https://ntrs.nasa.gov/search.jsp?R=19960034389 2020-06-16T04:19:37+00:00Z NCC2-241

FINAL REPORT

1. S. S. S.

NASA-CR-201099

Measurement of Human Pilot Dynamic Characteristics in Flight Simulation

by

JAMES T. REEDY B.S. (California State University, Sacramento) 1985

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Mechanical Engineering

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Poneld O. Her Dean Karnopp John Grewy Committee in Charge

i

MAY 31 1996 CASI

Acknowledgements

This research was sponsored by the NASA Ames Research Center, Dryden Flight Research Facility grant number NCC2-241. Mr. Donald T. Berry was the contact monitor. Iwould like to thank Edwin W. Aiken and Michelle M. Eshow of the Flight Dynamics and Controls Branch at NASA Ames Research Center for their participation in the experiment and the aquisition of data that made this project possible. I would also like to thank Profesor Ronald A. Hess of the University of California, Davis for his time, support and guidance.

Abstract

Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation techniques were applied to the problem of identifying pilot-vehicle dynamic characteristics in flight simulation. A brief investigation of the effects of noise, input bandwidth and system delay upon the FFT and LSE techniques was undertaken using synthetic data. Data from a piloted simulation conducted at NASA Ames Research Center was then analyzed. The simulation was performed in the NASA Ames Research Center Variable Stability CH-47B helicopter operating in fixed-basis simulator mode. The piloting task consisted of maintaining the simulated vehicle over a moving hover pad whose motion was described by a random-appearing sum of sinusoids. The two test subjects used a head-down, color cathide ray tube (CRT) display for guidance and control information. Test configurations differed in the number of axes being controlled by the pilot (longitudinal only versus longitudinal and lateral), and in the presence or absence of an important display indicator called an "acceleration ball". A number of different pilot-vehicle transfer functions were measured, and where appropriate, qualitatively compared with theoretical pilotvehicle models. Some indirect evidence suggesting pursuit behaivor on the part of the test subjects is discussed.

iii

Table of Contents

Title page	i
Acknowledgements	
Abstract	
Table of Contents	
List of Tables	
List of Figures	
List of Programs	
1.0 Introduction	
2.0 Background	•
2.1 Brief Review of Techniques for Human Transfer Function	
2.2 Least Squares and Sum of Sines - Hess/Mnich	6
2.3 Description of the Reedy Identification - Similarity to NIPIP	
2.4 Example Cases; Noise Effects, Input Bandwidth Effects, Delay Estimation Techniques	
3.0 A Multi-Axis Manned Simulation Task	17
4.0 Conclusions	
5.0 References	
6.0 Appendix I Tables	
7.0 Appendix II Figures	
8.0 Appendix III Computer Programs	

List of Tables - Appendix I

Nu	mber Title	Dees
1.		Page
2.	Noise and cutoff frequency comparison	28
3.	Bias comparison	29
4.	Identification with delay comparison	30
5.	Identified delay comparison	31
6.	Open-loop vs. closed-loop comparison	32
7.	Sum of sines input	33
8.	Multi-loop helicopter simulation comparison	34
9.	Longitudinal sum of sines for the CH-47B	35
	helicopter	36
10.	Lateral sum of sines for the CH-47B helicopter	70
11.	X/Xpad TF. ID. results for subject 1, longitudinal	37
	tracking only	38
12.	X/Xpad TF. ID. results for subject 2, longitudinal	39
	tracking only	23
13.		40
	iongitudinal tracking	40
14.	X/Xpad TF. ID. results for subject 2, lateral and	41
	iongitudinal tracking	41
15.	X/Xpad TF. ID. results for subject 1 lateral and	42
	longitudinal tracking without the acceleration	42
	symbol	
16.		43
	iongitudinal tracking without the acceleration	
	Symbol	
17.		44
	longitudinal tracking only	
18.	Xball/Xpad TF. ID. results for subject 2	45
	longitudinal tracking only	
19.	Xball/Xpad TF. ID. results for subject 1,	46
	lateral and longitudinal tracking	
20.	Xball/Xpad TF. ID. results for subject 2,	47
• •	lateral and longitudinal tracking	••
21.	Xball/Xball error TF. ID. results for subject 1	48
~~	longitudinal tracking only	
22.	Xball/Xball error TF. ID. results for subject 2,	49
	longitudinal tracking only	
23.	Xball/Xball error TF. ID. results for subject 1,	50
	lateral and longitudinal tracking	

Xball/Xball error TF. ID. results for subject 2, 51 lateral and longitudinal tracking 24.

