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Abstract

Error-correcting or error-detecting codes have been used in the computer industry
to increase reliability, reduce service costs, and maintain data integrity. The single-byte
error-correcting and double-byte error-detecting (SbEC-DbED) codes have been suc-
cessfully used in computer memory subsystems. There are many methods to construct
double-byte error-correcting (DbEC) codes. In the present paper we construct a class
of double-byte error-correcting codes, which are more efficient than those known to be
optimum, and a decoding procedure for our codes is also considered.

Index Terms: Double-byte error-correcting codes, minimum distance, generalized Bezout's
theorem, Decoding.

1 Introduction

Error-correcting or error-detecting codes are useful in computer semiconductor memory
subsystems, which can be used to increase reliability, reduce service costs, and maintain
data integrity. It is well known that the single-byte error-correcting and double-byte error-
detecting (SbEC-DbED) codes have been successfully used in computer memory subsystems
[1-4]. For a linear block code over the finite field GF(q) of ¢ elements, where ¢ is a prime
power, if its minimum distance is equal to or greater than d, then the code is capable of
correcting | i;—l ] byte errors and detecting | % | byte errors. Thus the minimum distances
of linear codes which are capable of correcting single byte errors and detecting double byte
errors are equal to or greater than four, and the minimum distances of the codes which
can correct double byte errors are equal to or greater than five. There are many methods
to construct double-byte error- correcting (DbEC) codes. A class of codes with minimum
distance > 5 was constructed by adding appropriate parity checks to some cyclic codes [5].

Let C be a linear code over GF(q), denote by n, r, and d the code length, number

of parity checks, and minimum distance respectively. A code over GF(q), where g = 2,
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with minimum distance > 5 was constructed with parameters n = ¢*, and r = 7 [6]. Let
U7H(I) be a cyclic code over I = GF(q), where ¢ = 2, with a string I = {1, M} and
U=UnMIF" 1) be the corresponding punctured code with length n = ¢™~ ! defined on
a (m — 1)-dimensional subspace F™~! of F™. A class of codes over GF'(2 ') with minimum
distance > 5 was constructed by adding some parity checks to U, these codes have the
parameters n = ¢"" 1, r < 2m + [m—3—_1], m=2,3,---. And when ¢ is odd, a class of codes
with minimum distance > 5 was also constructed by a similar method. The above codes
were constructed by Dumer in the Theorems 6 and T [5] respectively. According to Dumer,
if ¢ is even, when n = ¢, r < 7, when n = ¢2, then r < 9; and if ¢ is odd, when n = q°,
r < 7, when n = ¢, then r < 8 ---. Dumer’s codes are known to be optimal in the sense
that no other double-byte error-correcting codes with the same code lengths have fewer
number of parity checks. But unfortunately, the codes in Theorem 7 were defined only over
GF(q), when g is odd. Dumer’s method is very ingenious but is hard to read.

It is known that in the computer systems the codes over GF(g) with ¢ = 2 are useful.
In the present paper, we will construct a class of double-byte error- correcting codes over
GF(2'), which have the same parameters of Dumer’s codes over GF(q) with ¢ is odd. And
we also study the decoding procedure of our codes.

The organization of this paper is as follows. In section I, we review the generalized
Bezout’s theorem, which will be used to estimate the parameters of our codes. In section I,
we construct our new double error correcting codes. In section IV, a decoding procedure is
given. In section V, we give another construction of codes with minimum distances d > 5.
Finally, we make some concluding remarks in section VI.

2 Generalized Bezout’s Theorem

Let vy, v2, ..., Vp, and u be n-tuple vectors. If there are p coefficients ¢; such that u +
S P, civi = 0, where 0 is the zero vector, then we say that uis totally linearly dependent
on vectors Vi, Vz, ..., Vp. Sometimes, u may be linearly dependent on the vectors for only

some of the components (i.e., locations). Then u is said to be partially linearly dependent
on the vectors v; for 1 < ¢ S p. The maximal possible number of those components (i.e.,
locations) can be used to measure the linear dependence of the vector u on the vectors v;,
for 1 < i < p. The number of components, for which u is partially linearly dependent on
the vectors, is called the dependent-degree of u on v;, for 1 < 7 < p. Apparently, if the
dependent-degree is equal to n, then u is totally linearly dependent on v; for 1 <1 < p.

We generalize this concept to the case of a sequence of vectors u,. Let us consider two
sequences of vectors u; for 1 < i < p, and vectors v; for 1 < j < g. Let there be some
components, on which u, (1 < g < p) are partially linearly dependent on v; for1 < j <g¢
and u; for 1 < i < u. The number of such components can be used to measure the consistent
linear dependence of the vector uy, ..., u, on vectors v; for 1 < j < ¢g. The maximal possible
number of such components is called the consistent dependent-degree of uy, ..., u, on the
vectors v; for 1 < 7 < q.

For a sequence of linearly independent vectors {vy, v, ..., Vr, ...}, let v express a linear
combination v; + YI_} €, vy



Definition 2.1 D« ...+ denotes the mazimal consistent dependent-degree of a set of
11 Yp
{vi,, . vi,} on their previous vectors, respectively, i.e., D= ..+ ) denotes the marimal
1) 'Tip

number of components (i.e., locations), on which v for 1 < pu < p are all zero simultane-
ously.

Definition 2.2 D;(,r) =max{Dys ..ys 3|01 < - <ip <1}
' 'ip

Let C, be an [n,n — r] linear code defined by a parity check matrix H, = [hy, ..., h,]7,
i.e. the parity check matrix has r rows. We have the following theorem:

Theorem 2.1 ([6]): Consider a linear code C, defined by H,, i.e., the parity check matriz
has r rows. If the consistent dependent-degree of any (r — d* + 2) rows of H, is always less
than (d* - 1), i.e., D

rr_)d.+2 < d* -1, then the minimum distance d of C, is at least d*, 1.e.,
d>d .

Let LS be a set of distinct points in a plane or a set of distinct roots of a plane curve
(i.e. a polynomial). Let LS = {(z1,41), (22, ¥2)s .-, (5, Yn)} and let h(z,y) be a polynomial
(or monomial), then a vector (h(zy,y1), h(22,¥2)s -, A(Zn, Yn)) is called an evaluated vector
of polynomial h(z,y) on the set LS. Hereinafter, sometimes v; expresses an evaluated
vector and sometimes it expresses a polynomial or a curve if no confusion arises. Thus,
from Definition 1.1, D{Vfl vt ) denotes the number of distinct points of the intersection of
curves vi, = 0, ..., v = 0 for the case of LS being the set of all points in a whole plane, or
denotes the number of distinct points of the intersection of curves v =0, ..., vi =0, and
f(z,y) = 0 for the case of LS being the set of all points on the curve f(z,y) = 0. Similarly,
D,(,r) for a given sequence of evaluated vectors expresses the maximal possible number of
distinct points of the intersection of p curves among the first r curves of the given sequence
of curves. Therefore, the calculation of Dg) reduces to the calculation of the number of
distinct points of intersection of several curves.

Definition 2.3 The z-resultant matriz, denoted by RM(f,g) (or RM ) of two polynomials
f(z) = apz™ + a1z ' + -+ a,
g(z) = boz™ + biz™ 4+ 4 by

is given by the following (m + n) x (m + n) matriz:

dg a1 ... o e an \
dp a1 ... ... an
apg ai [
bO bl “on bee bm Y
bo by ... ... bm
\ bo b b



and its determinant is called the z-resultant of the two polynomials and denoted by Res.(f. g)
(or R).
For convenience in the following discussion, we define
ﬂo) = fz (ag, @1, .-y n, 0, ..., 0),
where on the rightmost side there are (m — 1) 0’s, and
f‘w = (0,...,0,aq, a1, -, an, 0, ..., 0),

where on the leftmost side there are ¢ 0’s (0 < i < m — 1) and on the rightmost side
there are (m — ¢ — 1) 0’s. Thus, the above matrix consists of the vectors f—t“) and M, for
0<pu<m-land0<A<n-1

The coefficients of f and g could be polynomials in y. We could have:

f(z,y) = ao(y)z™ + a1 (y)z™ 7 + - + an(y),
9(z,y) = bo(y)a™ + bi(y)z™ ! + - + ba(y)-

Theorem 2.2 ([6]): The number of distinct points of intersection of two polynomials
f(z,y) and g(z,y) without common components is at most equal to the degree of their
resultant R(y).

