02.1764	67.2858	45.7813	:	96.0157	:	:	52.1476	:	;	12.7361	63.7725	75.8387	:	58.8753	90.5675	:			05.7105	06.7153	:	28.5631	:	12,0000	0C	Ĺ
0.2522		-0.3629	-0.3183	-0.7524	:	.0.5147	:	÷	-0,1855	:	:	-0.8743	-0.9351	:	:	-0.1529	-0.4705	:		::	-0.2558	-0.3744	:	-0.5181	:	0.3395		Surve 3
5.6357 5.6357 13 0.1826	1	8.262	6.4292	5.9673	:	6.6398	÷	:	8.7444	:	:	5.1445	24.856	:	:	3.3888	7.5629	:			5.534	15.835	:	8.9505	:	10.424	•	
0.0924 0.0234 0.0234		0.0677	0.0194	0.0620	;	0.0467	:	:	0.0000	:	:	0.0338	0.3451	:	:	0.0330	0.1026	:	:		0.0000	0.1182	:	0.1673	:	0.0639		
29.4111 1: 0.417	8	102.5974	67.881;	155,404		94,1453	:	:	52.1086	:	:	114.9877	77.8924	:	:	58.4394	85,4418	:			103.6375	109.2550	÷	133.2148	:	112.9932	90	
8 0.2710 9 0.2710 2 0.0400		0.420	0.3195	0,7056	:	0.5351	:	;	0.2166	:	:	0.7696	1.1448	:	:	0.1550	0.5217	:			0.2067	0.3830	:	0.5420	:	0.3858		Curve 4
0 3.507 0 0.144	1	5 10.674	5 8.3391	0.8713	:	4.9926	:	:	10.65	:	:	4.0534	14.394	:	:	7.7039	6.8672	:	-		6.6703	13.691	:	14,763	:	8.1581		
7 0.1061 3 13 1 0.0251		0.0361	0.1035	0.1106	:	0.0000	:	:	0.0714	:	:	0.0000	0.3768	:	:	0.0371	0.0805	:			0.0000	0.0481	:	0.2024	:	0.0000		
28.92 0.41	07 10	101.00	70.33	148.70		97.92	•	•	51.962		:	114.000	67.95;	:	:	59.000	86.00C	:		: :	108.000	113.559	:	133.000	:	111.926	26	
57 0.22 37 0.03		0 43	91 0.33	01 0.77	:	2 0.54	:	•	0,20	•	•	0.00	0.80	11.0	•	+r.p	0 0.51	•			0 0.29	17 0.410	•	0 0.511	•	7 0.381		Avera
113 0 33		2 19 2	52 7.10	B.TT. 80		11.9 28			13.1	÷	1	JO .5.9	¥ 18.3	31 14.0	Ĩ	8 9,44	13 8,98	•			10.8	5 14.3		2 12.9;		0.01 \$		10.
114 114 0.00		62 0.11	14 0.00	01.0 86	:	84 0.01	:	:	90.0 91	:	:	12 0.00	25 0.32	97 0.15	•	11.0 86	35 0.10	•			15 0.00	0.02	i	26 0.16	•	0.00		
72 # B	ŝ			47 14	**	93 9	*		热		a a		45 0	15 7		42 52	19 BI	Ţ			00 100	B2 113		130	1	LLL OC		
7.0004 1.4 0.3757		.0000	1.0141	5.4008	•	EC00.8	•==	••••		•	•	1.0270	1.4280	B180.7	•	0000	4229	•			5427	.7195		0005	•••	.7285		
0.2140 0.0320 0.4518		0.3362	0.2800	0.0737		0.5087			0.1582		480	0.7072	0.8875	0.4418		0.1415	0.4994	-			0.2365	0.3181	17.	0.4210	•**	0.2806		O edealer
3.6847 0.1371 9.5912	1		1068 6	1.0313	••#	5.0974	••*	••*	8.8827			3,4334	14,282	3.4834	•••	4.3703	10.100	•		: ;	8,8808	13.665	••#	6.1244	••*	12.59		5
0.0816 0.0204 0.0852	D 09914	0.0/98	0.0274	0.0782		0.0299			0.0615			0.0448	0.3172	0.0289	:	8910'0	0.0929	*		* *	0.0000	0,1728		0.1217	**	0.0797		
28,1039 14 0.3787 95,7588	95 0723	102.3008	87.5838	150.5929		89,0005			52,1281			113,8619	70,8325	75.B387	1	58.6574	88,0047				104.6740	107.9852	**	130,6890	# * •	112,4966	25	

-
- 10
-
-
-
ต
A.
÷
-
_
Ψ.
28
_
ъ.
x
0
-
- 1
F

TABLE 5

			-	. 20	70	R	B	æ	R	R	R	R	Ð	70	70	20	:	30	₽			2
4	4	112175	2101431	5101430	51c1429	51c1428	51c1428	51c1427	51c1426	51c1426	51c1425	51c1425	51c1424	51c1424	51c1423	5101421		08-1420	00c1419	1. 1. 1.1		· Response
SEM 0			•	ě.	<u>۽</u>	ъ	ہ 0	•	٠ •	5	8	ē o	•	<u> </u>	6	• 		- -	° 0		Cu Cu	- Post-
9.0478	0.4693	04.0	1.3832	0.5950	0.6539	:	1815	:	.3542	;;	:	.4194	:	:	:	.7600		34	.5520		rve 1	Flynk De
9.224 0.224	11.821		20.0/9	11.108	10.935	:	8.734	:	12.293	:	:	10.587	:	:	:	13.168		13.532	7.3488			Y 5 (1-)
0.02 0 0	0.0735		0.1004	0.0804	0.0773	:	0.0000	:	0.1326	:	:	0.0000	÷	÷	;	0.0464		0.1154	0.0539			14-939
0.585	95.457	30	118.310	92.847	77.898	:	58.476	:	111.254	:	:	77.969	:	:	:	79.517:		96.343	143.503	bc		
8 0.05	7 -0.38	112	-0.33		3 -0.65		0.124	:	-0.382	:	:	1 -0.374	:	:	- :	3 -0.532		0.256	3 -0.449		Curve .	•
94 0.22	91 0.41		0.43		19 12.5	:	18 5.66	:	24 5.64	:	:	18 2.33	:	:	:	4 4.40		5.17	1 9.07	t	2	
03 8	18 0.0) 59 0.0)				04 0.24	:	26 0.09	:	78 0.06	:	:	28 0.00	:	:	:	52 0.09	i	52 0.00	11 0.08			
Ϋ́ια;	184 9		10 12		34 7	:	·69 5	:	13 10	:	:	8	:	:	:	47 7		67 9	13			
0.0520	4.7532		1.0003		9.0000	:	5.0579	;	8.3304	;	;;	8.7878	;	:	:	9.5173		0.0056	9.0000	ð		-
0.0483	0.4054		9,900	-0.2527	0.6806	:	0.2252	:	0,4328	:	;	:	:	:	:	0.5179		0.3281	0,4554	24.0	ŭve 3	
6 0.3243	10.216	•		2.7071	13.635		22.801	:	5.6262	:	:	:	:	:	:	15,985		8.5215	5.3215	•		
0.039	0.108			0.1299	0.1990	:	0.1551	:	0.0270	:	:	:	:	:	:	0.2841		0.0561	0.0181			
0.0	96.7	3			80.0	-	57.7		112.5							80.0		96.9	135.7	bc		
945 0.	296 0.	0	4		000 0.	:	66 0.	;	027 0.:		:	:	:			0.0		703 0.:	369 0.5		25	-
7 0739 0	5204 9 2675 5		-		7784 1	;	1987 7	;	3578 4	:	:	:	:	:	:	9589 3.		3747 11	5801 0		Ì	
7	.5849 (•			7.611 0		.9448 0	:	5766 0	:	;;	:	:	:	:	9641 0		1.525 0	9.335 0			
7 0.0407	0.0891 0.0812	ĸ		10673	0.2127		0.0107	:	0.0645	:	:	:	:	:	:	.0325		1970	.0487			
7 0.7 6 91	98.8150 28.9876	8	10.1000	110 1802	80.0000		56.1225		118.0206					:	:	78.3175		100.0000	139.0760	0.0		-
0.0508	0.4834	area.			0.7162		0,1201		0.3500			0.4184		**	***	0.8595		0.3594	0.5661	GNR	Average /	
0.1945	10.843				14.274		1.0314		8.4.348			10.587		:	;	8.500		14.029	7.8419		, A	
10.0204 8	0.0758				Dent D		*COD.0		0.0995			0.0000			;	0.0395		0,1582	0.0513	C		
0,605	25,936	500		110 770	R. 0/		51.7C		113,147							78,8174		99,1710	141,2896	90		
0.44	0.148						51.7		10.01			1.4.4				-0.525		0.293	-0.452	2010	Average	
89 15 19.57 15 19.57	8 0 4 7.93			A A AT			0 14.2		9 0 P			6 4.34				2 10.19		T O.BAG	3 7.196		Lec.	1
90.03	0.09 52 0.07						14 U. 34		10.04			00.0				15 0,18)		19 0.03	13 0.041			
9 5 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9	8 8 N 9			82		; ; ;	: 2 9	:;				: 2	3 4			9		14 8.	B 5 13)			
9 0.5578 6.3340	4,2028	8		7.2158	0000	ŝ	570.5		001410			0/0/2				1957		0128.4	7,3835			

TABLE 8 Pute Response - Post-Fight Day 8 (1-15-33)

1		-	_	-	-	-	-	 -	_	-	~	-			
MEAN ST. DEV SEM	STATESTICS.	07c1507a	07c1505a	07-1503-	07c1502e	07c1501e	07c1501a	03c1520a	03c1519a	03c1517a	03c1516a	03c1515a	STICKING.		a verburne - v
4-0.7019 0.3672 0.1212	NYO I	-0.2921	-0.3808	-0.7480	-1.1701	;	-0.9186	:	:	:	:	:	CAR	Curve 1	and a state of the second
5.1399 2.1416 5.2927		4.7628	4.4436	3.2568	8.832	:	4.4045	:	:	:	:		•		And A Law
0.0844 0.1238 5 0.0704		0.0000	0.0087	0.0235	0.2957	;	0.0942	:	:	:	:				10-9-04
118.750 12.288 0.701	90	126.0421	106.0946	102.8084	117.5990	:	131.2077	÷	÷		:	•••	96		
0.7660 0.4168	0.4.0	0.2750	3 0.3972	0.8576	1.0648	:	1.2352	:	:	:	:		and a	Curve 2	•
6.1931 3 2.0438 5 0.2859) 6,4958	5.4608	5.7204	3.8647	:	9.4236	:	:	:	::		t		
0.0481 0.0686 5 0.0524		0.0000	0.0000	0.0000	0.1473	:	0.0932	:	:	:	:				
112.693 11.192 0.669	30	126.179	106.100	97.798	113.388	:	120.000	:	:	:	:		66		
2 0.8666 3 0.8027 5 5 5 1 0.1553	-	0.2882	3 0.3998	0.6968	3 1.7323	:	1.2100	 :	:	:	;			Curve 3	•
9.2073 4.8678 5 0.4413		6,9419	8.7877	15.877	12.536	:	3.894	:	:	:	:	::	•		
0.1622 0.2110 5 0.0919	K	0.0317	0.0787	0.1254	0.5338	:	0.0412	:	;	:	:	•••			
116.1442 11.2891 5 0.6720	25	126.7815	107.4101	103.1659	114.9521	:	128.4114	;		:	:	***	bc		
-0.7371 0.6645 2 0.4076	Subber Sta	-0.2672	:	:	:	:	-1.2070	:	:	:	:		CA.	Curve 4	
7.0821 0.2507 2 0.2503		6.9048	:	:	:	:	7.2593	:	÷	:	:				
0.1438 0.1022 2 0.1598		0.0715	:	:	:	:	0.2160	:	:	:	;	:			
124.3185 2.3780 2.7710	90	126.0000	:	:	;;	:	122.6370	:	:	::	:	:			_
-0.7283 0.3967 5 0.1260	ON.	-0.2797	0.3808	-0,7480	1.1701	•••	1.0828	•••	•••	•••	••1	•••		A verage	
5,6396 2,0641 5 0,2687		5,8330	4,4436	3,2508	8,832		5,8319	***				***		I.	
0.1036 0.1220 5 0.0699		0.0358	0.0087	0.0235	0.2957	•**	0,1551	***	***	732		9 1 2			
115.0001 11.1170 5 0.00006	8	126.0211	105.0945	102.8084	117,5890	•	126.9224		•••				55		
0.8163 0.4821 5 0.1403 0.7733	111	0.2816	0.3985	0.7772	1.3986		1.2256					-		A CREAK	
7.7002 1.8961 5 0.2754 6.8745		0.7189	6,1243	10.799	5.2006	•	0,0588	••3	•	•••	•••	•		100.	
0.1332 0.1332 0.0730 0.1036		0.0159	0,0394	0,0627	0.3408		0.0672	***		X+ •					
114.4187 11.1163 5 0.8668 116.2692	DC	126,4803	108.7552	100,4820	114.1704		124.2057			4.0			CC CC		

Puise Response

BIAISIAN ST. DEV. N SEM	3LE 7 . Anapores - Pe . Anapores -
0.3801 0.2117 10 0.0460	Curve 1 Curve 1 0.55600 0.1637 0.2916 0.2916 0.463 0.3919 0.1133 0.3113 0.7218 0.4256
10.11 3.0651 10 0.1751	Day 17 / 11.929 10.539 10.644 9.1932 10.944 9.1932 10.943 7.1098 7.1098 11.233
0.0422 0.0636 10 0.0252	1-21-83) 8 0.1317 0.0000 0.0000 0.1278 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1317 0.0000 0.1317 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.0000000 0.00000000
00.557 32.991 10 0.574	9 114. 99 123. 223 19. 814 135. 000 131. 954 63. 489 56. 000
0.205 0.205	Curve ; Curve
7 8.504 8 5.4731 9 10 10 2335	2 x x x x x x x x
0.0746 0.0663 0.0256	2 0.1011 3 0.0000 3 0.1011 3 0.1011 3 0.1059 3 0.187 3 0.0259 3 0.025
1103.82 34.28	0000 0000 0000 0000 0000 0000 0000 0000 0000
53 -0.37 129 0.22 10 56 0.05	Curve 2000 - 0.46 2000 - 0.46 2000 - 0.22 2000 - 0.22
11.2 105 11.2 149 4.42 9 127 0.23	*3 317 8.0 209 8.5 209 8.5 211 15.5 209 8.5 211 15.5 211 15.5 211 15.5 211 15.5 211 15.5 211 15.5 211 15.5 211 15.5 211 15.5 211 15.5 215
31 0.06 9 0.04 38 0.02	
9 9 24 0 104 0 104 0 104 0	3; 14, 3; 14, 73 97 73 97 73 97 73 97 73 97 73 97 73 97 73 97 129 75 76 88 57 68 57 68 57 68 57 57 68 57 57 68 57 57 51 29 57 51 29 57 51 29 51 20 51 20 51 20 51 51 51 51 51 51 51 51 51 51 51 51 51
.4734 0 .2510 0 .9 .6782 0	
14.44 1.1957 7 1.1959 2 1.0492 0	Arve 4 644 644 10,0207 7 10,0255 7 1,10075 1,2793 8 1,10075 1,2793 8 1,1003 3 1,1003
1 .2678 0 .5807 0 .1785 0	1.1155 0 1.1155 0
.0535 9	1188 00000 02455 00000 0158
05.6194 35.3694 9 0.6606	00 147,5011 147,5011 112,000 112,000 112,000 112,000
GA.8 0.3/63 0.2041 10 0.0452	A
8.5756 1.995 0.1412	
8 0.0452 10 0.0238	0.0123 0.0000 0.01252 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000
DC 104.849 33.349 11 0.5777	
0.362	
9.395 9.2137 9.28	7.500 7.500 7.500 7.120 7.120 7.120 7.120 7.120 7.120 7.120 7.120 7.120 7.120 7.120 7.120 7.120 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.1000 7.10000 7.10000 7.10000000000
0.0674 0.0434 0.0208	0.0000 0.00000 0.00000 0.00000 0.000000
90 104.5750 34.7407 10 0.5894 105.1227	05 114.5183 114.5183 112.8866 97.9857 128.8859 128.8859 128.8859 128.8859 128.8859 128.8859 128.8859 128.8859 128.8859 128.8859 128.8859 128.8859 128.8859 128.8859 128.8859 128.8859 128.8859 128.8559 128.5557 128.8559 128.8559 128.8559 128.8559 128.8559 128.8559 128.8559 128.8559 128.8559 128.5557 128.5577 128.5577 128.5577 128.55777 128.55777 128.5577777777777777777777777777777777777

Spontaneous Rate

TABLE 8			
Spontaneous Re			
Fliename	Mean ISI (ms)	SP Rate (S/s)	CV
01o1701a	***	***	***
0101701e	***	***	***
01o1701i	6.93	144.30	0.23
01o1702a	9.99	100.10	0.04
03a1401a	5.85	170.94	0.17
03a1402a	10.52	95.06	0.16
03a1402e	9.85	101.52	0.14
03a1404a	***	***	***
03a1405a	***	***	***
03a1406a	7.86	127.23	0.20
03a1407a	6.97	143.47	0.05
51a1501a	9.13	109.53	0.07
75a1504a	10.05	99.50	0.17
75a1504e	12.33	81.10	0.30
07a1601a	8.68	115 21	0.25
07a1602a	6.12	163.40	0.06
07a1602e	6.10	163 93	0.06
07=1603=	7.99	125 16	0 18
07=18030	9.34	107.07	0.17
07a1606a	39.25	25.48	0.09
07a1607a	9.59	104.28	0.20
07a1608a	5.85	170.94	0.24
07a1609a	9.24	108.23	0.03
07a1610a	6.46	154.80	0.25
07a1610e	6.98	143.27	0.25
07a1611a	7.08	141.24	0.28
07a1611e	8.05	124.22	0.22
07a1612a	7.17	139.47	0.03
07a1613a	***	***	***
01a1601a	6.81	148.84	0.27
01a1601e	8.59	118.41	0.34
01a1601i	7.28	137.36	0.28
01a1602a	7.05	141.84	0.10
01a1602e	6.83	146.41	0.10
01a1602i	7.72	129.53	0.10
01a1603a	8.99	111.23	0.03
01a2004a	5.95	168.07	0.08
01a2004e	6.30	158.73	0.10
01a2005a	7.83	127.71	0.05
01a2005e	7.90	126.58	0.05
01a2006a	8.35	119.76	0.25
01a2006e	6.8	151.52	0.14
01a2007a	6.45	155.04	0.15
mer	un 8.89	128.85	0.15
st de	IV 5.31	29.07	0.00
	n 38.00	38.00	38.00
	m 0.06	0.14	0.01

	Zanila ulu all		
		SP Reto (Sie)	C V
03c0901a	7.03	142.25	0.06
03c0901e	7.00	142.86	0.06
03c0901m	7.05	141.84	0.08
03c0901i	6.88	145.35	0.06
03c0902a	7.06	141.64	0.30
03c0903a	6.79	147.28	0.17
03c0904a	7.68	130.21	0.25
03c0904e	8.83	113.25	0.30
03c0905a	7.29	137.17	0.19
03c0906a	7.69	130.04	0.28
03c0906a	11.72	85.32	0.55
03c0907a	8.44	118.48	0.17
03c0908a	9.47	105.60	0.04
07c1001a	7.38	135.50	0.12
07c1001e	7.35	138.05	0.12
07c1002a	9.94	100.60	0.02
07c1002e	9.88	101.21	0.02
07c1003a	7.85	127.39	0.07
mean	8.07	126.78	0.16
st dev	1.37	18.41	0.14
n	18.00	18.00	18.00
90 11	0.07	0.24	0.02

TABLE 10			
Sciences Rete . Po	et Phon DAY 2		
21. Content	Maan ISI (ms)	SP Rate (S/s)	CY
06c1101a	7.91	128.42	0.03
06c1102a	8.63	115.87	0.04
06c1102e	9.00	111.11	0.03
08c1103a	12.23	81.77	0.18
06c1104a	10.91	91.66	0.14
06c1105a	10.30	97.09	0.15
06c1105e	9.77	102.35	0.15
06c1106a	8.16	122.55	0.03
06c1107a	16.20	61.73	0.34
06c1108a	7.98	125.31	0.03
06c1109a	18.62	53.71	0.51
06c1110a	11.58	86.36	0.17
06c1111a	7.32	136.61	0.04
06c1112a	9.49	105.37	0.03
06c1112e	9.60	104.17	0.03
06c1113a	11.16	89.61	0.37
51c1101a	15.84	63.13	0.03
51c1102a	9.25	108.11	0.08
51c1103a	16.45	60.79	0.03
51c1104a	9.27	107.87	0.04
meen	10.98	97.58	0,12
st dev	3.28	23.88	0.14
. n	20.00	20.00	20.00
som	D.00	0.24	0.02