List of Figures - Appendix II

Nu	mber Title	Page
1.	Open-loop block diagram	53
2.	Closed-loop block diagram	53
3.	Closed-loop block diagram with noise	53
4.	Closed-loop block diagram with noise and bias	
5.	Multi-loop hovering helicopter model block	53
	diagram	53
6.	Noise comparison, medium cutoff frequency	54
7.	Bias comparison, medium cutoff frequency	54
8.	Delay comparison, medium cutoff frequency	55
9.	Open-loop frequency cutoff comparison,	55
	zero noise	
10.	Closed-loop cutoff comparison, zero noise	56
11.	Closed-loop cutoff comparison with noise	56
12.	Open-loop vs. closed-loop with step input	58
13.	Open-loop vs. closed-loop with medium cutoff	
	sum of sines input	57
14.	FFT vs. LSE, open-loop, with medium cutoff	50
	sum of sines input	58
15.	FFT vs. LSE, closed-loop with medium cutoff	50
	sum of sines input	58
16.	Multi-loop FET vs. I SE with biog, and same using	
17.	Multi-loop FFT vs. LSE with bias, and zero noise	59
18.	Multi-loop FFT vs. LSE with noise and bias	59
19.	Display symbology for the CH-47B helicopter	60
15.	Hypothesized pilot loop closures with	60
20.	acceleration ball display symbology	
20.	X/Xpad TF. ID. for subject 1, longitudinal	61
04	tracking only	
21.	X/Xpad TF. ID. for subject 2, longitudinal	62
~~~	tracking only	
22.	X/Xpad TF. ID. for subject 1, lateral and	63
	longitudinal tracking	
23.		64
	longitudinal tracking	
24.	X/Xpad TF. ID. for subject 1, lateral and	65
	longitudinal tracking without the acceleration	
	symbol	
25.	X/Xpad TF. ID. for subject 2, lateral and	66
	longitudinal tracking without the acceleration	00
	symbol	
	-	

26.	X position vs. time plot for X/Xpad, subject 1, lateraland longitudinal tracking	67
27.	X position vs. time plot for X/Xpad, subject 1, lateraland longitudinal tracking without the acceleration symbol	67
28.	Xball/Xball error TF. ID. for subject 1, longitudinal tracking only	68
29.	Xball/Xball error TF. ID. for subject 2, longitudinal tracking only	68
30.	Xball/Xball error TF. ID. for subject 1, lateral and longitudinal tracking	69
31.	Xball/Xball error TF. ID. for subject 2, lateral and longitudinal tracking	69
32.	Alternate multi-loop pilot loop closures with acceleration ball display symbology	70
33.	Xball/Xpad TF. ID. for subject 1, longitudinal tracking only	71
34.	Xball/Xpad TF. ID. for subject 2, longitudinal tracking only	71
35.	Xball/Xpad TF. ID. for subject 1, lateral and longitudinal tracking	72
36.	Xball/Xpad TF. ID. for subject 2, lateral and longitudinal tracking	72
37.	Xball/Xpad TF. for compensatory pilot behavior	73

List of Programs - Appe	andix	III
-------------------------	-------	-----

Number Title F	Page
	75
2 ACSL closed loop simulation, sum of sines input	77
with noise, delay, and bias	
· · · · · · · · · · · · · · · · · · ·	78
with noise, and delay	
4 ACSL closed loop simulation, sum of sines input 7	79
with noise	
5 ACSL closed loop simulation, sum of sines input 8	B 0
6 Z-domain to W'-domain transformation subroutine 8	81
7 Fast Fourier Transform subroutine 8	83
8 LSE identification using model 8, no delay with 8	85
bias	
9 LSE identification using model 8 with a 3 time 8	86
constant delay	
10 LSE identification using model 8 8	37
11 LSE identification using model 9 8	38

.

#### 1.0 Introduction

A pilot when combined with a modern aircraft, whether an airplane or helicopter, forms one of the most complicated systems to be analyzed by a control engineer. Once the basic problem of stability is solved, the issue of handling qualities can be raised. In order to improve handling qualities, a better integration of man and machine is required, and in order to achieve better man machine integration, the system dynamics must be evaluated and optimized. The first step in this process is the measurement of the vehicle and pilot dynamics. The measurement of human dynamics is complicated by the fact that human characteristics are task dependent. Their dynamics can change dramatically depending upon the type of task being performed, and their familiarity with it. Dynamics can also vary between pilots for the same task.

Early work in the area of human pilot dynamics (e.g. ref. 1) has led to the formation of a vast data base, which has aided many researchers in their development of models of the human pilot. Over the past three decades, many models have been proposed and tested. Models varying in complexity from the Crossover Model for single loop systems to the Structural Isomorphic Model. Although the crossover model is the simplest, it is the most general. When expressed mathematically the crossover model appears as,

$$Y_{p}Y_{c} = \frac{K_{p}K_{c}e^{-\tau s}}{S} = \frac{\omega_{c}e^{-\tau s}}{S}$$
(1)

where  $Y_p$  is the pilot transfer function,  $Y_c$  is the plant transfer function,  $K_p$  and  $K_c$  are gains,  $\tau$  is the system time delay, and  $\omega_c$  is the crossover frequency. This model states that no matter what the plant dynamics, the operator compensates for them and the system crossover model is preserved. As the name implies this model is accurate near the crossover frequency, but if the low or high freqencies are important a different model must be used. The precision model for single loop systems (ref. 2) is accurate for a broader frequency range than the crossover model. If a more complicated model is required there are several multiloop examples to choose from. The McRuer Structural Isomorphic Model (ref. 2), the Linear Optimal Control Model (ref. 3), and the Hess Structural Model (ref. 4) are three options available.

This paper uses simple single-loop models for generation of data that is used to test the least squares identification process and the Fast Fourier Transform analysis. Once the simple models were identified properly, a more complicated multiloop example was exercised. After the multiloop example was completed the identification procedure was used to identify vehicle pilot dynamics from data obtained from a CH-47B helicopter at the NASA Ames Research Center.

#### 2.0 Background

# 2.1 Brief review of techniques for human transfer function estimation.

When deciding upon an identification technique there are many choices, and depending on the system being identified there will be advantages to using one method over another. Some of the different methods used employ orthogonal filters, spectral analysis techniques including Fast Fourier Transforms, and least squares estimation.

The orthogonal filter method is a generalized technique that models the system dynamics as a series of transfer functions or linearly independent filters. The set of linerarly independent filters are of the form

$$G(j\omega) = e^{-\lambda j\omega} \left[ \frac{\beta_1}{\tau_1 j\omega + 1} + \frac{\beta_2(\tau_1 j\omega - 1)}{(\tau_1 j\omega + 1)(\tau_2 j\omega + 1)} + \cdots \right]$$
(2)

where  $\beta_1, \beta_2, \ldots$  are determined by a regression technique, and  $\tau_1$ ,  $\tau_2, \ldots$  are predetermined time constants. The time constants are selected from models of the pilot that include the sensory organs, muscular mechanics, and the feedback therein. (see ref. 5 pg.4) Although general, the results from the orthogonal filter method are some what difficult to interpret due to the many parameters in the model.

Power and cross power spectral densities can be computed to determine the pilot dynamics using spectral measurement techniques. The power spectral density of a random singal x(t) is derived from the autocorrelation function

$$\Phi_{XX}(\tau) = \lim_{\leftarrow T \to \infty} \frac{1}{2T} \int_{T} x(t)x(t+\tau)dt$$
(3)

which can also be defined as one half of a Fourier Transform pair

$$\Phi_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_{XX}(\omega) e^{j\omega t}$$
(4)

where  $\Phi_{xx}(\omega)$  is referred to as the power spectral density of x(t), and

$$\Phi_{XX}(\omega) = \int_{-\infty}^{\infty} \Phi_{XX}(\tau) e^{-j\omega t}$$
(5)

Similarly the cross power spectral density of two random signals x(t) and y(t) is defined as

$$\Phi_{xy}(\omega) = \int_{-\infty}^{\infty} \Phi_{xy}(\tau) e^{-j\omega \tau}$$
(6)

Now if x(t) and y(t) are the input and output of a linear system, respectively, the transfer function of that system can be obtained as

$$H(j\omega) = \frac{\Phi_{XY}(\omega)}{\Phi_{XX}(\omega)} = H(s)\Big|_{s=j\omega}$$
(7)

where H(s) is the system transfer function in the Laplace domain.

If the input data can be described as a sum of sinusoids Eq. 7 can be simplified and the transfer function can be obtained using a Fourier Coefficient method where

$$H(j\omega) = \frac{C_{y}(j\omega)}{C_{x}(j\omega)}$$
(8)

where  $C_y$  and  $C_x$  represent Fourier coefficients whose real and imaginary parts are defined as

$$Re[C_{y}(j\omega_{i})] = \frac{1}{T_{i}} \int_{0}^{T_{i}} y(t)sin(\omega_{i}t)dt$$
(9)

$$\operatorname{Imag}[C_{y}(j\omega_{i})] = -\frac{1}{T_{i}}\int_{0}^{T_{i}} y(t)\cos(\omega_{i}t)dt \qquad (10)$$

Each sine wave must have an integral number of cycles over the entire run length (no partial waves), and no sine wave can have a frequency that is an integral multiple of another frequency. The relative amplitudes are selected so that the resulting input represents an input disturbance which occurs naturally in the task. Another benefit of using fourier coefficients is the Fast Fourier Transform (FFT). The FFT takes advantage of the periodic properties of sinusoids to reduce the computation time dramatically, but requires the number of data points to be an integer power of two.

The least square error (LSE) method is the simplest approach mathematically, but computationally requires a large amount of storage space due to the matrix manipulations involved. In order to perform a least squares identification on a single-loop pilot-vehicle system an appropriate model must be chosen. Model selection varies from the simple crossover model,

$$Y_{p}Y_{c} = \frac{Ke^{-\tau S}}{S}$$
(11)

to higher order models like the precision model for single loop systems, (see ref. 2 pg 29)

$$Y_{p} = K_{p} e^{-j\omega t} \left( \frac{T_{L}j\omega + 1}{T_{j}j\omega + 1} \right) \left( \frac{T_{K}j\omega + 1}{T_{K}j\omega + 1} \right) \left( \frac{1}{\left( TN_{1}j\omega + 1 \right) \left[ \left( \frac{j\omega}{\omega_{n}} \right)^{2} + \frac{2\zeta Ns_{j}}{\omega_{n}}j\omega + 1 \right]} \right) (12)$$

Once a model has been chosen, the input and model output error are minimized using a least squares technique. After the error has been minimized the coefficients are obtained, and the closeness of fit is determined.

#### 2.2 Least squares and sum of sines - Hess/Mnich.

The Hess/Mnich research consisted of the identification of pilot dynamics from inflight tracking data using least squares and Fourier transform analysis. The NASA Ames Dryden Flight Research Facility with NASA Langley provided data from two flight tests for evaluation of pilot characteristcs. The task used for generating the data was an F-14 aircraft pursuing a T-38 target aircraft in both level flight and in a "3-G" wind up turn at a mach number of 0.55 at an altitude of 10,000 feet with a separation distance of 800 feet. The F-14 pilot was using a gunsight reticle on a head-up display. The task of the F-14 pilot was to keep the reticle centered on the T-38 aircraft throughout the run. In addition to normal disturbances, the reticle in the F-14 was driven using a sum of sines as input so that the FFT results can be compared with the least squares results. (see ref. 6)

The least squares technique used by Hess/Mnich for analysis is implemented in a software package called Nonintrusive Parameter Identification Program (NIPIP) (ref. 7). This program uses a general model with undetermined coefficients and determines the coefficients by comparing the data to the output of the model using a multiple linear regression technique (running least squares estimation). This program is capable of identifying linear and nonlinear relations between input and output as long as the relationships are linear with respect to the unknown coefficients. NIPIP uses a time frame length, the period over which the identification is to be performed, that can be specified as any part of the time history. NIPIP also has the option of sliding the frame along through the time history, removing old data as new data is entered, which yields a moving average through the time history. The sliding time window was not required for the Hess/Mnich analysis.

The mathematical basis for the NIPIP program is a running least squares estimation technique. The coefficients of a prescribed difference equation approximating the relation ship between the 7

input and output of a linear system are estimated. For example, consider the following difference equation

$$Y_{k} = a_{1}Y_{k-1} + b_{1}X_{k} + V_{k}$$
(13)

where  $Y_k$ ,  $X_k$ , and  $V_k$  are the system output, input, and modeling error at the kth sampling instant, respectively. Now considering a set of N measurements of the variables  $Y_k$  and  $X_k$ , one can write

Y = HC' + V(14)

where

$$Y = \begin{bmatrix} Y_{2} \\ \vdots \\ Y_{N} \end{bmatrix}$$

$$H = \begin{bmatrix} F_{1} \\ F_{2} \\ \vdots \\ F_{N} \end{bmatrix}$$

$$F_{k} = \begin{bmatrix} X_{k-1} & X_{k} \end{bmatrix}$$

$$C' = \begin{bmatrix} a_{1} \\ b_{1} \end{bmatrix}$$
(15)
$$V = \begin{bmatrix} V_{1} \\ V_{2} \\ \vdots \\ V_{N} \end{bmatrix}$$

Now C' is found by minimizing the sum of the squares of V , where,

$$V = Y - H C'$$
(16)

and the sum of the squares is

$$J = (Y - HC')^{T}(Y - HC')$$
(17)

Minimizing a scalar J with respect to a vector C' requires

$$\frac{\partial J}{\partial C'} = 0 \tag{18}$$

and

$$det\left[\frac{\partial^2 J}{\partial C^{\prime 2}}\right] > 0 \tag{19}$$

applying Eqs. 18 and 19 to Eq. 17 yields

$$H^{\mathsf{T}}H\mathsf{C}' = H^{\mathsf{T}}\mathsf{Y}$$
(20)

Solving for C' yields

$$C' = (H^{\mathsf{T}}H)^{-1}H^{\mathsf{T}}Y$$
(21)

It can be shown that

$$H^{T}H = \sum_{k=1}^{N} F_{k}^{T}F_{k}$$
(22)

and

$$H^{\mathsf{T}}\mathsf{Y} = \sum_{k=1}^{\mathsf{N}} \mathsf{F}_{\mathsf{k}}^{\mathsf{T}}\mathsf{Y}_{\mathsf{k}}$$
(23)

Then

$$C' = \left(\sum_{k=1}^{N} F_k^T F_k\right)^{-1} \sum_{k=1}^{N} F_k^T Y_k$$
(24)

where N is the number of data points. (see ref. 7)

In addition to using NIPIP and the FFT to analize flight data Hess/Mnich also used a model to generate simulated data to test the two methods. Since the NIPIP program cannot identify time delays exactly, they chose their model with a second order denominator and a time delay that represents simplified human neuromuscular dynamics. The exact form of the mathetical model chosen was,

$$Y_{p} = \frac{2e^{-.15s}}{\binom{s}{10}} + 0.4s + 1$$
(25)

However, by changing the order of the model ,time delays with integer multiples of the sampling period can be assumed and identified using a least squares technique. Then the quality of fit can be compared. This is the procedure followed in the Hess/Reedy research implemented in the Reedy subroutines. Hess/Mnich produced good results with the simulated data. However due to a problem with the sum of sines input to the head up display the flight test results were not as well behaved as had been expected. Through averaging they were able to save the data and the results indicated that the crossover model fit the data in the area of crossover. (see ref. 6 fig. 9-12)

