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1. Introduction

1.1 Objective

Contamination may be simply defined as any foreign matter. In general, contamination is

grouped into two broad categories labeled molecular and particulate. Molecular contamination refers

to the cumulative buildup of individual molecules of foreign matter. An example of molecular

contamination is the familiar odor of plastics or the "new car smell". These are indications of volatile

molecules being generated by organic materials. Molecular contamination may occur during ground

processing, but is usually of more concern on orbit, (H20 especially). Particulate contamination refers

to the deposition of visible, (pm sized), conglomerations of matter. Surfaces that become dusty and

eyeglasses that require periodic wiping are an indication of the presence of particles in the atmosphere.

These particles, which are deposited mainly during ground operations, will fall from the air onto
exposed surfaces.

Effective contamination control is essential for the success of most aerospace programs because

the presence of contamination, even in miniscule quantities, can degrade the performance of spacecraft

hardware. The presence of contamination on thermal control surfaces will alter absorptance/emittance

ratios and change thermal balance, while contamination on solar arrays will decrease power output.

Contamination in optical instruments will decrease signal throughput and can scarcerthe signal beyond

the diffraction design, thus further decreasing performance. The end result of contamination may be

intuitively obvious. What is not obvious, however, is how one: a) quantifies the critical level of

contamination, and b) enforces contamination control to ensure compliance with requirements.

Consequently, the objective of this document is two-fold. First, to furnish spacecraft system engineers

and payload providers with a means of quantifying the contamination cleanliness levels required for

proper performance of their equipment, and second, to provide insight into what procedures and
processes will have to be maintained during fabrication, assembly, integration, test, launch and
operation in order to maintain those levels on orbit.

As illustrated in Figure 1-1, contamination control for a space program is an iterative process that
flows from the mission objective directly into design and operations.

]-1
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Most spacecraft flying remote sensing instrumentation are exceptionally sensitive to contamination. A

mission objective that involves gathering remote sensing data would first define the type of optical

data that is needed in terms of the waveband of interest, signal strength, resolution, and related
parameters. The constraints that these values place on the design of a payload will be traded as a

function of other mission parameters such as orbital altitude, inclination, eccentricity, relation to other

satellites in the constellation (if applicable), and so on. Once a suitable optimum has been achieved,

the system level trades flow down requirements onto the design of the payload and the spacecraft.

Once a point design is developed, the design margin between requirements and capabilities help
determine the contamination requirements of the payload, thermal control surfaces, and solar arrays.

These contamination limitations then place requirements on: choices of materials, vent paths, location

of propulsion system thrusters, integration and test plans, orbital operations plans, power consumption

profiles, duty cycles, payload temperatures, and so on. it may be necessary to iterate the design of the

payload and subsystems several times in order to obtain a design that can be implemented
economically.

This document is designed to provide insight into the contamination control process through
descriptions of the basic physics governing the various contamination processes, illustrations of the

steps that must be taken to prevent contamination from becoming a problem, and the inclusion of

realistic examples from past programs. Terms and nomenclature are reviewed in this chapter,
molecular contamination is examined in Chapter 2, and paniculate contamination is examined in

Chapter 3. The fourth chapter, Contamination Control, examines the various methodologies and

procedures that may be required to enforce cleanliness levels. The fifth and final chapter provides a

bibliography of applicable documents for those readers desiring more in depth knowledge on a

particular subject. In total, the document is intended to provide a comprehensive view of
contamination control and its importance to aerospace programs.