Spontaneous Rate

TABLE 11			
Filenane	Manh ISI (AN)		
06c1214a	8.84	113.12	0.03
06c1214e	9.09	110.01	0.03
06c1215a	7.38	135.50	0.06
06c1216a	8.87	112.74	0.04
06c1217a	9.21	108.58	0.04
06c1217e	9.05	110.50	0.04
51c1208a	12.03	83.13	0.04
51c1206e	11.96	83.61	0.03
51c1207a	16.96	58.96	0.04
51c1207e	17.68	56.56	0.04
51c1208a	13.22	75.64	0.31
51c1209a	14.98	66.76	0.20
51c1210a	10.12	98.81	0.22
51c1213a	19.02	52.58	0.03
51c1215a	7.96	125.63	0.12
51c1216a	10.24	97.66	0.03
51c1218a	6.60	151.52	0.08
51c1219a	14.13	70.77	0.03
51c1220a	10.08	99.21	0.05
mean	11.44	95.33	0.08
st dev	3.83	27.60	0,05
R	19.00	19.00	19.00
<u>sam</u>	0.10	0.28	0.01

	10.00.00 · 10.00 · 11.00.000 · 100.000		
	7.44	140.85	0.03
00014198	7.11	08.63	0.04
05014208	10.14	80.02	0.04
51c1421a	13.16	75.99	0.33
51c1425a	12.63	79.18	0.26
51c1428a	8.72	114.68	0.05
51c1426e	8.94	111.86	0.05
51c1427a	13.37	74.79	0.04
51c1428a	17.54	57.01	0.04
51c1428e	17.87	55.96	0.07
51c1429a	12.40	80.65	0.06
51c1430a	10.42	95.97	0.27
51c1431a	8.29	120.63	0.04
mesi	11.72	92.16	0.11
ut de l	3,46	26.15	0.11
	12.00	12.00	12.00
50 1	0.18	0.43	0.03

TABLE 13

Sponderscore Ret	Post Paght DAY 6		
Filename	Nean 191 (ms)	SP Rate (SIS)	CV
03c1515a	14.05	71.17	0.03
03c1516a	17.42	57.41	0.73
03c1517a	7.36	135.87	0.10
03c1520e	9.57	104.49	0.16
07c1501a	7.79	128.37	0.10
07c1501e	7.34	138.24	0.09
09c1502e	8.68	115.21	0.16
07c1503a	9.77	102.35	0.06
07c1505a	9.25	108.11	0.03
07c1507a	7.85	127.39	0.03
	n 9.91	106.86	0.15
st de	∀ 3.29	26,61	0.21
이 아이는 아이들을 통하는 것이 좋아하는 것이 하는 것이 하는 것이 하는 것이 하는 것이 같이 하는 것이 같이 하는 것이 같이 하는 것이 않아? 않아? 이 하는 것이 하는 것이 하는 것이 하는 것이 하는 것이 않아? 않아? 않아? 아니 않아? 않아? 않아? 않아? 않아? 이 이 아니 않아?	a 10.00	10.00	10.00
50	n 0.18	0.52	0.05

TABLE 14			
	at Phone DAY 11		
	Maan iSi (me)	SP Rate (SA)	61
06c2102a	7.06	141.64	0.06
06c2103a	8.67	115.34	0.03
06c2104a	10.21	97.94	0.03
06c2105a	7.31	136.80	0.07
06c2106a	7.66	130.55	0.04
06c2107a	15.25	65.57	0.03
06c2108a	7.45	134.23	0.03
06c2109a	16.80	59.52	0.04
06c2110a	20.39	49.04	0.32
06c2111a	8.80	113.64	0.04
meen	10.96	104.43	0.07
st dev	4.78	34.71	0.09
	10.00	10.00	10.00
Cent	0.22	0.59	0.03

TABLE 15

Sun	n of Sines Pro	eocole - i	Pro-Flight	(11-14-1	92 ao 12-9	-92)			_			totel ne	wrons =	7
	Frequency	0.0293		0.0879		0.2051		0.3809						
22	LENALDAR	- gela	o phinte	gain	. phase	gein	89				.	×144 V	- fri (4	***
L	03e1401b	0.2800	80.3990	0.7200	23.3340	0.7600	23.3640	0.8300	36.2630	2.0550	0.0721	0.2491	2.7290	1.33E-02
L	03a1402b	***		•••	***	***			••••	•••	***	***	***	
L	03a1407b	•**				***					***	•••	***	•••
L	03a1407f	0.4400	48.7050	0.6100	24.6950	0.7000	12.9190	0.6800	7.1110	3.3030	0.0320	0.0000	4.8730	3.70E-04
L	07a1601b													
L	07a1610b				***									
L	07a1611b				***		***	••••			***			
L	07a1612b	0.3700	38.0860	0.5000	19.9640	0.5500	13.4000	0.5800	12.1250	4.9170	0.1030	0.0000	9.2460	1.13E-04
L	01a1601b			***	***		***			•••	***			***
L	01a1602b	0.3700	48.2020	0.5100	22.5190	0.5700	18.4460	0.6300	18.9400	3.9680	0.1070	0.0403	7.0890	1.94E-04
L	01a1603b	0.2500	32.9740	0.3100	14.2050	0.3100	5.5030	0.3100	4.3610	2.4410	0.0020	0.0047	7.8470	5.56E-05
L	01a2004b									••••	•••		***	
L	01a2005b	***			***	•••	***	***				••••	•••	
L	01a2006b	0.4400	57.5410	0.5800	34.0490	0.7600	25.8270	0.8300	24.1720	4.8460	0.1920	0.0229	6.8270	8.59E-04
L	01a2007b	0.3600	44.4870	0.5100	9.0640	0.6600	*******	0.7900	*******		***		***	
	STATISTICS				81. ú. í S		<u>مىتىتىتە</u>	88 C88	SPLCCO			tieu V	SCORE S	
_	MEAN	0.3586	50.0563	0.5343	21.1186	0.6157	11.9160	0.6643	5.2526	3.5917	0.0847	0.0528	6.4352	2.48E-03
	ST. DEV.	0.0724	15.5353	0.1258	7.9718	0.1584	14.1037	0.1847	33.3278	1.2046	0.0665	0.0974	2.3087	5.30E-03
	N	7	7	7	7	7	7	7	7	6	6	6	6	6
	SEM	0.0384	0.5631	0.0507	0.4033	0.0569	0.5365	0.0614	0.8247	0.1829	0.0430	0.0520	0.2532	1.21E-02

TABLE 16

Sun	n of Sines Pro	xiocole - {	Synchron	ious Coni	trole (1-8	1-83 to 1-1/	0-83)					lotal ne	W/0/18 =	1
	Frequency	0.0293		0.0879		0.2051		0.3809						
222	PRESNAME:	86 C8	phene	. gain	plines							stau y	tau L	×
L	07c1002b	0.2200	37.6450	0.2800	18.9080	0.0300	9.7090	0.3100	5.7590	2.2000	0.0430	0.0000	7.4190	4.01E-05
L	07c1003b		***				***		***		***	***	•••	•••
	STATISTICS		phase	gain	phase		phase		phaee	G		tau Y		
	MEAN	0.2200	37.6450	0.2800	18.9080	0.0300	9.7090	0.3100	5.7590	2.2000	0.0430	0.0000	7.4190 (4.01E-05
	ST. DEV.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0
	N	1	1	1	1	1	1	1	1	1	1	1	1	1
	SEM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0

TABLE 17

Sun	n of Sines Pro	1-11-93)							totel n	eurons =	6			
	Frequency	0.0293		0.0879		0.2051		0.3809						
<u> </u>	PLEXAME						8	******	phone			1111 Y	teu L	
R	06c1102b	0.3900	33.4060	0.4400	21.2040	0.4900	14.8150	0.5200	14.4360	5.5570	0.0970	0.0297	11.5620	2.35E-04
R	06c1105b	••••	***	•••	***		***	***	••••		***	•••	***	***
R	06c1106b	0.2500	31.7430	0.3200	20.7750	0.3400	12.9110	0.3800	9.7150	3.8010	0.0990	0.0000	11.4105	1.12E-04
R	05c1108b	0.2500	32.7230	0.3100	20.8840	0.3500	13.4920	0.3600	10.9630	3.8890	0.1090	0.0000	11.6672	7.70E-05
R	06c1112b	0.2600	35.2010	0.3200	16.0630	0.3500	11.3730	0.3700	11.1070	3.5970	0.0880	0.0000	10.5205	2.97E-05
R	51c1101b	0.2100	34.6150	0.2500	14.9520	0.2900	6.8780	0.2700	5.0350	2.1755	0.0255	0.0000	8.0524	1.21E-04
R	51c1102b	0.2900	47.0570	0.4600	38.2450	0.6400	29.7180	0.7300	25.4460	5.9963	0.2820	0.0000	10.4932	9.06E-04
	STATISTICS		plate	-										
	MEAN	0.2750	35.7912	0.3500	22.0205	0.4100	14.8645	0.4350	12.7835	4.1693	0.1168	0.0050	10.6193	2.47E-04
	ST. DEV.	0.0619	5.6592	0.0820	8.3928	0.1310	7.7756	0.1655	6.9086	1.3986	0.0863	0.0121	1.3547	3.30E-04
	N	6	6	6	6	6	6	6	6	6	6	6	6	6
	SEM	0.0415	0.3965	0.0477	0.4828	0.0003	0.4647	0.0678	0.4381	0.1971	0.0490	0.0184	0.1940	3.03E-03

T.	A	B	LE	1	18

Sum	of Sines Pro	tocole - f	Poet Fligh	t Day 3 (1	1-12-93)							total n	eurone =	8
	Frequency	0.0293		0.0879		0.2051		0.3809						
22				gala		# C. 18	phase.	gain	phee	4		See Va	in the second	
R	51c1206b	0.3600	39.5360	0.4800	23.5260	0.5600	14.2580	0.5900	10.0700	4.3218	0.1014	0.0000	8.0928	3.70E-04
R	51c1207b	0.1100	32.7560	0.1400	19.9343	0.1600	12.5860	0.1600	7.5270	1.7962	0.1205	0.0350	12.0030	2.99E-05
R	51c1209b	0.3100	61.6880	0.5300	45.7570	0.8000	38.4280	0.9900	32.9780	5.6336	0.3539	0.0000	7.8378	9.90E-04
R	51c1210b	0.4500	52.7780	0.6000	32.5680	0.7000	22.2800	0.7300	22.0900	3.8624	0.1050	0.0663	5.7020	8.33E-04
R	51c1214b	***	***	***		***		***	***				***	***
R	51c1216b	0.4300	35.1300	0.5300	15.0820	0.5900	12.0630	0.0000	8.1310	5.3490	0.0746	0.0000	9.4252	1.15E-04
R	51c1218b	0.5200	60.9930	0.6300	34.3380	0.8100	23.3930	0.8500	16.8570	4.2850	0.1510	0.0011	5.5630	3.38E-03
							:							
R	06c1214b	0.2800	27.2340	0.2400	8.7000	0.3300	6.5380	0.2000	27.0350	1.7020	0.1695	0.2614	6.7120	2.81E-03
R	06c1215b	0.7500	38.6490	0.8700	25.6400	0.8200	20.7320	0.8600	17.6130	6.0460	0.0130	0.1191	7.0320	6.89E-03
	STAINSTREE					#:#		86° C. 138	للمنتخذ	G		tau V	e te persona de la competencia	
	MEAN	0.4013	43.5954	0.5025	26.0682	0.5963	18.7848	0.6225	17.7876	4.1245	0.1361	0.0590	7.7960	1.93E-03
	ST. DEV.	0.1884	13.1592	0.2278	11.3892	0.2422	9.8357	0.3044	9.2099	1.6428	0.1001	0.0887	2.1238	2.36E-03
	N	8	8	8	8	8	8	8	8	8	8	8	8	8
	SEM	0.0543	0.4534	0.0597	0.4218	0.0615	0.3920	0.0690	0.3793	0.1602	0.0395	0.0372	0.1822	6.07E-03

TABLE 19

Sun	t of Sines Pro	tocole - F	Poet Fligh	nt Day 6 (1	1-14-93)							total n	= shorue	6
	Frequency	0.0293		0.0879		0.2051		0.3809						
÷	PLENAME	ġeitti		galo	pisson		8						tau L	
R	51c1421b	0.4500	47.6670		23.8790	0.6400	18.0600	0.7200	18.8500	5.0150	0.1240	0.0312	7.9290	5.00E-04
R	51c1423b		***		***	•••	***			••••	***	***		***
R	51c1424b	•••	***	***	***			***				***	***	
R	51c1425b	0.1700	58.6760	0.3000	14.4220	0.3400	13.7400	0.3900	5.4700	1.3860	0.0150	0.0000	3.9900	1.34E-03
R	51c1428b	0.2300	35.6620	0.2700	18.3830	0.3000	9.2420	0.3100	6.3640	2.5240	0.0530	0.0000	8.6030	5.37E-05
R	51c1429b	0.6200	39.2860	0.7600	23.5840	0.9000	16.5800	0.9900	14.8180	9.2420	0.1430	0.0000	10.6700	3.14E-04
R	51c1431b	0.2900	51.8320	0.3800	24.1930	0.4100	17.8730	0.4500	19.9790	2.2297	0.0474	0.0829	5.5049	1.44E-04
R	06c1420b	0.2400	34.4880	0.3000	22.8490	0.3400	17.6990	0.3700	18.4740	4.3530	0.1440	0.0263	13.27 6 0	2.07E-05
	STATISTICS	gain	pines			8 7							88.C71.S	
	MEAN	0.3333	44.6018	59.5017	21.2183	0.4883	15.5307	0.5383	13.9925	4.1250	0.0877	0.0234	8.3288	3.96E-04
	ST. DEV.	0.1695	9.6976	******	3.9601	0.2358	3.4753	0.2635	6.4965	2.8526	0.0560	0.0324	3.3761	4.96E-04
	N	6	6	6	6	6	6	6	6	6	6	6	6	6
	SEM	0.0686	0.5190	2.0063	0.3317	0.0809	0.3107	0.0856	0.4248	0.2815	0.0394	0.0300	0.3062	3.71E-03

TΛ	DI	E	20	
10	DL	_	4 u	

17														
Sum	of Sines Pro	tocols - F	Post Fligh	t Day 6 (1	1-1 5-93)							tolal ne	1008 =	1
	Frequency	0.0293		0.0879		0.2051		0.3809						
0.7	PLENAME	. peitt	phene	gain	pluxers		******	80	otte es			teu Y	tau L	
L	07c1501b				***			***		***		***	***	
L	07c1502b		***	***	•••	***			***		***	***	***	••••
L	07c1505b			***	•••			•••			***		***	
ι	07c1507b		***	***		***			***		***	•••	***	
L	07c1508b	0.3900	61.2390	0.6400	31.1720	0.7400	14.1160	0.7900	13.1660	2.7421	0.0523	0.0040	3.6669	6.09E-04
ι	03c1516b		***			•••	••••	•••			•••	***	***	
L	03c1518b	***	***		***	•••	***		***		***	•••	***	
	STATISTICS	gain	phase	gein	phase	***			phese	6		stau Ve	stey i s	NA SEC
_	MEAN	0.3900	61.2390	0.6400	31,1720	0.7400	14.1180	0.7900	13.1660	2.7421	0.0523	0.0040	3.6669	6.09E-04
	ST. DEV.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0
	N	1	1	1	1	1	1	1	1	1	1	1	1	1
	SEM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0

TA	BLE 21													
Sun	of Sines Pro	eocols - l	Poet Filgh	nt Day 7 (*	1-16-93)							totel n	w/ons =	1
	Frequency	0.0293		0.0879		0.2051		0.3809						
222	FILENAME:	gein	phase	gain	physe	gela ti	phese	gala	phase	G		tou.V	tau L	
L	92c1601b		***	***	**		***	***	***	***		***		***
L	01c1601b	***	***				•••	•••			•••	***	***	***
L	01c1602b	••••	***				***	•••					***	***
L	01c1604b	3.0700	54.0910	5,1600	30.1210	5.5100	19.4080	6.4200	20.8810	0.9620	0.1173	0.0385	5.4995	4.59E-05
	STATISTICS	gain			phase		81		phese			atini 7	teu L	80. E. 88
	MEAN	3.0700	54.0910	5.1600	30.1210	5.5100	19.4060	6.4200	20.8810	0.9620	0.1173	0.0385	5.4995	4.59E-05
	ST. DEV.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0
	N	1	1	1	1	1	1	1	1	1	1	1	1	1.
	SEM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0

TABLE 22

Sum	of Sines Pro	tocols - F	Poet Fligh	t Day 11	(1-21-93)		•					n letet	eurons =	6
	Frequency	0.0293		0.0879		0.2051		0.3809						
-	FILENAME	gain	phase.	geitt	phese	gain	place	- gein	phene	3		StartVe	teu L	
R	06c2101b	0.1400	73.8120	0.1700	19.1320	0.2400	21.6990	0.2200	21.6820	0.0000	0.0590	0.0718	4.2580	1.04E-13
R	06c2102b	0.4000	37.2170	0.5100	28.5430	0.6200	23.5580	0.7000	23.6410	0.0001	0.2140	0.0224	15.8620	1.63E-14
R	06c2104b	0.2300	30.9860	0.2700	14.3720	0.2900	8.7490	0.2900	7.1110	2.9420	0.0480	0.0031	10.4350	1.40E-05
R	06c2105b	0.4100	33.0500	0.5300	21.0970	0.5800	17.1940	0.6200	15.2290	0.0001	0.1340	0.0134	13.1940	1.47E-14
R	06c2106b	0.1600	48.9780	0.2600	13.9430	0.2900	13.2710	0.3100	14.2840	1.7730	0.0770	0.0108	6.3430	7.15E-04
R	06c2108b				••••	***	***	***		•••	***			***
R	06c2109b			•••	•••	***	***	•••		444	***		***	***
R	06c2111b	0.2500	32.4000	0.3200	19.9780	0.3500	14.5400	0.3600	12.5940	0.0000	0.1100	0.0076	12.0430	8.37E-15
	STATISTICS	gain.	phase	gain.	phase		8	86	phaee	G	k	teų V	tin L	
	MEAN	0.2650	42.7405	0.3433	19.5108	0.3950	16.5018	0.4167	15.7568	0.7859	0.1070	0.0215	10.3558	1.22E-04
	ST. DEV.	0.1161	16.5762	0.1453	5.3267	0.1631	5.5077	0.1954	6.0740	1.2723	0.0614	0.0255	4.3477	2.91E-04
	N	6	6	6	6	6	6	6	6	6	6	6	6	6
	SEM	0.0568	0.6786	0.0635	0.3847	0.0673	0.3911	0.0737	0.4108	0.1880	0.0413	0.0266	0.3475	2.84E-03

Sine Protocol 0.2051 Hz

TABLE 20 Post-Fight Day 3 (1-12-93) For FEENANC galaxy phone R 151c1206d 0.56 14.5580

a and a second second

N

SEM

MEAN

ST. DEV.

Post-Fight Day 5 (1-14-93)

51014210

51c1424d

51c1425d 51c1425d 51c1428d 51c1429d

06c1420d

ST. DEV.

0.16 11.7780

1.02 11.1400 0.71 21.0360

0.61 10.6730

0.31 4.2974

0.00 20.7930

0.52 28.9100

0.35 21.7340 0.20 11.0700

0.66 16.4580

0.34 18.7500

0.18 5.3325

0.07 0.3849

1.42 23.2340

1.44 42.1090

88 -1.08 30.1897

0.61 10.3704 3

0.26 1.0734

3

6

6

MEAN 0.45 19.2658

N

TABLE 28 Poet-Fight Day 6 (1-15-93) Two 15 Shidher 9 Shi

SEM

0.61

5

0.11

18

5

13.8370

0.4146

TABLE 26

R 51c1207d

R

R

R 51c1211d

51c1209d

51c1210d

R 51c1216d

TABLE 27

R

R R

R R

TABLE 28

L

L

07c1501d

07c1502d

S MARANA STATE

MEAN ST. DEV.