2.3 Desciption of the Reedy identification - similarity to NIPIP

The Reedy program consists of a least squares method applied to the data, either simulated or measured, where the transfer function is determined and converted from the z-domain into the w'domain via the bilinear transform;

$$Z = \frac{1 + (T/2)w'}{1 - (T/2)w'}$$
(26)

where T is the sampling rate. Since the coefficients of the discrete transfer function are nearly impossible to interpret in the discrete time domain, the Bode plots are used to convert to the frequency domain where analysis can be readily accomplished. The Bode plot is made using the w'-plane transfer function as an approximation of the S-plane. This approximation is valid when , (see ref. 8 pg 196)

$$\omega <<\frac{2}{T} = \frac{\omega_{\rm S}}{\pi} \tag{28}$$

11

The previously described process is performed by two computer programs implemented as macros on CTRL-C, a computeraided control system design package (ref. 9). The first macro is an identification of the coefficients of a difference equation representing the pilot model. The coefficients are determined by using a CTRL-C least squares method similar to the one described in part B of the background section. The identification macros are created by selecting a model from table 1; for example entry 3,

$$\frac{Y}{X}(z) = \frac{b_1 z^{-1}}{1 - a_1 z^{-1}}$$
(28)

where Y is the output, X is the input, and  $b_1$  and  $a_1$  are the coefficients to be identified. Next the difference equation is found;

$$Y(z) (1-a_1z^{-1}) = X(z) (b_1z^{-1})$$
 (29)

or, in the discrete time domain

$$Y_k - a_1 Y_{k-1} = b_1 X_{k-1}$$
 (30)

then

$$Y_k = a_1 Y_{k-1} + b_1 X_{k-1}$$
 (31)

The set of N measurements yield eqn (14), with the desired coefficients obtained from eqn (24). After the parameters have been determined the model is simulated to obtain the model output  $Y'_k$ 

which is then compared with the original output  $Y_k$  to obtain the quality of fit;

$$R^{2} = 1 - \frac{\sum (Y_{k} - Y'_{k})^{2}}{\sum Y_{k}^{2}}$$
(32)

an  $R^2$  value of unity indicates an exact fit. This procedure is similar to the least squares portion of the NIPIP program without the sliding window. Although NIPIP would have performed the task, the least squares routines were written so that the student investigator would have a better understanding of the identification process and not simply be executing a "canned" program.

The second macro has several characteristics that must be taken into account when operated independently of the first macro. First, the numerator and denominater must be defined as Num and Den respectively before running the transformation program. Num and Den must be the same size, they must be row vectors, and then coefficients must be in descending powers of Z. If they are not the same order or contain zero coefficients, zeros must be added appropriately inorder to achieve this constraint. The transformation macro operation is very simple when used in conjuncton with one of the compatible least squares identification macros. The only information necessary is the sampling rate. The program will pause to display the w'-plane transfer function, and after depressing the return key the magnitude and phase Bode plots will be constructed. Both macros are completely self contained programs and can be ran independently when necessary. Copies of these programs are in appendix III.

2.4 Example cases; Noise effects, Input Bandwidth effects, Delay Estimation techniques.

The example cases are simulations performed on the Advanced Continuous Simulation Language (ACSL) (ref. 10) to generate data for the identification process. Many examples were run to build an understanding of the identification process and gain experience with the procedures. The ACSL simulation programs were written by Ronald A. Hess, Professor of Mechanical Engineering University California at Davis. Several examples of the simulation programs are listed in appendix III.

A total of six examples were run each varying in complexity. Five test cases were run using the same system transfer function, and one higher order multi-loop example was used. This transfer function

$$\frac{100e^{-70S}}{s[s^2+4s+100]}$$
 (33)

was chosen because it represents a second order system with an integration and a time delay and is typical of pilot-vehicle dynamics  $(Y_pY_c)$  in single-loop tasks. The simulations were run with a time step of 0.05 seconds for 102.4 seconds yielding 2048 data points

(2¹¹), thereby meeting the "power of 2" requirement for FFT analysis. The FFT was used as a comparison to the least squares in some of the examples. The first five test cases run were, an open loop system with  $\tau_0=0.0$  seconds (figure 1), a closed single loop system with  $\tau_0=0.0$  seconds (figure 2), a closed single loop system with  $\tau_0=0.0$  seconds and injected noise (figure 3), a closed single loop system with  $\tau_0=0.3$  seconds and injected noise, and a closed single loop system with  $\tau_0=0.0$  seconds, injected noise and a bias error (figure 4). In each of these test cases the C(s)/E(s) transfer function was identified. The last example was a multi-loop hovering helicopter with a realistic pilot model with noise and a bias error (figure 5). The Q/Xe transfer function was identified in this case. The Q/Xe transfer function is a "composite", and it is similar to a transfer function to be measured in the CH-47B simulation to be discussed later. From these six examples many comparisons can be made. The effects of noise, bias, delay, cutoff frequency, and open loop versus closed loop dynamics on the quality of the identifications will be discussed presently.

An injected noise signal with a root-mean-square (RMS) value of 0.1 times the input RMS does not effect the identification to any appreciable extent. This is indicated in figure 6 and table 2. Increasing the RMS value to 1.0 times the input RMS, however, severely compromises the least- squares identification.

In table 2 and in subsequent tables listing the model used for the identification of the transfer function, the model column contains a code. The first two digits represent the entry position in table 1, the second two digits represent the time delay in integer multiples of the sampling rate, and the last digit indicates if the routine contains a bias identification. For example, Z8D0B represents entry 8 with zero delay and a bias identification.

The effect of bias appears in figure 7 and table 3. Although not as dramatic as the noise effects, the bias error reduces the ability to identify the system correctly. In table 3 the last three rows correspond to runs in which a unity constant bias term was added to the simulation (fig. 4), and when an identification routine with a bias identification is used a definite improvement results.

The effect of delay is apparent in figure 8 and tables 4 and 5. As expected, increasing the delay decreases the correlation coefficient. It is important that the delay be correctly identified for best results. Table 5 shows that when the delay in the identification matches the delay in the system the correlation coefficient is maximized.

The effect of input cutoff frequency is shown in figure 9, 10 and 11 and in tables 2, 3, 4, and 6. Cutoff frequency appears to have no effect on the open loop and closed loop with zero noise, zero bias and zero delay examples. However, in all other test cases the increase in cutoff frequency reduced the correlation coefficient. This effect is most noticeable in the delay, noise, zero bias example, and can be seen in the last three rows of table 4. The sum of sines cutoff frequencies and their corresponding magnitudes are listed in table 7. 16

Identification of the open-loop transfer function in closedloop versus open-loop operation was also undertaken and the results appear in figure 12 and 13 and in table 6. Two different inputs were utilized; the sum of sines and a unit step. The sum of sines, openloop identification varies slightly at the high and low ends of the frequency range, but the deviation is insignificant. Identification of the open-loop transfer function in closed-loop versus open-loop operation with zero noise using both FFT and LSE techniques was undertaken. The medium cutoff sum of sines input was used.

The results appear in figures 14 and 15.

The last example was the multi-loop hovering helicopter with a realistic pilot model. Comparisons were made between the FFT, the least squares without bias, and the least squares with bias. The results show that the least squares with bias corresponds very well with the FFT, and yields a high correlation coefficient. See figures 16, 17 and table 8. The value of bias calculated by the identification subroutines cannot be compared with the bias in the single loop examples, due to the location in the model were the signals are measured.

## 3.0 A multi-axis manned simulation task

Data obtained from the CH-47B variable-stability helicopter at the NASA Ames Research Center was analyzed using the LSE and the FFT identification procedures outlined previously. The transfer functions identified are presented in bode form to facillitate comparison. The experimental tracking task was performed while the helicopter was in the attitude command/attitude hold dynamic mode (ref. 11). During the precision tracking task the pilot attempts to maintains a hovering position above a pad symbol, while the pad symbol is driven by a forcing function. The forcing function is a random appearing sum of sinusoids (tables 9 and 10). The sampling interval for the simulation was 0.05 seconds. A run length of 102.4 seconds yielding 2048 (2¹¹) data points was used in order to meet the "power of 2" requirement of the FFT analysis technique.

The subjects used in this experiment were an engineer and a test pilot. Each of the two subjects performed five runs on three different configurations of a tracking task. In the first configuration the pilot controled only the longitudinal motion of the helicopter with the aid of the complete display (figure 18). In the second configuration the subject controlled both the lateral and longitudinal motion of the helicopter with the aid of the complete display. In the final configuration the subject controlled both the lateral and longitudinal motion of the helicopter, but without the lateral and longitudinal motion of the helicopter, but without the lateral and longitudinal motion of the helicopter.

Three transfer functions were analyzed using the different configurations; these were: X/Xpad, Xball/Xpad, and Xball/Xball error (see figure 19). The X/Xpad transfer function is defined between the longitudinal position of the helicopter and the longitudinal position of the hover pad, measured in feet from a fixed point on the earth. The Xball/Xpad "composite" transfer function is defined between the position of the acceleration symbol relative to the center of the display and the position of the hover pad measured from a fixed point on the earth, both measured in display units. The Xball/Xball error transfer function is defined between Xball and the longitudinal error between the displayed hover pad and the acceleration ball, again, both in screen units. The X/Xpad transfer function was analyzed using all three configurations, while the composite and the Xball/Xball error transfer functions were analyzed using only the first two configurations.

For the X/Xpad transfer function identifications a good correlation exists between the LSE and the FFT when the acceleration symbol is present (see figures 20 - 23 ), but when the acceleration symbol is removed the comparison becomes poor (see figures 24 and 25 ). The correlation coefficients are lower for LSE identifications without the acceleration symbol (see tables 11 - 16 ), and a lightly-damped mode appears in the bode plots. The mode, evident in both the FFT and the LSE plots, indicates a decrease in closed-loop system stability. Another comparison demonstrating the utility of the acceleration symbol appears in figures 26 and 27 . These two figures are plots of the actual output X, the simulated output X' for subject 1 and the command signal Xpad. The simulated output comes from the LSE program just before calculating the correlation coefficient. After the parameters or coefficients of the transfer function are identified, the program simulates the identified transfer function and compares the simulated output to the actual output. It is this simulated data that is plotted with the actual data versus time in figures 26 and 27. The correlation coefficients for figure 26 and 27 are 0.9883 and 0.7997 respectively

(see tables 13 and 15). From this analysis it is obvious that the use of the acceleration symbol greatly increases the pilots ability to maintain a hovering position over a moving object. The poor performance evident in figure 26 even with the acceleration ball is a result of the challenging nature of the sum of sines input.

Figures 28-31 show the LSE and FFT measurements for the Xball/Xball error transfer function, for each subject and configuration. Tables 21-24 show the pertinent parameters for these measurements. As the tables indicate, only the FFT measurements were reliable for this transfer function. The LSE technique yielded either unstable transfer functions (unbounded  $R^2$  values) or very low  $R^2$  values. This poor identification performance with the LSE technique may be do to the effects of noise injection by the subjects (remnant). Note that large noise injection did adversly effect LSE identification performance in the example case in Section 2.4.

The FFT results of figures 28-31 and tables 21-24 were quite acceptable. The data can be interpreted in terms of the crossover model of Eq. 11, with crossover frequencies on the order of 2.0 rad/sec and time delays of approximately 0.2 secs.

The composite transfer function Xball/Xpad yields important information about the assumed pilot control structure shown in figure 19. This loop structure assumes single-loop compensatory behavior on the part of the pilot, i.e. that Xe, itself, is not used by the pilot, only what has been called Xball error. Thus, although figure 19 shows two loops being closed, only the inner loop is 20

assumed to be closed by the pilot. Now, in order to improve tracking performance , the pilot might adopt what would be interpreted as pursuit behavior in the single loop manual control structure of figure 19 (ref. 2), or multi-loop behavior in terms of the multi-loop manual control structure of figure 32. In other words Xe might be used by the pilot and be subject to compensation. The resulting compensated signal would then be compared with Xball and the difference be used to close the inner control loop. This is the multi-loop manual control structure shown in figure 32. Note that the inner loop error signal is now not Xball error, but some internally generated error based upon the difference between the compensated Xe (called Xec in figure 32) and Xball.