Let us consider p curves in affine plane curves without common components, ie.,
fulz,y) =0for p=1,2, .., p. Without loss of generality, deg, fi > degz fo > - -+ > deg. fp,

and let deg.fi = m and deg.f; = n, where deg, f, indicates the maximal ¢ such that
the monomial z'y’ is a term in f,. We define the z-resultant matrix of these p curves or
polynomials as the following & x (m + n) matrix, where ¥ = Z=1 (m+ n — deg. f,) and
s = degy fp:

aél) a(ll) . . ag,i) 0 . . 0 \

S P o A N |

0 0 . 0 aél) a(ll) . . . aﬁ,{)

a((f) a(lz) . . ag) 0 0 . .0

0 at()z) a(12) .. ag) 0 0

0 0 . .. o0 a? dP . P

I B

0 a(()p) a(lp) .. aﬁ,”) 0 0

\ 0 0 . .o 0 agp) a(lp) . agp) )



Let R(y) = Res;(fi, f2,, fp) be the non-zero determinant of the nonsingular submatrix
with the smallest degree of y of the z-resultant matrix.

Theorem 2.3 ([6]): The number of distinct points of the intersection of f,(x,y) without
common components, for p = 1,2,...,p, is at most equal to the degree of their resultant

R(y), i.e., degR(y).

In order to get an upper bound of deg R(y), we introduce a new concept. Among the f’s
with the same degree of =, we select one. Thus, we can select fy,, for p =1,2,....¢(< P),
such that deg, f, > deg:fa,, ., { degzfr,lo =1,2,...,q} = {deg.ful1t =1,2,...,p}, and f\,
have no common components. We define the z-partial resultant matrix of these p curves or
polynomials as the following (m + n) x (m + n) matrix:

FMdi+d2—dg-1) Fldit+da—dg—1IT
f ¢ a“'sfl\q ! ]

1

[f'(o) f"'(d1+d2—d1—1) f"(d1+d2—dl) f‘(d1+d2—dz—1)
NEREF I, yoes Fay v fyg

namely, [f:}\?), cey f_(drl), f—(dz), ey ﬂdl_l) i +da=dg1) _(dl+d2_d"_1)]T, where d,

A A2 A oy v g

denotes deg, fy,.
Obviously, this matrix is an upper triangle matrix when dy = 0. The determinant of
this matrix can be easily calculated for the special case, i.e., the determinant is equal to
the product of all elements on main diagonal of this matrix. This determinant is called a

partial resultant and denoted by PR(y).

Corollary 2.1 ([6]): The number of distinct points of the intersection of f.(z,y), for
w=1,2,..,p, is at most equal to the degree of their partial resultant PR(y).

Example 2.1 Let us consider the number of common points on the following four curves
over GF(2%):
23+ a(y)z® + b(y)z + c(y) = 0
zy+e(y) =0
2 —
yv'+ fy+g=0

1

We have the following matrix:

/{1 0000 vity 0 0 \
01000 0 vi+y 0
00100 0 0 vit+y
000 1 a(y) bly) «cly) O
00001 aly) by ey
00000 Yy e(y) 0
0 0 00O 0 Yy e(y)

\000O0O0 O 0 v+ fy+g )

Thus, PR(y) = v*(y*> + fy + g). Obviously, deg PR(y) = 4. Therefore, the number of
distinct points of the intersection of the four curves is at most 4.
Remark 2.1: Here we regard f,(z,y) as a polynomial of z and the coefficients are poly-
nomials in y. We also can regard f,(z,y) as a polynomial of y and the coefficients are



polynomials in z. The number of the distinct points of intersection of f,(z,y)’sis the same.
The distinct points of intersection of f,(z,y)’s obtained by the two approaches are also the
same.

Remark 2.2: It is sufficient and necessary that f,, for ¢ = 1,2,...,p, have no common
components.

Definition 2.4 Dy 4 .. 1) denotes the number of distinct points of the intersection of
curves f,(z,y) =0, forp=1,2,...,p.

Definition 2.5 Given a sequence of polynomials {f,(z,y)|p=1,2,...,r}.
D;f) = max{D{f;l’fiz""’f:p}l/\l’ oy Ap < T‘},

where f;“ ezpresses a linear combination of f; fori =1, 2, ..., A,, and the coefficient of f\,
Ap—1

s 1, t.e., f{‘“ = fa, + 22 cifi-

3 Constructions of Double-Byte Error-Correcting Codes

Let A™(F,) be a m-dimensional affine space over F; = GF(g), and let LS be the set of all
points in A™(F,). obviously, the number of points in LS, n = |[LS| = ¢™. We call the set
LS, a location set, the points in LS will be the locations in our construction. For a given
location set LS = {P;, P,,---, P,}, each monomial or polynomial & with m variables and
coefficients in GF(q) is associated with an n-tuple vector (h(Py), h(FP2),---, h(Pn)), which
is called an evaluated vector of h at LS. In the subsequent discussion, usage of the words

monomial or polynomial refer to the corresponding evaluated vector. Let {hy,ha,-- v he}
be a set of r polynomials, we denote by HT or [hy, kg, - -, h,]T the evaluated matrix
hi(P1) h(P2) - hi(Pn)
ho(P1) ho(P2) -+ ha(Fn)
hr(Pl) hr(PZ) hr(Pn)

Construction 3.1: Let n = ¢, where ¢ is a power of an odd prime. Consider H =
{1,z4+yB, (z+yB8+08%)% (e +yb+ 0[32)‘72+‘7+1} over GF(q), where 3 € GF(¢®) — GF(q)
and 1, 3, 8% is a basis of the vector space of GF(¢®) over GF(q). Let [1,z + y8,(z + y8 +
0342, (z + yB + Oﬁ2)"2+q+1]T be a parity check matrix. Then we have a code over GF(q).

Theorem 3.1 The code in Construction 3.1 has the parameters
n=q?, r=71, and d > 5.

Proof: GF(¢®) is a 3-dimensional vector space over GF(qg), by the hypothesis, 1,8,8%is
a basis of GF(¢®). z+yB8 = =+ yB +08% € GF(¢%). N3(z) = z9°+9+1 is the norm
function, because (z?°+9+1)9 = z¥°*9t! the norm function maps any nonzero ¢ € GF(¢°)
into nonzero Na(z) € GF(g). Because (z+y8)? = 2% +2zyB+y? 3%, we know that the code
in the above construction has r = 7 parity checks: 1,z,y,2 2zy,y% (z + y,@)q2+q+l. To



prove d > 5, by Theorem 2.1, we need only to prove that Df:) < 3. Denote D{h; RS R hT )
1 2 3 4

7 . .
by D{/\]_‘\z'l\svl\“} or D{[hh]v[hz\glv[hz\glvlhhl}‘ Let DS ) = D{,\w\w\a,«\‘t}' Obviously, if Ay = 1,
then Dy 5, 2,0 = 0. If Ap =2, it is easy to check that

Dl )by S 1
D) 122 2291 12} S 25
D112 2z 4yp)?+at 1]y S 3
D1z ) (e hupy ey S 2

If Ay = 3, it can be easy to check that D 22« []} < 2- So we need only to prove

that D) o ey fiaypy@sertyy S 3 204 Dipo) ooy 12) (2 gy sariyy S 3. Consider firstly
the following system of equations

y+ Ayz+ by =0,

2zy + AQ.’I)Z + Byx+Cy =0,

y? + A3z + Bz + C5 =0,

(JZ' + yﬂ)"2+q+l + A4l‘2 + Byzr + C4 =0,

where A;, B;, C; arein G F(q) (in the sequel, without special explanation, we denote elements
in GF(q) by A;, B;,C; or A!, B/,C! in systems of equations). Substitution of the first
equation into the last equation gives ({1 — A;8)z — By 8)¥ T4t + A4z? + Bya + Cy =
0. Because 3 € GF(¢°) — GF(q), A, € GF(g), we have 1 — A4;3 # 0. Thus this is a
polynomial equation with coefficients in GF(q) and degree 3, it has at most 3 distinct
roots. Hence the number of distinct roots of the above system of equation is at most 3, i.e.,

D{[y],[2zy],[y2].[(x+yﬁ)q2+q+1]} < 3. Now consider

2+ Ajz+ Biy+C; =0,
2zy + Az + Byy + Cy = 0,

y? + Asx 4+ Bay + C3 =0,

(z +yB) 9+ + Ayz + Bay + Cy = 0.

To prove that this system of equations has at most 3 distinct roots. We need only to
prove the following system of equations has at most 3 distinct roots,

22+ Az + Biy+C, =0,
2ry + Asz + Boy+C =0, (3.1)
y2+A3x+Bgy+C'3=0.