N

SEM

AB	LE 23			
-	Fight (11-14-92	to 12-9-	92/	
	E. S. La		**************************************	
L	**01o1702d	0.43	9.8610	
L	03a1401d	1.02	19.2150	
L	03a1402d	2.26	25.6480	
ι	03e1407d	0.70	12.1920	
ι	75a1504d	•••	•••	
ι	01a1601d	•••	•••	
L	01a1602d	0.60	21.0840	
ι	01a1603d	0.31	-16.7600	
L	01a1603h	***		
L	07a1801d	1.64	36.8490	
ι	07a1602d	0.77	22.3990	
L	07a1610d	0.36	10.6120	
ι	07a1611d	0.38	9.1950	
ι	07a1612d	0.57	12.1490	
ι	01a2004d	1.12	25.9100	
L	01a2005d	0.39	13.1760	
L	01a2006d	0.81	24.8050	
Ĺ	01a2007d	•••		

01a2007d	•••	
MEAN	0.81	16.1667
ST. DEV.	0.56	12.4152
N	14	14
SEM	0.05	0.2517
	01a2007d MEAN ST. DEV. N SEM	01a2007d MEAN 0.81 ST. DEV. 0.56 N 14 SEM 0.05

TABLE 24 Synchronaus Cantral

TABLE

(1-9	93 to 1-10-93		
8	G. Mariani	×	
Т	07a1002d	0.31	10.1680
L	07a1003d	1.09	18.7090
	S. Lichter Strike		
	MEAN	0.70	14.4365
	ST. DEV.	0.55	6.0394
	N	2	2
	SEM	0.37	1.2288

TABLE 25 Post-Flink Day 2 (1-13-93)

-		A DECIDENTIAL OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER	AND DESCRIPTION
	and an and an 1888	888	881
R	06c1102d	0.49	14.8520
R	08c1105d	0.58	16.4380
R	05c1106d	0.34	11.6900
R	08c1108d	0.34	10.5890
R	08c1112d	0.37	10.7400
R	51c1101d	0.28	8.8000
R	51c1103d	0.27	9.1140
	W. M. M. M. M. M.		
	MEAN	0.38	11.7461
	ST. DEV.	0.11	2.8758
	N	7	7
	SEM	0.05	0.2423

TAB	LE 29		
Poet	Flight Day 7 (1	1-16-93	
8	la hin har	******	
T	01c1601d		
L	01c1602d	0.74	14.7970
ι.	01c1603d		
ι.	01c1604d		
L	01c1604h	0.29	19.1610
l L	92c1601d	•••	•••
	× n.u. mái		
	MEAN	0.52	16.4790
	ST. DEV.	0.32	2.3787
	N	2	2
	SEM	0.26	0.7712

TAB Post	LE 30 -Fight Day 8_(1	1-17-93	
1	a designation of the second		
ĩ	07c1701d	0.81	3.8540
	area ang		s
	MEAN	0.01	3.8540
	ST. DEV.	0.00	0.0000
	N	1	1
	SEM	0.00	0.0000

т/ Р(AB >==	LE 31 - <i>Flight Day_11</i>	(1- <u>21-93</u>	
к.				
	R	06c2101d		140
	R	06c2102d	0.61	24.4030
1	R	06c2102h	•••	
1	R	06c2104d	0.28	9.2520
***	*	Statt twee		86 June 188
_		MEAN	0.45	16.8275
		ST. DEV.	0.23	10.7134
		N	2	2
		SEM	0.24	1.6366

Page	Т1	2

APPENDIX 3

Histograms comparing the parameters measured for primary afferent activity for Cosmos flight 2044 and Cosmos flight 2229. The probability values above each pair of bars result from a statistical comparison of adjacent bars - One from flight 2044 and one from flight 2229. When a histogram is presented for each flight alone, the statistical comparisons above each bar is referring to the preflight/synchronous controls values. In addition to the histograms, supporting mean data are also included.

			COSI	MOS 2044		· · · ·	cosi	MOS 2229	·		Statistical Signifi	cance
	plot				no.				<i>n</i> o.	2044 vs.	Ctrl. vs. PFDays	Ctrl. vs. PFDays
	order	Gain	SEM	no. units	observations	Gain	SEM	no. units	observations	2229	Cosmos 2044	Cosmos 2229
Pre-Fit/Synch Ctris	1	0.5123	0.085	4	16	0.8721	0.048	24	79	**0.0019		
Days 1-2	2	0.7816	0.051	8	31	0.3855	0.032	12	35	***0.0000	**0.0062	•••0.0000
Days 3-4	3	0.9638	0.105	4	15	0.4407	0.029	14	53	0000	**0.0012	•••0.0000
Day 5	4	0.5232	0.036	1	4	0.4179	0.034	8	28	0.1239	0.5083	***0.0000
Post-Fit Ctri	5	0.4238	0.026	11	41	0.7666	0.110	5	16	0.0173	0.7492	0.3815
Day 11	6			Mhiillh.		0.3636	0.033	9	35			•••0.0000

.

Pulse Analysis

			cosi	MOS 2044			cosi	MOS 2229		<u> </u>	Statistical Signifi	cance
	plot	1			no.				no.	2044 vs.	Ctrl. vs. PFDays	Ctrl. vs. PFDays
_	order	k	SEM	no. unita	observations	k	SEM	no. units	observations	2229	Cosmos 2044	Cosmos 2229
Pre-Fit/Synch Ctris	1	0.1167	0.023	4	16	0.1009	0.010	24	79	0.4909		
Days 1-2	2	0.1889	0.020	8	31	0.0793	0.014	12	35	00000	0.0506	0.2427
Days 3-4	3	0.1638	0.031	4	15	0.0772	0.010	14	53	**0.0056	0.2517	0.1731
Day 5	4	0.1770	0.047	1	4	0.0739	0.009	8	28	0.0402	0.2550	0.3709
Post-Fit Ctri	5	0.0705	0.014	11	41	0.1060	0.030	5	16	0.0146	0.0792	0.6458
Day 11	6			<i>\////////////////////////////////////</i>		0.0526	0.009	9	35			**0.0077

Puise Analysis

			COS	MOS 2044			COSI	AOS 2229			Statistical Significa	лсе
	piot				no.				no.	2044 vs.	Pre- vs. Post-Fit	Pre- vs. Post-Fit
_	order	DC	SEM	no. unite	observations	DC	SEM	no. unita	observations	2229	Cosmos 2044	Cosmos 2229
Pre-FIVSynch Cirl	1	101.7738	7.072	4	16	134.0860	2.617	24	79	***0.0001		
Dey 1-2	2	96.1805	3.825	8	31	105.0165	4.071	12	35	0.0215	0.9910	•••0.0000
Dey 3-4	3	106.9954	6.186	4	15	95.2533	3.817	14	53	0.2770	0.2517	***0.0000
Dey 5	4	134.3414	1.982	1	4	98.7476	5.034	8	28	0.0143	0.1306	***0.0000
Post-Fit Cirl	5	105.4221	2.838	11	41	117.1660	2.582	5	16	0.0146	0.2306	**0 .0013
Dey 11	6	411111111111			<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	105.6231	5,743	9	35			***0.0000

			COSI	MOS 2044			COSI	AOS 2229			Statistical Signifi	cance
	plot	Teu(L)			no.	Teu(L)			no.	2044 vs.	Ctrl. vs. PFDays	Ctrl. vs. PFDays
-	order	dec.	SEM	no. units	observations	dec.	SEM	no. units	observations	2229	Cosmos 2044	Cosmos 2229
All Controls	1	5.9404	0.555	15	27	5.9332	0.351	29	48	0.9362		
Day 1-2	2	6.0008	0.562	8	16	9.3065	0.849	12	19	**0.0023	0.9000	***0.0001
Day 3-4	3	4.9870	0.579	4	8	6.6974	0.544	14	27	0.1073	0.4094	0.1499
Day 5	4	6.5457	1.493	1	2	6.6196	0.592	8	14	0.7508	0.6670	0.2278
Day 11	5		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	<i></i>		8.5129	0.770	9	18			*0.0014

			COSI	MOS 2044			COSI	MOS 2229	_		Statistical Signifi	cance
	piot	i i			no.				no.	2044 vs.	Ctrl. vs. PFDays	Ctrl. vs. PFDays
	order	Tau (L) Inc.	SEM	no. unita	observations	Tau (L) Inc.	SEM	no. units	observations	2229	Cosmos 2044	Cosmos 2229
All Controls	1	8.1548	0.570	15	30	7.2351	0.337	29	49	0.2843		
Day 1-2	2	7.1331	0.767	8	15	9.5870	0.929	12	16	0.069	0.3602	*0.0155
Day 3-4	3	5.5618	0.715	4	7	10.0820	0.784	14	26	**0.0048	*0.0299	**0.0031
Day 5	4	8.4872	2.405	1	2	9.9398	1.122	8	14	0.5254	0.7555	*0.0158
Day 11	5			<i>Minilli</i> .		9.0181	0.613	9	17			**0.0057

		Puise Ear Da	ta Reference	
	Decreesing Pulse 1	Increasing Pulse 1	Increasing Pulse 2	Decreasing Pulse 2
Left Ear	Step 1	Step 2	Step 3	Step 4
ight Ear	Step 2	Step 1	Step 4	Step 3

TABLE XX cosmos 2044 Pre-Flight Control (07/23/89-08/02/89)

OTT23789-06402789) Increasing Pulse 1 DC C ain K Taul L DC Gain K Taul L DC C 1440 0.0000 2.1422 765792 0.913 0.3039 9.6990 0.000 0 1764 0.1138 8.0222 9.65792 0.3431 0.1061 13.6075 96.3955 0. 1704 0.1171 6.6522 145.5442 0.4731 0.2101 13.8052 14.0000 0 484 0.0000 3.2839 87.9727 0.1476 0.2000 7.869 90.3075 0 ain K Taul DC Gain K Taul DC C 7 779 0.0776 4.13524 1033108 0. 0	Ommol (p7723789.06/02789) Increasing Pulse 1	044 Pre-Flight Control (0772395-0802283) 014 Fre-Flight Control (0772395-0802283) 014 File Decreasing Fulse 1 01 File Ead Gain K Taul 02 Decreasing Fulse 1 DC Gain K Taul DC C 0 Taul DS 21422 76.5792 0.9143 0.3039 9.6969 80.000 0 Taul DS 0.1314 0.0000 2.1422 76.5792 0.9143 0.3039 9.63955 0.000 0 m782m015 R 0.3719 0.117 6.8522 14.5544 0.3016 13.6075 8.03075 1 m724m019 R 0.1434 0.0000 3.2833 87.9727 0.1476 0.2001 13.6075 0.0000 1 m724m019 R 0.1434 0.0000 2.1476 0.0000 13.607 0.1434 2 m724m019 R 0.1434 0.0000 3.23348 0.2141 13.8067 10.33108 0.0000 2 m724m019 R 0.1434 0.0000 2.0172 0.035348 0.1435 0.1333108 0.0000 3.1 dev 0.510
07723790-0602789) Total K laul Decreasing Pulse 2 Decreasing Pulse 2 Decreasing Pulse 2 Decreasing Pulse 1 Increasing Pulse 2 Decreasing Pulse 2 Decreasing Pulse 2 Decreasing Pulse 2 Decreasing Pulse 1 Decreasing Pulse 2 Decreasing Pulse 2 Decreasing Pulse 2 Decreasing Pulse 1 DC Gain K Jaul DC Decreasing Pulse 2 Gain K Jaul Decreasing Pulse 2 Gain K Jaul Decreasing Pulse 2 Colspan= 0.0000 OPE Decreasing Pulse 2 Decreasing Pulse 2 Gain K K Jaul Decreasing Pulse 2 Colspan= 136075 Decreasing Pulse 2 Decreasing Pulse 2 Decreasing Pulse 2 Colspan=136075 Decreasing Puls	Decreasing Pulse 1 Increasing Pulse 2 Decreasing Pulse 2 Decreasing Pulse 2 Image: Image	044 Pre-Fight Control (07/23/95-08/02/89) 044 Pre-Fight Control (07/23/95-08/02/89) Interesting Pulse 1 Decreasing Pulse 2 Decreasing Pulse 2 <t< td=""></t<>
OTT23769-06/02/289) Increasing Pulse 1 Increasing Pulse 1 Increasing Pulse 2 Decreasing Pulse 2 Jain K Taul DC Gain K Taul DC Gain K Jain K Taul DC Gain K Taul DC Gain K Jain K Taul DC Gain K Taul DC Gain K Jaid 0.000 21422 75372 0.9143 0.3039 96990 69355 0.1334 151752 0.4340 0.4374 0.2369 0.1336 151752 0.4396 0.1337 Jib0 0.1111 85522 10.1474 0.1026 49.0000 0.4396 0.1307 0.1902 0.1902 Jib 0.0000 3.186 90.3075 0.1199 0.0000 0.4941 0.0000 0.4396 0.1307 0.1902 Jib K Taul DC Gain K Taul DC Gain	Outrou (0772309-0600239) Increasing Pulse 1 Increasing Pulse 2 Decret 2a1 Gain K Taul DC Taul DC	044 Pre-Flight Control (0772395-0802/28) 044 Pre-Flight Control (0772395-0802/28) Interesting Pulse 1 Increasing Pulse 2 Decree Interesting Pulse 1 DC Gain K Taul DC Gain K Taul DC Gain K Jaul DC Gain
OTT23789-06/02/289) Increasing Pulse 1 Increasing Pulse 2 ain K Taul DC Gain K Taul DC I bin K Taul DC Gain K Taul DC I bin K Taul DC Gain K Taul DC I I I DC I I I DC I I DC I I DC I I I DC	Ommol (p172389-06/0239) Incressing Pulse 1 Incressing Pulse 2 2:al Gain K Taul DC Gain K Taul DC C	044 Pre-Fight Control (07/23/89-08/02/89) 044 Pre-Fight Control (07/23/89-08/02/89) Interessing Pulse 1 Increasing Pulse 2 Interessing Pulse 1 Increasing Pulse 2 Interessing Pulse 1 Increasing Pulse 2 Interessing Pulse 1 Interessing Pulse 2 Interessing Pulse 2 Interessing Pulse 2 Interessing Pulse 1 Interessing Pulse 2 Interessing Pulse 2
OTT23789-04/02/289) Increasing Pulse 1 Increasing Pulse 1 Increasing Pulse 1 Jain K Taul DC Gain K Taul Jain K Taul DC Gain K Taul DC Jain K Taul DC Gain K Taul DC Jain K Taul DC Gain K Taul DC Jaid 0.0000 21455 0.3413 0.3031<0.1081	Ommol (0772369-08/02/39) Increasing Pulse 1 Increasing Pulse 1 Increasing Pulse 1 Decreasing Pulse 1 Dc Gain K Taul V L 1314 0.000 2.1422 76.5792 0.9143 0.3039 8.690 0.0011 0.2064 8.058 R 0.3764 0.1388 4.8025 92.0427 0.3141 9.0655 0.4734 0.0664 8.056 R 0.1494 0.3034 0.3034 13.605 146.0000 0.441 0.0664 8.056 R 0.1494 0.3034 0.3014 13.605 146.0000 0.4194 0.0364	044 Pre-Flight Control (07723/95-06/02/99) 044 Pre-Flight Control (07723/95-06/02/99) int File Land Increasing Pulse 1 Increasing Pulse 1 Increasing Pulse 1 int File Land Cain K Taul DC Gain K Taul int File Land Cain K Taul DC Gain K Taul int All Bit Samo 0 3143 0.0000 2 1422 76.5192 0 3143 0.0306 0 4141 0.2286 51.297 int District Bit Bit District District District K Taul District Mit District Mit District Mit District Mit District Mit District Mit District District District District District District District District <
OTT23789-06/02/269) Increasing Pulse 1 Increa	Ommol (0772399.060/239) Increasing Pulse 1 Increasine 1 Increasing Pulse 1 Increasi	044 Pre-Flight Control (0772389-0800289) Increasing Pulse 1
0772379-0602789) Corresting Pulse 1 Increasing Pulse 1 DC I Jain K Taul DC I Decreasing Pulse 1 DC Gain K Taul DC I 1440 0.0000 2.1422 765792 0.9433 0.01081 13.8075 98.9355 00 0 1740 0.1380 8.0000 0 143.0000 0 21422 75.932 0.7689 90.3075 0.8355 0 7000 0 7889 90.3075 0 7689 20.3075 0 776 0.1382 10.3108 0 776 0.7689 20.3075 0 776 0 776 0 776 0 776 0 776 0 776 10.3108 0 776 0 776 0 776 10.3108 0 776 0 776 10.3108 0 0 0 776 0 10.317 10.3108 0 0	Ommol (p1723789-06/02789) Incressing Pulse 1 Incressing Pulse 1 Decreasing Pulse 1 Dc 1 2 I (3314 0 0000 2 1422 765792 0.9143 0.3039 96990 80 0000 0 0 1 1.314 0 0000 0 0	044 Pre-Fight Control (07/23/89-04/02/89) onter Decreasing Pulse 1 Increasing Pulse 1 DC 1 in File Earl Gain K TauL DC Gain K TauL DC 1 mm22m013 K 0.3764 0.1388 4.8025 92.047 0.3431 0.1081 13.6075 98.9355 0 mm22m013 R 0.3764 0.1398 4.8025 92.047 0.3431 0.1081 13.6075 98.9355 0 mm22m025 R 0.1794 0.0000 3.145.5444 0.4731 0.2014 13.8075 98.9355 0 mm22m025 R 0.4708 0.1717 0.8522 145.5444 0.4731 0.2014 13.8075 98.9355 0 mm22m025 R 0.4708 0.1717 0.8522 145.5444 0.4731 0.2014 13.8075 98.9355 0 mm22m025 R 0.1494 0.0000 3.2839 87.977 0.1476 0.0000 7.7689 99.3075 0 mmem 0.5178 0.0776 4.2702 100.348 0.4695 0.1534 11.2204 103.3108 0 st. dev. 0.510 0.091 2.037 30.712 0.325 0.130 112204 103.3108 0 st. dev. 0.510 0.091 2.037 30.712 0.325 0.130 112204 103.3108 0 st. dev. 0.510 0.091 2.037 30.712 0.325 0.130 2.978 29.300 0 st. dev. 0.510 0.091 2.037 30.712 0.325 0.130 2.978 29.300 0 st. dev. 0.550 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358 0.163 0.065 1.489 14.650 0 cmmem 0.255 0.045 1.019 15.358
(07/23/95 - 06/02/89) (Increasing Pulse 1 Im K TauL DC Gain K TauL Taul X TauL DC Gain K TauL Taul DC 21422 765/92 0.9143 0.303 9.6990 Trad 0.0000 2.1422 765/92 0.9143 0.303 9.6990 Trad 0.0000 2.1425 9.444 0.4731 0.2014 3.8075 Trad B.8522 145.5444 0.4731 0.2014 3.805 494 0.0000 3.2839 87.577 0.1476 0.0000 7.7869 ain K TauL DC Gain K TauL 779 0.0776 4.3572 0.325 0.1534 1.2204 779 0.0776 4.3 4 4 4 4 779 0.0163 1.536 0.163 0.065 1.489 70 0.173 0.325 0	Ommol (p7/23/99.04/02/289) Increasing Pulse 1 Increasing Pulse 1 Eld Gain K Tau L DC Gain K Tau L L 1.3149 0.0000 2.1422 765/92 0.9143 0.303 9.6990 L 1.3148 0.0000 2.1422 765/92 0.9143 0.303 9.6990 R 0.3764 0.3731 0.1081 13.6075 0.9143 3.6075 R 0.3764 0.4759 0.1171 6.8522 145.5444 0.4731 0.2143 3.6075 R 0.1434 0.0000 3.2839 87.972 0.2146 0.0000 7.7869 Gain K Tau L DC Gain K Tau L n 0.5779 0.0776 4.202 1005348 0.1534 11.2204 n 0.5779 0.0773 0.325 0.1534 11.2204 4 4 4 n 0.557 0.0163 15.356 0.163 0.163 <td>044 Pre-Flight Control (07/23/89-06/02/89) onse <u>Centrol (07/23/89-06/02/89)</u> int File Eat Gain K Taul DC Gain K Taul m248.0003 [R 0.3744 0.3143 0.3039 9.6990 m74.0019 [R 0.3744 0.333 8.48025 9.2042 10.3014 13.8075 m774.0019 [R 0.1171 8.8522 145.5444 0.4731 0.2014 13.8075 m774.0019 [R 0.1171 8.8522 145.5444 0.4731 0.2014 13.8055 m774.0019 [R 0.1171 8.8522 145.5444 0.4731 0.2014 13.8055 state of the state o</td>	044 Pre-Flight Control (07/23/89-06/02/89) onse <u>Centrol (07/23/89-06/02/89)</u> int File Eat Gain K Taul DC Gain K Taul m248.0003 [R 0.3744 0.3143 0.3039 9.6990 m74.0019 [R 0.3744 0.333 8.48025 9.2042 10.3014 13.8075 m774.0019 [R 0.1171 8.8522 145.5444 0.4731 0.2014 13.8075 m774.0019 [R 0.1171 8.8522 145.5444 0.4731 0.2014 13.8055 m774.0019 [R 0.1171 8.8522 145.5444 0.4731 0.2014 13.8055 state of the state o
07723r9-06/02/269) Incree Image: Comparison of the second of the s	Ommol (07/23/08-0.02/28) Increasing Pulse 1 Increasin 1 Increasing Pulse 1 Increasi	044 Pre-Flight Control (07/23/89-08/02/89) onse Decreasing Pulse 1 Increa 1 Table Ead Gain K TauL DC Gain K 1 m248.3m013 R 0.1384 8.1802 9143 0.303 1 m28.3m025 R 0.1384 8.8023 92.0427 0.3431 0.108 1 m724.m019 R 0.1394 0.1388 8.8023 87.572 0.1476 0.000 1 m774.m019 R 0.1494 0.000 3.2839 87.572 0.1476 0.000 1 m774.m019 R 0.1494 0.000 3.2839 87.572 0.1476 0.000 1 m774.m019 R 0.1799 0.0776 4.2702 1005.348 0.4895 0.153 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
(07723789.06402789) (07723789.06402789) (ain K Taul Doc (1340 (10000 2.1427 (0.1717 (1340 (1338) 4.8025 92.427 (0.1717 (1340 (1338) 4.8025 92.444 (0.1718 (0.1718 (0.1718 (0.1718 (0.1717 </td <td>Ommor (07723789-08/02/28) Carlo (07723789-08/02/28) Carlo (07723789-08/02/28) L Decreasing Pulse 1 DC C L L 13140 0.0000 2.1422 76.5792 0.1 R 0.3764 0.1338 4.8022 1432 54.44 0. R 0.1494 0.0000 3.2839 87.9727 0. 6 R 0.1494 0.0000 3.2839 87.9727 0. 7 0. Gain K 1.01 3.0173 30.712 0. m 0.255 0.045 1.019 15.356 0.</td> <td>044 Pre-Fight Control (07/23/89-08/02/89) onse Decreasing Pulse 1 00 0 1 1 File Ead Gain K Taul DC 0 1 m2483m013 R 0.3784 0.01388 4.8022 145.5444 0. 1 m724m019 R 0.4799 0.1711 8.8522 145.5444 0. 1 m724m019 R 0.4799 0.1711 8.8522 145.5444 0. 1 m774m019 R 0.1494 0.0000 3.2833 87.8727 0. 1 m774m019 R 0.1494 0.0001 3.283 0.045 1.019 15.356 0. 1 m784 0.0001 0.255 0.045 1.019 15.356 0. 1 m784 0.0001 0.255 0.045 1.019 15.356 0. 1 m784 0.0001 0.0001 0.0001 0.0001 0.0001 0. 1 m784 0.0001 0.0001 0.0001 0.0001 0. 1 m774 0.0001 0.0001 0.0001 0.0001 0.0001 0. 1 m774 0.0001 0.00001 0.0001 0.0001 0.0001 0.</td>	Ommor (07723789-08/02/28) Carlo (07723789-08/02/28) Carlo (07723789-08/02/28) L Decreasing Pulse 1 DC C L L 13140 0.0000 2.1422 76.5792 0.1 R 0.3764 0.1338 4.8022 1432 54.44 0. R 0.1494 0.0000 3.2839 87.9727 0. 6 R 0.1494 0.0000 3.2839 87.9727 0. 7 0. Gain K 1.01 3.0173 30.712 0. m 0.255 0.045 1.019 15.356 0.	044 Pre-Fight Control (07/23/89-08/02/89) onse Decreasing Pulse 1 00 0 1 1 File Ead Gain K Taul DC 0 1 m2483m013 R 0.3784 0.01388 4.8022 145.5444 0. 1 m724m019 R 0.4799 0.1711 8.8522 145.5444 0. 1 m724m019 R 0.4799 0.1711 8.8522 145.5444 0. 1 m774m019 R 0.1494 0.0000 3.2833 87.8727 0. 1 m774m019 R 0.1494 0.0001 3.283 0.045 1.019 15.356 0. 1 m784 0.0001 0.255 0.045 1.019 15.356 0. 1 m784 0.0001 0.255 0.045 1.019 15.356 0. 1 m784 0.0001 0.0001 0.0001 0.0001 0.0001 0. 1 m784 0.0001 0.0001 0.0001 0.0001 0. 1 m774 0.0001 0.0001 0.0001 0.0001 0.0001 0. 1 m774 0.0001 0.00001 0.0001 0.0001 0.0001 0.
0772389.080289) Decreasing Pulse1 ain K 1auL Decreasing Pulse1 148 0.0000 2.1422 1780 0.1388 8522 1790 0.1717 8.8522 1790 0.0776 4.2702 179 0.0776 4.2702 170 0.091 2.037 1.019 25 0.045 1.019	Ontrol (07/23/89.08/02/89) Cain K Tau L L 1.3149 0.0000 2.1422 R 0.3764 0.1384 6.0500 3.2839 R 0.1434 0.0000 3.2839 5.631 Gain K Tau L 5.852 5.839 Gain K Tau L 5.833 Gain K Tau L 5.833 Gain K Tau L 5.833 Gain K Tau L 4 4 n 0.557 0.045 1.019 3.2839	044 Pre-Fight Control (07/23/89-08/02/89) onse Decreasing Puise 1 in File Ear Gain K 1au L m722m013 K 0.3764 0.1308 0.1422 m722m025 R 0.4709 0.1117 0.6522 m774m019 R 0.1434 0.0000 3.2839 5 m774m019 R 0.1434 0.0000 3.1434
07723789-08 ain K Decrea ain K 1769 0.1305 1779 0.1711 779 0.0776 1 0.0976 1 0.0976 1 0.0976 1 0.0976 1 0.0976 1 0.0976 1 0.0076 1 0.0076 1 0.00776 1 0.007776 1 0.007777777777777777777777777777777777	Ontrol (07/23/89-08 Cain K L 1.3149 0.0000 L 1.3149 0.0000 R 0.1709 0.1711 R 0.1494 0.0000 Gain K Gain R 0.1709 0.0779 N 0.5779 0.0774 N 0.5710 0.091 N 0.5710 0.091 N 0.2510 0.045 M 0.255 0.045	044 Pre-Flight Control (07/23/89-08 onse Deveating to Deveating the Control (07/23/89-08 in T22m013 R 0.3764 0.138 m/22m013 R 0.14769 0.01718 m/74m019 R 0.1494 0.0000 S m774m019 R 0.1494 0.0000 S m774m019 R 0.1494 0.0001 st dev 0.5179 0.00718 st dev 0.5178 0.091 st dev 0.5178 0.091 st dev 0.5178 0.091 st dev 0.5178 0.091 st dev 0.518 0.001 st dev 0.518 0.0001 st dev 0.518 0.00001 st dev 0.
		044 Pre-Flight Control borse Ear G m282m013 R 0.5 m724m019 R 0.1 mean 0.5 sem 0.5 sem 0.5