Figures 33-36 show measured composite transfer functions Xball/Xpad for the two subjects for longitudinal tracking alone and simultaneous longitudinal and lateral tracking. Now the transfer function Xball/Xpad can be writen as a product or composite of two other transfer functions as,

$$\frac{\mathbf{x}_{\text{ball}}}{\mathbf{x}_{\text{pad}}} = \frac{\mathbf{x}_{\text{ball}}}{\mathbf{x}_{\text{e}}} \cdot \frac{\mathbf{x}_{\text{e}}}{\mathbf{x}_{\text{pad}}}$$
(34)

Now, the second of these, Xe/Xpad, is the error-to-input transfer function for the outer loop. Figures 20-23, show the closed loop X/Xpad transfer functions obtained in this study. Defining bandwidth as that frequency where the phase goes through -90 degrees these figures indicate a closed loop bandwidth of

around 0.30 rad/sec. This means that the Xe/Xpad transfer function will be very close to unity for all frequencies much beyond 0.30 rad/sec. Thus

$$\frac{x_{\text{ball}}}{x_{\text{pad}}} \stackrel{\cdot}{=} \frac{x_{\text{ball}}}{x_{\text{e}}}$$
(35)

for  $\omega > 0.30$  rad/sec. But the transfer function can be obtained as

$$\frac{X_{\text{ball}}}{X_{\theta}} = \frac{X_{\text{ball}}/X_{\text{ball error}}}{1 + X_{\text{ball}}/X_{\text{ball error}}}$$
(36)

Recall that the Xball/Xball error transfer function has already been obtained, at least in terms of FFT measurements (see figures 28-31). Taking the FFT measurements of figure 28 as a representative sample, an acceptable fit to the data was obtained in the form of a rational transfer function. Now, forming Xball/Xe using this fit, and approximating Xe/Xpad as

$$\frac{X_{e}}{X_{pad}} = \frac{s}{s+0.3}$$
(37)

one obtains figure 37 from the product on the right hand side of Eq. 34. If no compensation of Xe is occuring, then figure 34 should resemble figures 33-36 in the frequency range  $\omega > 0.03$  rad/sec. Looking at the amplitude ratio, this is not the case for frequencies above around 2.0 rad/sec. The measurement of figures 33-36 all indicate that the amplitude ratios are relatively flat and greater than unity in value, whereas the amplitude ratio of figure 37 has begun to fall off at around 2

rad/sec. The LSE result with the highest  $R^2$  value (run 4, table 20) is shown for comparison. Thus, some form of pilot compensation as suggested in figure 32, is probably occuring in the outer loop to cause this discrepancy. This does not imply that the FFT measurements assuming the loop closure structure of figure 19 are incorrect, rather they reflect the effective compensatory behavior of the pilot.

Thus the FFT and least-squares measurements of the composite transfer function have led to the discovery of pursuit behavior in terms of a single-loop manual control structure as shown in figure 19, or, equivalently, multi-loop behavior, in terms of the control structure of figure 32. While the evidence for this behavior has been obtained indirectly, the data supporting it has been quite consistent. As the pertinent figures and tables for the Xball/Xpad transfer functions indicate, twice the standard deviation of the FFT data is typically less than a symbol width in magnitude, and the  $R^2$  values for the least squares data are typically greater than 0.95.

## 4.0 Conclusions

1.) After preliminary investigation with synthetic data, Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation techniques were applied to the identification of pilot-vehicle dynamics in a realistic flight simulation task.

2.) With the exception of the identification of the Xball to Xball error transfer function, comparisons between the FFT and LSE techniques were, in general, good. No acceptable LSE identification of the aforementioned transfer function was found. It was thought this poor LSE performance might be attributed to human noise injection in the inner control loop.

3.) The FFT identification of the Xball to Xball error transfer function could be described in terms of the well-known crossover model of the human pilot.

4.) The identification of a composite transfer function yielded some indirect evidence of pursuit tracking behavior on the part of the test subjects.

#### 5.0 References

- 1. McRuer, D.T., and Krendel, E., "Dynamic Response of Human Operators," U.S. Air Force Wright Air Development Center, WADC-TR-56-524, Oct. 1957.
- 2. McRuer, D.T., Krendel, E., "Mathematical Models of Human Pilot Behavior," AGARDograph, number 188, 1974.
- 3. McRuer, D.T., "Human Dynamics in Man-Machine Systems," Automatica, volume 16, number 3, pages 237-253,1980.
- 4. Hess, R.A., "A Structural Model of the Adaptive Human Pilot, "Journal of Guidance and Control, Vol. 2, No. 3, pages 221-227, May-June 1979.
- 5. Wingrove, R. C. "Comparison of Methods for Identifying Pilot Describing Functions from Closed-Loop Operating Records," Ames Research Center, NASA TN D-6235, 1971.
- Hess, R.A., and Mnich, M.A., "Identification of Pilot Dynamics from In-Flight Tracking Data," <u>Journal of</u> <u>Guidance. Control.and Dynamics</u>, Vol. 9, No. 4, pp. 433-440, July-August 1986.
- 7. Hanson, G. D. and Jewell, W. F., "Non-Intrusive Parameter Identification Procedure Users Guide," NASA CR-170398 April1983.
- 8. Phillips, C. L. and Nagle, H. T., Jr., "Digital Control Systems Analysis and Design," Prentice Hall.
- 9. Anon., "CTRL-C, A Language for the Computer-Aided Design of Multivariable Control Systems," Systems Control Technology 1983.
- 10. Anon., "ACSL, Advanced Continuous Simulation Language," Mitchell and Gauthier, Assoc., 1984.

11. Eshow, M., Aiken, E., and Hindson, W. "Preliminary Results of a Flight Investigation of Rotorcraft Control and Display Laws for Hover," American Helicopter Soc. Mideast Region National Specialists Meeting in Rotorcraft Flight Controls and Avionics, Cherry Hill, NJ. Oct. 13-15, 1987.

# 6.0 Appendix I Tables

Entry No.	z-Transform	No. of Unknown	s Physical System
1	b ₁ z ⁻¹	1	K (pure gain)
2	$\frac{b_1 T z^{-1}}{1 - z^{-1}}$	1	K s (integrator)
3	$\frac{b_1 z^{-1}}{1 - a_1 z^{-1}}$	2	<u>Ka</u> s+a ^(1st-order lag)
4	$\frac{b_1 z^{-1} + b_2 z^{-2}}{1 - a_1 z^{-1} - a_2 z^{-2}}$	4	<mark>Κω²</mark> [ζ;ω]
5	$\frac{b_1 z^{-1} + b_2 z^{-2}}{1 - a_1 z^{-1} - a_2 z^{-2}} (z^{-p})$	4	<u>K(s+a)</u> [ζ;ω] e ^{-ps}
6	$\frac{b_1 z^{-1} + b_2 z^{-2}}{1 - a_1 z^{-1}} (z^{-p})$	3	<u>K(s+a)</u> (s+b) e⁻ ^{ps}
7	$\frac{b_1 z^{-1} + b_2 z^{-2}}{1 - a_1 z^{-1} - a_2 z^{-2}}$	4	<u>K(s+a)</u> s(s+b)
8	$\frac{b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3}}{1 - a_1 z^{-1} - a_2 z^{-2} - a_3 z^{-3}}$	6	<u>    K(s+a)</u> (s+b) [ζ;ω]
9	$\frac{b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3} + b_4 z^{-4}}{1 - a_1 z^{-1} - a_2 z^{-2} - a_3 z^{-3}}$	7	$\frac{K[\zeta_{n};\omega_{n}]}{[\zeta_{1};\omega_{1}][\zeta_{2};\omega_{2}]}$

TABLE 1

	R ²	NOISE	ACTUAL DELAY	IDENTIFII BIAS	ED LOOP STRUCTURE	MODEL
∑SINES MED CUT	0.9997	0.0	0.0	N.I.	CLOSED	Z8D0
$\sum$ SINES LOW CUT $\sum$ SINES	0.9940	0.1	0.0	N.I.	CLOSED	Z8D2
MED CUT ∑SINES	0.9809	0.1	0.0	N.I.	CLOSED	Z8D2
HIGH CUT ∑SINES	0.9552	0.1	0.0	N.I.	CLOSED	Z8D2
MED CUT	0.1114	1.0	0.0	N.I.	CLOSED	Z8D4

TABLE 2 - NOISE AND CUTOFF FREQUENCY COMPARISON

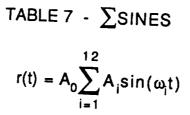
* N.I. - NOT IDENTIFIED

•

## TABLE 3 - BIAS COMPARISON

INPUT	R ²	NOISE	ACTUAL DELAY	IDENTIFI BIAS	ED LOOP STRUCTURE	MODEL
SINES						
LOW CUT $\sum$ SINES	0.9802	0.1	0.3	N.I.	CLOSED	Z8D4
	0.8916	0.1	0.3	N.I.	CLOSED	Z8D4
	0.7276	0.1	0.3	N.I.	CLOSED	Z8D5
	0.9969	0.1	0.3	0.9961	CLOSED	Z8D3B
	0.9904	0.1	0.3	0.9911	CLOSED	Z8D3B
HIGH CUT	0.9839	0.1	0.3	0.9954	CLOSED	Z8D4B

## TABLE 4 - DELAY COMPARISON


	R ²	NOISE	ACTUAL DELAY	IDENTIFIE BIAS	D LOOP STRUCTURE	MODEL
$\sum$ SINES						
LOW CUT	0.9940	0.1	0.0	N.I.	CLOSED	Z8D2
$\sum$ SINES						LUUL
MED CUT	0.9809	0.1	0.0	N.I.	CLOSED	Z8D2
$\sum$ SINES						
HIGH CUT	0.9552	0.1	0.0	N.I.	CLOSED	Z8D2
$\sum$ SINES						2002
LOW CUT	0.9802	0.1	0.3	N.I.	CLOSED	Z8D4
$\sum$ SINES						2007
MED CUT	0.8916	0.1	0.3	N.I.	CLOSED	Z8D4
$\sum$ SINES						2004
HIGH CUT	0.7276	0.1	0.3	N.I.	CLOSED	Z8D5
						2000

# TABLE 5 - IDENTIFIED DELAY COMPARISON

INPUT	R ²	NOISE	ACTUAL DELAY	IDENTIFI BIAS	ED LOOP STRUCTURE	MODEL
∑SINES		من وحد رود وحد ا		— — i — i — i — i — i — i — i — i — i —		
MED CUT	0.9338	0.1	0.0	N.I.	CLOSED	Z8D0
$\sum$ SINES						2000
MED CUT	0.9540	0.1	0.0	N.I.	CLOSED	Z8D1
$\sum$ SINES						2001
MED CUT	0.9809	0.1	0.0	N.I.	CLOSED	Z8D2
∑SINES						
MED CUT	0.9555	0.1	0.0	N.I.	CLOSED	Z8D3
∑SINES						_000
MED CUT	UNSTABLI	e 0.1	0.0	N.I.	CLOSED	Z8D4
∑SINES					,	
MED CUT	UNSTABLE	E 0.1	0.0	N.I.	CLOSED	Z8D5
∑SINES						
MED CUT	UNSTABLE	0.1	0.0	N.I.	CLOSED	Z8D6
<b>.</b>	_					-

#### TABLE 6 - OPEN VS. CLOSED LOOP

INPUT	R ²	NOISE	ACTUAL			
		NUISE	DELAY	BIAS	STRUCTURE	MODEL
$\sum$ SINES						
LOW CUT	1.0	0.0	0.0	N.I.	OPEN	Z8D0
$\sum_{M \in D} SINES$	1.0	0.0			••••	
$\sum$ SINES	1.0	0.0	0.0	N.I.	OPEN	Z8D0
HIGH CUT	1.0	0.0	0.0	N.I.	OPEN	Z8D0
$\sum$ SINES						
LOW CUT	0.9998	0.0	0.0	N.I.	CLOSED	Z8D0
$\sum$ SINES MED CUT	0 0007	0.0	0.0		0.00	
$\sum$ SINES	0.9997	0.0	0.0	N.I.	CLOSED	Z8D0
HIGH CUT	0.9998	0.0	0.0	N.I.	CLOSED	Z8D0
STEP	1 0	0.0	• •			
SIEF	1.0	0.0	0.0	N.I.	OPEN	Z8D0
STEP	0.9999	0.0	0.0	N.I.	CLOSED	Z8D0



i 	Α ω _i (rad/s	LOW CUTOFF MED CUTOFF $A_0 = 1/1.546$ $A_0 = 1/3.03$ $A_i$ (rad/sec) $A_i$ $A_i$		HIGH CUTOFF A ₀ =1/4.02 A _i	HELICOPTER A ₀ =1 A _i
1	0.1841	1	1	1	17.6
2	0.3068	1	1	1	17.6
3	0.4909	1	1	1	17.6
4	0.7977	0.1	1	1	17.6
5	1.1660	0.1	1	1	1.76
6	1.7790	0.1	1	1	1.76
7	2.8230	0.1	0.1	1	1.76
8	4.6630	0.1	0.1	1	0.88
9	6.9330	0.1	0.1	0.1	0.88
10	8.9580	0.1	0.1	0.1	0
11	12.0880	0.1	0.1	0.1	0
12	17.9780	0.1	0.1	0.1	0

		and the coparison								
INPUT	R ²	NOISE	ACTUAL DELAY		ED LOOP STRUCTURE	MODEL				
∑SINES	0.9644	0.0	0.0							
			0.0	N.I.	MULTI	Z9D0				
$\sum$ SINES		0.0	0.0	-14.01	MULTI	Z9D0B				
$\sum$ SINES	0.9573	0.1	0.0							
			0.0	N.I.	MULTI	Z9D0				
∑SINES	0.9578	78 0.1 0.0		-13.95	MULTI	Z9D0B				

### TABLE 8 - MULTI-LOOP HELICOPTER COPARISON

TABLE 9 -  $\sum$ SINES FOR THE LONGITUDINAL DIRECTION OF THE CH-47B HELICOPTER.

$$r(t) = A_0 \sum_{i=1}^{12} A_i \sin(\omega_i t)$$

i	ω _i (rad/sec)	AMPLITUDE	NO. OF CYCLES	
1	0.1841	17.6	3	
2	0.3068	17.6	5	
3	0.4909	17.6	8	
4	0.7977	17.6	13	
5	1.1660	1.76	19	
6	1.7790	1.76	29	
7	2.8230	1.76	46	
8	4.6630	0.88	76	
9	6.9330	0.88	113	

TABLE 10 -  $\sum$ SINES FOR THE LATERAL DIRECTION OF THE CH-47B HELICOPTER.

$$r(t) = A_0 \sum_{i=1}^{12} A_i \sin(\omega_i t)$$

i	ω _i (rad/sec)	AMPLITUDE	NO. OF CYCLES	
1	0.2454	17.6	4	
2	0.4295	17.6	7	
3	0.6750	17.6	11	
4	0.9204	17.6	15	
5	1.4110	1.76	23	
6	2.2700	1.76	37	
7	3.7430	1.76	61	
8	5.7060	0.88	93	
9	7.7930	0.88	127	

	ຶອ	6 021	2.2.2	0.0055		0.0029		0.0015		-832	100	47	77
	° S	4 663		C000.0		0.0040	0.000	0.0026		-524		26	
	ω7	2.823	0.017	0.01 /	0.012	C10.0		0.010	000	-380		8	
	ε θ	1.779	0.077	- 10.0	0.070	710.0		0.000		-302	0,	18	
	u5 1,166		1.166		0.24		010	0.17	-778	077		14	
	0 1011	0.1911	0.53		0.51		0 5 0	22:2	-158	2	-	4	
e	0,4000	V. 7 2 V 7	0.63		0.01		0.60		-101-		ر ا	•	
ອ	0 3068	00/2-1	0.72		00		0.67		-11	•	~		
Э.	0.1841	L	C8.U	0.83	C0.7		0.81	9	Ŷ	-	-		
5	3		2 + >	;	2		0-0	;	S	ļ	2		
FREQUENCY (RAD/SEC)				MAGNITUDE		_			DHACE				l

Fast fourier transform results for the X/Xpad transfer function for subject 1, longitudinal tracking only.

		_			<b>1</b>				_
DENTIFIED COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION IN DELAY THE Z-DOMAIN IN DESCENDING ORDED MILLING TO THE Z-DOMAIN Z-	2.8007 -2.6124 0.8115: 0.0088 0.0107 0.0200		2.3861 -1.7956 0.4001. 0.0124 0.0234 0.024	1114	2 Q657 _2 0231 0 0677; 0 0001 0 0000			2.96092.9240 0 9631: 0 0005 0 0010 0 0005	
IDENTIFIED DELAY	-10	4	° 2			1		z-1	
IDENTIFIED BIAS	-3.4010		-3.7675		-0.0823			0.5552	
R²	0.9152		U./262		0.9832	NO DATA		0.9764	
RUN	-	(	2	(	n		+	5	-

Least squares results for the X/Xpad transfer function for subject 1, longitudinal tracking only.

TABLE 11

		ອິ	6 031		0.02	200	10.0		CUN.U	725	(()-	127	/01
i	E	88	4 663	0.02	cv.v	0.016	010.0		600.0	-563	Cor	80	20
	-0	1-	2 823	0.03	222	0.02		001	12:2	-364		53	2
	9	9,1	677	0.15		60.0		0.06		-276		20	
	3	n \		0.41		0.37		0.33		-203		12	
	84			70.2		10.0		0.49		-144	,	S	
	e3	0 4000		8C.U	0 57	10.0	0 66	00.0	90	<u> </u>	~	S	
	ŝ	0 3068		0.70	0 60	<b>CD.D</b>	0 60	00	0Y	5	ç	4	
3	3	0 1841	0.95	<u> </u>	0 82		0.78	2	4	:	~		
>.	5.2		ני די די		-	>	5-1		ົວ	ľ	ь		
VCNEI CHER													1

Fast fourier transform results for the X/Xpad transfer function for subject 2, longitudinal tracking only.

L				
NUA	ъ	IDENTIFIED BIAS	IDENTIFIED DELAY	COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION IN THE Z-DOMAIN IN DESCENDING ORDER NI IMFRATOR FIDET
-	0.9789	-0.6211	2 O	
с 				<u> </u>
v	0.3643	-0.9776	۶	2.96452.9314_0 9669.0 0004 0 0010 0 0020
n	0.9385	-0 6012	0,	GUUU.U .U UU.V +000.0 .00000
		3.00.0		<u> 2.9631, -2.9287, 0.9656; 0.0005, -0.0010, 0.0006</u>
4	0.9779	-0.0346	Z	2 9636 - 2 0205 - 0 0650, 2 0000 - 0 0000
2	0.9711	-0.2645	1.	<u></u>
]		01010	7	2.96092.9244. 0.9635: 0.00060.0012. 0.0017
4				

Least squares results for the X/Xpad transfer function for subject 2, longitudinal tracking only.

TABLE 12

6	6 934		0700.0	C100.0		0000	-627		10			
°3	4.663	0.004		c.w.v	0 000	700.0	487	ł	71	and longitudinal tracking		
67 7	2.823	0.018	0016	010.0	0.014		-3/3	17		longitudina	)	
0,6	1.779	0.10	0.08		0.07	206	067-	7		eral and		
ω ₅	1.166	0.31	0.25		0.20	-714		10		iject 1, lat		
6.4 2.0	11.67.0	0.48	0.47	78.0	0.40	-145	6	7		ction, sub		
0 ³	1.4909	66.0	0.58	0 57	17:2	-97	-	-		ansier run		ŀ
0 2060		0. /0	0.68	0 67	10.0	-71	-	4	Y/Ynnd te	vypau u		
0 1841	0.02	C0.0	0.82	0.81		041	,	•	s for the			
	10+0		2	0 - 0 - 0	1	2	ь		result			ſ
REB/E		MAGNITUDE				PHASE				•		

L				
RUN	В	IDENTIFIED BIAS	identified Delay	COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION IN THE Z-DOMAIN IN DESCENDING ORDER NUMERATOR FIRST
-	0.9865	-0.4900	z ⁰	2.9627, -2.9279, 0.9651; 0.0004, -0.0008, 0.0005
2	0.9883	-0.5622	z ⁰	2.9615, -2.9253, 0.9638: 0.0004 _0.0000_0.0005
က	0.9861	0.0002	Z ⁰	2.96(19 - 2 9743 () 9634: 0 0004 (0 0000 () 0000
4	0.9856	-0.1742	7-1	2.9640 -7.9305 0.0664.0.0004 -0.0009, 0.0005
5	0.9864	0.5565	z_1	2.95992.9223. 0.9674: 0.00040.0008, 0.0005
				C0007, 10,0004, -0,0004, 0,0000

LSE results for the X/Xpad transfer function, subject 1, lateral and longitudinal tracking.

TABLE 13

L											
	(RADISEC)		0.1841 0	0.3068	0.4909	0.7977	ω ₅ 1,166	ω ₆ 1 770	ω ₇ 3833	80 80	e G
		0 0+0	0.83	0.71	0.56	0.47	0.35	0.11	0 039	0.000	0.012
2			-	0.69	0.55	0.46	0.28	0.10	0.025	0.007	2000
	-2	ь	+	0.67	0.54	0.45	0.23	0.09	0.016	0.003	
	PHASE	+	-45	69	-95	-142	-201	-279	-368	1441	200.0
	6		2	1		2	15	0	12		101
NUF	Вα		IDENTIFIED BIAS	IDENTIFIED DELAY	IFIED	COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION IN THE Z-DOMAIN IN DESCENDING ODDED NI MAPO TOOL TOOL	VTS OF TH	E IDENTIFI	IED TRANS	FER FUNC	
-	0.9628		-0.6071	7-5		1 5100 01				IMERAIOH	ISHI