Consider the z-resultant matrix of the above polynomial equations,

1 Ay Byy+ Cy
2y+ A2 Bay+ (o 0

0 2y + Az By + C,

As y?+ B3y + Cs3 0

0 A3 y?+ B3y +Cs



We have
A1 Bly + C]

1
Ry)=|0 2y+ A2 Byy + C ,
0 A y? + Byy + Cj

so R(y) is a polynomial of degree 3. So by the generalized Bezout’s Theorem (Theorem 2.3),
the syste'm of equations (3.1) has at most 3 distinct roots. We have D{[12]‘[2xy],[y2].[(r+yﬁ)q2+q+‘]} <
3. Combining the above results, we complete the proof. a

Construction 3.2: Let n = ¢%, where ¢ = 2. Consider H = {l,z + y3,(z + y3 +
08%)9+!, (x + yB + 082)7°+9+1} over GF(q), where 3 € GF(¢®) — GF(q) and 1,3,3% is a
basis of the vector space of GF(g3) over GF(q). Let I,z +yB, (z +yB+058%)7*! (2 +y5 +
082)7°+9*+ 11T be a parity check matrix. Then we have a code over GF(g).

Theorem 3.2 The code in Construction 3.2 has the parameters
n = ¢°, r=1, and d > 5.

Proof: (z 4+ yB8)"! = (z + yB)"(z + yB) = (z + y8%) (z + y08) = «* + zyB + xyB? + y*3**.
Suppose 37 = ag+ a3+ az82, B = bo+b1 B +b28%, then (z+yB)7H! = 22+ apzy+boy” +
((14-a1)zy+b1y?) B+ (a2zy+b2y?) B2, So the code in the above construction has r = 7 parity
checks: 1, z,y, 2% 4 agzy + boy?, (1 + a1)zy + biy?, aszy + boy?, and (z + yB + 032)7 +at1,
Now as in the proof of Theorem 3.1, we need to prove Df) < 3. Let DgT) = Dia) agnen)
Obviously, if A; = 1, then Dy, x,,0,) = 0. If Ay = 2, it is easy to check that

Dy < 1
D (2] [z +aozy+bor?) =) 1=} < 25
D) j(1+an)zy+br 2] 1= < 3

If Ay =3, we have D P+at1]} < 3. So we need only to prove that

{[y],[*],[*],[(:c+yﬁ)

D{[y]v[r2+aoxy+boy2],[(1+ao)ry+b1y2],[azry+b2y2]} <3

and

D (v apzy+boy?][(1+a0)ev-+br v? L fazzy+baa?) [z +yd)a+ori)y S 3

i.e., we need to prove the following two systems of equations have at most 3 distinct roots
respectively,
y+ Az + B =0,
z? + agzy + boy? + Ajz + B; =0,
(14 a1)zy + biy® + Az + B2 = 0,
aszy + boy? + Azz + B3 = 0,
and
z? + agzy + boy? + A1z + Biy+ C1 =0,
(1 + al)xy + bly2 + Az + By +Cy =0,
azzy + byy® + Asz + Bay + C3 = 0,
(z 4 yB)I '+t 4 Ayz + Byy+Cy = 0.



Now we prove that the system of the last three equations in the first system of equa-
tions and the system of the first three equations in the second system of equations are all
equivalent to the following system of equations:

2+ Alz + By + C{ =0,
xy—{—A'z-i—B y+C'2-—0 (3.2)
y:+ Az + By + C

We need only to prove the determinant of the matrix of the coefficients of 2%, zy, and
y? is not zero, i.e.,
1 ag bo
0 1+a b |=
0 a» b2

1 + a bl
a b2

£ 0.

If it is not, we have a nonzero element a € GF(q), such that (b1, b2) = a(1+ a;,a;). On
the other hand, we have 37 = ag+a; 8+ a2, 891! = bo+b,3+b,8%. So, 39t +a(8743) =
bo Faao = b € GF(q), from this equation, we have (397! + a(37 + 8))? = bq = b, i.e.,
39"+ -I—a(Bq +839) = b. Add this equation mto the above equation, we obtaln B+ +Bq+1 =

(ﬁ" + B), it shows 39 = a € GF(g). So [J’" = (49)? = 39, and 37 = (Bq )9 = (89)7 = pi.
On the other hand 8 € GF(g¢%), we have B9 = 3, so we have 39 = 3, and hence 3 € GF(q).
It contradicts the hypothesis.

Now consider the system of equations (3.2), as (3.1) in the proof of Theorem 3.1, it has

at most 3 distinct roots. Combining the above results, we complete the proof. O

Example 3.1: Let ¢ = 22 = 4, and let 3 be a primitive element of GF(¢°). Then GF(¢®) =
GF(26) = {0,1,8,82,-- -, 85!, 352}, Suppose o = 3%, then GF(q) = GF(4) = {0,1.a,0?}.
We know that [GF(¢®) : GF(q)] = 3, GF(¢®) is a 3-dimensional vector space over GF(q).
We can prove that for any ag,a;,a; € GF(q) = {0,1,&,0%}, ao + @18 + axf? = 0 if
and only if ag = a; = a; = 0, i.e., 1,83,3? are linearly independent over GF(g). So
1,8,3% is a basis of GF(g®) over GF(g). Now consider the code in Construction 3.2.
(+yB)"*! =1z +xyﬁ+xyﬁ4+y2ﬂ5 but Bt=a+B8+ap? 8° =0 +02x3+a252
So (2 -+ y)"*] = (2 + azy + 0% £ (02y7)3 + (azy + a%y")%, And (& + )7 T =
23 4+ (' + ﬁ“ + B)zty + (82 + 87 + ﬂf’)zy2 + BPyP=2® + 2%y + oPxy? + oy®. Let
HT = 1,z,y,224+azy+a y2,a2y2,azy+a2y2,z3+12y+a2zy2+ay3]T be a parity check
matrix. Then we have a code over GF(4) with n =16,r =7, and d > 5.

Let fi =1,fo =2, fs =y fa = 22 + azy + %y, fs = o®y%, fo = aay + a®y’. fr =
3 + 2%y + o?zy? + ay®. And Let P, = (0,0), P, = (0,1), P = (0,a), Py = (0, a?),
Ps = (1,0), Ps = (1,1), Pr = (La), B = (1,6%), Py = (,0), Pip = (&, 1), Py = (, a),
Py = (@, 0%), Pj3 = (2,0), Piy = (a?,1), Pis = (a?, a), Pig = (a?,a?). Then we have the
following evaluated table



PP | P |P | P | P | P |Ps| P | Po{Pu|Pu2|Pia|Puu|bPis| P
il 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Llololojo[1]1]1]1]a]ea]|al|al|ae®]|a®]|a®]|a
fal| 0 1 [ala?]| 0 1| ala?] 0 1 a | o 0 1 a | o®
falolafl 1 Jal1]0]0]1]a?]a®| 0] 0] a ]| 0] al|0
10| 1 lalo0o]a?]al1]0]a? o 1 0 a? o 1
Jolola?[ T |alo]1[1]0]l0o]o0|[2]a2] 0] a]0]a?
flolale?l 111 ]a?]2]1]1 1 a2 | 1 [ | 1 1
So the parity check matrix is
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1}
00 0 0 1 1 1 1 a a a a o o o o
01 a a>® 01 a o2 0 1 o o> 0 1 a aof
0> 1 a1 0 0 1 &> a*> 0 0 a 0 a 0
00 a2 1 a 02 a 1 0 o2 a 1 0 ot o 1
0> 1 «a 01 1 0 0 0 o> a®> 0 a 0 o
\0 a o> 1 1 1 &* 1 1 1 1 o 1 o* 1 1
We can generalize Constructions 3.1 and 3.2 to higher dimensional cases as follows:
Construction 3.3: Let n = ¢3**2 k = 1,2,---, where ¢ is a power of an odd prime. Let
1, z1+z27+ - -+$3k+273k+1, (z14z2y+- - '+$3k+2‘7’3k+1)2, ($1+332,13+$352)q2+q+1, s (Z3k4rt

z3p428 + 082 +HT be a parity check matrix, where v € GF(¢***?) — GF(q), 3 €
GF(¢®) = GF(g), and 1,v,---,7%*1 is a basis of the vector space GF(g**?%) over GF(q),
1,3,3% is a basis of the vector space GF(¢°) over GF(gq) respectively. Then we have a
sequence of codes over GF(q).

Theorem 3.3 The codes in Construction 3.3 have the parameters
n=q3k+2, r="7k+6, and d > 5.

Construction 3.4: Let n = ¢3+2 k = 1,2,---, where ¢ = 2t. Let (Lzy+zy+ -+
2

-733k+2;73k+11 (Ti+ 22+ T3k F NI (21 228+ 2387)T T (Takg1 FTake28+

032)9°+9+t1]T be a parity check matrix, where v and 3 are as in Construction 3.3. Then we

have a sequence of codes over GF(q).

Theorem 3.4 The codes in Construction 3.4 have the parameters
n:q3k+2, r="7k+6, and d > 5.