TABLE XX

	Γ	k	:	.9243	9603	.5936	.9921	7678	5269	k	2669	275	=	812	6025	047	ß	555
its: 6	buise	Ľ		332 92	734 137	010 113	716 85	743 96	405 95	Ē	15 103	25 19		55 55	100 (100)	57 17		۰ ا
ber of un	ege Incre	ľ	*	98 6.4	83 5.8	29 4.2	34 6.5	46 8.0	68 6.2	Tau	90 6.41	5 2.5	÷	2 0.7	76 8 06	2 24		1 200 X
Шnu	Avere	¥	•	38 0.28	17 0.27	38 0.06	30, 0.07:	22 0.13	16 0.28	¥	1 0.19	3 0.10	F	8 0.03	3 0.18	0.10	8	500
		Gair	:	3 0.923	3 0.864	10 0.69 <u>5</u>	0.39	0.623	1 1.251	Gair	2 0.801	0.29	F	0.08	n 0.796	v. 0.32	n 23	200
	Ď	ß	:	91.374	125.693	102.992	84.020	100.000	84.881	В	98.160	15.161	5	4.377	otal mea	st dev		
)ecreasir	TauL	:	4.4083	5.3844	4.0546	6.4062	8.7660	5.4866	TauL	5.7510	1.860	5	0.537	2			
	verage I	¥	:	0.2144	0.2622	0.0671	0.0653	0.2833	0.1713	¥	0.1772	0.102	12	0.029				
		Gain		1.1006	1.1351	0.4905	0.3791	0.5145	1.1317	Gain	0.7919	0.356	12	0.103				
	F	2		000	8.0134	1135	3294	0000	1321		.8647	5.533	60	341				
	ulse 2	L L		534 90	672 12	965 95	350 83	385 10	702 86	uل	101 96	81 1	5	9 60				
	reasing F	K Ta		182 5.4	115 6.7	341 3.5	365 6.8	703 9.6	359 6.1	k Ta	344 6.4	8	-	41 0.6		•		
	Deci	л Т		36 0.2	51 0.34	10 01	60 0.0	177 0.27	15 0.16	n k	20 0.20	75 0.1	Ð	53 0.0				
		Ga	***	73 0.97	06 1.17	0.3	76 0.36	0.45	00 1.1	- Ca	71 0.75	0 03	•	1 0.1				
	2	8	:	91.57	140.92		86.83	85.00	105.00	8	103.86	21.76	S	9.73				
	ing Pulse	TauL	:	6.8559	2.9038		4.4703	5.6974	3.6459	Taul	4.7147	1.584	ŝ	0.708				
	Increas	¥		0.2876	0.2196		0.0489	0.1287	0.2956	х	0.1961	0.108	ŝ	0.047				
		Gain		0.9033	0.8668		0.3776	0.6783	1.2996	Gain	0.8251	0.337	ŝ	0.151				
		8		94.2712	35.0000	13.5936	35.1466	02.5355	8.0537	8	02.7668	19.069	8	7.785				
	Pulse 1	auL	:	8504	8430 1	2010 1	6729 8	4512 1	8351 8	au L	8256 1	294	\$	937				
	creasing	۲ ۲		2920 5.	3370 8.	0629 4.	0979 8.	1405 10	2779 8.	×	2014 7.	115 2	8	047 0				
	n.	ain	:	3443 0.	3626 0.	3958 0.1	4143 D.t	.0 0995	2036 0.	aın	7811 0.	283 0.	8	115 0.				
	Н		ŀ	486 0.1	3732 0.1	2716 0.1	108 0.	000	300 1		557 0.	<u>8</u>		87 0.				
	ise f		ĺ	11 92.7	125°	36 110.	3 84.7	1001	NO 83.6		8 99.4	7 16.	2	4 6.5				
	nd buise	Tau	:	5 3.363	8 4.001	0 4.512	0 5.977	2 7.893	5 4.8 03	Tau	0 5.091	1.62	¢	990				
29/89)	Decret	¥	:	3 0.180	0.182	0000	3 0.064	2 0.296.	3 0.176	¥	9 0.150	0.104	Ð	0.042				
1 1 (09V		i Gain	:	1.227	1.095	0.594	0.391:	0.531	1.151	Gain	0.831	0.386	•	0.148				
ΨL D4		۳	Ľ	۲ 0	æ	œ	œ	8	R		mean	Ş.	4	Ser				
14 POST-FIIG	lse	E E	a83anc02	m2483m4(a82and03	a82anb04	a82anb05	a82anb06	a82anb07			sl.						
S 204	10dsa	ŝ	1	5	m	4	S	ø	~	S								
COSMO	Pulse R	Monkey	2483		782					STATIS.								

Ellabor TABLE XX

2044 Post-Filght Day 2 (09/30/89)	14 Post-Flight Day 2 (09/30/89)	(Day 2 (09/30/89)	· 2 (09/30/89)	(68/0		to Duice			ocrea e inc	Dules 1				o Dulse 2			Decrees	inn Dulea	Ĺ		- Andrews	acrease.			number o	of units: 2	
Init File Ead Gain K Taul DC Gain K Taul DC	File Earl Gain K Taul DC Gain K Taul DC	Earl Gain K Taul DC I Gain K Taul DC	Gain K TauL DC Gain K TauL DC	K Taul DC Gain K Taul DC	Taul DC Gain K Taul DC	DC Gain K Taul DC	Gain K TauL DC	K TauL DC	Taul DC	8	-	Gain	¥	Tau	8	Gain	¥	Taul	k	Gain	×	Tau L	8	Gain	K	TauL	8
2 82anb09 R 0.5623 0.2955 11.5784 110.0000 0.5512 0.4409 8.6714 120.000	a82anb09 R 0.5623 0.2955 11.5784 110.0000 0.5512 0.4409 6.6714 120.000	R 0.5623 0.2855 11.5784 110.0000 0.5512 0.4409 6.6714 120.000	0.5623 0.2955 11.5784 110.0000 0.5512 0.4409 6.6714 120.000	0.2955 11.5784 110.0000 0.5512 0.4409 6.6714 120.0000	11.5784 110.0000 0.5512 0.4408 6.6714 120.0000	110.0000 0.5512 0.4409 6.6714 120.000	0.5512 0.4409 6.6714 120.0000	0.4409 6.6714 120.0000	8.6714 120.000	20.000	١Ē	0.8707	0.3024	5.3663	100.1446	0.7031	0.1315	3.7112	106.1926	0.6327	0.2135	7.6448	108.0963	0.7110	0.3717	6.0189	110.0723
3 a82anb10 R 0.6883 0.0114 6.4298 80.1017 0.8653 0.1726 12.4370 58.000	882anb10 R 0.6883 0.0114 6.4298 60.1017 0.8653 0.1726 12.4370 58.000	R 0.6883 0.0114 6.4298 60.1017 0.8653 0.1726 12.4370 58.000	0.68883 0.0114 6.4298 80.1017 0.8653 0.1726 12.4370 58.000	0.0114 6.4298 60.1017 0.8653 0.1726 12.4370 58.000	6.4298 60.1017 0.8653 0.1726 12.4370 58.000	80.1017 0.8653 0.1726 12.4370 58.000	0.8653 0.1726 12.4370 58.000	0.1726 12.4370 58.000	12.4370 58.000	58.000	6	0.9902 (0.1861	11.9946	57.3669	0.7140	0.000	5.2786	55.9318	0.7012	0.0057	5.8542	58.0168	0.9128	0.1794	12.2158	57.6835
4 a83anb09 L	a83anb09 L	L																									
CS [Gain K Taul DC [Gain K Taul DC	Gain K Taul DC Gain K Taul DC	Gain K Taul DC Gain K Taul DC	Gain K Taul DC [Gain K Taul DC	K Taul DC [Gain K Taul DC	Taul DC Gain K Taul DC	DC Gain K Taul DC	Gain K TauL DC	K Taul DC	Taul DC	8	H	Gain	¥	Taul	20	Gain	¥	Taul	8	Gain	¥	TauL	8	Gain	Ł	Tau L	8
mean 0.6253 0.1535 9.0041 85.0509 0.7083 0.3068 9.5542 89.000	mean 0.6253 0.1535 9.0041 85.0509 0.7083 0.3068 9.5542 89.000	ean 0.6253 0.1535 9.0041 85.0509 0.7083 0.3068 9.5542 89.000	0.6253 0.1535 9.0041 85.0509 0.7083 0.3068 9.5542 89.000	0.1535 9.0041 85.0509 0.7083 0.3068 9.5542 89.000	9.0041 85.0509 0.7083 0.3068 9.5542 89.000	85.0509 0.7083 0.3068 9.5542 89.000	0.7083 0.3068 9.5542 89.000	0.3068 9.5542 89.000	9.5542 89.000	89.000	Ē	0.9155 (0.2443	8.6805	78.7558	0.7086	0.0658	4.4949	81.0622	0.6669	0.1096	6.7495	83.0565	0.8119	0.2755	0.1173	83.8779
st dev. 0.089 0.201 3.641 35.283 0.222 0.190 4.077 43.841	st dev 0.089 0.201 3.641 35.283 0.222 0.190 4.077 43.841	dev. 0.089 0.201 3.641 35.283 0.222 0.190 4.077 43.641	0.089 0.201 3.641 35.283 0.222 0.190 4.077 43.841	0.201 3.641 35.283 0.222 0.190 4.077 43.841	3.641 35.283 0.222 0.190 4.077 43.841	35.283 0.222 0.190 4.077 43.841	0.222 0.190 4.077 43.841	0.190 4.077 43.841	4.077 43.841	43.841		0.063	0.082	4.687	30.248	0.008	0.093	1.108	35.540	0.071	0.137	3.407	29.005	0.179	0.125	3.622	31.315
n 2 2 2 2 2 2 2 2 2 2	n 2 2 2 2 2 2 2 2 2 2	n 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2	2 2 2 2 2 2 2	2 2 2 2 2 2	2 2 2 2 2	2 2 2 2	2 2 2	2	8		2	2	2	7	ы	8	8	7	4	4	4	4	4	4	4	4
sem 0.063 0.142 2.574 24.949 0.157 0.134 2.883 31.000	sem 0.063 0.142 2.574 24.949 0.157 0.134 2.883 31.000	sem 0.063 0.142 2.574 24.949 0.157 0.134 2.883 31.000	0.063 0.142 2.574 24.949 0.157 0.134 2.883 31.000	0.142 2.574 24.949 0.157 0.134 2.883 31.000	2.574 24.949 0.157 0.134 2.883 31.000	24.949 0.157 0.134 2.883 31.000	0.157 0.134 2.883 31.000	0.134 2.883 31.000	2.883 31.000	31.000		0.045	0.058	3.314	21.389	0.005	0.066	0.784	25.130	0.035	0.069	1.703	14.503	0:080	0.062	1.811	15.658
																				ĺ		5	ntal mean	0.7394	0.1926 🛞	PCDS Z	83.4672
																							st dev.	0.148	0.150	3 462	27.947
																							2	80	»»» ص	8	80
																							sem	0.052	0.053	1.235	9.881

TABLE XX COSMOS 2044 Post-Flight Days 1,2 (09/29/89,09/30/89)

IOS 2044 Post-Flight L	Jays 1,2 (08/23/83,0	(68/06/6																			number c	f units: 8	
esponse		Decreas	sing Pulse	1		Increasin	3 Pulse 1		-	Increasing	g Pulse 2		-	Decreasi	ing Pulse	~		Average L	Decreasing	~		Average	ncreasing	
rics	Gain	×	TauL	8	Gain	¥	TauL	20	Gain	¥	Taul	20	Gain	¥	TauL	20	Gain	¥	TauL	8	Gain	¥	TauL	В
та Ш	an 0.780	2 0.1509	6.0699	95.8545	0.7629	0.2277	9.2578	99.3251	0.8509	0.2098	5.8477	96.6924	0.7411	0.1698	5.9313	92.9141	0.7607	0.1603	6.0006	94.3843	0.8040	0.2194	7.1331	98.0965
ಕ	w. 0.325	5 0.116	2.658	20.206	0.256	0.130	2.603	23.978	0.280	960.0	3.013	24.865	0.318	0.112	1.940	20.156	0.311	0.111	2.249	19.556	0.261	0.112	2.971	23.543
	80 5	8	80	80	80	80	80	80	7	7	7	7	80	æ	80	80	16	16	16	16	15	15	15	15
3	m 0.115	5 0.041	0.940	7.144	060	0.046	0.920	8.477	0.106	0.036	1.139	9.398	0.112	0.040	0.686	7.126	0.078	0.028	0.562	4.889	0.067	0.029	0.767	6.079
																			8	tal mean	0.7816	0.1889 🛞	06490	96.1805
																				st dev.	0.2843	0.1134 (0)	26418	21.2943
																				0	31	3 3	3	31
																				sem	0.051	0.020 🛞	0 474	3.825