2	0.9860		-0.8693	Z_1	1	<u>1.3180, -0.0963, -0.4226; 0.0056, -0.0166, -0.0118</u> 2 0550 - 2 0147 0 0552 0 0001 - 0 0001		<u>226; 0.00</u>	56, -0.016	6, -0.0118	
					╈	<u></u>	)(4/, 0.7)	8 /; U.UUU4	, -0.0010,	0.0006	

tracking	
longitudinal	
lateral and	
fer function, subject 2, lateral and longitudinal tracking	
d transfer	
eX/Xpa	
for the	
results for	
L N L	

TABLE 14

igitudinal tracking. 2.9613, -2.9252, 0.9639; 0.0004, -0.0009, 0.0005 2 Ц С

2.9602, -2.9231, 0.9628; 0.0005, -0.0010, 0.0006

2.9572, -2.9172, 0.9599; 0.0006, -0.0012, 0.0007

Z⁻¹

-0.5715

0.9887

4

°Z

-0.0356

0.9854

ഹ

 $\mathbf{z}^{0}$ 

-0.4745

0.9687

ო

r	<b></b>			· · · ·	<del></del>
034	0.09	0.04	0.02	-939	143
0,8 4 663	0.12	0.06	0.04	-640	109
ω ₇ 2,823	0.10	0.07	0.06	-434	50
ω ₆ 1.779	0.29	0.25	0.22	-353	40
ω ₅ 1.166	2.27	1.31	0.76	-163	64
0.7977	0.44	0.36	0.29	-134	14
ω ₃ 0.4909	0.66	0.54	0.44	-100	34
ω2 0.3068	1.43	0.83	0.48	-118	67
ω ₁ 0.1841	1.46	1.08	0.79	-93	68
රුට	υ+0	ຈ	υ – σ	ə	ь
HREQUEN (RAD/SE		MAGNITUDE		PHASE	

FFT results for the X/Xpad transfer function, subject 1, lateral and longitudinal tracking, no acceleration ball.

NUA	R²	IDENTIFIED BIAS	IDENTIFIED DELAY	COEFFICII THE Z-DO	ENTS OF THE MAIN IN DESC	COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION IN THE Z-DOMAIN IN DESCENDING ORDER NUMERATOR FIRST	USFER FUNC	CTION IN R FIRST
-	UNSTABLE							
2	0.6168	-1.6299	2 ⁰	2.9904,	-2.9837, 0.	2.9904, -2.9837, 0.9934; 0.0007, -0.0015, 0.0008	-0.0015,	0.0008
3	UNSTABLE							
4	0.3731	0.5432	z ⁸	2.9952,	-2.9930, 0	2.9952, -2.9930, 0.9979; 0.0003, -0.0007,0.0004	-0.0007,	0.0004
5	0.7997	-0.8485	z²	2.9894,	-2.9812,0.9	2.9894, -2.9812,0.9918; 0.0007, -0.0015, 0.0008	-0.0015,	0.0008

LSE results for the X/Xpad transfer function, subject 1, lateral and longitudinal tracking, no acceleration ball.

**TABLE 15** 

		_	_	_	
0 ⁹	0 11	0.03	10.0	10.0	102
68 8 8 7 7 7 7 7	4.002 0.16	0.06	0.00	-461	11
ω ₇ 2 0,73	0.12	0.08	0.05	-510	110
ω ₆ 1 770	0.66	0.41	0.26	-175	98
ω5 1 166	1.07	0.61	0.35	16-	57
ω4 0 7977	0.34	0.26	0.20	-110	15
ω ₃ 0.4909	0.62	0.41	0.27	-116	58
თ ₂ 0.3068	1.42	0.85	0.52	-75	27
ω ₁ 0.1841	1.50	0.84	0.47	-68	31
ଧିତ	υ+σ	ຸດ	0 – Q	s	υ
FREQUEN (RAD/SE		MAGNITUDE		PHACE	

FFT results for the X/Xpad transfer function, subject 2, lateral and longitudinal tracking, no acceleration ball.

NUH	В²	IDENTIFIED BIAS	IDENTIFIED DELAY	COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION IN THE Z-DOMAIN IN DESCENDING ORDER NUMERATOR FIRST
-	0.0898	-0.7542	z-12	2.9957, -2.9936, 0.9979; 0.0012, -0.0027, 0.0015
2	UNSTABLE			
ო	0.4199	-0.1960	Z ⁰	2.9888, -2.9815, 0.9927; 0.0003, -0.0007, 0.0004
4	0.4166	-0.6512	Z ⁰	2.9912, -2.9857, 0.9945; -0.0001,0.0003, -0.0001
5	0.8008	-5.4214	Z0	2.9889, -2.9826, 0.9937; 0.0006, -0.0012, 0.0006
L S L	results for th	e X/Xnad tra	nefar function	SF results for the X/Xnad transfer function surfacet a lateral and locations in the

LSE results for the X/Xpad transfer function, subject 2, lateral and longitudinal tracking, no acceleration ball.

TABLE 16

								-	Γ			7	
	9 9	6.934	1 - 1	1.1/	1 10	1.10	5	1.24	1 5.7	/01-	v	,  -	only.
	8 8	4.663	1 10	1.17	S	1.00	0 84	10.0	175	C71-	6		<b>II ACKING</b>
	ε. 202	2.823	0 00	~	0 7 0	1	0.57		-su	3	14	l'adipo l	IN IN THAT
	99 9	1.1/9	1.06		1.04		1.02		6	<b>;</b>	15	-	-
	05 1 1 2 2	001.1	1.63		1.35		1.11		40		CI -	paidus	
	0 7077	V.1211	1.85		I./9		1./4		<u> </u>	-	1	transfer function subject	
			1.39	7 0 1	00.1	101	1.34	į	17	ſ	7	-	
é	0 3068	1 05	CU.1	101	1.0.1	000	0.70	20	90	ç	7	mposite"	
ė	0.1841	72.0	00	0 75	v.1J	0 74		53	CC C	C	ľ	the "co	
2	20	1			2			1	,	C	,	s for	
	(HAD/SEC)		-	MAGNITUDE	1							FFT results for the "composite"	

L					
NUR	В²	IDENTIFIED BIAS	identified Delay	IDENTIFIED COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION IN DELAY THE Z-DOMAIN IN DESCENDING ORDER NUMERATOR FIRST	ED TRANSFER FUNCTION IN ORDER NUMERATOR FIRST
	0.8903	1.6789	Z ^{- 4}	1.8964, -1.3197, 0.4186; -1.0291, 2.8095, -1 7810	.0291, 2.8095, -1 7810
2	0.9088	-0.1150	Z ^{- 4}	1.8705, -1.3720, 0.4958; -1.1056, 3.0899, -1.9853	.1056, 3.08991.9853
ო	0.9201	0.3488	, 3 2	2.0035, -1.3447, 0.3376; -0.8380, 2.1467, -1.3088	.8380, 2.14671.3088
4	9	DATA			
5	0.9441	0.6570	Z-2	1.9791, -1.2565, 0.2743; -0.7672, 1.9427, -1.1758	.7672, 1.9427, -1.1758

LSE results for the "composite" transfer function, subject 1, longitudinal tracking only.

TABLE 17

			T		Γ		Γ					
	ŝ	6 031	+02.4	1.00	1 11	1.44	1 27	17.1	166	-102	٥	0
	° S	4 663		1.40	114	1.14	1 00	1.07	115	C11-	10	10
	ω	2 873	1 20	20.1	1 16	1.10	1 03	CV.1	<u>д</u>	2/-	0	
	е 6	1,779	1 25	C0.1	1 5 2		1 1 2 5		-45	F	15	101
	ω ₅	1.166	2 11		1.94		1.77		12		12	
	9 4	0.7977	1.81		1.77		1.73		9		m	
	0.03 0.050	0.4909	1.29		1.27	20.4	C7.1		78	,	r N	
3	2020 0 2020	8000.0	1.02	• • •	1.01	2	1.00		40	C	c	
700		<u>V.1041</u>	0.87	570	0.0/	0 60		22	CC	~	n	
2	Ĵ.	k	บ+ด		ວ		0	1	<b>,</b>	t	>	
				MAGNITUDE					PHASE			

FFT results for the "composite" transfer function, subject 2, longitudinal tracking only.

NUR	ъ°	IDENTIFIED BIAS	IDENTIFIED DELAY	COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION IN THE Z-DOMAIN IN DESCENDING ORDER NUMERATOR FIRST
-	0.9370	-2.3782	z ⁻³	2.0041, -1.3142, 0.3042; -1.0372,2.5484, -1.5114
2	0.9497	-0.0447	Z ⁻ 2	2.0244, -1.3132, 0.2843; -0.7597,1.9152, -1.1550
3	0.9188	-0.6731	Z ⁻³	1.9039, -1.1283, 0.2187; -0.9311.2.34341.4120
4	0.9156	-3.8347	Z-2	2.0462, -1.3435, 0.2938; -0.7977,1.9397, -1.1422
5	0.9614	0.0380	z ^{- 2}	2.0013, -1.2800, 0.2737; -0.8889.2.20281.3133

LSE results for the "composite" transfer function, subject 2, longitudinal tracking only.

TABLE 18

	r—		Г		Γ		r	_	r	-	T	
	ω ο	6.934	1 4 4	1.44	1 25	C7.1	1 00	1.00	111	-11-	ç	77
	ю _в	4.663	1 00	1.07	0.06	000	19.0	0.04	115	CI 1-	16	10
	ω7	2.823	117	1.1.1	1 05	1.00	0 04	1	70	0	4	-
	ee e	1.779	1.49		1.27		1.09		-53	3	~	
	S S S	1.166	1.86		1.53		1.26		-27		10	
	0 04 10 10 10 10	1161.0	1.69		1.66		1.63		Ś			
	e B G	1.4909	1.30		1.29		1.2.1		74	ŀ	-1	
9	0 2060	0000.0	1.02	-	0.1		0.98	ç	38		1	
	0 1841	1-01-2			c/.V	~ ~ ~	0.12	63	70	c	7	
ξ	<u></u> 50		0 + 0	;	P	1	0		>	ť	2	•
	(RAD/SEC)								PHASE			

FFT results for the "composite" transfer function, subject 1, lateral and longitudinal tracking. 77

RUN	ъ	IDENTIFIED BIAS	IDENTIFIED DELAY	COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION IN THE Z-DOMAIN IN DESCENDING ORDER NUMFRATOR FIRST
	0.9384	1.5854	z ⁻¹	1.9630, -1.2650, 0.2973; -1.2838, 3.0089, -1.7253
2	0.9539	0.0804	z-2	1.9553, -1.2492, 0.2890; -1.0113, 2.4877, -1.4762
ო	0.9560	-1.3567	z ⁻²	1.8825, -1.1666, 0.2785: -1.1338 2.8104 -1.6760
4	0.9444	0.0504	Z ⁻³	1.8737, -1.2096, 0.3299; -0.8742, 2.3717 -1.4979
5	0.9510	0.7394	Z ⁻⁴	1.9513, -1.2439, 0.2869; -0.5509, 1.6103, -1.0591
	: : :			

LSE results for the "composite" transfer function, subject 1, lateral and longitudinal tracking.

TABLE 19

	0 0	6 مً <b>ז</b> א	1 50	1.00	1 11	<b>† † 1</b>	1 2 1	10.1	155		ſ	
	е ^в	4 663	1 20	1.47	1 22	1.4.7	1 1 7	1.1/		711-	0	~
	ω	2.823	1 40	1.77	1 34	1.0.1	1 2 1	1.41	78	2	~	ר ר
	თ ⁶	1.779	1 51		1 24		0 82	2010	Ą	2	~	- -
	e S	1.166	2.05		1.47		1.05		-23		25	}
	0.4	0.7977	1.68		1.59		1.50		~		7	
	6000 0000	0.4909	1.26		1.23		1.21		28	.	-	
	0.2020	800C.U	1.04	1 0 1	1.01		0.98		40	•	7	
ė		V.1041	0.76	10	0./1	070	0.00		94		t	
ζ	50	3	0+0		P	(	0 - 0	2	>	ť	>	
	(RAD/SE			MAGNITUDE					PHASE			

FFT results for the "composite" transfer function, subject 2, lateral and longitudinal tracking.

RUN	Ъ	IDENTIFIED BIAS	IDENTIFIED DELAY	COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION IN THE Z-DOMAIN IN DESCENDING ORDER NUMERATOR FIRST	DN IN RST
-	0.9601	0.1989	z-2	1.8477, -0.9839, 0.1307; -0.5661, 1.5712, -1.0041	1.0041
2	0.9650	-0.3476	z-2	1.8432, -1.0322, 0.1822; -1.2170, 2.9331, -1.7153	1.7153
ო	0.8363	-2.1982	z-2	1.8112, -09123, 0.0967: -1.0209, 2.4035, -1.3835	3835
4	0.9671	-0.2163	z - 1	1.9136, -1.0837, 0.1649; -0.9789, 2.3354, -1.3561	.3561
5	0.9583	0.1806	z-2	1.8552, -0.9841, 0.1232; -0.9226, 2.2518, -1.3281	3281
L C					

LSE results for the "composite" transfer function, subject 2, lateral and longitudinal tracking.

TABLE 20

	Г			_	-		-	Т		T	-	<b>_</b>	-
		69 9	6.934	120	4C.0	0 6 2	CC.7		7C.U	0.71	-109		+
	Ξ	8	4.663	U KA	0.04	0 57		0 6 1	10.0	-154	101	v	ر ا
	-9	7 m 7	2.825	<i>22</i> 0		0.65		0 54	40.0	-120	140	15	2
	ŝ		6/1.1	1 30		1 10	2111	0 88	00.0	-174	1.77	~	Ņ
	9	1 166	1.100	2.63		1.92		1.39		-123		13	
	3	0.7977 3.72 3.45		3.45		3.20		-133		7			
	ຣ໌	0.4909		8.01		7.40		6.83		-126		71	
~~	ຣິ	$0.30\overline{6}8$		C0.CC		20.30		11.62		-133	551	102	
	5	0.1841	07 50			10.94	10 01	CU.CI	210	-040	105	100	
Ì	<u>ک</u>	C)	1	) 		ຈ		0 - 0	÷	2	ť	>	1
		(RAD/SE			MAGNTIDE					PHASE	1		

FFT results for the Xball/Xball error transfer function, subject 1, longitudinal tracking only.

RUN	R²	IDENTIFIED BIAS	IDENTIFIED DELAY	IDENTIFIED IDENTIFIED COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION IN BIAS DELAY THE Z-DOMAIN IN DESCENDING ORDER NUMERATOR FIRST
-	UNSTABLE			
2	UNSTABLE			
в	0.1327	-0.0145	z-15	2.0645, -1.4013, 0.3364; -0.0080, 0.0146, 0.0206
4	NO DATA			
5	5 UNSTABLE			

LSE results for the Xball/Xball error transfer function, subject 1, longitudinal tracking only.

TABLE 21

		5	0.434	5	ý	3	5	2	174	t	~	
	3	3		5	Ċ	5	Ċ		•			•
	° S	0 7 622		v.v.	0 63	0.00	0,60	00.0	150	NC1-	Ŷ	,
	6,	7 273	0 0K	01.0	0 88	0.00	0 81	10.0	-134	101	2	
	Ю _к	1 770	1 90		1.50		1.20		-141		16	
	С.	1.166	3.00		2.70		2.30		-173		28	
	8	0.7977	5.20		4.80		4.40		-156	ľ	~	
	e B	0.4909	20.50		14.90		10.80		-172	00	77	
3	m2	0.3068	36.40		23.50		07.01		-140	07	40	
, e		0.1841	68.00		20.00		10.40	415	-119	50	ני	
Š		5	υ+ σ		ຈ		0 – 0	÷	2	ł	>	
		IHAU/SE		MAGNITI DE					PHASE			

FFT results for the Xball/Xballerror transfer function, subject 2, longitudinal tracking only.

RUN	R₂	IDENTIFIED BIAS	IDENTIFIED DELAY	COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION IN THE Z-DOMAIN IN DESCENDING ORDER NUMERATOR FIRST
-	0.0974	-0.1641	Z ⁻ 10	2.1314, -1.4086, 0.2766; 0.0131, -0.0624, 0.0547
2	2 0.1824	-0.3485	Z ⁻ 10	2.1242, -1.3939, 0.2695; -0.0237, 0.0176, 0.0186
e	0.2157	-0.2263	Z ⁻ 10	2.0505, -1.2409, 0.1897; -0.0088, -0.0206, 0.0388
4	UNSTABLE			
5	5 0.2347	-0.0662	z ⁻ 10	2.1354, -1.4077, 0.2719; -0.0240, 0.0229, 0.0130

LSE results for the Xball/Xballerror transfer function, subject 2, longitudinal tracking only.

TABLE 22

	'n,	934	0 60	20.	56	20	53		170	2	~	0
		ر م										
	ຮຶ	4.663	0.66	00.0	0 52	00	0 51	17.2	-147		2	-
	ω	2.823	0 80	2.2	0 80	20.0	0 75	21.5	-131		~	,
	9 9	977-1	1.54		1 32	7.7.7	1.13		-131		~	Ņ
	ω 1.1δ6 3.58 3.58 2.65 1.95	-130		22								
	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1161-11	5.82		5.61		5.42		-150		4	
	0,000	4747	14.07		12.24		C0.01		-139	ļ	و	
	0 202 0	00000	89.13		42.37		20.14		-/1		41	
3	0 1841		62.75		30.46		14./0	-			8	
			6 + 2		ຈ		<u> </u>	:	þ	1	Þ	
									PHASE			

FFT results for the Xball/Xball error transfer function, subject 1, lateral and longitudinal tracking.

NUR	B	IDENTIFIED BIAS	IDENTIFIED DELAY	COEFFIC THE Z-DO	COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION IN THE Z-DOMAIN IN DESCENDING ORDER NUMERATOR FIRST	HE IDENTI ESCENDIN	FIED TRAN G ORDER N	ISFER FUN	CTION IN R FIRST
-	0.0533	-0.1734	z-13	2.0459,	2.0459, -1.3260, 0.2797; 0.0418, -0.1250, 0.1063	0.2797;	0.0418,	-0.1250,	0.1063
2	2 0.1553	-0.1859	z-14	2.0407,	2.0407, -1.2982, 0.2566; -0.0346, 0.0238, 0.0338	0.2566;	-0.0346,	0.0238,	0.0338
e	3 0.0498	0.0215	-14 z	1.9782,	1.9782, -1.2133, 0.2347; -0.0642, 0.0978, -0.0081	0.2347;	-0.0642,	0.0978.	-0.0081
4	0.3166	-0.0582	z-14	1.9822,	1.9822, -1.2517, 0.2691; -0.0132, 0.0062, 0.0377	0.2691;	-0.0132,	0.0062.	0.0377
5	UNSTABLE								

LSE results for the Xball/Xball error transfer function, subject 1, lateral and longitudinal tracking.

TABLE 23

			3		;						
	(RAB/SEC)		0.1841	0.3068	0.4909	ω4 0.7977	ω ₅ 1.166	ω ₆ 1.779	ω ₇ 2.823	ω 4 663	ω ₉ Α 03.4
		<b>U</b> + Q	18.00	34.40	35.90	7.40	6.90	1.90	0.96	0.71	69.0
Ϋ́Α		S	13.60	23.90	22.80	6.50	3.90	1.60	0.91	0.66	0.61
		$\upsilon - \sigma$	10.20	16.70	14.50	5.70	2.20	1.10	0.86	0.62	0.59
	PHASE	þ	-248	-173	-184	-162	-184	-140	-140	-140	_160
		σ	54	65	12	6	47	5	6	2	107
F F T	results	for t	FFT results for the Xball/Xball er	all error	transfer	rror transfer function, subject 2, lateral and longitudinal tracking.	subject 2,	lateral a	nd longit	udinal trac	king.
NNH	Ъ		IDENTIFIED BIAS		IDENTIFIED DELAY	COEFFICIE	NTS OF TH AAIN IN DE	IE IDENTIF SCENDING	IED TRAN	COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION IN THE Z-DOMAIN IN DESCENDING ORDER NUMERATOR FIRST	TION IN R FIRST
-	0.4116	16	-0.1043	z-14		1.9454, -1.0607, 0.1149; 0.0080, -0.0606, 0.0707	1.0607, (	).1149; (	0.0080,	-0.0606,	0.0707
2	0.1329	29	-0.2421	z-13		1.9733, -1.1135, 0.1389; -0.0362, 0.0112, 0.0358	1.1135, (	.1389; -	0.0362,	0.0112.	0.0358
		ſ		T					•	•	

trackin
i, subject 2, lateral and longitudinal trackin
and
lateral
ณ์
n, subject
r function, s
II/Xball error transfer
error
Xball/Xball
the
for
results
LSE

2.0283, -1.1853, 0.1563; -0.0197, 0.0047, 0.0248

z-13

-0.1509

0.0361

4

UNSTABLE

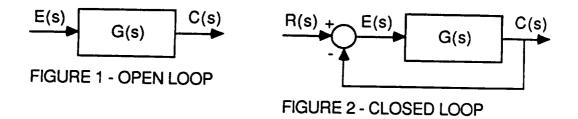
ო

z-11

-0.0071

0.1144

S


1.9903, -1.1000, 0.1086; 0.0304, -0.0933,

0.0699

ng.

TABLE 24

## 7.0 Appendix II Figures



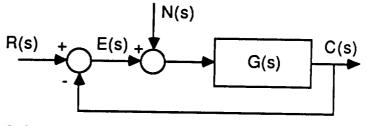



FIGURE 3 - CLOSED LOOP WITH NOISE N(s)

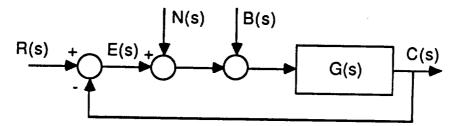
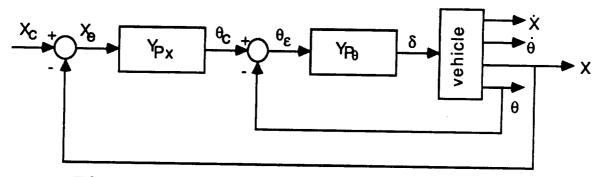
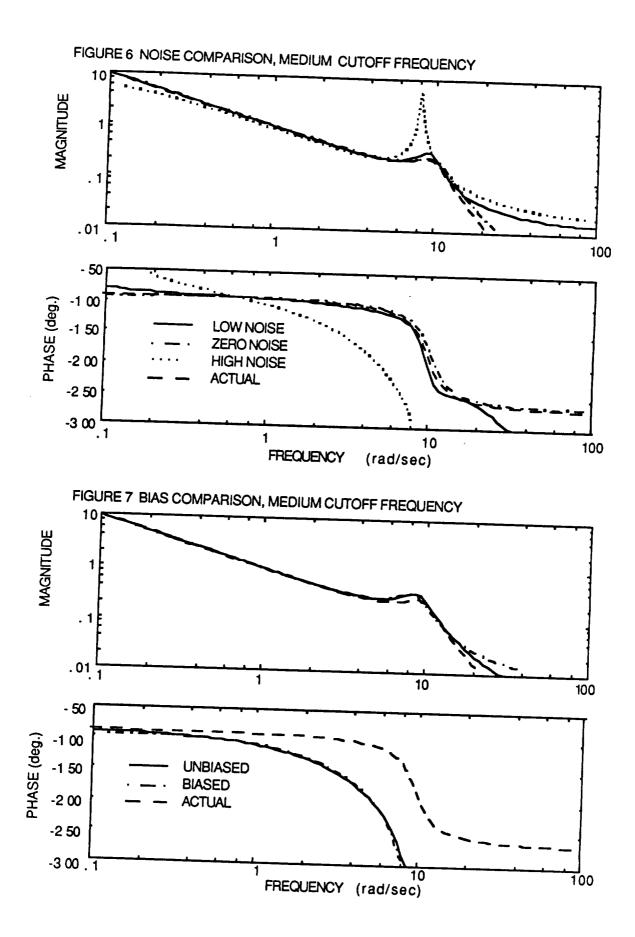
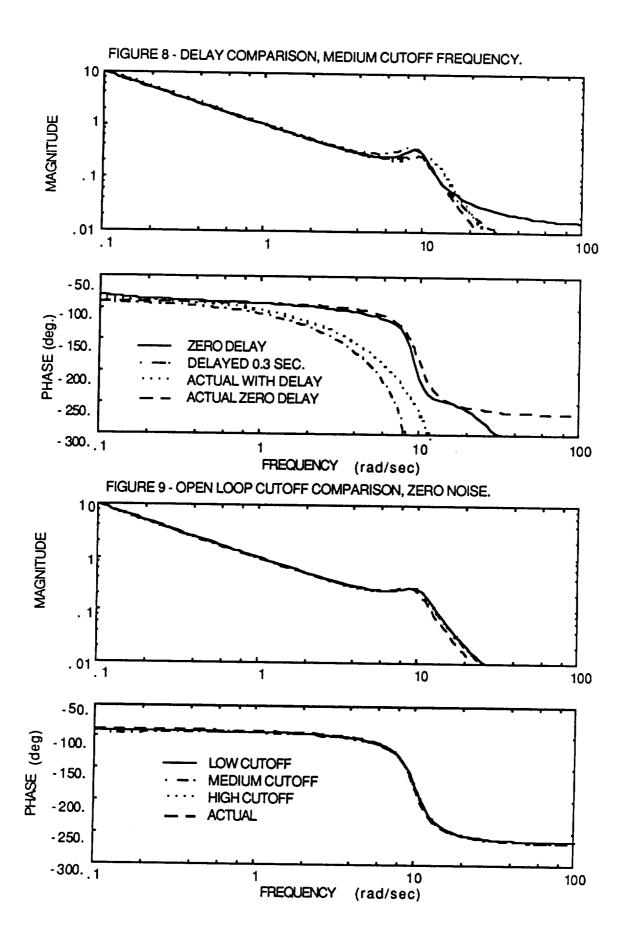
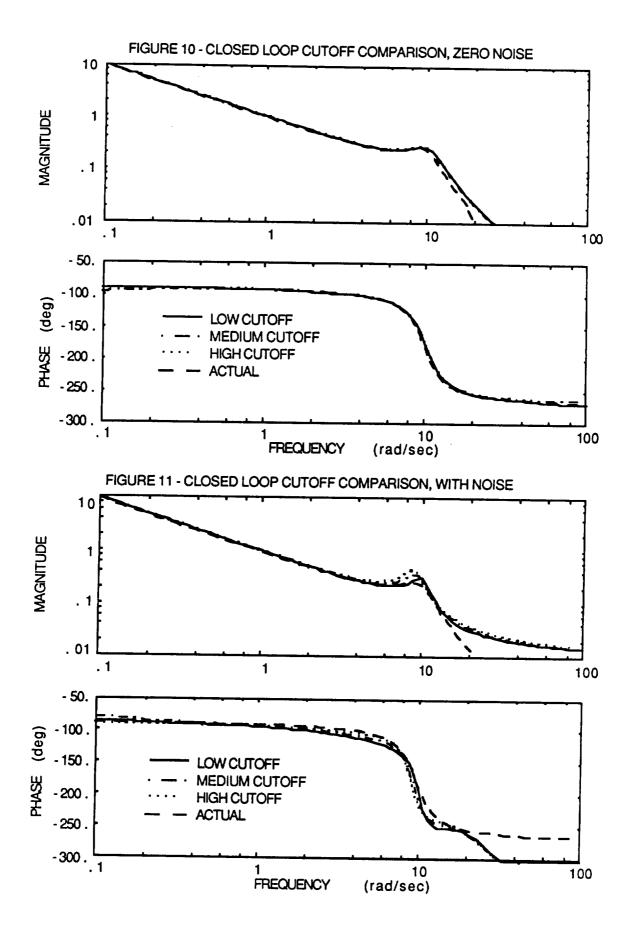
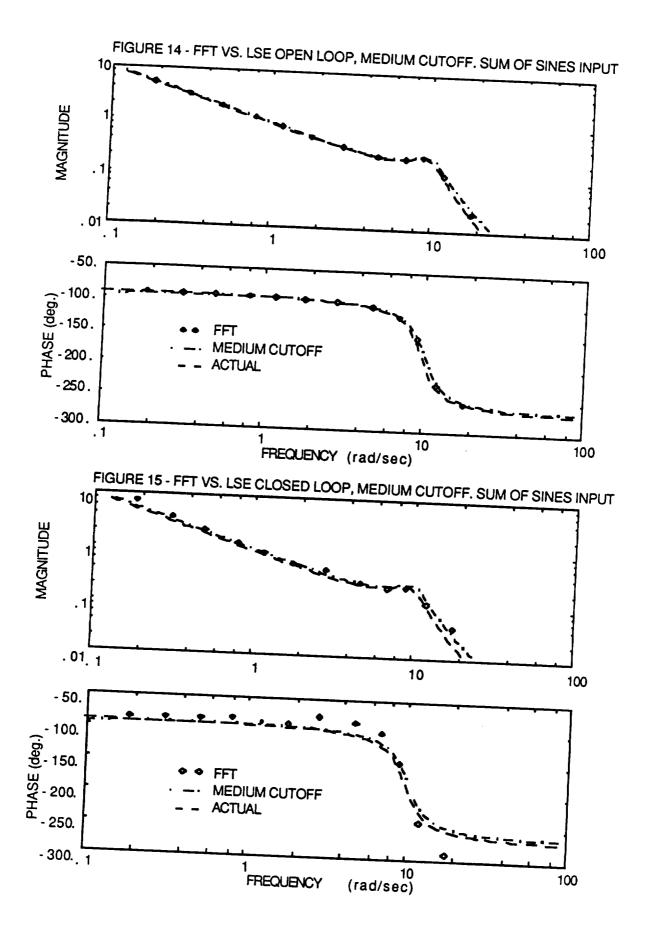
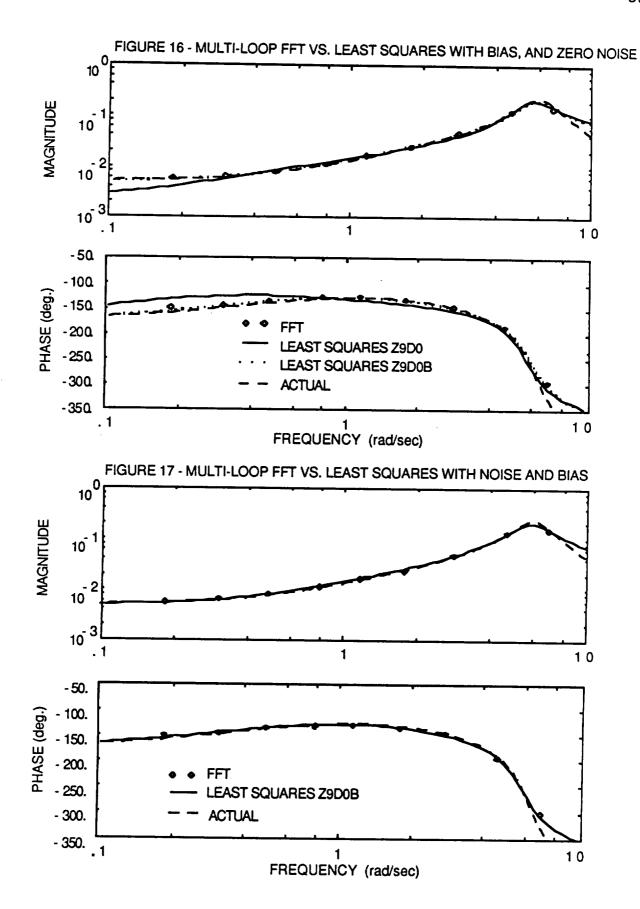



FIGURE 4 - CLOSED LOOP WITH NOISE N(s) AND BIAS B(s)



FIGURE 5 - MULTI-LOOP HOVERING HELICOPTER MODEL













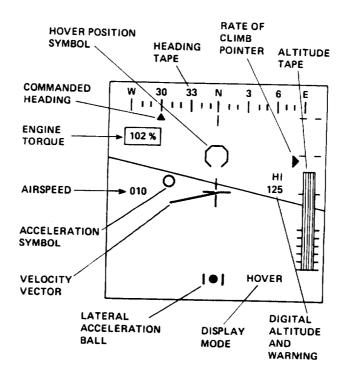
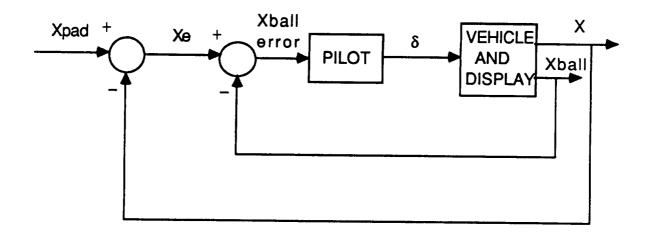
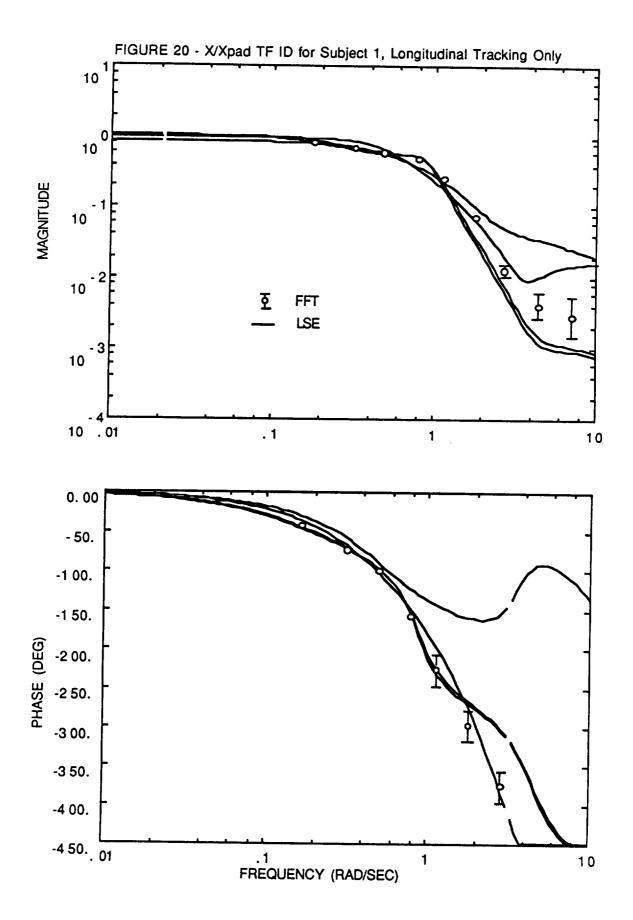
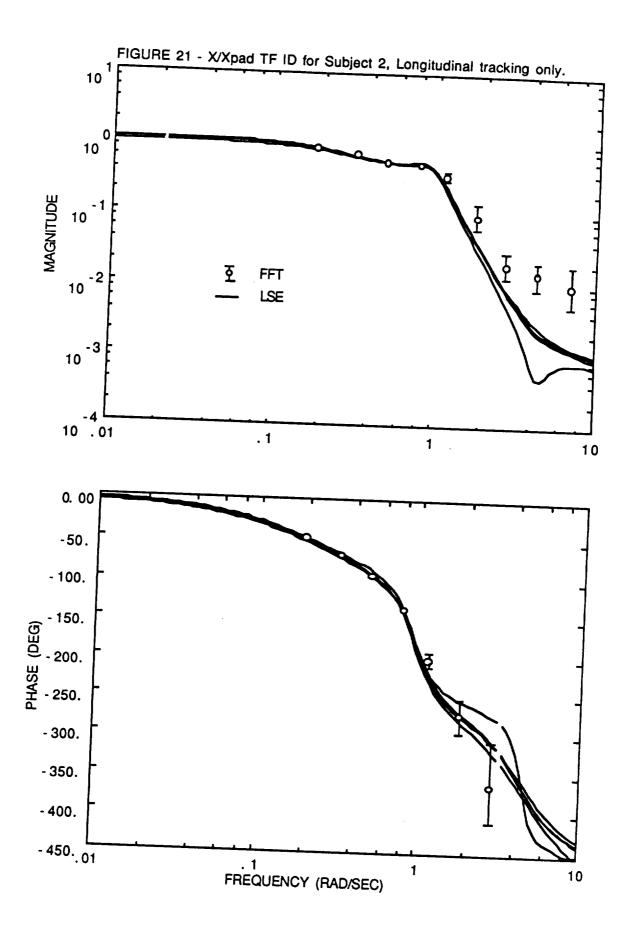
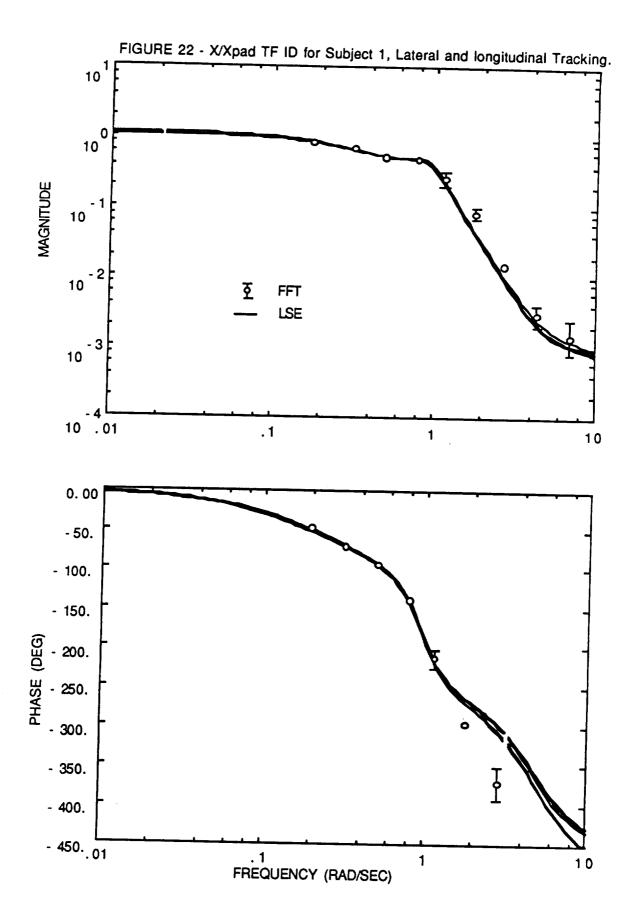
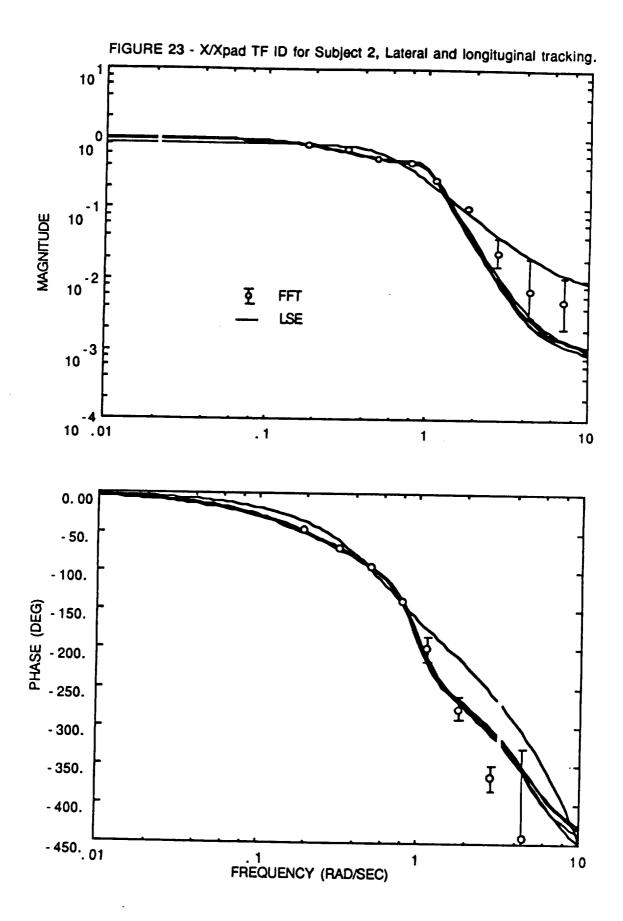
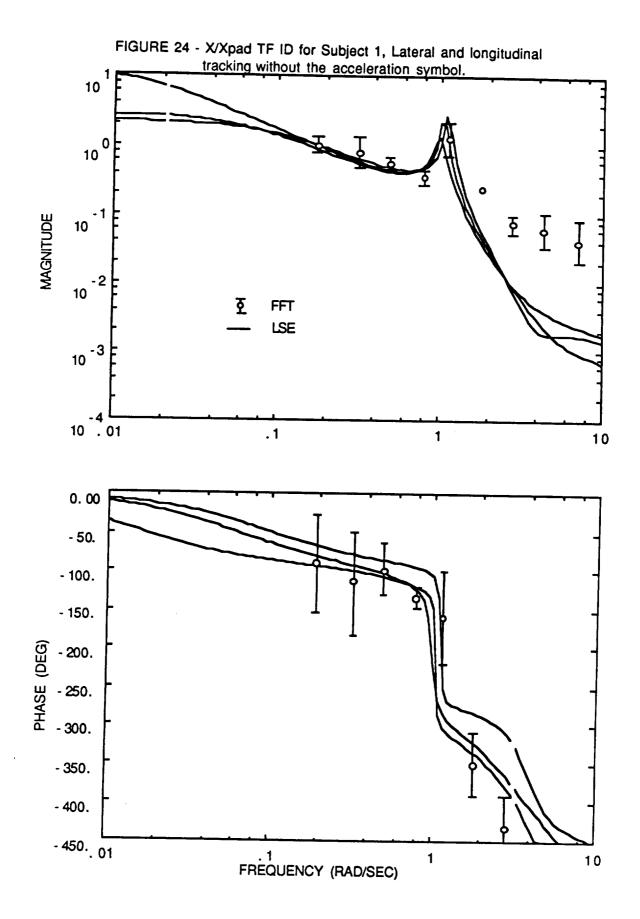
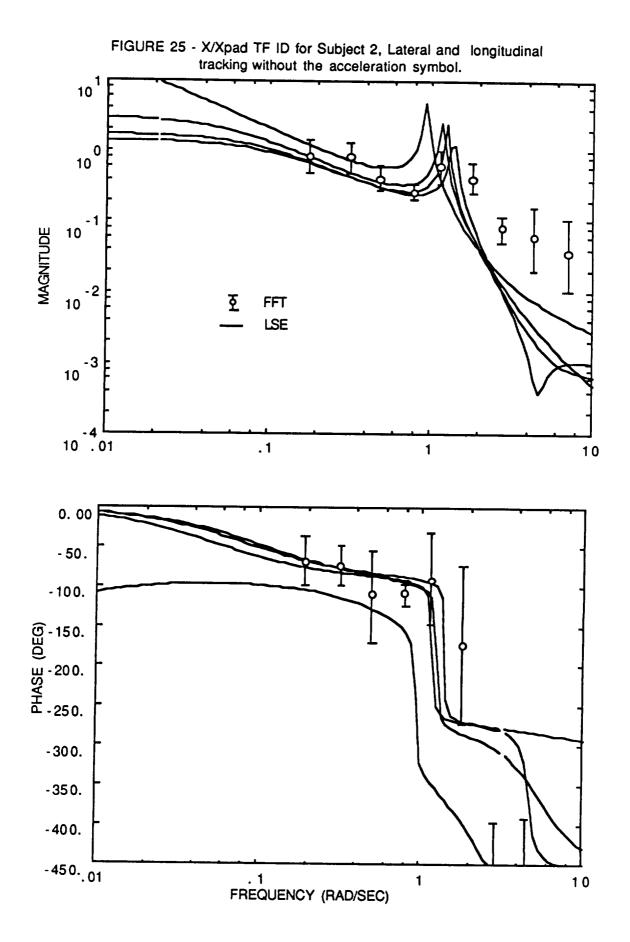
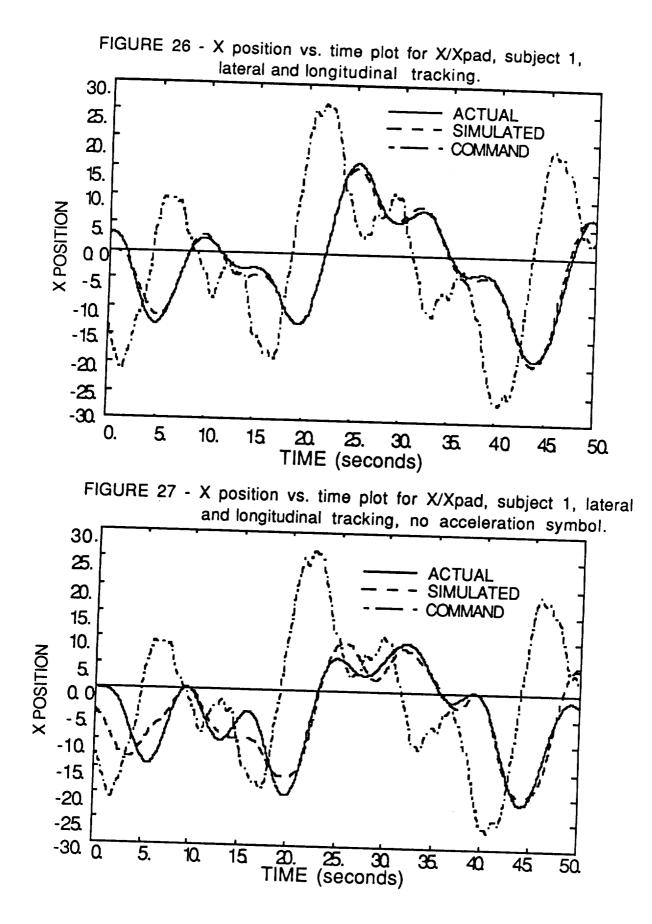




FIGURE - 18 Hover Display Symbology.



FIGURE - 19 Hypothesized pilot loop closures with acceleration ball display symbology.













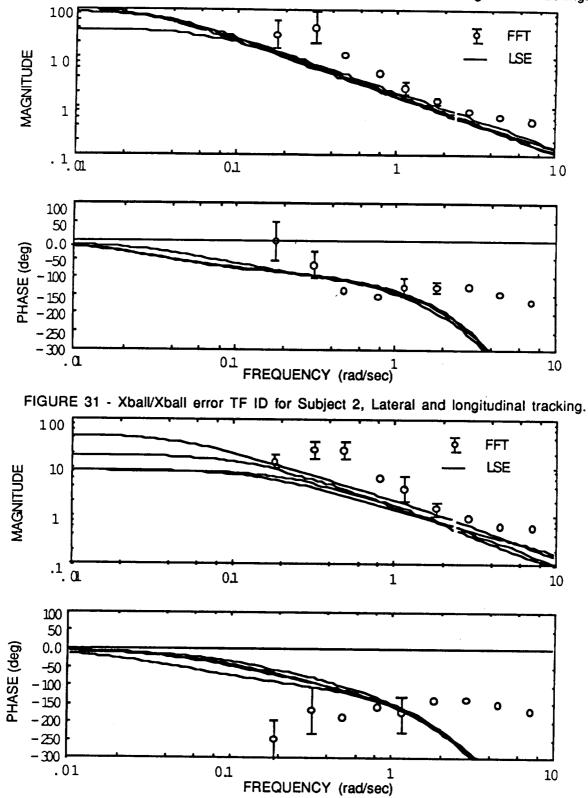




FIGURE 30 - Xball/Xball error TF ID for Subject 1, Lateral and longitudinal tracking.

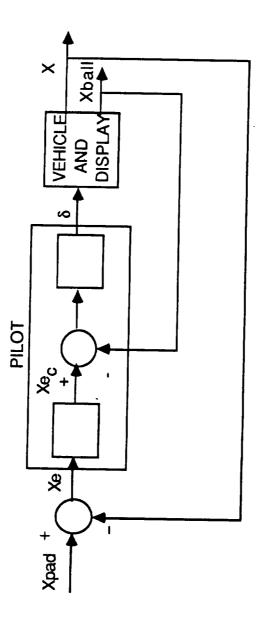
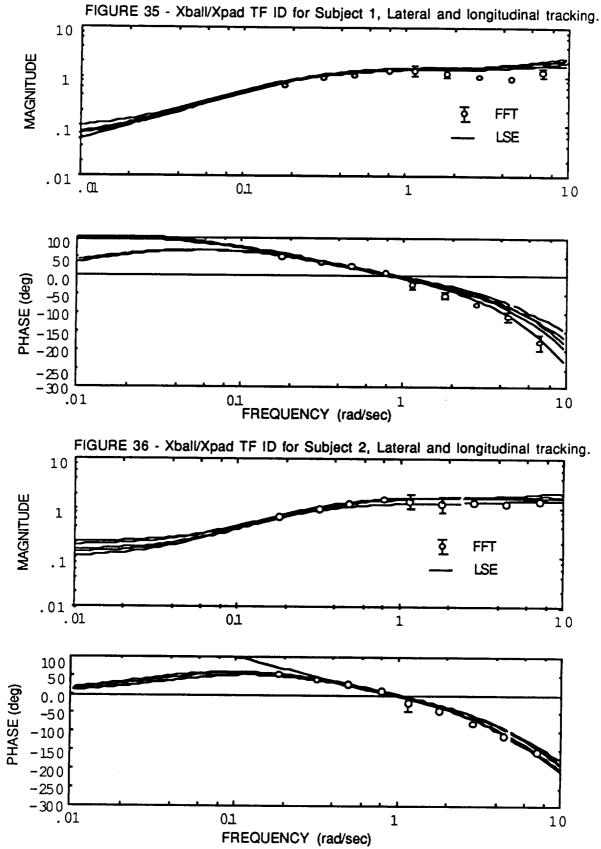
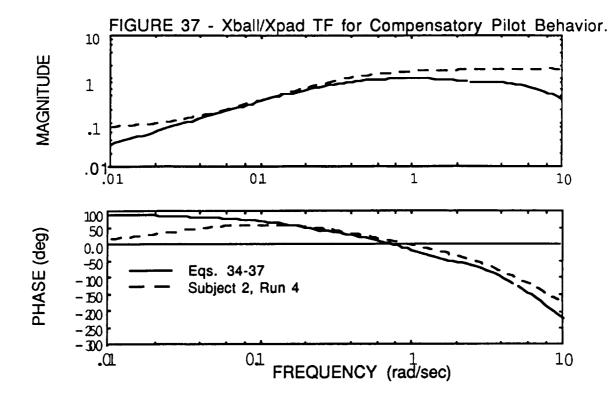





FIGURE - 32 Alternative multi-loop pilot loop closures with acceleration ball display symbology.





## 8.0 Appendix III Computer Programs

** ACSL multi-loop helicopter simulation **

**PROGRAM HELI1** 

CONSTANT TFIN=110. CONSTANT TDX=0.15 CONSTANT KEX1=1. CONSTANT QX2=1.,14.14,100. CONSTANT K=98.03 CONSTANT K1=1. CONSTANT K2=10. CONSTANT T1=2.5 CONSTANT T2=.369 CONSTANT XU=-0.05 CONSTANT G=32.2 CONSTANT MU=.0311 CONSTANT MTH=-8. CONSTANT MDE=.585 CONSTANT MQ=-5. CONSTANT TL=3.0 CONSTANT KY=.0071 CONSTANT ta=0.2 CONSTANT kn=1.0 CONSTANT m=0.0 CONSTANT s=0.02710 CONSTANT mn=0.00121285

ARRAY QX2(3)

CINTERVAL CINT=0.05

INITIAL UNIFI(1717) END \$ "OF INITIAL"

DYNAMIC DERIVATIVE