At the end of this section, we will give a proof of Theorem 3.4. The proof of Theorem
3.3 is similar to the proof of Theorem 3.4, we omit the details.

Construction 3.5: Let n = ¢°, where ¢ is a power of an odd prime, and let 8 € GF(¢*) —
GF(q), and 1, 8, B2 is a basis of the vector space GF(q3) over GF(q). Let [1,z +y8 +
232, (z+yB+26%)2, (x+yB+ zﬁz)q2+q+1]T be a parity check matrix. Then we have a code
over GF(q).
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Theorem 3.5 The code in Construction 3.5 has the parameters

n=gq", r =8, and d > 5.

Proof: We have (z + yB + 23%)% = 22 + 2zyB + (v* + 22z)3% 4+ 2yz0° + 2284, Let 3% =
ao + @13 + a28%, 8% = by + b8 + by3?, and substitute them into the above equation,
(z+yB+ 28%)? = 22 4 2apyz + boz* + (2zy+ 2a1y2 + biz2)B + (y? + 222 + 2a2yz + bp2?) 32
Hence the code has r = 8 parity checks: 1,z,y, z, 22+ 2aoyz + bo22, 2ey+2a,yz+b2%, 2 +
2¢z + 2a2yz + byz?, and (z + y3 + 252)q2+q+1. To prove that d > 5, we need to prove
Dés) < 3. Let Dés) = Dx aosrane} Obviously, if Ay =1, Dy vy = 0. If Ay =2,itis
easy to check that

DA 1000 < 35

D)l bbb < 3
And if Ay = 3, we have Dy 12 (<Lis].«]} < 3- So we need only to prove that

D{[z],[r2+2aoyz+bo 22),[2zy+2a 1 yz+by 22),[y2 + 202+ 200 yz+b2 22],[(x+yﬁ+zﬁ2)‘72+q+l]} < 3’

i.e., we need to prove the following system of equations has at most 3 distinct roots:

z+ A+ Biy+Cy =0,

2% + 2a0yz + boz? + Agz + By + Cy =0,

22y + 2a1yz + b122 + Asz + Bay + C3 =0,

y? 4+ 22z + 2a0yz + byz® + Ayz + Bay + Cy = 0,
(z +yB+ 28%)7°+9 4 Agz 4+ Bsy + C5 = 0.

When we substitute the first equations into the second, third and fourth equations, we
obtain three equations on z and y of degree 2. If we can prove the system of these three
equations is equivalent to the system of equations (3.2), then the proof is completed. Now
we prove it as follows.

Substituting z = —A;z — Byy —Cy into (z+yB+268%)?, (z+yB - (Ajz+ Biy+C1)58%)2,
the part of degree 2 of it is ((1 — A13%)z + (1 — B1B3)By)? = (1 — A1 8%)*(z + ﬁij_:g;y)z*
because 1 — 4,3 # 0, we can divide it by (1 — 4;8%)%. Let ¢ = f—:—i‘—g; € GF(¢®), then
(r+cy)?= 2% 4 2czy + c*y?. Suppose that 2¢ = co+ 18+ 282, and ¢? = dg + di 8+ d23?,
then (z + cy)? = (22 + cozy + doy?) + (c12y + d1y?)B + (cozy + day?) 8%, So the system of
the three equations we considered is equivalent to the following system of equations

22 + cory + doy? + Alz + Biy + C1 =0,
azy+dy*+ Az + By +C, =0,
cazy + day? + Aiz + By + C, = 0.

This system of equations is equivalent to (3.2) if and only if the determinant of the matrix
of the coefficients of z2, zy and y? is not equal to zero, i.e.,

1 Co do

¢ d
0 (5] d1 = Cl dl 7é 0.
0 Co d2 2 2
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In fact, if it is zero, then there exist a nonzero element a € GF(q), such that (d,d;) =
a(cy,cz). On the other hand, 2¢ = ¢o + 18 + 232, ¢ = do + d 18 + dy3%, so ¢ — 2ac =
do—aco =b € GF(q), i.e., cis a root of the equation 2 — 2az —b = 0, whose coefficients are
in GF(q), so ¢ € GF(q¢?). But c € GF(¢®) and GF(¢*)NGF(q¢*) = GF(q), thus c € GF(q),
so (B — A ¢)3% - 3+ c = 0. But we know that 1, 3, 3? are linearly independent over GF(q).
This is a contradiction. So the proof is completed. a

Construction 3.6: Let n = ¢%, where ¢ = 2°. Let (Lz+y8+ 232 (z+yB+ 282 (2 +
yB + z82)7°+9+1T be a parity check matrix, where 3 is as in Construction 3.5. Then we
have a code over GF(qg).

Theorem 3.6 The code in Construction 3.6 has the parameters
n=q°, r =38, and d > 5.

Proof: (z+yB+z8%)7! = 22 + zyB + x28% + zyB + y? BT +y=0872 4 228% 4yt +
2232912 Suppose that

B9 = ap + a1 8 + a26%,

B9F = bo + b1 3 + b23%,

B2 = co + 18 + 2%,

B2 = do + d1 8 + d2 8,

B2 = eg + €13 + €287,

B2+2 = fo + f18+ f2B3%

Substitute these six equations into the above equation, we have (z + y3 + 24%)9%! =
90(2,y,2) + g1z, y, 2) B+ g2(z, y, 2) 3%, where

go(2, ¥, 2) = 2% + aozy + boy® + (co + €0)y= + dozz + foz?,
a1(z,y,2) = L+ ar)zy + b1y* + (ey + e1)yz + dyzz + f12%,
92(2, Y, 2) = agzy + bay® + (c2 + e2)yz + (1 + da)zz + fo2?

Thus the code has r = 8 parity checks: 1,z,y, z, go(z, ¥, 2), g1(z, ¥, 2), g2(2, v, 2), (x + yB +
252)q2+‘1+1. As in the proof of Theorem 3.5, we need only to prove the following system of
equations has at most 3 distinct roots.

z+ Az + Biy+Cy =0,

9o(z,y,2)+ A2z + Boy + C, = 0,
91(z,y,2)+ Asz + Bay+ C3 =0,

g2(z,y,2) + Aaz + Byy + C4 = 0,

(z + yB + 28%) 7+ + Asz + Bsy + C5 = 0.

We employ the idea in the proof of Theorem 3.5. Substitute z = A;z+B;y+C into (z+
yﬁ+zﬂ2)‘12""ihLl and consider its part of degree 2, which is ((14+A4;8%)z+(8+ B15%)y)7t! =

(1+ A8 (z + y@{%% J+1 divide it by (14 A4,6%)9%" and let ¢ = &8 € GF(¢?
Then (2 + cy)"’H =z 4+ (¢? + c)zy + ¢?*t1l, Suppose that ¢? + ¢ = go + 18 + 9232,
Tt = ho+hy B+hy3?, then (z4yB)1+! = (z+gozy+hoy?)+(g1zy+h1y?) B+(g22y+hay?) 52
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Similar to the proof of Theorem 3.5, we have to prove the following determinant is not zero,

1 go ho
0 o hi | =
0 g2 ho

a1 hy
g2 h

If it is zero, then there exist a nonzero element a € GF(g) such that (h1, he) = a(g1, 92)-
So we have ¢?*! + ac? + ac = ho + ago = b € GF(q), and (¢! + ac? + ac)? = b = b, i.e.,
¢+ 4+ qc? 4 ac? = b. Add the above two formulas, we obtain ¢? t9 4 ¢9t1 4 ac? = ac, so
e+ 4 ot
— — .
c?’ +c

As in the proof of Theorem 3.2. It shows ¢ € GF(q), but ¢ = %ﬁ‘ As in the proof of

Theorem 3.5 it is a contradiction. So the proof is completed. a
Example 3.2: As in Example 3.1, let ¢ = 2? = 4, and let 3 be a primitive element of
GF(¢®). Then GF(¢®) = GF(2%) = {0,1,8,5%---,3%,3%}. Suppose a = %!, then
GF(q) = GF(4) = {0,1,a,a?}. We know that [GF(¢®) : GF(q)] = 3, GF(¢®) is a 3
dimensional vector space over GF(q). We can prove that for any ag,a;,a; € GF(g) =
{0,1,a,0?%}, ap+ @18+ a2 = 0 if and only if ag = a1 = ap = 0, i.e., 1,3, 3? are linearly
independent over GF(q). So 1,3, 3% is a basis of GF(¢®) over GF(g). Now consider the
code in Construction 3.6. (z 4+ y8 + 28%)7*! = (22 + azy + o’y* + yz + azz + 22) +
(@®y? +yz +lzz+ayz 4+ az?)3+ (zz +azy +o?y? + alyz +2%) 3%, (x+y8 +82)°Het] =
3+ x2y+ ?z + of":cy2 +xyz + azz? + ay3 + ay2z + yz2 +a?23. Let HT = [1, T, Y, =z, (12+
azy + o?y? + yz + azz + 22), (@®y? + yz + o*zz + ayz + az?), (zz + azy + o?y? + o?yz +
22), 2% + 2%y 4+ 222 + oPzy? + zyz + az2? + oy + ay’z + yz2 + a?z%]7T be a parity check
matrix. Then we have a code over GF(4) with n = 64,7 = 8, and d > 5.