	4	Ę.	8	146.051	88.191	98.464	96.285	8	110.543	25.412	2	9.605	106.995	23.9595	15	6.186
	of units:	Increase	TauL	3.8065	5.4145	8.0118	4.9407	Taut	5.5618	1.892	7	0.715	52562	1,7713	15	0.444
	number	Average	¥	0.2026	0.0445	0.0947	0.2051	¥	0.1499	0.138	1	0.052	0.1638	0.1183	÷	0.031
			Gain	1.0216	0.5353	0.7236	1.5279	Gain	1.0116	0.413	2	0.156	0.9638	0.4080	15	0.105
			8	139.5313	78.3134	101.7395	95.9805	8	103.8911	23.896	ø	8.449	tal mean	st dev.	2	sem
		ecreasing	TauL	4.6640	3.7722	7.0038	4.5080	Taul	4.9870	1.637	80	0.579	Q Q			
		Average L	¥	0.3253	0.1459	0.1634	0.0691	¥	0.1759	0.106	80	0.037				
			Gain	1.1491	0.4454	0.6553	1.4385	Gain	0.9221	0.427	8	0.151				
		2	20	141.5051	77.4652	101.4789	97.4937	8	104.4857	26.823	4	13.412				
		ing Pulse.	Taul	5.6754	4.4232	6.0362	5.5666	TauL	5.4254	0.698	4	0.349				
		Decrease	ч	0.3572	0.1431	0.1344	0.1206	¥	0.1888	0.113	4	0.056				
			Gain	1.2560	0.3791	0.6692	1.3677	Gain	0.9180	0.472	4	0.236				
		~	BC	150.6433		95.0000	108.1643	DC	117.9359	29.080	e	16.789				
		g Pulse	Taul	4.4570		7, 1071	5.0863	Tau L	5.5501	1.385	en	0.799				
		Increasir	¥	0.4052		0.0519	0.1948	¥	0.2173	0.178	e	0.103				
			Gain	1.1223		0.7031	1.3303	Gain	1.0519	0.319	e	0.184				
		1	20	141.4602	88.1918	101.9291	88.4138	В	104.9987	25.142	4	12.571				
		ng Pulse	TauL	3.1560	5.4145	8.9165	4.7950	Taul	5.5705	2.428	4	1.213				
		Increasi	х	0000	0.0445	0.1375	0.2153	¥	0.0993	0.096	4	0.048				
			Gain	0.9209	0.5353	0.7440	1.7254	Gain	0.9814	0.520	4	0.260				
		1	8	137.5574	79.1615	102.0000	94.4673	З	103.2966	24.738	4	12.369				
		ng Pulse	TauL	3.6525	3.1212	7.9714	3.4493	Taul	4.5486	2.292	4	1.146				
	(88)	Decreasi	ч	0.2933	0.1487	0.1924	0.0176	ч	0.1630	0.114	4	0.057				
	14 (10/02		Gain	1.0422	0.5117	0.6413	1.5092	Gain	0.9261	0.450	4	0.225				
	190 190 190		Ear	R	9 R	Ř	5		meen	dev.	5	sem				
	+ Post-Fik	ŝē	File	a82an13c	m782mb0	a82an19c	a82an22c			5						
X	S 204	Lodsi	Ĕ	F	2	80	ŧ	S								
TABLE	COSMO	Pulse Re	Monkey	782				STATIST								
•	-	4		1				<u>ت</u>	1		_					

llococo ← l

llo

15 6.186

12/26/94, 10:24 PM

TABLE XX

6	
10/03/8	
Day 5 (
:t-Filght	
44 Pos	
10S 20	1
SS	

	Γ	Ģ	4351	ç	4351	781	~	795	3414	646	Ļ	82
1	Buis	P	2 134		2 134	6.9		4.7	134	39	•	1.6
r of units	hincrees	TauL	8.487	Tau L	8.487	3.401	2	2.405	1518	2 5686		1.164
numbe	Average	¥	0.1438	ч	0.1438	0.138	7	0.097	0.1770	0.0936	4	0.047
		Gain	0.5784	Gain	0.5784	0.054	2	0.038	0.5232	0.0710	4	0.036
	Γ	8	34.2478	8	34.2478	1064	2	0.752	l mean	st dev.	2	sem
	Susear	aur	5457 1	au L	5457 1	111	2	493	[0[
	srage De	K T	2102 6	К	2102 6.	055 2	8	039 1.				
	AVE	ain	4681 0.	ain	4681 0.3	007	7	005 0.				
		о С	4955 0	о С	4955 0.	8	_	0000				
	se 2		7 133	מ	133	00	•	0.0				
	ind buisi	Taul	5.052	Tau	5.052	000	-	0.00				
	Decree	¥	0.1716	¥	0.1716	0000	-	0.00				
		Gain	0.4727	Gain	0.4727	0000	+	0.000				
		ß	129.6395	8	129.6396	0.00	-	0.000				
	g Pulse 2	TauL	6.0826	Taul	6.0826	0000	-	0.000				
	ncreasin	¥	0.0465	¥	0.0465	0.00	-	0.000				
		Gain	0.6166	Gain	0.6166	0.000	-	0:000				
		8	139.2302	8	139.2302	0000	-	0.000				
	pulse 1	Tau	0.8917	TauL	0.8917	0.00	-	0.000				
	Increasing	¥	0.2411	¥	0.2411 1	0000	-	0.000				
		Gain	0.5401	Gain	0.5401	000	-	0.000				
		8	135.0000	8	135.0000	000	-	0.000				
	ng Pulse 1	Tau L	8.0386	Tau L	8.0306	0000	-	0.000				
(68	Decreasi	ч	0.2487	¥	0.2487	000	-	0.000				
5 (10/03/		Gain	0.4635	Gain	0.4635	0.00	-	0.000				
hr Day		Ear	R	Π	mean	dev.	c	sem				
Post-Filg	2	File	a82an27e			st.						
S 2044	espon	Unit	3	rics								
COSMO	Puise R	Monkey	782	STATIS								
-	-1	<u> </u>	-	-		-		_				

TABLE XX

12/26/94, 10:24 PM

,

TABLE XX

of units: 5	Increasing	Taul DC	6.1038 92.9936	5.9221 82.1330	6.0101 138.0506	12.0706 96.8905	8.3646 133.2576		Taul DC	7.6942 108.6650	2.855 23.916	10 10	0.903 7.563	6.4014(x) 109-1983	2.645 22.237	20 20	0.601 4.972
number	Average	Gain K	0.3553 0.0201	0.5898 0.0374	0.5488 0.0197	0.6740 0.2312	0.5802 0.0520		Gain K	1.5496 0.0721	0.132 0.101	10 10	0.042 0.032	0.5025 0.0768	0.129 0.111	8	ູ່ ຈະບາດ ຈະບາດ
	Buis	20	0 90.4729 (1 90.5308 (9 136.7877 (6 99.3380 (6 131.5285 (8	5 109.7316 C	21.710	6	6.865	total mean C	st dev.		earn
	verage Decree:	K TauL	0.0380 5.175	0.0710 4.238	0.0000 4.380	0.2691 7.053	0.0294 4.695	***	K TauL	0815 5.1086	0.126 1.705	10 10	0.040 0.539				
	A	Gain	0.3111 0	0.4583 (0.4702 0	0.5841 (0.4533 (***	Gain	0.4554 C	0.114	₽	0.036				
	e 2	З	88.8968	84.0854	138.5094	95.0000	132.1812		8	107.7350	25.598	S	11.448				
	asing Pulse	TauL	31 4.7743	13 6.4399	20 5.6827	38 7.5655	3.7607	***	Tau L	56 5.6446	1.469	ŝ	0 0.657				
	Decr	sain K	2934 0.04	5317 0.06	4904 0.00	4695 0.42;	4943 0.00	***	sain K	4559 0.10	094 0.18	5	042 0.06				
			32.9026 0.	30.7904 0.	35.7231 0.	33.7810 0.	32.5151 0.	:		07.1424 0.	25.181 0.	s	11.261 0.				
	ing Pulse 2	TauL	6.8894	4.1180	7.8517 1	12.2375	7.2359 1	***	Tau	7.6665 1	2.929	5	1.310				
	Increas	Х	3 0.0370	8 0.0000	0 0.0393	15 0.1283	15 0.0206		Y	6 0.0450	7 0.049	ŝ	8 0.022				
	_	: Gain	146 0.364	55 0.611	780 0.625	000 0.548	000 0.593	***	Gair	876 0.548	38 0.10	5	76 0.044				
	ulse f	מן מ	182 93.06	263 83.41	685 140.3	037 100.0	932 134.0		יו סכ	220 110.1	24 25.4	5	11.3				
	ncreasing P	K Ta	0032 5.3	0749 7.7	0000 4.1	3341 11.5	0834 9.4	•	K Ta	1.1 1980	0.137 3.1	ŝ	0.061 1.3				
	1	Gain	0.3462 0	0.5678 0	0.4726 0	0.7995 0	0.5669 0	•••	Gain	0.5506 0	0.166	ŝ	0.074 (
		8	92.0471	96.9763	135.0660	103.6759	130.8758		8	111.7282	19.881	ŝ	8.891				
05/89)	asing Pulse	TauL	18 5.5758	17 2.0364	0 3.0790	14 8.5417	17 5.6305	•	Taul	3 4.5727	4 1.915	5	0 0.856				
Control (10)	Decre	ain K	3288 0.032	3849 0.080	1499 0.00C	3986 0.114	1122 0.056		ain K	1549 0.057	143 0.04	5 5	064 0.02				
Day 7 (L	Ear G	r lo	ö	ة ب	ر د	ס ר	α	0	Nan 0.4	ev. 0.	0	9m 0				
+ Post-Flight	56	File	a74an18*	a74an19°	a74anc22	a74and23	a74anc24	a92anc01		9U	st. de		Se				
NS 204	espon	Unit	-	~	ŝ	9	۲	1	rics								
COSMC	Puise R	Monkey	774					2592	STATIS								

TABLE XX

SOMSO	2044 Post	t-Flight Du	ay & Cor	00/01) Junio	(68/																		Inu	mber of t	nits: 1	
ulse Re.	sponse			Decrees	asing puise			Increasu	ig Pulse 1			Increasing	1 Pulse 2		đ	ecreasing	i Pulse 2		Av	erage Dec	creasing		Ave	rage Inc	easing	
Vonkey	Jnit Fi	le Ea	ad Gain	Y	TauL	8	Gain	¥	Taul	20	Gain	¥	Tau L	20	Gain	¥	auL		Gain	K T	au L		Gain	Ĩ	<u>הר</u>	8
774	17 m774	mg39 L	. 0.285	\$ 0.0594	5.3299	96.9077	0.3171	0.0251	5.2857	101.4879	0.3445	0.0347 5	5.5887 1	01.7989		•••	•=•	. 10	1,2855 0.	0594 5.	3299 9	6.9077 0	3308 0.0	299 5.	4372 101	1.6434
STATISTI	CS		Gain	¥	Tau L	8	Gain	¥	TauL	2	Gain	¥	Tau L	8	Gain	¥	auL		Gain	K Ta	au L		Gain	K T	μĽ	8
		meer	n 0.285	5 0.0594	5.3299	96.9077	0.3171	0.0251	5.2857	101.4879	0.3445	0.0347 5	5.5887 1	01.7989	•••	•••	444	0	2855 0	0594 5.3	3299 96	5.9077 0.	3306 0.0	299 5.4	372 101	6434
		st. dev	000	0000	0000	0.00	0.00	000	000	0000	0000	0.00	000	0.00	:	:	ŧ		0000	0 8	8	000	0.019 0.0	0.700	214 0	220
		1	-	-	-	-	-	-	F	t	-	-	-	-	0	0	0	0	-	⊷	+	-	2	2	2	2
		sen	n 0.00	00000	0000	0.000	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	•••	:	:		0000	000	000	000	0.014 0.0	0.05	151 0	156
																					total	mean 0.	.3157 0.0	397 3	01 410	0.0648
																					•	it dev. D	0030	018 0	184	739
																						c	6 7		•	ر م
																						sem 0	0.017 0.0	010 🔞	004	.581

TABLE XX

COSMOS 2044 AII PL	st-Flight C	Controls (10/04/89-	10/06/89)	_																		number o	f units: 1	+
Pulse Response		Γ	Decreasin.	ig Pulse 1			ncreasing	1 Pulse 1			Increasin	g Pulse 2			Decreasir	ig Pulse .		Ĭ	verage D	ecreasing	1		Average li	ocreasing	
STATISTICS		Gain	¥	Taut	8	Gain	¥	Taul	8	Gain	¥	Tau L	8	Gain	¥	Taul	8	Gain	ч	Tau L	20	Gain	к	Tau L	В
	neen	0.3746	0.0628	5.8025	106.0848	0.4483	0.0852	3.5478	105.6578	0.4526	0.0557	7.5908	105.1106	0.4181	0.0811	5.6547	104.6148	0.3929 (0705	5.7403	105.4659 0	.4504	0.0705	3.0693	05.3842
	st. dev.	0.152	0.042	2.418	16.850	0.209	0.105	2.627	18.546	0.157	0.070	3.002	18.795	0.162	0.145	1.631	22.000	0.154	0.096	2.071	18.615	0.180	0.068	2.796	18.223
	5	÷	÷	ŧ	ŧ	÷	÷	ŧ	F	÷	ŧ	F	Ŧ	80	80	8	80	19	19	19	19	ន	ន	ន	22
	sem	0.046	0.013	0.729	5.080	0.063	0.032	0.792	5.592	0.047	0.021	0.905	5.667	0.057	0.051	0.577	7.778	0.035	0.022	0.475	4.271	0.038	0.019	0.596	3.885
															Í			ĺ		0]	tal mean (14238	0.0705 👸	0006	05.4221
																					st dev.	0.169	0.091	2 7 23	18.173
																					5	ŧ		41	41
																					sem	0.026	0.014 🛞	0.425	2.838

TABLE XX

COSMOS 2044 AI CO	ritok							į														č	imber of u	nits: 15	
Puise Response		2	ecreasing	t Pulse 1		-	Increasing	1 Pulse 1			ncreasing	1 Pulse 2			BCrees in	g Pulse 2		ľ	erage De	Greesing		Ŕ	erage Incr	Guisea	Γ
STATISTICS		Gain	¥	TauL	8	Gain	¥	Tau L	X	Gain	¥	laul	20	Gain	¥	TauL	8	Gain	۲	au L	20	uie	K Ta	מן	Ω
	meen	0.4288 (0.0668 5	3839 1	04.6048	0.4539	0.1034	3.2605	105.0319	0.4651	06590.0	7.0486	04.7000	0.4461	0.1014	6.6236	02.9695	0.4365 0	0822 5	9404 1	03.8780 0.	4595 0	0846 8.1	546 104.	8660
	st. dev.	0.284	0.055	2.357	20.282	0.232	0.111	2.866	20.756	0.201	0.076	3.040	22.059	0.210	0.123	3.417	24.739	0.250	082	2.884	21.935 0.	214 0	.5 960	22 21.	88
number	6	ţ	15	15	15	15	15	15	5	15	15	15	15	12	5	7	5	27	27	27	27	8	8	ິ ດ	8
of units: 2	sem	0.073	0.014 (0.609	5.237	0.060	0.029	0.745	5.359	0.052	0.020	0.785	5.696	0.061	0.036	0.986	7.142	0.048	0.018 (.555	4.221 0	039 0	017 0.	570 3.6	842
																				101 1	al mean 0.	4486 0	0835 2580	104	3980
																					st dev. 0	230	093	87 21.	284
																					C	57	22		57
																					tes U	030	012 🛞	122 2(819