```
DX=TRAN(0,2,100.,QX2,U1)
 UM1=(.01*T1)*LEDLAG(100.,T1,DX,0.)
 "UMX1=K2*UM1"
 "UMX1=(K2/T2)*LEDLAG(T2,.01,UM1,0.)"
 UMX1=(K2*T2)*LEDLAG(0.,T2,UM1,0.)
 U1=UCX1-UM1-UMX1
 UCX1=KEX1*DELAY(X1EN,0.,TDX,300)
 x1e =thc-th
 X1EN=THC-TH+en+0.1
 en=kn*(ou(ta,m,s)-mn)
 XC=17.6*(SIN(.1841*T)+SIN(.3068*T)+SIN(.4909*T)+SIN(.7977*T)+...
   0.1*(SIN(1.166*T)+SIN(1.779*T)+SIN(2.823*T))+...
   0.05*(SIN(4.663*T)+SIN(6.934*T)))
XE=XC-X
THC=-KY*LEDLAG(TL,.01,XE,0.)
UD=XU*U-G*TH
THD=Q
QD=MU*U+MTH*TH+MQ*Q+MDE*(DX*K)
XD-JU
TH=INTEG(THD,0.)
Q=INTEG(QD,0.)
U=INTEG(UD,0.)
X=INTEG(XD,0.)
```