Let fi =1, fa=a,fa=yf1=2/f = (2*+azy+a®y’ +yz+oazz+2%), fo =
(0®y? + yz + o®zz + ayz + az?), fr = (zz + azy + o’y + o’yz + 22), fs = 23+ 2%y +
2z +ofzy? +zyz +ox2? + ay® +ay?z+yz? + 0?23, And Let P, = (0,0,0), P, = (0,0,1),
P3 = (0,0,0),1)4 = (0,0,02), P5 = (1,0,0),P6 = (1,0,1),P’,' = (1,0,0),1)8 = (1,0,02), sy
Pso = (a?,a,a), Pso = (a2, a,a?), Ps; = (a2,02,0), Psy = (a?,a2,1), Ps3 = (o?,a%, ),

Psy = (a?,a?,a?). Then we have the following evaluated table

P\ P | PP | B | B | P | P Psg | Pso | Per | Po2 | Po3 | Poa
H] 1 1 1 1 1 1 1 1] 1 1 1 1 1 1
fol 0] 0] 0|0 1 1 1 1 |- eee ol [ a? [ a? | a? | o? | o?
o006 |]O0O|O0|[O0O]0}O0 ] - «o a a? | a? | o | a?
falol 1 {ala?|O0]|1]a a? |- a | o 0 1 a | o
fslo]1]a?|alriOol 1l |- 0 | a | 0 |a?] 0|0
folO a1 |a®?[0]|a |01 |- a | o 1 a? 0 «@
101 {a?|a |00 |1 |1 |- 0 [a? ] o | a | o® | o*
fal 0 ] [a?|a?] 1 1 1 | o |-e-- a? o 1 o’ a | o
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So the parity check matrix is

( 11 1 1 1t 11 1 1 1 1 1 1 1 1 1 1 1 1
0O 0 0 0 1 1 1 1 o « a? o a? o o o o o? o
0 0 0 0 0O0O0 O O O 1 & a a a o o* o o
01 a &> 01 a o> 0 1 a2 0001 a a* 0 1 a o
01 2 a 1 01 a o 1 a a 0 0 o 0 o 0 o
00 o 1 o> 0o 0 1 0 a? el a a2 a o 1 o&* 0 o
0 1 a2 a 0 0 1 1 0 a? 0 0 o2 0 o? a a o o
0 o2 a2 a2 1 1 1 a 1 « a 1 a* o> a 1 o a aof

We can generalize Constructions 3.5 and 3.6 to higher dimensional cases as follows:
Construction 3.7: Let n = ¢°*, k = 2,3,---, where ¢ is a power of an odd prime. Let
[1, 242074 423y L (@14 207+ - 42273 N2, (21 F 22 f+238?) T L (2gat
T3p-18 + 73:82)7 91T be a parity check matrix, where v € GF(¢®*) — GF(q), 8 €
GF(¢®) - GF(q) and 1,7,---,v*~1 is a basis of the vector space GF(¢*) over GF(qg),
1,3,8?% is a basis of the vector space GF(q%) over GF(q) respectively. Then we have a
sequence of codes over GF(g).

Theorem 3.7 The codes in Construction 3.7 have the parameters
— 3k —
n=q", r="7k+1, and d > 5.

Construction 3.8: Let n = ¢°* k = 2,3,---, where ¢ = 2. Let [1,z, + 227+ -+ +
- _ 2

z3ry>* 21, (z1 4 227 + -+ 4 23y )T, (21 + 228 + 238%) T IV - (Taon + T3 8 +

23,3%)9 91T be a parity check matrix, where v, 3 are as in Construction 3.7. Then we

have a sequence of codes over GF(q).

Theorem 3.8 The codes in Construction 3.8 have the parameters
_ 3k -
n=q", r=7k+1, and d > 5.

The proofs of Theorems 3.7 and 3.8 are similar to the proofs of Theorems 3.3 and 3.4,
we omit the details.

Construction 3.9 Let n = ¢*, ¢ is a power of an odd prime or 2, and Let v € GF(q%) —
GF(q), B € GF(¢®) — GF(q), 1,7,7% 7% is a basis of GF(¢*) over GF(q), 1,3,5% is a
basis of GF(¢®) over GF(g). When ¢ is odd, we take H = [1,z + yy + 27* + wy3, (z +
vy + 272 + wy3)?, (z + yB + 28%)TH9+L (w + 08 + 042)7°+9H1); when g is even, we take
H = [1, s+yv+2y2 4wy, (a+yy+27 +wy?) 9+, (z4yB+282)7 T9F1 (w+08+082)7 +a+1);
let HT be a parity check matrix. Then we have a code over GF(q).

Theorem 3.9 The code in Construction 3.9 has the parameters

n = g%, r =11, and d > 5.
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Proof: We prove only the case of ¢ is even, when ¢ is odd, the proof is similar. (z +yy +
2y + wy?)F = 22 + oy + 22y + 2wy 4 2yy? + vy eyt ey 4
yzy 29t 4 2242042 4 22943 L gapy39 4 ywyPet! 4+ zwy39t? 4 w?439+3, Suppose that

v = ap + a1y + axy? + azy®,
"/q+l =bp+ b1y + 5272 + b3’7'3v
792 = o + 17 + 2% + €377,
yi+3 = dg + dyy + doy? + d3y°,
Y =eo + a1y + e27* + €37,
Nt = fo+ fiy + fovi 4 f3v®,
v+ = go + 917 + 927 + 9377,
v29+3 = ho + hyy + hoy? + hav?,
73 = g 4 iy + iy + 1373,
VI = jo+ 1y + J2v? + 53’
,7,3q+2 — kO + kl'Y + k‘272 + k3’7’3,
V343 = lg + iy + oy + 137,

Substitute these 12 equations into the above equation, we have (z + yy + 2v? 4 wyd)It! =
gO(Iv Y, =, w) + gl(z’ Y, 2, w)7+92('r7 Y, 2, w)72+g3(x’ Yy, z, w)733 where go(l‘, Y,z w) =r? +
boy®+g0z2 +How?+aozy+(co+ fo)yz+(do+jo)yw+eozz+iozw+(ho+ko)zw, g1(z,y, 2, w) =
biy?+ 122 + hw?+ (1 + a)zy + (e + fi)yz + (di + )yw + erzz + irzw + (b + k) 2w,
g2(z,y,z,w) = bay? + goz? + Lw? + azzy + (2 + fo)yz + (do + jo)yw + (1 + e2)x2 + 27w +
(hy + k2)zw, and g3(z,y, 2, w) = bay? + g32% + lzw? + azzy + (e3 + f3)yz + (d3 + js)yw +
e3zz + (14 i3)zw+ (hs + k3)zw.

So the code has r = 11 parity checks: 1, z,y, z, w, go(, ¥, 2, w), g1 (2, y, z, w), g2(Z, y, 2, w),
g3(z,y,z,w), (r +yB + zB32)7+9+1 43, To prove d > 5, we have to prove Dé”) < 3. Asin
the proofs of the above theorems, it is easy to check that when Ay = 1,2,3, Dy, ;... 2} < 3.
We need only to prove that

D (11 tul (ooe..50) 11 (2.0,220) sz (2.0, 20) ] foa (2,2 (2 46+ 282) 241 ) w2y S 35

i.e., we need to prove the following system of equations has at most 3 distinct roots.

( z+ Az + Biy+C; =0,
w+ Az + By +C2 =0,
go(z,y, z,w)+ Azz + Bay + C3 =0,
gl(xsy’sz)+A4x+B4y+C4207
Y 92(z, 9, z,w) + Asz + Bsy + Cs = 0,
g3(z,y, 2, w) + Aez + Bey + Cs = 0,
(z+yB+ 252)q2+q+1 + A7z + Bry+ C7 =0,
w3+A8x+Bgy+C8=0.