TABLE 1

29 Pre-Filght (10-17-92 & 11-14-92 to 1 rise	-Flight (10-17-92 & 11-14-92 to 1 urve 1 - Decreasing	10-17-92 & 11-14-92 to 1. Decreasing	8 11-14-92 to 1	291	₹Ť	13) Curve 2 - II	ucreasing		ŭ	irve 3 - Incr	esing		Cur	ve 4 - Dec	reesing		Aver	age Decr	esing		Aver	num age increa	ber of unit sing	c 15
MEIGAN K t DCIGAN K t DCIGA	GAIN K t DC GAIN K t DC GA	K t DC GAIN K t DC GA	t DC [GAIN K t DC [GA	DC GAIN K t DC GA	GAIN K T DC GA	K t DC C	L DC CA	DC CA	3	ž	۲ ۲		9 	AIN	×	ă	3 0	- N	,	ă	c GA	NN K	۲	8
2a 0.4155 0.0862 7.133 101.5656 0.3920 0.0163 6.578 102.8482 0.45	0.4155 0.0862 7.133 101.5656 0.3920 0.0163 6.578 102.8482 0.45	0.0862 7.133 101.5656 0.3920 0.0163 6.578 102.8482 0.45	7.133 101.5656 0.3920 0.0163 6.578 102.8482 0.45	101.5656 0.3920 0.0163 6.578 102.8482 0.456	0.3920 0.0163 6.578 102.8482 0.45	0.0163 6.578 102.8482 0.45	6.578 102.8482 0.45	12.8482 0.45	0.45	6	8 000	101 061	2178 0	3642 0	0715 5.	66 00t	3186 0.) 0 6686	789 6.	266 100	473 I 07	214 0.00	82 7.50	4 102.03
1a 1.3627 0.0960 4.996 187.0614 1.50.49 0.0227 6.475 157.1269 1.01 2* *** *** 2.0630 0.1852 9.668 97.3200 2.02	1.3627 0.0950 4.996 187,0614 1.5049 0.0227 6.475 157,1269 1.01 *** *** *** *** 2.0630 0.1852 9.568 97,3200 2.02	0.0950 4.996 187.0614 1.5049 0.0227 6.475 157.1269 1.01	4996 187,0614 1.5049 0.0227 6.475 157,1269 1.01	187.0614 1.5049 0.0227 6.475 157.1269 1.01	1.5049 0.0227 6.475 157.1269 1.01 2.0630 0.1852 9.668 97.3200 2.02	0.0227 6.475 157.1269 1.01 0.1852 9.668 97.3200 2.02	6.475 157.1269 1.01 9.668 97.3200 2.02	57.1269 1.01 07.3200 2.02	101	84	0629 9.6 1699 8.5	851 159 507 97	0.6976	5132	1336	120	100	0001 0001	191 191	509 179	5359 1.2	1598 0.04 M56 0.17	28 8.16 76 8.16	3 158.41 97.37
5a 1.1385 0.2732 8.805 155.2615 *** *** *** *** ***	1.1385 0.2732 8.805 155.2615	0.2732 8.805 155.2615 *** *** *** ***	8.805 155.2615 *** *** ***	155.2615		1	1	:	1		1	•		1	:	•	÷	1385 0.2	732 8.	805 155.	2615	I	I	1
7a 0.6630 0.0000 4.462 143.2517 0.7342 0.0221 6.028 142.1191 0.6	0.6630 0.0000 4.462 143.2517 0.7342 0.0221 6.028 142.1191 0.6	0.0000 4.462 143.2517 0.7342 0.0221 6.028 142.1191 0.6	4.462 143.2517 0.7342 0.0221 6.028 142.1191 0.6	143.2517 0.7342 0.0221 6.028 142.1191 0.6	0.7342 0.0221 6.028 142.1191 0.6	0.0221 6.028 142.1191 0.6	6.028 142.1191 0.6	12.1191 0.6	8	5 88 80	0192 5.0	027 145	6.4593 0.	6480 0.	0367 5	565 143.5	9785 0.0	2009 O.C	194 5.	013 143.	6151 0.6	706 0.02	07 5.5	7 143.78
									- 22														***	
4					1.5919 0.1805 9.162 62.1014 1.	0.1805 9.162 62.1014 1.	9.162 62.1014 1.	1 1014 1	9¥ -	2940	2823 6.0	015 68	\$3966.5								-	430 0.23	14 7.54	9 65 5
ta 1.1016 0.2464 6.352 125.0365 1.4272 0.3095 6.958 122.3001 1.	1.1016 0.2464 6.352 125.0365 1.4272 0.3095 6.958 122.3001 1.	0.2464 6.352 125.0365 1.4272 0.3095 6.958 122.3001 1.	6.352 125.0365 1.4272 0.3095 6.958 122.3001 1.	125.0365 1.4272 0.3095 6.958 122.3001 1.	1.4272 0.3095 6.958 122.3001 1.	0.3095 6.958 122.3001 1.	6.958 122.3001 1.	2.3001	-	4104 0.	2913 5.7	722 129	1.9503	1573 02	22 11 22	564 117.3	3962	1295 0.2	488 6.	958 121.	2164 1.4	188 0.30	04 6.3	0 126.12
2* 0.6546 0.0905 6.039 164.0605 0.7506 0.1128 5.312 165.0574 0.7	0.6546 0.0906 6.039 164.0605 0.7506 0.1128 5.312 165.0574 0.7	0.0905 6.039 164.0605 0.7506 0.1128 5.312 165.0574 0.7	6.039 164.0605 0.7506 0.1128 5.312 166.0574 0.7	164.0605 0.7506 0.1128 5.312 165.0574 0.7	0.7506 0.1128 5.312 165.0574 0.7	0.1128 5.312 165.0574 0.7	5.312 165.0574 0.7	6.0574 0.7	2	831 0.	1914 8.1	110 161	.4796 0.	6287 0.1	0630	730 160.4	10 [699]	S417 0.0	768 5.	384 162.	2637 0.7	669 0.15	21 6.71	1 163.26
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1	1 1 1	1 1 1 1	1	1 1	1															
							; ; ; ; ; ;	: : : :														•	1	ŧ
		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1	1 1	1 1 1	•			t t		1	1	1 1	Ŧ							1	1
		1 1 1 1 1 1 1 1	1 1 1 1 1 1		1 1 1 1 1	1	1 1 1	1			1 1				•	•						1	1	
, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	1 1 1 1 1 1 1		; ; ; ; ; ; ;	; ; ; ; ; ;	; ; ; ; ;	, , ,	, 1			1 1		ł	ł	•	•			1 7	*	*	1	1	\$
2a 0.5397 0.0562 6.324 140.9330 0.6254 0.0512 12.757 135.8798 0	0.5397 0.0562 6.324 140.9330 0.6254 0.0512 12.757 135.8798 0	0.0562 6.324 140.9330 0.6254 0.0512 12.757 135.8798 0	6.324 140.9330 0.6254 0.0512 12.757 135.8798 0	140.9330 0.6254 0.0512 12.757 135.8798 0	0.6254 0.0512 12.757 135.8798 0	0.0512 12.757 135.8798 0	2.757 135.8798 0	5.8798 0		6024 0	1319 12.4	139	0.0757 0.	4524 0.	535 8 .	120 136.0	0342 0.4	1961 0.0	549 7.	222 138	48.36 0.6	139 0.09	16 12.60	6 137.47
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													ŧ	F								
2 0.0000 0.0/41 0.350 143.9039 0.0012 0.0608 10.060 140.9034 0	0.3880 0.0/41 6.395 143.9039 0.3512 0.0808 10.080 140.9534 0.03182 0.03182 0.0000 6.700 141.4461 0.3730 0.0000 6.320 140.4667 0	0.0/41 5.350 143.9039 0.5512 0.0808 10.080 140.9534 0. 0.0000 5.700 111.151 0.7720 0.0000 0.220 110.1627 0.	6.350 143.3039 0.3512 0.0808 10.080 140.9534 0		0.3312 0.0808 10.080 140.9534 0.	0.0808 10.080 140.9534 0.	0.080 140.9534 0.	0.9534 0.	<u> </u>		11.7 2000 - 5	705	19/10	2336	988 888	358 137.9	318, 0.	8038		377 140.	9179 0.5	248 0.10	44 10.85	2 141.86
			500 1001 000 8 0000 00000 1011 0010		500 0000 8000 0000 0000 0000	AC.U 1061.UII 800.8 0000.0	0000 1001010 0000	1061.0	ŝ	5 2				in 7067		1.601 0/0		10 10/2		SULL 8890	F.U 2800	CB/ 0.00	5 5 8	8.11.0
4° 0.8592 0.0740 3.500 155.0960 1.1598 0.0917 5.959 154.1314 1	0.8592 0.0740 3.500 155.0960 1.1598 0.0917 5.959 154.1314 1	0.0740 3.500 155.0960 1.1598 0.0917 5.959 154.1314 1	3.500 155.0960 1.1598 0.0917 5.959 154.1314 1.	155.0960 1.1598 0.0917 5.959 154.1314 1.	1.1598 0.0917 5.959 154.1314 1	0.0917 5.959 154.1314 1	5.959 154.1314 1	4.1314	÷	1464 0.	1529 7.4	151 151	5107	0263	HT 5.	269 151.1	1228 0.5	M28 0.1	109 1	384 153.	1094	531 0.12	23 6.71	3 152.82
5° 0.3193 0.0931 8.255 130.3962 0.3652 0.0000 8.777 126.1344 0.	0.3193 0.0931 8.255 130.3962 0.3652 0.0000 8.777 126.1344 0.	0.0931 8.255 130.3962 0.3552 0.0000 8.777 126.1344 0.	8.255 130.3962 0.3652 0.0000 8.777 126.1344 0.	130.3962 0.3652 0.0000 8.777 126.1344 0.	0.3652 0.0000 8.777 126.1344 0.	0.0000 8.777 126.1344 0.	8.777 126.1344 0.	5.1344 0.	ã.	1336 0.0	000	759 125	2418 0.	3908	2696	575 128.2	2340 07	221 221 20	763 7.1	965 129.	3151 0.3	994 0.00	8.7 6	8 125.68
5" 0.4876 0.4410 10.676 152.8405 0.8731 0.0897 4.402 155.6734 0.8	0.4876 0.4410 10.676 152.8405 0.8731 0.0897 4.402 155.6734 0.8	0.4410 10.676 152.8405 0.8731 0.0897 4.402 155.6734 0.8	10.676 152.8405 0.8731 0.0897 4.402 156.6734 0.8	152.8405 0.8731 0.0897 4.402 156.6734 0.8	0.8731 0.0897 4.402 155.6734 0.8	0.0897 4.402 155.6734 0.8	4.402 155.6734 0.8	6.6734 0.8	8	828	1630 12.2	248 145	5.1741 0.	8970 0.	£000	961 160.3	3064	3923 0.3	208 11	318 156.	6035 0.8	780 0.12	64 8.33	5 150.42
7a 0.98005 0.1174 3.242 163.5059 0.9204 0.0896 6.889 161.0648 0.94	0.9805 0.1174 3.242 163.5059 0.9204 0.0896 6.889 161.0648 0.94	0.1174 3.242 163.5059 0.9204 0.0896 6.889 161.0648 0.94	3.242 163.5059 0.9204 0.0896 6.889 161.0648 0.94	163.5059 0.9204 0.0896 6.889 161.0648 0.94	0.9204 0.0896 6.889 161.0648 0.94	0.0896 6.889 161.0648 0.94	6.889 161.0648 0.94	51.0648 0.94	ð	161 0.0	291 4 .5	966 157	.3065	6792 0.	13 876	507 155.1	1292 0.1	1.0 9923	961 4	525 159.	3176 0.9	351 0.07	07 262	7 159.18
ncs gain K t DC Gain K t DC G	GAIN K t DC GAIN K t DC G	K t DC GAIN K t DC G	t DC GAIN K t DC G	DC GAIN K T DC G	GAIN K T DC G	с рс рс	DC PC	0 00	ø	AIN	۲ ۲		0 2	AIN	Ľ	ă) J	Z	Ĺ	ľ	5	X	ľ	8
0.7250 0.1267 6.298 144.1791 0.9487 0.0894 7.742 130.9219	0.7250 0.1267 6.298 144.1791 0.9487 0.0894 7.742 130.9219	0.1267 6.298 144.1791 0.9487 0.0894 7.742 130.92191	6.298 144.1791 0.9487 0.0894 7.742 130.92191	144.1791 0.9487 0.0894 7.742 130.92191	0.9487 0.0894 7.742 130.92191	0.0894 7.742 130.9219	16126 061 27/2	0.9219	-	0.8882 0.	1174 8.4	131 131	2975 0	7111 0	<u> 958 6.</u>	<u>- 87 139</u>	30761 0.	71 <u>83 0.</u> 1	119 6.	185 141	8408 0.9	185 0.10	34 80	131.10
dev 0.335 0.123 2.095 23.061 0.529 0.087 2.278 29.538	0.335 0.123 2.095 23.061 0.529 0.087 2.278 29.538	0.123 2.095 23.061 0.529 0.087 2.278 29.538	2.095 23.061 0.529 0.087 2.278 29.538	23.061 0.529 0.087 2.278 29.538	0.529 0.087 2.278 29.538	0.087 2.278 29.538	2.278 29.538	29.538		0.468 0	099 2.6	202	7.321 (0.373 0	074 2	086 22	286 0	347 0	102 2.1	056	2.354 0.	491 0.0	93 2.37	5 27.9
n 13 13 13 13 13 14 14 14 14 14	13 13 13 13 13 14 14 14 14	13 13 13 13 14 14 14 14 14	13 13 14 14 14 14 14	13 14 14 14 14	14 14 14 14	14 14 14	14	1		2	1	7	1	4	5	12	12	32	8	32	25	28	28	\$
sem 0.093 0.034 0.581 6.396 0.141 0.023 0.609 7.894	0.093 0.034 0.581 6.396 0.141 0.023 0.609 7.894	0.034 0.581 6.396 0.141 0.023 0.609 7.894	0.581 6.396 0.141 0.023 0.609 7.894	6.396 0.141 0.023 0.609 7.894	0.141 0.023 0.609 7.894	0.023 0.609 7.894	0.609 7.894	7.894		0.125 0	0.026 0.6	669	7.302	0.108	021 0.	502 6	433	0 690	020	1	1.471 0.	0.0 660	17 0.44	5.5

136.1716 25.781 53 3.541

0.1074 2.332 0.096 2.353 53 53 0.013 6.323

0.8241 0.437 53 0.060

total mean st. dev. me# 12/26/94

TABLE 2

Sos	1052230M	Synchrond	Nus Contr	0 (1-8-13)	N 1-10-93	(-	number of	units: 9	
Puls	e Response	Curve 1 -	Decreasi	Бu		Curve 2 -	Increasing	1		Curve 3 - I	Increasing			Curve 4 - D	ecreasing		È	Iverage D	ecreasing		1	Average in	creasing		
3	FILENAME	GAIN	¥	۲	ß	GAIN	×	2	8	GAIN	¥	۲	8	GAIN	×		8	GAN	¥	1	2	GAIN	¥		8
F	03c0901	1.0582	0.0842	1.394	139.6148	1056.0	0.0918	8.561	137.2771	1.1085	9660.0	5.712	135.0241	1.1867	0.1888	3.406	148.0000	1.1225	0.1365	8.900	43.8074	1.0296	0.0957	7 136 1	36.1506
-	03c0902n	0.7102	0.2358	2.271	159.0110	ł	ł	ł	ł	1	ł	ł	:	ł	ł	Ŧ	I	0.7102	0.2358	2.271 1	59.0110	ŧ	ł	ł	I
-	03c0903e	1.5485	00000	3.852	153.2628	1.5471	0.0193	3.428	148.1066	1.3584	0.1817	8.501	142.2985	1.6533	0.0985	4.721	148.3388	1.6009	0.0493	4.287 1	50.8008	1.4528	0.1005	5.965 1	45.2026
-	03c0904	0.9905	0.0905	3.231	125.3911	0.9482	0.1983	7.958	122.3845	1.1066	0.1042	4.232	116.4337	1.2155	0.000	3.407	129.0197	1.1030	0.0453	3.319 1	27.2054	1.0274	0.1513	6.095 1	19.4091
-1	03c0905a	0.7394	0.2493	3.093	132.6500	I	I	I	ł	ł	I	I	:	I	ł	I	ł	0.7394	0.2493	3.093 1	32.6500	ŧ	I	ŧ	ł
44		•••	£ 1	. 1	, ,	. 1	. 1	• •		• •	• •	• •			• •	,,		11				::	::		
-	03c0908a	0.3323	00000	3.171	104.0870	0.3063	0000	2.919	105.2517	0.3457	0000	4 641	104 4544	:			:	0.3323	0.0000	3.171 1	04.0870	0.3260	0000	3.780 1	04.8531
ر.	07c1001*	1.0697	0.1629	6.234	143.6938	1225	0.0844	6.743	134.5090	0.9912	0.1263	7.076 1	137.0619	1.0693 (0.1527	1.377 1.	27.5330	1.0695	0.1578	5.305 1	35.6134	1.1069	0.1054	6.910 1	35.7855
_	07c1002	0.2718	0.0033	6.570	100.1713	ł	ł	1	ł	0.3327	0.000	6.436	100.4379	Ŧ	Ŧ	Ŧ	ŧ	0.2718	0.0093	6.570 1	00.1713	0.3327	0.0000	6.436 1	00.4379
_	07c1003a	1.0265	0.000	3.386	128.0698	ł	ł	I	ł	1.0695	0.0607	5.325	127.5122	1.0748	0.0391	5.196	126.1097	1.0607	0.0196	4.292 1	27.0696	1.0595	0.0607	5.325 1	27.5122
1	STATISTICS	GAIN	×	.	8	GAIN	×		8	GAN	¥		8	GAIN	¥		Z	GAIN	¥		2 Z	GAIN	×		2
	meen	0.8608	0.0924	4.022	131.7724	0.9950	0.0788	5.922	129.5058	1006.0	0.0818	5.989	123.3175	1.2399	0.0958	6.222	35.8002	0.9962	0.0936	4.808	33,2109	0.9398	0.0805	5.961	25.8960
	st. dev	0.397	0.102	1.468	20.086	0.457	0.078	2.599	16.358	0.400	0.067	1.478	16.485	0.240	0.078	4.070	11.339	0.388	0.091	2.760	17.084	0.407	0.068	1.910	15.990
	-	<u>о</u>	o,	o,	6	ŝ	÷	ŝ	ຫ້	~	2	1	2	ŝ	ŝ	5	ŝ	7	2	2	*	12	5	2	12
	sem	0.132	0.034	0.489	6.695	0.204	0.035	1.162	7.316	0.151	0.025	0.559	6.231	0.107	0.035	1.820	5.071	0.104	0.024	0.738	4.566	0.117	0.020	0.551	4.616
																				10t	UROUU JE	0.9702	0.0876 💮	1 0+6.2	29.8348
																					st. dev.	0.390	0900	1912	16.676
																					E	8	8	R	28
																					met.	0.076	0 016 88	1.477	3 270

TABLE XXX

COSMOS 2229 +	re-Flight 4	L Synchrou	nous Con	log																	•	umber of t	nits: 24	
Pulse Response	Curve 1 -	Decreasin	9		Curve 2 - I	Increasing			urve 3 - Ir	creasing		C	une 4 - D	screasing		×	verage De	creasing		×	verade Inc	reasing		Γ
STATISTICS	GAIN	×	1	ß	GAIN	×	۲	ž	GAIN	¥	۲	8	GAIN	¥		8	GAIN	¥	.	X	GAIN	¥		В
mean	0.7806	0.1127	5.367	139-10371	0.96.09	0.0866	1.263	30.5493	0.8923	0.1055	7.619 1	28.6375	0.8666	10958	6.550	38.2760	0.8181	0 1053	5.883 1	38.7429	0.9249 (0366	450 12	9.5456
st dev	0.359	0.114	2.154	22.284	0.499	0.083	2.434	26.268	0.437	060.0	2.475	24.116	0.415	0.073	2.680	19.399	0.382	0.097	2.437	20.810	0.462	0.085	431	24.853
•	ខ	ឌ	ន	8	5	ē	6	19	3	21	21	21	17	17	17	17	R	6 E	30	39	ŧ	Ş	9	ę
sem	0.077	0.024	0.459	4.751	0.114	0.019	0.558	6.026	0.095	0.020	0.540	5.263	0.101	0.018	0.650	4.705	0.061	0.016	0.390	3.332	0.073	0.014 0	384	3.930
																ĺ			Ž	neen i	0.8721 0	. 1009	.878 : 13	4.0860
																				st. dev.	0.425	0.091	at s	23.264
																				2	79	62	8	79
																				thes.	0.048	0.010		2.617

TABLE 3 Puise Response

Pulse	Response	- Post-Flig	ht Day 2 (1-11-93)																		c	umber of u	Als: 12	
		Curve 1 -	Decreasin	9	3	Jurve 2 - li	ncreasing		-	Curve 3 - Ir	ocreasing		Ŭ 	une 4 - D.	ecreasing		A	verage De	creesing		Ā	verage inc	reasing		Γ
er F	ILENAME	GAIN	¥	۲	8	GAIN	¥	-	8	GAN	¥	5	8	GAN	×		8	GAIN	¥	-	8	GAN	¥		k
Å.	6c1101a	0.1181	0.0582	6.244	124.1026	0.3314	0:0000	9.101	29.7100	111		201		0.2563 (3.0052	1.895 12	10000.7	0.1872	0.0317	8.069 1	5.55131	0.3314	0000	101 12	1/100
ŏ ⊮	6c1102*	0.3899	0.0612	6.026	109.3437	0.5268	0.0482	11.330	10.7429	I	Ŧ	Ŧ	ŧ	0.3706 (6660.0	1.724 11	10.1776	0.3804	0.0606	6.875 10	79.7607	0.5268 C	0482 11	330 110	1429
0 # 1	det tota	1	1	1	:	ŧ	F	ŧ	ŧ	ŧ	ł	ł	ï	í		ľ	ł				ł				
	Des services																								1
٥ م	6c1106	0.4336	0000	12.264	121.8239	0.4104	0.0841	9.192	124.3425	0.5896	00000	10.619 1	20.0000	0.4056	00000 C	0.667 11	6.4590	0.4196	0.0185 1	0.966 1	19.1415	0.5001	0421 9	906 12	21713
<u>ہ</u>	6c1106a	0.2409	0.1627	9.482	119.9324	0.3622	0.0497	11.721	20.7064	ŧ	I	Ŧ	1	0.3034 (0.0956 15	0.347 12	22.5562	0.2722	0.1292 1	4.415 12	21.2443	0.3622	11 11	721 120	0.7064
0 #	dettora	l			1		1	1	ŧ																
20	6c1108a	0.1780	0.1847	6.410	120.5982	0.3548	0.0854	14.406	25.1843	1	:	I	:	0.3327 (3 1001 0	1,636 12	12 8314	0.2554	0.1424	0.023 15	22148	0.3548	0854 14	406 12	5 1843
o u					Ĩ																				
۲ ۵	Sc1110a	ł	1	ł	1	0.9202	0.0783	5.553	92.5962	0.8908	0.4065	4 085 1	12.7193	0.7599 (0148	204	4 5035	0.7599	0.0148	7 204 8	M 5035	93050	A2A A	819 10	0.6573
٥ ۲	6c1111a	ł	I	I	1	0.5276	0.1326	8.031	40.8876	ł	ł	ł	1	ł	ł	Ŧ	I	Ŧ	Ŧ	I	1	0.5276 0	1326	031 14	2476
٥ ع	6c1112°	0.2063	0.1003	11.980	108.0000	0.2889	0,000	8.673	10.5016	0.3149	0000	3 421 1	14 3200	0.2605 0	10536	1 032 10	7 mm	0.2234	10770	0.006	17 5000	0.3010			
8	OC 11136											100000000	10000000000000000000000000000000000000											50000	
_												X				******		******							
R 5	1c1101a	0.2036	0.000	4.768	61.7686	0.2279	0.1091	17.826	64.0642	0.3059	0.0000	8.032	61.5124	0.2572 C	0.0553 6	1.952 6	3 7192	0.2304 (1120.0	5.860 6	12 7439	0 2669 0	0546 12	200	7883
R 5	1c1102a	0.4434	0.1252	11.470	14.2406	0.6075	0.2329	7.534	14.6954	ł	I	ł	1	0.5164 C	21120 4	11 590 11	0.5916	0.4799	0.1186	8.030 11	12.4161	0.6075 0	7329	534 112	6054
5	1c1103a	0.1973	0.0642	13.500	59.0000	0.2042	0.0913	12.794	62.2429	Ŧ	Ŧ	ł	:	0.2715 C	0.0251 7	.632 5	9.8327	0.2344	1 (190)	0.566	9.4164	0.2042 0	0913 12	794 6	0070
5	1c1104a	ł	ł	ł	ł	0.4849	0.0624	11.074	06.8724	ł	ł	Ŧ	ł	Ŧ	:	ł	:	I	I	Ŧ	1	0.4849	DR24 11	074	8774
*									Ï																
ŝ	TATISTICS	GAIN	×	۲	8	GAIN	¥	۲	8	GAIN	×	۲	8	GAIN	×	.	8	GAIN	×		8	GAN	×		k
	mean	0.2679	0.0863	9.127	104.3122	0.4372	0.0828	10.603	08.5454	0.5254	0.1016	6.539 1	02.1382	0.3734	7,05599	1468 10	11/95/2	0.3234	10724	0.307 10	13.3937	0.4593	0875 0	201 105	594.36
	at dev	0.121	0.065	3.298	25.515	0.197	0.062	3.343	24 485	0.277	0.203	3.397	27.263	0.159	0.039	1.202	24.597	0.149	0.063	3.701	24.345	0.213	0.105 3.	716	e4.423
		0	a	o,	67	12	12	4	4	4	4	4	4	₽	₽	₽	₽	6	19	10	19	16	16	9	16
	Eles.	0.040	0.022	1.099	8.565	0.057	0.018	0.965	7.068	0.138	0.102	1.699	13.632	0.050	0.012	.329	7.778	0.034	0.012	0.840	5.585	0.053	0.026 0.	929	6.106
																				fota	neer i	0.3855 C	6 20 0793	100	6.0165
																				-	st. dev.	0.191	0.080	22	24.086
																					5	8	8	9	8
																					E	0.032	0.014 20	512	4 071