```
TP=1./TFIN
VX1E=TP*INTEG(X1E**2.,0.)
VTHC=TP*INTEG(THC**2.,0.)
VXC=TP*INTEG(XC**2.,0.)
VX=TP*INTEG(X**2.,0.)
VDX=TP*INTEG(DX**2.,0.)
nbar=tp*integ(en,0.)
END $ "OF DERIVATIVE"
```

TERMT(T.GE. TFIN)

END \$ "OF DYNAMIC" END \$ "OF PROGRAM"

```
** ACSL closed-loop simulation, sum of sines input with noise, **
               delay, and bias.
                                                                         **
program ndbsin
array d(4)
constant d=1.,4.,100.,0., ta=0.2, kn=1.0, mn=0.00236539, m=0., s=0.03215
constant w1=0.1841, w2=0.3068, w3=0.4909, w4=0.7977, w5=1.166
constant w6=1.779, w7=2.823, w8=4.663, w9=6.933, w10=8.958
constant w11=12.088, w12=17.978, td=0.3
tfin=102.4
cinterval cint=0.05
INITIAL
UNIFI(3333)
END $"OF INITIAL"
dynamic
derivative
ed=delay(e1+n_0.td_300)
c=tran(0,3,100.,d,ed)
e1=r-c+1.
e=e1-1.
n=kn*(ou(ta,m,s)-mn)
r = (sin(w1^{t})+sin(w2^{t})+sin(w3^{t})+0.1^{t}(sin(w4^{t})+sin(w5^{t})+...
sin(w6^{t})+sin(w7^{t})+sin(w8^{t})+sin(w9^{t})+sin(w10^{t})+...
sin(w11*t)+sin(w12*t)))/1.546
tf=1./tfin
nbar=tf*integ(n,0.)
end $ "of derivative"
end $ "of dynamic"
termt(t.ge.tfin)
end $ "of program"
```