1.2 Nomen_,ature

1.2.1 Symbols

d = area (m2);

absorbed energy (W) t = time (s)

C = normalization constant T = temperature (K)

d = diameter (m) U = binding energy (W)
E = energy (W) V = volume (m3)

f = frequency function VF = view factor

F = radiative view factor (m 2) x = contaminant thickness (pro);
1 = incident energy (W); particle size (_m)

speclzai response (A/W) X = particle size (pro)
IR = impact rate (A/hr)

L = length (m); cx = absorptance

radiance (W m-_ sr-_) 13 = angle (deg.)
m = mass (kg) _ = emittance

M = exitance (W m-2) _b = angle (deg.)

n = surface density of panicles (m -_) ,/ = sticking coefficient

N = surface density of particles :>x (m-Z); _. = wavelength (pm)

air class 0 = number of molecular monolayers;
p = air flow parameter angle (deg.)
P = pressure (hi m -2) p = reflectance;

q = heat flux (W) density (gcm -3)
Q = heat flux (W) o = Boltnnann's constant

, = radius (m) z = transmittance;

R = gas constant (kcal/mole); residence time (s)

reflected energy (W) _ = solid angle (sr-z)
S = solar flux (W m -z)

!-2
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1.2.2 Subscripts/Superscripts

a = activation s = solar

c = contamination n = normal

1.3 Definitions

1.3.1 Preferred Units of Measure

Microgram (lag) 10 -_ gram = 3.5 x 10 -s ounce.
One microgram per square centimeter is approximately

square foot or 1.4 x 10 -s pound per square inch.

Micrometer (_tm)

Milligram (mg)

Nanogram (ng)

I0-_meter= 10-4cm = 3.94 x lO-sin.= 0.0394mils.

10 -3 gram = 3.5 x 10-5 ounce.

10-9gram = 3.5x 10-**ounce.

one milligram per

1.3.2

Angstrom (A)

Alternative Units of Measure

10-l° meter = 10.4 cm = 10-4 l_= 3.94 x ]0 -9 ill. = 3.94 x l0 -_ mils.

A water molecule is approximately 3 A in diameter. A film of water ]00 A thick

provides a film of one microgram per square centimeter and is approximately 33

molecular layers thick.

Micron (lain) 10 -_ meter. An older term for micrometer.

1.3.3 Terms

Air Ouality

Air quality classifications, as defined by FED-STD-209E, are specified by the maximum

allowable number of particles per cubic foot, (or cubic meter), of air. The name of the class in

English units, (the usual convention in the U.S.), is taken from the maximum allowable number of

particles, 0.5 t_m and larger, per cubic foot. Class 350,000 air is typically referred to as a "good
housekeeping area" and is suitable for most integration and assembly operations. Class/00,000 -

Class 1,000 air is referred to as a "cleanroom" and is required for installation of most space

system hardware. Within the cleanroom, a laminar flow bench may provide Class !00 air which
is required for operations involving the exposure of sensitive optical surfaces, in SI units, the

name is taken from the logarithm, base 10, of the maximum allowable number of particles, 0.5 p.m

and larger, per cubic meter. Class M5.5 is equivalent to Class I0,000, and so on. (For more

information on FED-STD-209E, see section 3.3.1.)

Bidirectional Reflectance Distribution Function (BRDF)

The ratio of reflected radiance off a scattering surface to the incident irradiance. BRDF may be a

function of the angle of incidence, angle of reflection, irradiance, and wavelength. (For more
information on BRDF, see section 3.2.3.)

£LcanJm.c_d.r_d
An established maximum allowable amount of contamination in a given are or volume or on a

component. See also Air Quality and Surface Cleanliness

1-3
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A limited area over which more string_t cleanliness levels are maintained within a larger

cleanroom, e.g., Class 100 laminar flow c_an benches within a Class iO0, 000 cleanroom.

Clcanroom

A cleanroom is an enclosed area employing control over the panicle and molecular matter in the

air in addition to controls on temperature, humidity, and pressure, as required. A cleanroom may
be described as Class !00,000, Class !0,000, etc., in accordance with FED-STD-209E. In

addition to air cleanliness, the cleanroom class also defines design and operating requirements (air
filtration, air flow rates, etc.) as well as the maximum allowable contamination in the air. General

guidelines and operational constraints for cleanrooms are cor,_.tned in Air Force T.O. 00-25-203.

Collected Volatile Condensable Material (C,,V.f,M_

The quantity of outgassed matter from a test specimen that condenses on a collector maintained at

a specific constant temperature for a specified time. CVCM is expressed as a percentage of the
initial s: :linen mass and is calculated from the condensate mass determined from the difference

in mass of the collector plate before and after the test. The test conditions ASTM E 595, or

ASTM E ! 559, may be used to determine CVCM. (For information on ASTM E 595 or ASTM E

! 559, see sections 2.3.1.1. I or 2.3. !. 1.2, respectively.)