12/26/94

ponse	2229
Res	NOS
Pulse	cos

TABLE 4

- Post-Filat Curve 1 - C		IL Day 3 Decreasin	(1-12-93)	Ĭ	Jurve 2 - h	ncreasing		Ĩ	Curve 3 - In	creasing		γ	Curve 4 - D	ecreasing		Ì	tverage D	ecreasing			Average II	number o ncreasing	funts: 1	Ţ
GAIN K T	×		Г	ķ	GAIN	×	-	8	GAIN	¥	-	8	GAIN	¥	-	8	GAIN	×	۲	X	GAIN	×		Z
0.2337 0.0954 14.756 11	0.0954 14.756 11	14.756 11	F	2.0000	0.3671	0.0000	11.660	11.6632	0.3508	0.0012	8.043	12.0276	0.3261	0.0462	9.895 1	13.00471	0.2799	0.0708	12.325	112.5024	0.3590	0.006	9.851	11 8454
0.3503 0.1028 3.460 12	0.1028 3.460 12	3.460 12	2	8.4554	0.4804	0.1302	11.088 1	137.1729	0.4985	0.1689 1	13.674 1	133.0000	0.4832	0.1264	8.113 1.	33.3105	0.4168	0.1146	5.786	130.8830	0.4895	0.1496	12.381	135,0865
0.2362 0.1591 7.411 10	0.1591 7.411 10	7.411 10	₩.	05.9199	0.4339	0.0071	14.233	110.2341	ŧ	ł	I	ł	0.3748	0.0000	9.491 1	09.2543	0.3055	0.0796	8.451	107.5871	0.4339	0.0071	14.233	110.2341
0.2136 0.0000 8.229 1	0 0000 8 229 1	8228	$-\infty$	06.7112 ***	0.3872	800	14 960	05.0854	0.2081	0.0698	6.613 1	108.4279	0.2379	0.0000	5.535 1	103.6374	0.2258	0000	6.882	104.6743	0.2977	0.0449	10.787	106.7567
			6 2		000000000	*****				*****	*****													
0.4730 0.0205 5.024	0.0205 5.024	5.024		82.1492	0.5122	0.0594	6.332	85.8667	0.5112	0.0639 1	11.165	82.0000	0.4317	0.1256	8.976	79.7820	0.4524	0.0731	7.000	80.9656	0.5117	0.0717	8.719	83.9334
0.1300 0.0000 5.352	0.0000 5.352	5.352		58.8753	0.1282	0.1912	11.190	60.0000	0.1550	0.0371	7.704	59.0000	0.1610	0.0236	3.338	58.5076	0.1455	0.0118	4.345	58.6915	0.1416	0.1142	9.447	59.5000
0.4559 0.0000 3.450	0.0000 3.450	3.450		76.3346	0.7131	0.1515	14.097	77.0818	ŧ	ł	ł	:	ł	ŧ	:	ł	0.4559	0.0000	3.450	76.3346	0.7131	0.1515	14.097	77.0818
0.7998 0.2893 3.907	0.2893 3.907	3.907		63.7724	0.7266	0.2735	12.392	73.6798	0.8822	0.2504 (5.680 7	14.4383	0.7415	0.2380	6.928	70.3865	0.7707	0.2637	5.418	67.0795	0.8044	0.2620	9:036	74.0591
0.5401 0.0559 1.722 1	0.0559 1.722 1	1722 1	-	12.7361	0.6750	0.000	6.550	97.8366	0.8115	0.0548	2.712 1	19.7078	0.8446	0.0459	5.419 1	14.9841	0.6924	0.0509	3.570	113.8601	0.7433	0.0274	1831	108.7722
1	1	ł				l			1		1			•		1								
0.1469 0.1230 11.021	0.1230 11.021	11.021		52.1476	0.1994	0.0662	15.582	51.3553	0.2069	0.0571 1	10.212	51.9666	0.1655	0.0000	6.744	52.1086	0.1562	0.0615	8.863	52.1281	0.2042	0.0612	12.697	51.6610
:	:		~~	ŧ	i			Ĩ	Í												**			
1	1	1	57.00		1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1
0.4984 0.0124 5.552	0.0124 5.552	5.552		6.0235	0.5615	0.0322	7.244	99.3973	0.5351	0000	4 993	97 9292	0.5147	0.0467	6.640	94.1453	0.5066	0.0296	6.096	95.0844	0.5483	0.0161	6.118	98.6633
: : 1	1			1																				
0.5950 0.0944 3.335 1	0.0944 3.335 1	3,335 1		45.7813	0.8513	0.0988	16.845	44.2215	0.7058	0.1106	6.871 1	148.7001	0.7524	0.0620	5.967 1	55.4045	0.6737	0.0782	4.651	150.5929	0.7786	0.1047	11.858	46 4608
0.2621 0.0802 6.428	0.0802 6.428	6.428		67.3171	0.3509	0.0176	5.864	70.8891	0.3195	0.1035	8.339	70.3391	0.3183	0.0194	6.429	67.8813	0.2902	0.0498	6.428	67.5992	0.3352	0.0606	7.101	70.6141
0.3095 0.0915 9.447 1	0.0915 9.447 1	9.447	-	02.1764	0.4000	0.1449	17.474	01.0000	0.4265	0.0361 1	10.674 1	101.0000	0.3629	0.0677	8.262 1	02.5974	0.3362	0.0796	8.855	102.3869	0.4133	0.0905	14.074	101.0000
				Į	11140	,		12	1	,		-		ļ										
	-	-	- 11			-	-	3	6AN	_	-	×	GAIN	×	-	R	GAIN	¥	-	2 C	GAIN	¥	-	Я
0.3746 0.0803 6.364	0.0803 6.364	6.364		93.5286	0.4848	0.0837	11.822	94.6774	0.4678	0.0828	8.052	96.5447	0.4396	0.0617	7:057	96.5388	0.4059	0.0713	6.697	64/26116	0.4769	0.0833	10.082	95.5392
0.193 0.079 3.545	0.079 3.545	3.545		27.671	0.205	0.085	3.998	26.954	0.238	0.071	3.010	29.806	0.222	0.068	1.847	30.124	0.206	0.073	2.825	28.355	0.217	0.077	3.997	27.741
0.051 0.021 0.947	0.021 0.947	0.947		7.395	0.055	0023	1 069	7 204	2100	1,000	21	2 BOA	200		512	21.5	17	12	12	12	8 2	8 20	22 Z	8
			1													-					2077 0	0.0770	A.542	06.26.23
																			5		0.212	0.075		27 786
																				•	3	3	8	53
																					0 0 0	0 0 10 8	2654	3.817
- Post-Flight Day 5 (1-14-93)	ht Day 5 (1-14-93)	(1-14-93)																				number o	f units: 8	
Curve 1 - Decreasing	Decreasing	6		Ť	Curve 2 - I.	ncreasing		Ĥ	Curve 3 - In	Durseaud			Curve 4 - D	ecreasing		Ì	Average D	ecreasing			Average Ir	ncreasing		Γ
GAIN K T	K T	٢		ß	GAN	¥	2	8	GAIN	×	-	8	GAIN	¥	٣	2	GAIN	¥	P.	8	GAIN	¥		ß
0.4491 0.0809 9.071	1/0.6 6080.0	9.071	ſ	0000.65	0.5520	0.0539	1.349	43.5036	0.5801	0.0487	8.335	09/0.66	0.4554	0.0161	5.322	35.7669	0.4523	0.0485	7.196	137.3835	0.5661	0.0513	7.842	141.2898
												A DECK												

				_	 		_		_		_				_					_				_
		8	141.2898	99,1716	77.9422			1	115 1128		57 2995	80.7310	92.8470	119.2392		8	99.7483	27.166	14	7.260	98.7476	26.640	28	5.034
X UNKS: 8			7.842	12.814	4,109		1	ł	8 356		7.339	10.210	11.108	15.409			9.940	4.198	2	1.122	\$280	3 1 02	R	002.0
number c	creasing	¥	0.0513	0.1301	0.0349			1	0 0912		0.0054	0.0993	0.0804	0.1064		¥	0.0773	0.049	7	0.013	0.0739	0.049	8	~ 600 0
	verage In	GAIN	0.5661	0.3445	0.9344		1		0.3505		0.1801	0.6441	0.5950	0.3888		GAIN	0.4627	0.206	7	0.055	0.4179	0.177	28	0.034
	1	8	37.3835	97.8210	79.5173		1		10.4166		54 9941	78.5988	86.0800	22.2157		8	97.7469	27.089	14	7.240	neem le	st. dev.	2	Ees
		۲	1 96 1	6.849	4.405			ł	5637 1		6.892	9.393	2.707	6.815 1		2	6.620	2.216	2	0.592	ĝ			
	ecreasing	¥	0.0485	0.0314	0.0947		1		0.0442		0.1082	0.1279	0.1299	0.0208		¥	0.0705	0.049	7	0.013				
	verage D	GAIN	0.4523	0.2931	0.5324		1	1	0.4076		0.1585	0.5636	0.2527	0.3439		GAIN	0.3731	0.136	7	0.036				
	Ā	Z	35.7669	96.9763	1		1	•	12 5027		54.9302	77.1282	96.0800	22.7645		8	96.3070	27.937	7	10.559				
		3	5.322	8.522	ł		1	ł	5.626 1		8.120	7.220	2.707	7,134 1		2	6.379	2.003	2	0.757				
	ecreasing	¥	0.0161	0.0561	ł		-	ł	0.0270		0.1175	0.0907	0.1299	0.0000		×	0.0625	0.051	2	0.019				
	urve 4 - C	GAIN	0.4554	0.3281	ł			•	0.4328		0.1921	0.5618	0.2527	0.3513		GAIN	0.3677	0.126	~	0.048				
	l	8	39.0760	000000	 77.9422			•	18.9715		56.1225	83.5636	ł	19.1683		8	99.2634	28.672	~	10.837				
		•	8.335 1	12.095 1	8 4 8		1	ł	4.420 1		7.945	9.485	Ŧ	0.139 1		Ľ	8.075	2.932	2	1.108				
	ocreasing	×	0.0487	0.1448 1	0.0349			ł	0.0498		0.0107	0.1213	ł	0.0573		¥	0.0668	0.048	~	0.018				
	Curve 3 - It	GAIN	0.5801	0.3449	0.9344			1	0.3467	1	0.1987	0.6342	ł	0.3944		GAIN	0.4905	0.246	2	0.093				
	J	2	43.5036	98.3431	ł		1		11.2541	ł	58.4764	77.8983	92.8470	19.3101		R	00.2332	27.864	7	10.531				
		1	1 676.7	13.532	ł			1	12 293 1		6.734	10.935	11.108	20.679 1		-	1.804	4.633	~	1.751				
	ocreasing	¥	0.0539	0.1154	ŧ				0.1326		0.0000	0.0773	0.0804	0.1554		×	0.0879	0.052	~	0.020				
	Jurve 2 - It	GAN	0.5520	0.3441	ł				0.3642		0.1615	0.6639	0.5950	0.3832		GAIN	0.4348	0.173	-	0.065				
	5	В	39.0000	96.6656	79.5173		1	1	08.3304		55.0579	80.0693	I	21.6669		8	8981.76	28.437	7	10.748				
	~	-	9.071	5.176	4,405			;	5.648 1		5.663	11.567	ł	6.495 1		-	6.861	2.548	~	0.963				
	Decreesing	¥	0.0809	0.0067	0.0947				0.0613		0.0989	0.1650	ŧ	0.0416		¥	0.0784	0.050	~	0.019				
100	urve 1 - L	GAIN	0.4491	0.2580	0.5324	1	1	ł	0.3624		0.1248	0.5654	1	0.3365		GAIN	0.3784	0.155	~	0.059				
		NAME	4194	420e	421a			12	426	111	428	429e	#30e	431a		TSTICS	neen	at dev	6	sem				
		PALE	R 0661	R 865	R 51c1		141S 4	R Sich	R 51c1	R 3 Hz 1	R 51c1	R 51c1	R 51c1	R 51c1	_	STAL								

TABLE 6 Puise Respon

ulse I	Response	- Post-Flk	oht Day 6	(1-15-93)	1 - Post Fli	ight Contr	6															E	number of	units: 5		
		Curve1 -	Decreasi	6		Curve 2	- Increasir.	Þ		Curve 3 -	Increasing			Curve 4 -	Decreasin	6		Average L	Pecreasing		È	verage inc	reasing		Γ	
ar F	LENAME	GAIN	¥	-	8	GAIN	¥		8	GAIN	¥	۲	ß	GAIN	×	۲	×	GAIN	¥	2	ß	GAIN	¥	-	8	
10 1	515158 11118		. 1																							
· 8	6618	1	•	1	ł	1	1	1	ł	1	1	ł	1	1	ł	ł	:	ł	•			• •	1	1	1	
t	ket520e	£	1	Ĩ	ŧ	1	ľ	ŧ	ŧ	ł	1	1	i	1	1	•	1	ŧ	1	ŧ	1	1	1	1	1	
j L	rc15018	1.0576	0.2317	5.936	130.3925	1.3321	0.1351	10.215	120.000	1.2672	0.0817	4.346	128.9313	1.3605	0.2885	8.911	122.4968	1.2091	0.2601	7.423	26.4447	1.3097	0.1084	7.281 13	24.4657	
<u>6</u> L	rc1502e	1.1701	0.2957	8.832	117.5990	1.0648	0.1473	3.865	113.3886	1.2160	0.3426	6.946	115.8534	I	Ŧ	Ŧ	ł	1.1701	0.2957	8.832 1	17.5990	1.1404	0.2450	5.405 ±	14.6210	
<u>6</u> -	c1503a	0.7135	0.000	3.071	102.9881	0.8230	0.0000	5.754	97.8017	ł	I	I	ŧ	ł	ł	ł	ł	0.7135	0,0000	3.071	02.9881	0.8230	0000	5.754	97,8017	
<u>6</u>	c1505e	0.3616	0.0143	5.071	106.7786	0.3790	0.0000	5.492	106.1055	0.3771	0.0565	6.476	107.3180	ł	I	ł	I	0.3616	0.0143	5.071	06.7786	0.3781	0.0283	5.984 10	06.7118	
<u>6</u> -	c1507a	0.2921	0.000	4.763	126.0421	0.2750	0.0000	6.496	126.1790	0.2882	0.0317	6.942	126.7815	0.2672	0.0715	6.905	126.0000	0.2797	0.0358	5.834	26.0211	0.2816	0.0159	8.719 1:	26.4803	
-																										
S	ATISTICS	GAIN	¥	÷	ß	GAIN	¥	-	8	GAIN	×	1	S	GAIN	¥	-	8	GAIN	×	.	8	GAIN	¥	٣	R	
	meen	0.7190	0.1083	5.535	116.7601	0.7748	0.0565	6.364	112.6950	0.7921	0.1281	6.178	1127.911	0.8139	0.1800	806.7	124.2484	0.7461	0.1288	6.213	18.89961	0.7825 (0.0883 (3.281 1	15.8177	
	st dev	0.396	0.144	2.116	11.853	0.448	0.077	2.357	11.190	0.533	0.144	1.241	10.058	0.773	0.153	1.418	2.477	0.454	0.138	2.150	10.394	0.455	0.111	1,835	10.689	
		ŝ	ŝ	in)	Ð	ю 	۰ د	ŝ	ທີ່	4	4	4	4	2	2	2	2	-	7	~	7	0	0	•	6	
	sem	0.177	0.064	0.946	5.301	0.200	0.035	1.054	5.004	0.266	0.072	0.620	5.029	0.547	0.109	1.003	1.752	0.172	0.052	0.816	3.929	0.152	0.037	0.612	3.563	
																				õ	ineen k	0.7666	0.1060	1 11221	17.1660	
																					st. dev.	0.440	0.121	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	10.327	
																						ŧ	16 (())	98	16	
																					me#	0.110	0.030 []]	3478	2.582	