\

We employ the idea in the proof of Theorem 3.5. Substitute z = Ayz + Byy + ¢, and
w = Ayz+ By +Cs into (z +yy+ 272+ wy?)9! and consider its part of degree 2, which is
(z+yv+ (A1 + Biy)y2+(A2z+ Bay)y®) 7! = (1+ A1y + Biv®)z + (r+ By + B2y y)**.
Because 1,7,72 ~3 are linear independent over GF(g), 1 + A;7? + B1y® # 0. So we can
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divide the above equation by (14 A;y2+ B17%)7t!. And if we let ¢ = %, then we

have (z +cy)?*! = 22+ (¢ +c)zy+¢?t1y?. Suppose that ¢?+c = mo+myy+mayZ+mavy?,
U= ng + nyy + npy? 4 gy, then (z + ye)?t! = 2% + mozy + noy? + (mazy + niy?)y +
(mazy + n2y?)y? + (mazy + n3y%)y>. So the above system of equations is equivalent to

( Z+A1$+Bly+cl :Oa
w-}-AQl‘-{-Bgyﬁ-Cz:O,

z? + mozy + noy? + Afz + Biy + C4 =0,
mizy + my? + Az + By +Ci =0,

mazy + nay® + ALz + Bly + CL = 0,

mary + n3y’ + Agz + By + Cg = 0,
(z+yB+ 26779+ + A7z 4+ By + Cr = 0,
| w3+ Asz + Bsy + Cs = 0.

If we can prove that in the following systems of equations, there exist at least one system
of equations with the determinant of the matrix of the coefficients of z2, zy and y? is not
zero, then the proof is completed.

z? 4+ mozy + noy® + Ajz + By + C4 =0,
m;zy + niy? + Al sz + Bl sy + Cli3 =0, for 1<i<j<3.
mjzy + n;y* + AlaT + By + Ciez =0,

Now we prove it as follows. If

1 mo nNp
m; ny
m; n; | = ’ mf nt =0,
, . i T
0 m; n;

(n1, ng, n3) = a(my, mg, m3). But ¢? + ¢ = mg + myy + may? + may>, 9t = ng + my +
n2y2+n373. Thus we have 9t —ng = a(c?+c—mg), it shows c?t! +a(c7+¢) = amo+no =
b € GF(q). As in the proof of Theorem 3.6, we have

for all 4,7, 1 < i < 7 < 3. Then there is a nonzero element a € GF(q), such that

a= ————=c".

> =
¢ 4 c

So ¢? € GF(g). Then ¢@ = (c%)7 = ¢7, @ = () = (9 = ¢, -, ' = () =
(¢?)? = ¢?. On the other hand, ¢ € GF(q%), ¢t = ¢, so ¢ = ¢, it shows ¢ € GF(g). From

¥+B1v?+B1y?

= 13425 A3
€= AT+ Ay

, we have

(B — cAg)y3 + (By — cA)Y2 + v+ ¢=0,
But 1, 7,72, 42 are linearly independent over GF(g). This is a contradiction. So the proof
is completed. a

We can generalize Construction 3.9 to higher dimensional cases as follows:
Construction 3.10 Let n = ¢®**! k = 2,3,---, where ¢ is a power of an odd prime or
2, and let v € GF(¢**Y) — GF(q), 1,7,--+,7%* is a basis of GF(¢***1) over GF(q), 8 is
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as in Construction 3.9. When ¢ is odd, we take H = [l, 21 + z27v + -+ + z3k+173k, (z, +
2oy + -+ Takp1 7?2, (21 4 228 + 2380 (2akgr + 08 + 0317 F1]; when g s
even, we take H = [1,z; + zpv+-- + 2317, (21 T2y + - 2317 (2 B+
xgﬂz)q2+"+l, ooy (23K + 08 + Oﬁ2)q2+q+1]. Let HT be parity check matrices. Then we
have a sequence of codes over GF(q).

Theorem 3.10 The codes in Construction 3.10 have the parameters

n = ¢3ktL, r=7k+4, and d > 5.

Now as a summary, we have the following theorem,

Theorem 3.11 QOver finite field GF(q), ¢ is odd or even, we have linear codes with the
parameters:

n=gq", r:‘2m+[£§—]+1, and d>5, m=3,4,---.
And when m = 2, we have q-ary codes with

n = g, r="17, and d > 5.

Remark 3.1: In the Theorem 6[5], a class of codes over GF(q),whe_re g = 2, were
constructed as follows. Let U™(I) be a cyclic code over F' = GF(2'), with a string

I =11, @—;—ql}, and U = U"(I, F™1) be the corresponding punctured code with length
n = ¢™~! defined on a (m — 1)-dimensional subspace F™~! of F™. Then the code U’ over
GF(2') with minimum distance > 5 was constructed by adding some parity checks to U.
U’ has the parameters:

-1
Tl:qm_17 r52m+{-mT-\y d251 m:2731"'
Let N,,(*) be a norm function from GF(¢™) to GF(q) defined as
O B

Obviously, N,, maps any z # 0 into GF(q) — 0. Represent GF(¢™) as F™ with a basis
g1, -, gm over F = GF(q). Then for any

m
z=3 Tigi
=1

its norm
m
Nm(x) = Nm(z Tigi) = Nm(Tl, o ',Tm)
=1
is converted into a homogeneous form of variables 7, - -, 7, of degree m with nonzero values

in F for any (1y,--,™m) # 0.
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Now for any (7y,-+,7m) decompose the coordinates 71, -+, 7m into disjoint 3-tuples
((11,72,73), (T4, 75, T6), - - ), where for any m < 7 < 3[%], define 7; = 0. For example, a
vector (11, Ty, T3, 74) € GF(g*) can be decomposed into ((m1, 72, T3), (74, 0,0)).

Let ¢ be an odd, and let W = W (I, X = F™) be an extended BCH codes with the
string I = {0,1,2} for any m = 1,2, ---. Define for any locator z = (11, -+, 7m) € GF(¢™)
the vector p(z) = (p1,---, ) over GF(q) of length [ =[], where

Pi+1 = Pj+1(2) = Na(Taj41, Taj42: T3543)s

forall j =0,1,---,[—1. Let p be the matrix of size [ x n with columns pT (z),i=1,2,---,n,
and Let P be the code with the parity check matrix p. Finally, define W' =W n P.
Theorem 7 [5] showed that the code W' has the parameters:

n=gq", rSQm—{—[%]-{—l, d>5 m=2,3,---.

But there is an oversight in the Theorem 7 of [5]. When m = 2, in order to define code
P, we have to consider an extened field GF(¢™'), where m’ = 3[%] = 3. In the extended
field, the string 7 = {0,1,2} will raise 1+ m + 3[%] parity checks (not 2m +1). In fact,
consider the g-ary code generated by a parity check matrix (1,2 + y8,(z +y8 + 08%)?T,
where z = z + y3 € GF(¢™'), because (z +yB)? = = + 2zyS + y?3?, so the code has parity
checks: 1,z,y,2% 2zy,y%. r=14+m+3[%] =1+2+43 = 6. So when n = g%, the number
of parity checks of the codes in Theorem 7 should be 7.

Dumer’s codes are known to be optimal in the sense that no other double-byte error-
correcting codes with the same code lengths have fewer number of parity checks, but un-
fortunately, they are defined only on GF(g), where ¢ is odd. Our codes have the same
parameters as Dumer’s codes, but our codes are defined on GF(2Y).

Now we give a proof of Theorem 3.4.

Proof of Theorem 3.4:

Let (z1+z2v+---+ Tapp2y NI = go(z1, -+ -y Takg2) + -+ gol(21, - Takg2)y L
Then the code has 72/€+6 parity checks: 1, zy, - ',$3k+2,zgo(-’t1, e Takt2)s s 93k+1(T1, 0ty Taks2),
(z1 4 228 + 383 I o (Zakg1 + Taks2B + 03%)7°+9+1. To prove d > 5, by Theorem

2.1, we need to prove D;:;s) < 3. We need only to prove the following system of equations

has at most 3 distinct roots:

(( 23+ A1z + Biza + C =0,

Takyo + Ak + Barzo + Car = 0,
go(z1, -, Taks2) + Ask4171 + Bary172 + Cakp1 = 0,

g3k+1(Z1, - ',$3k+22) + Agk+271 + Ber+222 + Cors2 = 0,
(z1 + 28 + 236%)7 T + Agry3z1 + Bor+atz + Cekts = 0,

| (Z3k+1 + T3k4208 + 052)q2+q+1 + A7k+621 + Brirer2 + Criye = 0.
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Obviously, the number of distinct roots of (3.3) is not greater than the number of distinct
roots of the following system of equations:

(23 + A121 + Bz +C1 =0,

T3k+2 + Askz1 + Bagzo + Car =0,

3.4
golz1, - T3ks2) + Asks121 + Bakp122 + Capp1 = 0, (34)
93k+1(21, -5 Taks2) + Aek+271 + Bery2r2 + Cekea = 0.
Substituting z3 = — A,z — Bz, —Chy,---, T3kt = —Aspry — Barzo — Csp into (zy + 227 +
2372+ -+ Tarp2y )T we have [(1— 4177 — -+ — Az Tz + (v - Byt -0 -
Bary3¥ )2y — (C1y2 + - - - 4 C3py3Ft1)]9+1. By the hypothesis, we have 1 — 472 — -+ —
A3ey3*t1 # 0. Dividing the formula by (1 — A;72 — - -+ — Azy**F1)7+! | we obtain
: +1
g LB o By Gt Copy 1 \?
D Y A2~  — Ay 3T T T Ay — = Agyy SR '
whose part of degree 2 is
; +1
T +7_Bl72_“‘—83w%+1$ q (3.5)
PTT T AR - - AT .
Let ¢ = Y:i;;t:i::;’;::: . and substitute it into (3.5), we have (z; +cz2)?t! = 2 + (¢7+

c)x1x + c¥t1zi. Suppose

Cq+ c=ag —}-al')/ + - "+a3k+l73k+l,

cq+1 P bo _+_ bl’)’ .+_ P + b3k+l73k+l-

Then (21 + cz2)?t! = (22 + aoz122 + boz3) + (a17172 + bizd)y + - + (esk12122 +

bars122)7>**1. So (3.4) is equivalent to the following system of equations:

(23 + Ajz; + Bizo + C1 =0,

Taks2 + Askxy + Barzy + Cap = 0,
z? + apz 23 + bo2d + Alzy + Bz + C1 =0, (3.6)
a1xr1x2 + bl.’E% + A’2.’L‘1 + BéZQ + Cé = 0,

2 ! —_
{ a3k4121%2 + bak4125 + Al 221 + Bypya@2 + O = 0.

As in the proof of Theorem 3.9, if we can prove there exists a determinant in the following
determinants such that it is not equal to 0, then there are three equations of x; and z3 in
(3.6) are equivalent to (3.2), and the proof is completed:

1 ap bQ a b:
0 af b |=|% 7|, 1<i<j<3k+1.
0 a: b: a; bj

2 J




If it is not, then we have

=0, foralli,j,1<i<j<3k+1.

Then there is a nonzero element a € GF(q) such that
(b1, - -+, baks1) = alay, -+ -, azky1)-

So we have ¢! — by = a(c? + ¢ — ag), where ag,bp and a in GF(g). As in the proof of
Theorem 3.9, we can prove ¢ € GF(q), but this is impossible, since

I B2 — - = By ®!
1— Ay — - — Agpy3ktt’
and 1,7,---,v***! is a basis of GF(¢%*?). a

In the same way, we can prove Theorems 3.3, 3.7, 3.8 and 3.10.

4 Decoding

At first, we expound the decoding procedure of the codes in Construction 3.6.

Let Z = a4yB+20%,and Zy, = Z(Py), Zo = Z(P,), -+, Zn = Z(Py,), where P, P, -+, P,
are all points of GF(g3), n = ¢>. Suppose y = (y1, Y2, ", Yn) € GF(q)" is a received vector.
We define the the following syndromes of y:

Si=n+y2+-+ Yn,
Sz =Zvy1 + Zay2 + - + Znyn,
Szenr = Z{ i+ Z5 g -+ Z5H
S tatt = Zf2+q+1y1 n Zﬁ_,’2+"+1y2 I Zflz”“yn-

Moreover, define
Sze=(S2)! = Z{yi + Z3ya + - -+ Zlyn,

2 2
SZq2+q = (Szet)? = Z;I +qy1 + Zg +qy2 + -+ Zzz'*'qyn,
2 2
quz = (52)42 =77y +Zg Y2 + ...+Z$12ym
2 2
Sy = (Szat)” = Z8 iy 4+ Z5 Pyp -+ Z8 1y,

We have two syndrome matrices as follows

Sl SZq SZ‘12+‘1 and Sl SZq SZqz )
SZ SZq+l SZ<12+Q+1 ’ SZ qu+l SZq2+1

20



If y is corrupted by two errors (£;, Z;) and (j, Z;), where & and &; are error values, Z;
and Z; are the corresponding locators. Then we have

51 =& +&;,

Sz = Z,& + Z;€;,

Szenr = ZIME + 211,

Szitat = Z§2+q+1€J + Z?2+q+1£j’
SZq = Zf&t + Z;]E]'

SZq2+q = Zz('12+q€i + Z_?2+q€js

Sy = 706 + Z;’Zﬁjv

Sy = 20 e+ 20T,

The syndrome matrices can be decomposed into
Si Sza Syeee Y_f 1 1 & 0 1 70 ZiH 1)
Sz Sze+t SZ‘72+<?+‘ - Zi Z; 0 & 1 Z;l Z-;IQ‘HI :
St Sz Sye Y_ 1 1 & 0 1 70 z¥ (12)
Sz SZq-H SZq2+1 B Z; Zj 0 Ej 1 Zj Z;z ’ ‘

The three column vectors in the syndrome matrices must be linearly dependent over
GF(q®). In fact we can find A, B, C and D in GF(g®), such that

S, Szq S
Zata A B =0, 4.3
( qu2+q+1 ) * ( Sza+1 ) —l._ ( Sz ) (4:3)

S,
S i

Because the matrices (

and

and

—_ N

_|._
& 0
and 0 ¢ are nondegenerate, so we have
J

z a
+A<Z;_,)+B(1)—, (4.5)
zy VA 1)
(Zgz)+c(zg)+D(l)_o. (46)

and

3 3
but 2§ =z;,2] = 22,50



So we can take substitutions Y; = Z{ and Y; = ZI. Then by (4.5) and (4.6), ¥;,Y; are
the roots of the following equations

Yt £ AY + B =0, (4.7)
and

Y?+CY + D =0, (4.8)
Multiply (4.8) by Y and then add it into (4.7), we have

CY?4+(A+D)YY +B=0. (4.9)

If C = 0, then (4.8) has only one root, but Y; = Z] # Y; = Z] are all its roots, so it is
impossible. When C # 0, (4.9) is an equation of degree 2, it has two roots. Hence we can
completely determine the error locators Z; and Z;. Then by (4.1) or (4.2), the error values
are determined.

Example 4.1: Let C be the code in Example 3.2. The following matrix is a parity check
matrix of C

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \
0 0 0 0 11 1 1 o «o a? a? o? o a? a? o o o
0 0 0 0 0O O O O O 1 a a a a af o2 o® o?
01 a o> 01 a o> 0 1 a? 0 1 a o* 0 1 o of
01 a2 a 1 01 « o2 1 - a a 0 0 o 0 a* 0 af
00 a 1 o> 0 a0 1 0 a2 --- o> a o « a1 a2 0 a
0 1 a2 @« 00 1 1 0 o 0 0 o 0 o* a a o o
0 a2 2 ¢* 11 1 o 1 « a 1 a® &¢? a 1 o o a? )

We have Zl :_05 Z? = ﬂzﬁ Z3 = ﬁ23a Z4 = 6447 Z5 = 1’ ZG = ﬁlZ’ Z7 = /815’ ZS = 16371

e Zesg = BV, Zeo = B, Zer = B, Zey = B, Zez = B, Zea = B°. Let y =

(0,0,0,---,0,a?) be a received vector. Then §; =1, Sz = B2, Sy = B2, S,24q01 =

842 Sze=0%S,2,. =%, 5z =p5%,and S,p2,, = 5. So the syndrome matrices are
Z9 +q Za“+

45 325 45 354
([3127 522 Zn ), and (5127 222 537')-
25 45
(e ) a5 ) =2 (1) -0
54 45
(5 )re(5m )2 (1) -0

we have A = 8%, B = 3%, C = 3°°, D = 333. So by (4.9), we have

Then by

and

ﬁ30y2 + (559 + ﬁ33)Y + ﬁSS — 0,
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le.,

}/2 + 630},7 + [333 = 0.

This equation has two roots in GF(g®):
Y, =08  and Y; =g

So we have

Z;=(% and Z;=p"

Then we know 7 = 2, and j = 64, and by (4.1) or (4.2) the error values are &; = 3% = q,
€ea = 32 = a*.

Now we give a general decoding procedure for the codes in the last section.