```
** ACSL closed-loop simulation, sum of sines input with noise, **
  **
                 and delay.
                                                                        **
 program ndsin
 array d(4)
 constant d=1.,4.,100.,0., ta=0.2, kn=1.0, mn=0.00303933, m=0.0, s=0.04131
 constant w1=0.1841, w2=0.3068, w3=0.4909, w4=0.7977, w5=1.166
 constant w6=1.779, w7=2.823, w8=4.663, w9=6.933, w10=8.958
 constant w11=12.088, w12=17.978, td=0.3
 tfin=102.4
 cinterval cint=0.05
 INITIAL
 UNIFI(3333)
 END $"OF INITIAL"
dynamic
derivative
ed=delay(e+n,0.,td,300)
c=tran(0,3,100.,d,ed)
e=r-c
n=kn*(ou(ta,m,s)-mn)
r=(sin(w1*t)+sin(w2*t)+sin(w3*t)+sin(w4*t)+sin(w5*t)+...
sin(w6*t)+0.1*(sin(w7*t)+sin(w8*t)+sin(w9*t)+sin(w10*t)+...
sin(w11*t)+sin(w12*t)))/3.03
tf=1./tfin
nbar=tf*integ(n,0.)
end $ "of derivative"
end $ "of dynamic"
termt(t.ge.tfin)
end $ "of program"
```

** ACSL closed-loop simulation, sum of sines input with noise. **

```
program nsin
  array d(4)
  constant d=1.,4.,100.,0., ta=0.1, kn=1.0, mn=0.05276090, m=0., s=1.0
 constant w1=0.1841, w2=0.3068, w3=0.4909, w4=0.7977, w5=1.166
 constant w6=1.779, w7=2.823, w8=4.663, w9=6.933, w10=8.958
 constant w11=12.088, w12=17.978
 tfin=102.4
 cinterval cint=0.05
 INITIAL
 UNIFI(3333)
 END $"OF INITIAL"
 dynamic
 derivative
c=tran(0,3,100.,d,e+n)
 e=r-c
n=kn*(ou(ta,m,s)-mn)
r=(sin(w1*t)+sin(w2*t)+sin(w3*t)+sin(w4*t)+sin(w5*t)+...
sin(w6*t)+0.1*(sin(w7*t)+sin(w8*t)+sin(w9*t)+sin(w10*t)+...
sin(w11*t)+sin(w12*t)))/3.03
tf=1./tfin
nbar=tf*integ(n,0.)
end $ "of derivative"
end $ "of dynamic"
termt(t.ge.tfin)
end $ "of program"
```

** ACSL closed-loop simulation with sum of sines input. **

```
program sin
 array d(4)
 constant d=1.,4.,100.,0.
 CONSTANT w1=0.1841, w2=0.3068, w3= 0.4909, w4=0.7977, w5=1.166
 constant w6=1.779, w7=2.823, w8=4.663, w9=6.933
 CONSTANT W10=8.958, W11=12.088, W12=17.978
tfin=102.4
cinterval cint=0.05
dynamic
derivative
c=tran(0,3,100.,d,e)
e=r-c
r=(sin(w1*t)+sin(w2*t)+sin(w3*t)+sin(w4*t)+sin(w5*t)+...
sin(w6*t)+sin(w7*t)+sin(w8*t)+0.1*(sin(w9*t)+sin(w10*t)+...
sin(w11*t)+sin(w12*t)))/4.02
end $ "of derivative"
end $ "of dynamic"
termt(t.ge.tfin)
```

end \$ "of program"

```
// *** z-domain to w-domain transformation subroutine ***
 T=0.05;
 ZZ=SIZE(NU);
 N=ZZ(1,2)-1;
 X = [T/2 1];
 Y = [-T/2 \ 1];
 K=N+1;
 A=0*ONES(N,K);
 B=0*ONES(N,K);
 C=0;D=0;DD=0;CC=0;NUM=0;DEN=0;
 YY=1:M=1:XX=1;
  FOR I=1:K:...
    FOR J=1:M;...
    L=J+K-1:...
    A(I,L)=XX(1,J);...
    B(I,L)=YY(1,J);...
   END;...
  XX=CONV(XX,X);...
  YY=CONV(YY,Y);...
  M=M+1:...
 END:
Q=K;
 FOR P=1:K;...
  C(P,:)=NU(1,P)*CONV(A(Q,:),B(P,:));...
  D(P,:)=DE(1,P)*CONV(A(Q,:),B(P,:));...
  Q=K-P;...
 END;
CC=C';DD=D';S=2*N+1;Q2=K;
 FOR R=1:K;...
 NUM(1,Q2)=SUM(CC(S,:));...
 DEN(1,Q2)=SUM(DD(S,:));...
  Q2=K-R:...
 S=S-1;...
 END:
NUM, DEN
n=NUM:
q=DEN;
PAGE
```

```
[a,b,c,d]=tf2ss(n,q);
v=logspace(-1,2);
[mag,pha]=bode(a,b,c,d,1,v);
WINDOW('211')
a=[0.1,0.01;100,10;33.3,3.33];
plot(a,'scale')
plot(v,mag,'loglog','dotted')
title('magnitude',' ')
WINDOW('212')
aa=[0.1,-300;100,-50;33.3,50];
plot(aa,'scale')
plot(v,pha,'logx','dotted')
title('phase',' ')
```

```
// *** PROGRAM FAST FOURIER TRANSFORM subroutine ***
    LOAD H <RRR -A;
    T=H(153:2200,1);
    E=H(153:2200,2);
    C=H(153:2200,3);
    R=H(153:2200,4);
   FFTC=FFT(C);
   FFTE=FFT(E);
   FFTR=FFT(R);
   W=[.1841;.3068;.4909;.7977;1.166;1.779;
     2.823;4.663;6.934];
   FOR F=1:9;....
     N=ROUND(W(F)*2048/(20*2*PI)+1);...
     MAGC(F)=SQRT((REAL(FFTC(N)))**2+(IMAG(FFTC(N)))**2);...
     MAGE(F)=SQRT((REAL(FFTE(N)))**2+(IMAG(FFTE(N)))**2);...
     PHAC(F)=180*ATAN(IMAG(FFTC(N))/REAL(FFTC(N)))/PI;...
     PHAE(F)=180*ATAN(IMAG(FFTE(N))/REAL(FFTE(N)))/PI;...
     MDB(F)=(MAGC(F)/MAGE(F));...
  END;
  FOR E=1:9;...
    N=ROUND(W(E)*2048/(20*2*PI)+1);...
  IF REAL(FFTC(N)) < 0. ,PHAC(E)=PHAC(E)+180.;...
 END;
 FOR H=1:9:...
    N=ROUND(W(H)*2048/(20*2*PI)+1);...
  IF REAL(FFTE(N)) < 0. ,PHAE(H)=PHAE(H)+180.;...
 END;
 FOR G=1:9:...
 IF PHAC(G) < 0. , PHAC(G)=PHAC(G)+360.;...
END:
FOR K=1:9;...
 IF PHAE(K) < 0. , PHAE(K)=PHAE(K)+360.;...
END:
PHAS = PHAC-PHAE;
A=[.1 .0001;10 1;4.95 .250];
PAGE
```

WINDOW('211') //PLOT(A,'SCALE') PLOT(W,MDB,'POINT=2','LOGLOG') YLABEL('MAGNITUDE') TITLE('FFT') WINDOW('212') PLOT('SCALE') PLOT(W,PHAS,'POINT=2','LOGX') YLABEL('PHASE') XLABEL('FREQUENCY RAD/SEC')

```
// ** z8d0b; LSE identification using model 8, zero delay, with bias **
  E1=H(3:2047,2);
 E2=H(2:2046,2);
 E3=H(1:2045,2);
 C1=H(3:2047,3);
 C2=H(2:2046,3);
 C3=H(1:2045,3);
 C=C1;E=E1;
 Y=H(4:2048,3);
 B=ONES(2045,1);
 A=[C1,C2,C3,E1,E2,E3,B];
P=A\Y
a11=p(1,1);a12=p(2,1);a13=p(3,1);
b11=p(4,1);b12=p(5,1);b13=p(6,1);
BIAS=(P(7,1)/(B11+B12+B13))
BB=BIAS*B;
NU=[0 B11 B12 B13];
DE=[1 -A11 -A12 -A13];
[A1 B1 C1 D1]=TF2SS(NU,DE);
EE=E+BB;
X=DSIM(A1,B1,C1,D1,EE');
XX=X;
R2=1-(SUM((C-XX)**2))/SUM(C**2)
```

// ** z8d0b; LSE identification using model 8 with a 3 time ** // ** constant delay E1=H(3:2044,2); E2=H(2:2043,2); E3=H(1:2042,2); C1=H(6:2047,3); C2=H(5:2046,3); C3=H(4:2045,3); C=C1;E=E1; Y=H(7:2048,3); A=[C1,C2,C3,E1,E2,E3]; P=A\Y A11=P(1,1);A12=P(2,1);A13=P(3,1); B11=P(4,1);B12=P(5,1);B13=P(6,1); NU=[0 0 0 0 B11 B12 B13]; DE=[1 -A11 -A12 -A13 0 0 0]; [A1 B1 C1 D1]=TF2SS(NU,DE); X=DSIM(A1,B1,C1,D1,E'); R2=1-((SUM((C-X')**2))/SUM((C**2)))

**

```
// ** z8d0b; LSE identification using model 8 **
  E1=H(3:2047,2);
  E2=H(2:2046,2);
  E3=H(1:2045,2);
  C1=H(3:2047,3);
  C2=H(2:2046,3);
 C3=H(1:2045,3);
 C=C1;E=E1;
 Y=H(4:2048,3);
 A=[C1,C2,C3,E1,E2,E3];
 P=A\Y
A11=P(1,1);A12=P(2,1);A13=P(3,1);
B11=P(4,1);B12=P(5,1);B13=P(6,1);
NU=[0 B11 B12 B13];
DE=[1 -A11 -A12 -A13];
[A1 B1 C1 D1]=TF2SS(NU,DE);
X=DSIM(A1,B1,C1,D1,E');
R2=1-((SUM((C-X')**2))/SUM((C**2)))
```

```
// z9d0; LSE identification using model 9 **
   //
  E1=H(4:2047,2);
  E2=H(3:2046,2);
  E3=H(2:2045,2);
  E4=H(1:2044,2);
  C1=H(4:2047,3);
  C2=H(3:2046,3);
 C3=H(2:2045,3);
 C=C1;E=E1;
 Y=H(5:2048,3);
 A=[C1,C2,C3,E1,E2,E3,E4];
 P=A\Y
A11=P(1,1);A12=P(2,1);A13=P(3,1);
B11=P(4,1);B12=P(5,1);B13=P(6,1);B14=P(7,1);
NU=[0 B11 B12 B13 B14];
DE=[1 -A11 -A12 -A13 0];
[A1 B1 C1 D1]=TF2SS(NU,DE);
X=DSIM(A1,B1,C1,D1,E');
R2=1-((SUM((C-X')**2))/SUM((C**2)))
```