TABLE 7

Marchine Decressing Cone 1 Increasing Cone 2 Constant Cone 2 Cone	ulse Respon	se - Post-Fi	light Day 1	1 (1-21-9.	3																		number	of units: 5	
Metrichter K r DC Gam Gam <th></th> <th>Decrees</th> <th>sing Curve</th> <th>4</th> <th></th> <th>Increasing</th> <th>7 Curve 1</th> <th></th> <th></th> <th>Increasin</th> <th>7 Curve 2</th> <th></th> <th></th> <th>Decreasin</th> <th>g Curve 2</th> <th></th> <th></th> <th>Average (</th> <th>Decreasing</th> <th></th> <th></th> <th>Average I</th> <th>Increasing</th> <th></th> <th></th>		Decrees	sing Curve	4		Increasing	7 Curve 1			Increasin	7 Curve 2			Decreasin	g Curve 2			Average (Decreasing			Average I	Increasing		
No.2010a 0.466 0.10 0.461 0.112 <	NAT FILENAM	y	×	÷	8	GAIN	¥	Ļ	8	GAIN	¥	۲	8	GAIN	¥	-	8	GAIN	¥	-	8	GAIN	×	-	8
R Color Col	H JOSCZION																								
No. No. <td>R 06c2102a</td> <td>0.464</td> <td>5 0.1015</td> <td>6.591</td> <td>145.0000</td> <td>0.5560</td> <td>0.1317</td> <td>11.929</td> <td>144.9696</td> <td>0.6207</td> <td>0.1186</td> <td>7.067</td> <td>147 5611</td> <td>0.4817</td> <td>0.0937</td> <td>8.607</td> <td>147.6365</td> <td>0 4732</td> <td>0.0976</td> <td>1 599</td> <td>146 3183</td> <td>0 5884</td> <td>0 1252</td> <td>6 493</td> <td>146 2654</td>	R 06c2102a	0.464	5 0.1015	6.591	145.0000	0.5560	0.1317	11.929	144.9696	0.6207	0.1186	7.067	147 5611	0.4817	0.0937	8.607	147.6365	0 4732	0.0976	1 599	146 3183	0 5884	0 1252	6 493	146 2654
R Concrist Discription Discription <thdiscription< th=""> <thdiscrind< th=""> <thdiscrind< td="" th<=""><td>R 06621024</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdiscrind<></thdiscrind<></thdiscription<>	R 06621024																								
R 0622105a 0.4175 0.137 0.0360 0.0475 0.137 0.0360 0.0372 0.0312	R 06c2104	0.2221	9 0.0573	8.194	96.8866	0.2916	00000	10 539	99.8146	0.2912	0.0241	7.007	100.0693	0.2720	0.0933	12.362	95,3260	0.2474	0.0753	10.278	96 1063	0.2914	0.0121	8.773	00 04 20
R Clock 01531 01531 01531 01532 01332 01332 01332 01332 01332 01332 01332 01332 01332 01333 013	R 06c2105a	0.475	7 0.1314	9.309	132.6268	0.5902	0.1464	10.988	140.6817	0.6075	0.0000	6.645	137.9972	0.5750	0.0000	8.585	138.6500	0.5254	0.0657	8.947	135,6384	0.5989	0.0732	8.816	139,3395
R 06c2101a 01667 00368 8250 650000 13549 03650 01549 03650 01268 155 33709 03759 0355 64.1612 0133 0477 14123 1743 0000 7307 0300 0477 14177 131743 0300 0307 73174 0379 0000 7307 0301 0417 131743 0319 0000 7307 0300 0307 73174 0379 0000 7307 0300 0417 13174 0379 0000 7307 0300 0547 1328 65 6133 0133 0417 13174 0310 55 6133 0417 13552 0133 0433 0577 0359 45667 0133 0477 0316 0439 0559 539 113174 0310 55 0 R 06c2110a 07505 01095 5190 111670 0 4256 02211 11233 115.000 0379 03093 1117 1123 1123 01550 033 949 43 0300 0137 00003 340 47.469 0137 0003 340 47.469 0139 0031 0317 0033 849 116 011 0310 55 0000 339 45.667 0131 0310 500 0339 1136 1130 053 0449 0137 0033 1120170 02711 0014 8421 111872 0393 01015 11204 1133 115.000 0379 1031 0500 359 45.667 0131 0201 0310 50 050 340 1135 11200 033 1120170 0211 0214 8421 111872 0393 01015 11204 1133 115.000 037 310 300 1153 1120170 0211 0214 8421 111872 0393 01015 11204 1132 1600 1012 0719 0219 0001 0321 0326 0311 1223 115.000 037 310 310 31 031 31 011 0211 8123 115.000 1034 8421 111871 0319 0001 0317 3174 0319 0319 0319 1031 1120 170 111672 0393 0393 0195 11204 1132 170 121 0121 0121 0131 0231 0349 0011 0321 0332 0331 11211 0319 0317 3100 31 031 3104 1132 170 121 0131 0231 0349 0011 9391 0331 0317 3104 031 3104 1131 0319 0015 0314 8421 11817 0316 0015 11204 1131 0319 1031 1409 0201 0563 1230 0051 2069 1174 031 3173 0053 230 311 1121 0319 0013 0319 1120 1001 0311 0314 0201 0323 0391 1120 1001 0312 0313 0312 1231 0324 0321 0323 0314 133 1409 0011 0320 1231 0359 0391 1304 1033 031 2310 3300 312 031 0319 0316 1121 1001 011 011 011 011 011 011 011 011	R 06c2106a	0.163	1 0.1877	9.236	128.0000	0.3410	0.0000	9.193	129.0232	0.2793	0.0245	8.448	131.6427	0.2209	0.0785	6.969	129.7718	0.1920	0.1331	8.102	128.8859	0.3102	0.0123	8.821	130,3330
R 02236 01335 01335 00305 117 1337 1033 00000 7887 01335 01335 00000 7887 01335 <td>R 06c2107a</td> <td>0.166</td> <td>7 0.0598</td> <td>8.260</td> <td>66.0000</td> <td>0.1548</td> <td>0.0000</td> <td>13.296</td> <td>66.0000</td> <td>0.1603</td> <td>0.000</td> <td>3.116</td> <td>69.0000</td> <td>0.2211</td> <td>0.0857</td> <td>15.526</td> <td>68.1612</td> <td>0.1939</td> <td>0.0728</td> <td>11.893</td> <td>67.0806</td> <td>0.1576</td> <td>0000</td> <td>8.206</td> <td>67,5000</td>	R 06c2107a	0.166	7 0.0598	8.260	66.0000	0.1548	0.0000	13.296	66.0000	0.1603	0.000	3.116	69.0000	0.2211	0.0857	15.526	68.1612	0.1939	0.0728	11.893	67.0806	0.1576	0000	8.206	67,5000
R 0622109a 01205 00000 6566 01233 0133 00033 554 61257 01233 00333 61255 01133 00033 553 61255 01133 00033 513 01131 01337 00333 61257 01333 00333 61357 01333 00333 61356 01131 01333 01351 00033 513 1116170 02711 01051 02711 01051 02333 61356 01333 01351 02331 61367 02311 6137 02311 6137 02311 61361 02311 61361 02310 63065 02313 01331	R 06c2108a	0.253	9 0.0351	6.178	129.7954	0.3919	0.0000	9:0:28	131.9548	0.3657	0.0159	6.715	133.7009	0.3783	0.0595	14.177	136.5542	0.3161	0.0473	10.177	133.1748	0.3788	0.0080	7.887	132.8279
R OCC110a 0.7161 0.0000 3351 45656 0.7216 0.1416 10.310 56.0830 11.1 <td>R 06c2109a</td> <td>0.120</td> <td>9 0.0000</td> <td>6.695</td> <td>62.3837</td> <td>0.1133</td> <td>0.000</td> <td>7.110</td> <td>63.4890</td> <td>0.1527</td> <td>0.0586</td> <td>9.489</td> <td>63.0000</td> <td>0.1357</td> <td>0.0623</td> <td>8.504</td> <td>61.2672</td> <td>0.1283</td> <td>0.0312</td> <td>7.599</td> <td>61.8255</td> <td>0.1330</td> <td>0.0293</td> <td>8.299</td> <td>63.2445</td>	R 06c2109a	0.120	9 0.0000	6.695	62.3837	0.1133	0.000	7.110	63.4890	0.1527	0.0586	9.489	63.0000	0.1357	0.0623	8.504	61.2672	0.1283	0.0312	7.599	61.8255	0.1330	0.0293	8.299	63.2445
R Occ2111a 0.2509 0118 5190 111.8170 0.2711 02011 111.8170 0.2711 00011 0.2711 00111 0.2711 00111 0.2711 00111 0.2711 0.0151 111.8170 0.0151 111.8170 0.0151 0.0111 0.0151	R 06c2110a	0.761	00000	3.351	45.6636	0.7218	0.1416	10.310	56.0890	i	I	I	ł	0.8349	0000	3.846	47.4698	0.7982	0,0000	3.599	46.5667	0.7218	0.1416	10.310	56.0890
Image: Note of the control o	R 06c2111a	0.250	9 0.0189	5.190	111.6070	0.4256	0.0211	11.233	115.0000	0.3729	0.0099	11.175	112.0000	0.2912	0.0839	11.653	112.0170	0.2711	0.0514	8.422	111.8120	0.3993	0.0155	11.204	113.5000
STATISTICS GAIN K r DC GAIN GAIN<	_								1																
mean 0.3200 0.0557 7.000 10159559 0.3385 0.0401 10.5 11.1 <th>STATISTIC</th> <th>CS GAIN</th> <th>¥</th> <th>-</th> <th>8</th> <th>GAIN</th> <th>¥</th> <th>۲</th> <th>8</th> <th>GAN</th> <th>¥</th> <th>2</th> <th>DC</th> <th>GAIN</th> <th>¥</th> <th>-</th> <th>X</th> <th>GAIN</th> <th>¥</th> <th></th> <th>8</th> <th>GAIN</th> <th>¥</th> <th>•</th> <th>ß</th>	STATISTIC	CS GAIN	¥	-	8	GAIN	¥	۲	8	GAN	¥	2	DC	GAIN	¥	-	X	GAIN	¥		8	GAIN	¥	•	ß
st dev 0 2006 0064 1964 36.044 0 201 0.069 1.798 35.244 0.179 0.040 2.317 32.048 0.219 0.037 3.700 37.541 0.210 0.051 3.268 35.717 0.186 0.056 2.326 32. n 9 9 9 9 19 18 18 17 17 77 sem 0.069 0.021 0.055 12.015 0.057 0.023 0.599 11.748 0.053 0.014 0.836 11.331 0.073 0.012 1.233 1.2514 0.049 0.012 0.014 0.17 77 n 1 35 35 0.055 8.739 1055 st. dev 0 196 0.056 8.733 1055 st. dev 0 1050 7.233 1251 101 st. dev 0 1050 7.233 1050 7.233 1050 1050 7.233 1251 101 st. dev 0	ЭШ.	en 0.320	0.0657	7.000	101.9959	0.3985	0.0490	10.406	105.2247	0.3563	0.0314	7.457	111.8714	0.3790	0.0619	10.025	104.0949	0.3495	0.0638	8.513	103.0454	0.3786	0.0407	9.018	108.3525
n 9 9 9 9 9 9 13 13 17 105 1063 0.005 0.012 0.012 0.012 0.012 0.013 0.013 0.012 0.013 0.014 0.013 0.014 0.013 0.012 0.014 0.013 0.012 0.014 0.013 0.012 0.014 0.014 0.012 0.012 0.014 0.013 0.012	3f 0	tev 0.20	5 0.064	1.964	36.044	0.201	0.069	1.798	35.244	0.179	0.040	2.371	32.048	0.219	0.037	3.700	37,541	0.210	0.051	3.268	36.717	0.186	0.056	2.526	32.896
3em 0.069 0.021 0.655 12.714 0.063 0.014 0.613 1.331 0.073 0.012 1.233 12.514 0.049 0.012 0.770 8.419 0.045 0.055 8.733 1055 7.733 1055 7.733 1055 7.733 1055 7.733 1055 7.733 1055 7.733 1055			6	60	0	0	6	6	ŋ	*	80	80	80	6	65	0	6	₽	₽	18	18	17	17	11	17
Inclument 0.3636 0.0536 #3.834 105.6 #3.843 105.7 2.34 105.6 #3.34 105.7 2.34 105.7 105.7 105.6 #3.77.1 105.7 105.7 105.7	ň	am 0.06	9 0.021	0.655	12.015	0.067	0.023	0.599	11.748	0.063	0.014	0.838	11.331	0.073	0.012	1.233	12.514	0.049	0.012	0.770	8.419	0.045	0.014	0.613	7.978
et dev. 0.196 0.054 ************************************																				2	ytal mean	0.3636	0.0526	891.9	105.6231
33 35 35 35 3																					st. dev.	0.196	0.054	2,000	33.976
The array of the Flight, Synchronous, & Day & Post-Flight Control) And a construct of the Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) III Controls (Pre-Flight, Synchronous, & Day & Control) III Controls (Pre-Flight, Synchronous, & Day & Post-Plight, Synchronous, & Day & Controls (Pre-Flight, Synchronous, & Day & Post-Plight, Synchronous, & Day & Controls (Pre-Flight, Synchronous, & Day & Controls (Pre-Flight, Synchronous, & Day & Sont, Pre-Plight, Synchronous, & Sont, Pre-Plight, Synchetee, Synchronous, & Sont, Pre-Plight, Synchronous, & Sont, Pre-Pl																					6	35	R	*	35
Ill Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) Ill Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) Ill Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) Ill Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) Ill Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) Ill Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) Ill Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) Ill Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) Ill Controls (Pre-Flight, Synchronous, & Day & Day & Post-Flight Control) Ill Controls (Pre-Flight, Synchronous, & Day & Post-Flight Control) Ill Controls (Pre-Flight, Controls (Pre-Flight, Control) Ill Controls (Pre-Flight, Control of Control) Ill Controls (Pre-Flight, Control) Ill Control of Control																					Line	0.033	600:0	0.460	5.743
STATISTICS GAIN K t DC M C 1263 127151051 GAIN K t 00 C 1263 136,19941 0.8071 0.1089 5.933 135,72331 0.8987 0.0950 7.233 1270	til Controls (F	re-Flight, S	ynchronou	rs, & Day	6 Post-Flig	tht Contro	5																number	a nuts:	ò
meen 0.7632 0.1119 5.338 134.9660 0.3221 0.0803 7.076 126.8296 0.8763 0.1092 7.388 127.2109 0.8611 0.1047 6.693 136.7944 0.8071 0.1089 5.923 136.7233 0.8987 0.0950 7.233 127.0	STATISTIC	CS GAIN	¥	-	З	GAIN	¥	۲	8	GAIN	×	-	Х	GAIN	×	-	8	GAIN	¥	-	×	GAIN	¥	-	Я
	9E	en 0.769.	2 0.1119	5.398	134.9660	0.9221	0.080.0	7.076	126.8296	0.8763	0.1092	7.388	127.2109	0.8611	0.1047	6.693	136.7994	0.8071	0.1089	5.033	135.7233	0.8987	0.0950	7.235	127.0241

49 3.349 131.2363 22.509 95 2.309

0.090 2.360 49 49 0.013 0.337 0.1018 66.05 95 246 95 246 95 246 95 256 95 256

0.8544 0.427 95 0.044

- E98 st. dev.

23.446 DC 7.0241

0.460

5.033 2.377 46 0.351

64 0.066

20.785 46 3.065

0.389 0.103 46 46 0.057 0.015

18.826 19 4.319

6.693 2.584 19 0.593

0.082 19 0.019

0.432 19 0.099

27.2109 22.548 25 4.510 g

> 2.364 25 0.473 388

> 0.1092 0.097 25 0.019

0.442 25 0.088

24.833 24 5.069

7.076 2.396 2.4 0.489

0.0803 0.081 24 0.017

0.485 24 0.099

22.381 27 4.307 34.9660

2.107 27 0.406 5.398

0.117 27 0.022 9111

0.359 27 0.069

meen st. dev c 80M

			COSMOS 2	2044		COSMOS 2	229	S	itetistical Significar	ice
	plot			no.		_	ло.	2044 vs.	Ctrl. vs. PFDays	Ctrl. vs. PFDays
	order	Gain	SEM	observations	Gein	SEM	observations	2229	Cosmos 2044	Cosmos 2229
Pre-FII/Synch Ctrls	1	0.6554	0.165	10	0.7935	0.126	17	0.3152		
PF days 1-2	2	0.8658	0.187	10	0.3814	0.043	7	**0.0084	0.2899	0.0121
PF days 3-4	3	0.9660	0.288	3	0.6120	0.138	5	0.4561	0.3105	0.5832
PF day 5	4	0.4310	0.000	1	0.4450	0.072	6	1.0000	0.7518	0.0741
PF Ctris Days 6-7-8	5	0.4814	0.068	17	1.0700	0.350	3	0.0806	0.6333	0.4269
PF day 11	6		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>		0.4450	0.165	2			0.2317

		ق	OSMOS :	2044		COSMOS 2	229		Statistical Significat	000
	plot i	1		no.	1		no.	2044 vs.	Ctrl. vs. PFDavs	Ctrl. vs. PFDava
	order	Pheso	SEM	observetions	Phese	SEM	observations	2229	Cosmos 2044	Cosmos 2229
Pre-FI/Synch Ctri		23.3969	2.903	10	16.3417	2.770	17	0.0975		
PF days 1-2	2	24.4969	3.044	10	11.7461	1.067	7	**0.0047	0.7624	0.0807
PF days 3-4	3	26.5103	7.090	3	13.8370	1.922	5	0.1011	0.6121	0.4587
PF day 5	4	28.0230	0.000		19.2858	2.177	6	0.1336	0.5271	0.5754
PF Ctrl days 6-7-8	5	24.4969	3.044	10	30.0753	5.874	3	10.0300	10.0183	0.07.04
PF day 11	6				16 8275	7 576	 /		0.0.03	0.0302
			<u>annannan</u>	<u>annin annin anni a</u>		1 1.070	<u> </u>			0.7905

Sine Data - COSMOS 2044 60 degrees/sec - 0.2051 Hz

PRE-FLIGHT CONTROLS

Pre-Flight	file	gain	phase
(2592)7/24-01B	a92an1b	0.141	32.948
(2592)7/25-05	a92an5a	0.195	8.626
(2556)7/26-01B	a56an1b	0.329	12.541
(2558)7/26-010	a56an1d	***	***
(2556)7/28-028	a55an2b	***	***
(2556)7/26-02C	856an2c	***	***
(2556)7/28-02F	a56an21	***	***
(2556)7/26-06B	a56an6b	0.306	20.198
(2555)7/26-06E	aSGanGe	***	
(2556)7/26-088	a56an8b	0.916	27.045
(2556)7/26-09B	a56an9b	1.872	34.516
(2556)7/26-10B	a56an10b	0.804	25.023
(2483)7/27-06A	a83an6a	0.994	33.55
(7/82)7/28-01	al626m10		••••
(782)7/28-010	a62an1c	***	***
(782)7/28-01F	a82an1f	0.438	14.679
(782)7/28-028	a82an2b	0.559	24.863
(774) 7/31-028	a/4an2b		
(774) 7/31-020	a74an2c	•••	***
	mean	0.6554	23.3989
	st. dev	0.5214	9.17915
	units	10	10
	sem	0.1649	2.9027

POST-FLIGHT DAYS

PF Day 1	file	gain	phase
(782)po1-01	a82anb01	2.239	25.063
(782)po1-03	a82anb03	1.176	34.621
(782)po1-05	a82anc05	0.434	11.891
(782)po1-07	a82anc07	1.392	36.415
(2483)po1-01	a83anb01	0.824	13.398
(2483)po1-02	a83anb02	0.402	13.396
(2483)po1-05C	a83an5c	0.731	32.392
	mean	1.0283	23.8823
	st. dev	0.6449	10.8771
	units	7	7
	sem	0.2438	4.11117

file	gain	phase	
a82anc09	0.621	34.486	
a83an4c	0.441	23.328	
a83an5b	0.398	19.979	
mean	0.4867	25.931	
st. dev	0.1183	7.59572	
units	3	3	
sem	0.0683	4.38539	
	file a82anc09 a83an4c a83an5b mean st. dev units sem	file gain a82anc09 0.621 a83an4c 0.441 a83an5b 0.398 mean 0.4867 st. dev 0.1183 units 3 sem 0.0683	

Total Days 1, 2	mean	0.8658	24.4969
	st. dev	0.5906	9.62679
	units	10	10
	sem	0.1868	3.04426

PF Day 4	file	gain	phase
(782)po4-01	a82an1b	0.84	34.702
(782)po4-02	a82an2c	0.543	12.391
(782)po4-11	11 a82an11b		32.438
	mean	0.966	26.5103
	st. dev	0.4981	12.28
	units	3	3
	sem	0.2876	7.08985

PF Day 6	file	gain	phase
(782)po5-03	a82an3b	0.431	28.023
	mean	0.431	28.023
	st. dev	0	0
	units	1	1
	sem	0	0

POST-FLIGHT CONTROLS

	units sem	8 0.0813	8 6.88736
	st. dev	0.23	19.4804
	mean	0.4136	8.46763
(774)po6-16	a74an16b	0.272	22.198
(774)po6-15	a74an15b	0.154	13.15
(774)po6-13	a74an13b	0.696	-34.166
(774)po6-09	a74an09b	0.336	-0.107
(774)po6-06	a74an6a	0.195	6.507
(774)po6-05	a74an5b	0.616	25.997
(774)po6-02	a74an02c	0.727	23.984
(2592)po6-03	a92an3b	0.313	10.178
PFC Day 6	file	gain	phase

PFC Day 7	file	gain	phase
(774)po7-01B	a74an18b	0.311	9.618
(774)po7-01D	a74an18d	0.347	9.649
(774)po7-02	a74an19b	0.409	16.396
(774)po7-05	a74an5b	0.494	10.832
(774)po7-06C	a74an23c	0.565	27.103
(774)po7-07	a7 4an7b	0.475	13.686
(2592)po7-01	a92an1a	1.345	13.573
	mean	0.5637	14.4081
	st. dev	0.3554	6.11983
	units	7	7
	sem	0.1343	2.31308

PFC Day 8	file	gain	phase
(774)po8-04	a74an4b	0.597	16.057
(774)po8-17	a74an44b	0.332	9.956
	mean	0.4645	13.0065
	st. dev	0.1874	4.31406
	units	2	2
	sem	0.1325	3.0505
Post-Flt Ctrl	mean	0.4814	11.4477
	st. dev	0.2793	13.7772
	units	17	17
	sem	0.0677	3.34146
All Controls	mean	0.5459	15.8741
	st. dev	0.3866	13.4373
	units	27	27
	sem	0.0744	2.58601

Sine Protocol - 0.2051 Hz COSMOS 2229

TABLE XX

ŀ	'n	e-/	-11	g	h	t (1	1	-1	4	-9	2	to	1	2.	9.	92)
								-		_			_					
	_	_																
						_	_					_	_					

ea	FILENAME	gain	phase
L L	01o1702d	0.43	9.861
L	03a1401d	1.02	19.215
L	03a1402d	2.26	25.648
L	03a1407d	0.70	12.192
	75a1504d		
	UISIOUIA		
L	01a1602d	0.60	21.084
L	01a1603d	0.31	-16.761
L	07a1601d	1.64	36.849
L	07a1602d	0.77	22.399
L	07a1610d	0.36	10.612
L	07a1611d	0.38	9.195
L	07a1612d	0.57	12.148
	1		
L	01a2004d	1.12	25.910
L	01a2005d	0.39	13.176
L	01a2006d	0.81	24.805
L	01a2007d	0.73	22.599
	STATISTICS	gain	phase
	MEAN	0.81	16.595
	ST. DEV.	0.54	12.079
	N	15	15
	SEM	0.14	3.12

TABLE XX Post-Flight Day 2 (1-13-93)

Post-Fiight Day 2 (1-13-93)							
ea/	FILENAME	gain	phase				
R	06c1102d	0.49	14.85				
R	06c1105d	0.58	16.44				
R	06c1106d	0.34	11.69				
R	06c1108d	0.34	10.59				
R	06c1112d	0.37	10.74				
R	51c1101d	0.28	8.80				
R	51c1103d	0.27	9.11				
	STATISTICS	gain	phase				
	MEAN	0.38	11.746				
	ST. DEV.	0.11	2.876				
	N	7	7				
	SEM	0.04	1.09				

TA	TABLE XX								
Pos	Post-Flight Day 3 (1-12-93)								
ear	FILENAME	gain	phase						
R	51c1206d	0.56	14.558						
R	51c1207d	0.16	11.778						
R	51c1209d	1.02	11.140						
R	51c1210d	0.71	21.036						
R	51c1211d	***							
R	51c1216d	0.61	10.673						
	STATISTICS	gain	phase						
	MEAN	0.61	13.837						
	ST. DEV.	0.31	4.297						
	N	5	5						
	SEM	0.14	1.92						

	BLE XX	.		
Po	st-Flight Day	5 (1-14	r-93)	
987	FILENAME	gam	phase	
R	51c1421d	0.60	20.793	
R	51c1424d	0.52	26.910	
R	51c1425d	0.35	21.734	
R	51c1428d	0.20	11.070	
R	51c1429d	0.66	16.458	
R	06c1420d	0.34	18.750	
	STATISTICS	gain	phase	
	MEAN	0.45	19.286	
	ST. DEV.	0.18	5.332	
	N	6	6	
	SEM	0.07	2.18	

L	07c1502*	1.42	41.766
	STATISTICS	gain	phase
	MEAN	1.07	30.08
	ST. DEV.	0.61	10.17
	N	3	3
	SEM	0.35	, 5.87

TABLE XX

L 03c1516d

L 07c1501d

Post-Flight Day 6 (1-15-93) Post-Flight Control

ear FILENAME gain phase

L 07c1502d 1.44 42.109 L 07c1502h 1.40 41.423

0.37 25.226

23.234

1.42

TABLE XX				
Po	Post-Flight Day 11 (1-21-93)			
ear	FILENAME	gain	phase	
R	06021013			
R	06c2102d	0.61	24.403	
R	08c2102h			
R	06c2104d	0.28	9.252	
	STATISTICS	gain	phase	
	MEAN	0.45	16.828	
	ST. DEV.	0.23	10.713	
	N	2	2	
	SEM	0.17	7.58	

All controls			
STATISTICS	gain	phase	
MEAN	0.84	18.40	
ST. DEV.	0.53	12.09	
N	20	20	
SEM	0.12	2.70	

ST. DEV.	0.55	6.039
N	2	2
SEM	0.39	4.27
Pre-Flt/Synch Ct	rl 🛛	

TABLE XX

L 07c1002d

L 07c1003d

Synchronous Control (1-9-93 to 1-10-93)

ear FILENAME gain phase

0.31

1.09

STATISTICS gain phase MEAN 0.70

10.168

18.709

14.439

STATISTICS	gain	phase
MEAN	0.79	16.34
ST. DEV.	0.52	11.42
N	17	17
SEM	0.13	2.77