Contaminant

::ecific type of contamination.

Any foreign material. More explicitly, undesired foreigt_ material (particles or molecular films)

lying on the surface of a solid material or incorporated in a gas or liquid. On orbit, this may also
include panicles floating within the field of view of a sensor.

Contamination Control

Any organized action to control the level of contamination.

Contamination Control Board (CCB)

Organized body of individuals charged with enforcing contamination control for a given program.

The board is usually chaired by the lead contamination control engineer and contains

representatives from: design, materials & processes, manufacturing, test, quality assurance, and
others as deemed necessary.

Controlled Work Area

A manufacturing, assembly, or test area for which controls and procedures are implemented that

result in the control of contamination when proper procedures are incorporated. Airborne

hydrocarbon, temperature, humidity, and particle distribution are controlled. Good housekeeping
practice and selected cleanroom controls and procedures are imposed, but full cleanroom
requirements may not be met.

Conventional Industrial Area

An area where contamination is not controlled.

Demonstrated Equivalence

The condition where a method of measurement has passed a series of tests to show that it gives
equivalent results to those of a standard measurement.

I-4
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A particle whose length-to-width ratio is in excess of 10:1, with a minimum length of 100 p.m.

Generally Clean (GC')
Freedom from manufacturing residue, dirt, oil, grease, debris or other extraneous contamination.

This level can be achieved by washing, wiping, vacuuming, brushing, or rinsing. This level shall

not be designated for hardware that is sensitive to contamination.

Good Housekeeping Area
An enclosed area used for detail fabrication and operations where parts can be subsequently

cleaned. The following criteria are used:

I) Enclosed area with cleanable floors and walls.

2) Operations which generate NVR are prohibited.

3) Particles are not allowed to accumulate to visible levels; temperature and particle count are

controlled.

4) Limited shop operations (no heavy machining, grinding, welding, degreasing, rinsing, paint

spraying, etc.).

5) Limited access to personnel and equipment. Training in cleanliness required for personnel.

No smoking or eating.

6) Class 350,000 air or better.

General cleaning to remove contaminants such as weld scale, heat treat scale, corrosion, oils,

grease, shop films and deposits. The cleanliness level achieved by gross cleaning normally does

not require inspection other than visual. Gross cleaning is considered normal shop practice and is

defined by applicable Process Specifications.

High efficiency particle air (HEPA) filter used in cleanrooms, clean benches, and in other places

where low airborne particle counts are required. Sometimes referred to as a "99.97% filter"

because it removes 99.97% or more of the particles 0.3 p.m or larger.

Flow in which the clean air moves in defined streamlines from inlet to outlet without eddies or

areas of turbulence which would carry contamination upstream

Molecular Contamination

Undesired foreign film matter without definite dimension. This includes corrosive and

noncorrosive films resulting from oil, greases, chemical residues, fmgerprints, heat and vacuum

applications, chemical action and incompatible materials. Such films often arise from a process

called outgassing. Molecular contamination films can sometimes form into droplets or beads

which can be better treated as particles.

Nonvolatile Residue (]S_V__

Soluble material remaining after controlled evaporation of a volatile liquid or determined by

special purpose analytical instruments, usually measured in milligrams per unit volume, or per
unit area for surfaces. Generally applies to residue from ground operations, rather than on orbit

outgassing. (See MIL-STD-1246C, section 2.2.1, for more information.)

1-5
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P.mtcJ_
Matter with observable length, width, and thickness usually measured in pro. This includes fibers.

The apparent maximum li,ear dimension or diameter of the panicle.

Particulate Contamination

Undesired foreign material of miniature size with observable length, width, and thickness.

Percent Area Coverage
An alternative method of specifying panicle levels on a surface, found by dividing the total

surface area of all panicles on a surface by the area of the clean surface.