Let Z=zx,4+z97+---+zp,y™ Y and Zy = Z(P1), Z2 = Z(P2),---. Z, = Z(P,), where
P, P, -, P, are all points of GF(¢™), n = ¢™. Suppose y = (y1,¥2,- . ¥n) € GF(q)" is
a received vector. We define the following syndromes of y:

Si=yit+y2+-+ Yn,
Sz=2vwn+ Zaya + -+ Zayn,

Sgetr = Zyy + Z8 yo + -+ 22y,

Moreover, define
Sze = (Sz)?=Ziy + Z;’yz + 4 Ziyn,

qrn—l m—1

m—1 m—1
Squ—l = (5z) =Zi1 y1+Z§ Yo+ -+ 2T yn,

m—- m-1 m—1 m—
Spem-iy1 = (Szer)" " = 207 P+ 28 Myt + 207

We have the syndrome matriz
Sl SZQ Squ—]
SZ SZq+l qum—l+1 '

If y is corrupted by two errors (£;, Z;) and (€;, Z;), where &; and &; are error values, Z;
and Z; are the corresponding locators. Then we have

Sl = 51 + 62»

Sz = 7,61 + 2262,

Szet1 = Zi’“fl + Zg“fza

Sze = 216 + Z36a,

Syma =20 @+ 2§ &,
Szam-141 = Z;]m-lﬂfl + ng_1+lfz-
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The syndrome matrix can be decomposed into

Si Sze Syemo Y _ [ 1 1 & 0 1 20 7277 (4.10)
Sz SZq+1 qum—l+1 - Z; Zj 0 g]‘ 1 Zj Z]qm_l .
The three column vectors in the syndrome matrix must be linearly dependent over
GF(q™). We can find A, B in GF(g?®), such that

Squ—l SZq S] _ )
(S Yoa( 0 Yen(8) o .

So by (4.10) we have

oo +al 2 ) +B =0, (4.12)
( Z! A 1

So Z; and Z; are the solutions of the following equation
77" 4 AZ 4+ B =0.
From the above equation, we obtain
A'Z7 + Z+ B = 0.
Let A’ = L, B' = 50, we have
77 £ A'Z + B =0. (4.13)

This equation has at most g% roots in GF(g™).
In order to determine Z; and Z;, we give other equations about them. Let Z; =
(TikyToky -y Tmk), k= 1,2,---,n = ¢™. We define the following syndromes

sSi=y+y2+-+ Yn,
Sry = Y1 + Ti2Y2 + -+ Tin¥n,
8 f(zy.aars) = S (Z11: T2, T3)Y1 + f(T12,T22, T32)y2 + -+ - + f(Z1n, T2n, T30)Yn,

where f(z,y,2)=(z+yB8+ 22)9°+e+1 We have

s1 =& +¢&;,
sz, = 216 + £15&;,
S f(z1,ea,ms) = S (T16, T2, T30)&i + (215, T2, 235);

By the above three equations, we know the following matrix is degenerate

1 1 51
xli xlj S.’L‘l
f(xlial'Zinyi) f(l‘lj»x’zj’%j) Sf(x1,22,73)
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So we have
1 1 51

Ty Ty Sz, =0. (4.14)
flei, 2o x3i)  f(T15,225,235)  Sf(z0p.23)
This is an equation about zi;,z2i, z3i, 215, Z2;, and z3; of degree 4. By the same way,
we can obtain a sequence of equations about z;;, 1410, Ti42,is Tijy Ti41,5, and T4 5, | =
1,4,---,3[%] — 2. By these equations and (4.13), we can determine Z; and Z;. Then by
(4.10), the error values §; and &; are determined.

5 Another Class of Double-Byte Error-Correcting Codes

Let n = ¢™, when 3|m, we have another construction of codes with minimum distance > 5.

Construction 5.1 Let n = ¢™, m = 3,6, - - -, where ¢ is a power of 2 or an odd prime, and
let m = 3l. Suppose that v € GF(¢™) — GF(q), 1,v,--+,7™ ! is a basis of GF(¢™) over
GF(q). Let H=[1,(z1+ 27+ +2ny™ )7, (214 227+ -+ 2y ) (21 4207 +
R xmym‘l)q““l“l. Let HT be a parity check matrix, we have a sequence of codes over
GF(q).

Theorem 5.1 The codes in Construction 5.1 are double-byte error-correcting codes and
have the parameters
n=qm, r="Tl4+ 1.
Proof: Obviously, ((z1+zay+ -+ Tmy™ HCH ) = (2 4297+ R EAR U N
it shows, (2, + 227 + -+ + Tmy™ )7 17+ € GF(g'). So the code has r = 71+ 1 parity
checks.
Let Z=z,4 297+ - F+z2,7y™ Y and Z, = Z(P),Zy = Z(P), -, Zn = Z(Py), where

Py, Py, -+, P, are all points of GF(¢™), n = ¢™. Suppose y = (y1,Y2, -, Yn) € GF(g)" is
a received vector. We define the the following syndromes of y as follows.

Si=yni+y2+-+ Yn,
{ ! {
SZq' :Zf yl+Zgy2++Z‘2yn’
1 t ]
Spanr =28y + 28 My + - 4+ Z8 g,

2lpql 41 20 4ol 41 20, 1
S pategti =Z7 Yoty L ZE Ty 2T Ty

Moreover, define

1
Sz = (SZq’);r = Zlyl + Z2y2 + -+ Znyn,

! !
qum = (Squ)q' = Z;I2 v+ Zgz Y2+ -+ ngym
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21 21 21 2
St = (52)° =27 ly + 73 Pyt o4 27 Ty,

! 20 4 gt 20y ol 2, 0
Sopipg = (Syep)? = ZU Ty + Z8 Ty o+ 28y,

We have two syndrome matrices as follows

Sl Squ SZq2l+ql and Sl Squ quzl .
57 Syanr Speisass ) Sz Syin Syt

If y is corrupted by two errors (§;, Z;) and (§;, Z;), where & and &; are error values, Z;
and Z; are the corresponding locators. Then we have

S =& +§;,

S, =206+ 20¢;,

Spapr = Z?‘+lfi + Zfl“fj,

qu2l+q1+l = Z?2'+ql+lfi + Zgzl+ql+lfj-,
Sz = Zi&i + Z;§;,

S, =Z0 &+ 20€,

quzt_H = Z?2‘+1§z' + Z§2t+1§jv

qu21+ql = Zf2l+q[f,' + Zgzl+q‘§j.

The syndrome matrices can be decomposed into
Sh qut SZq2:+q: . 1 1 & 0 1 Zf’[ Zlq“+q' 5.1)
Sz Squ_H qu21+q1+l Z; Zj 0 fj 1 Z?l Z;«12‘+ql .
Sl SZq quzl . 1 1 51_ 0 1 Z?I Z?zl (5 2)
Sz SZ@H SZ‘I2‘+‘ B Z; Zj 0 fj 1 Z;-Jl Zgzt . .

The three column vectors in the syndrome matrices must be linearly dependent over
GF(g®). In fact we can find A, B, C and D in GF(g®), such that

and

S, 2, S, S
Za?l4q +A Z4q +B 1 =0, 5.3
( SZq2'+q’+1 ) ( SZq'+1 ) ( Sz ) ( )

and

S, S o S1
A +C z9 +D = 0. 5.4
( Sz ) ( Szd ) ( Sz ) G4

So we have

Zg21+qz ) ( qu ) 1
c2L gl + A ‘W | +8B =0, (5.5)
(z;’ " z; !
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and 21 i
VAl Z? 1
(quzz)'f‘C(Z;()-l—D(l):O. (5.6)
J 7

q m

- . qm m qm q
e, 2] =z ,butzy = x,7; = Tz, 80

If :r?l = zgl, then (r'{{)qm_l = (.z'g')q'n : )
z, = ;. So we can take substitutions Y; = Z] and ¥; = Z]. Then by (5.5) and (5.6).
Y;,Y; are the roots of the following equations

Y@t L AY + B =0, (5.7)

and ,
YT +CY+D=0. (5.8)

Multiply (5.8) by Y and then add it into (5.7), we have
CY?+(A+D)Y +B=0. (5.9)

If C = 0, then (5.8) has only one root, but Y; = Zfl FY;, = Z;-’l are all its roots, so it is
impossible. When C # 0, (5.9) is an equation of degree 2, it has two roots. Hence we can
completely determine the error locators Z; and Z;. Then by (5.1) or (5.2), the error values
are determined. The proof is completed. a

6 Conclusions

In the present paper, we constructed a class of codes with the parameters: n = ¢™, r <
2m + [Z]+1, and d > 5 over GF(q), where ¢ = 2! or a power of an odd prime. It is
well known that the codes over GF(2*) are very useful in computer semiconductor memory
subsystems. The single-byte error-correcting and double-byte error-detecting codes, i.e.,
the codes with minimum distance > 4 are thoroughly studied. There are many methods
to construct the double-byte error-correcting codes, i.e., the codes with minimum distance
> 5. Dumer’s codes are known to be optimal in the sense that no other double-byte error-
correcting codes with the same code lengths have fewer number of parity checks, but his
codes were defined on GF(q) when ¢ is odd. Our codes have the same parameters with
Dumer’s codes, but our codes are defined on GF(2').
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