To flow gas through a system, (e.g., a line, pipe, or tube), for the purpose of removing a residual

fluid, (a gas or liquid), or to provide a positive flow of gas from some opening in the system to

prevent the entry of contamination.

Cleaning of hardware surfaces to meet a specific surface cleanliness level. Precision cleaning is
accomplished by ultrasonic cleaning and/or solvent flush, by solvent wipe, or by vacuuming

and/or nitrogen purge or other methods currently in development, in a controlled area. Precision
cleaned articles shall be packaged, protected, or shall be kept in an appropriate clean area after

cleaning.

fi,CI_(also. Critical Surface)
A surface of an item or structure w contamination beyond a given degree will degrade end of

life performance to less than that sl_. .ed for the mission.

Any surface of an item or product which is required to meet established cleanliness level

requirements.

A method of cleaning surfaces with a sweam of filtered solvent under pressure, directed against a

surface to dislodge and flush away contamination.

5_fa_c...f,LcazUJag_
Surface cleanliness may be usefully specified by M1L-STD-1246C. Paniculate levels are

specified by the size of the largest panicle, in _m, per square foot, (or per 0. ! square meters), of
significant surface area. Tha: is, surface level 100 implies that there is at most one 100 pm

panicle per square foot of surface area. Molecular contamination levels are specified in

milligrams per 0.1 square meters of significant surface area. The molecular contamination level

may be convened to contamination thickness if'he density of contaminants is known. (A density

of one gram per cubic centimeter may be assumed for most non-volatile residue, molecular

contaminants.) Cleanliness level 100 refers just to particles, cleanliness level A refers just to
molecvlar, while cleanliness level 100A refers to both. (For more information on molecular

cleanh,ess, see section 2.2.1. For more information on panicle cleanlines-, see section 3.2. I.)

Voids or undesired foreign material incorporated into the surface of a solid material in the course

of production operations.
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Total Mass Loss (TML)

Total amount of material that is outgassed from a specimen that is maintained at a specified

constant temperature and operating pressure for a specified time. TML is calculated from the
mass of the specimen as measured before and after the test and is expressed as a percentage of the

initial specimen mass. The test conditions specified by ASTM E 595 may be used to determine
TML. (For more information on ASTM E 595, see section 2.3.1 .I.1 .)

Ultrahigh efficiency particle air (ULPA) filter used in areas requiring the most stringent controls.

It removes 99.9995% of the particles 0.12 Lam or larger.

The absence of all particle and molecular contamination when viewed by a normal unaided,

(except corrected vision), eye. VC levels are quantified by NASA-SN-C-0005, (sections 3.2.4 and

4.2.3.1.)

Volatile Condensable Material (Y_C.J_

The outgassed matter from a material that may condense on a collector, usually one at a lower
temperature. See also, collected volatile condensable material.
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2. Quantifying Molecular Contamination Level Requirements

2.1 Effects of Molecular Films

Consider a ray of light that is incident upon a surface that is designed to be partially reflective and

partially transmissive, Figure 2-I. Conservation of energy requires that the total of the energy that is

reflected back to space, R, absorbed by the surface, A, and transmitted through the surface, T, be equal
to the incident energy, 1. In terms of the normalized energies, this is

p+(x+T =1, Equation 2-1

where ;3 = R/I is the reflectance, a = .4//is the absorptance, and x = T/I is the transmittance. Because

of the fundamental nature of materials, p, a, and "t will be functions of the angle of incidence,

polarization, and wavelength of the incident energy. In general, absorptance may be inferred from

experimentally determined values of reflectance and transmittance or from properties of bulk
materials. Surfaces serving as mirrors or thermal radiators are usually made of materials that

maximize reflectance and minimize transmittance. Baffles in optical and thermal systems require

materials which absorb, or reflect, with a minimum of scattering. Other surfaces, such as solar array

coverslides (broad band) or optical waveband filters (narrow band), are designed to maximize
transmittance and minimize reflectance. As shown by Equation 2-1, the absorptance of a clean surface
satisfies the relation

(Z(_.) = 1 - p(_.)- 1:(_.). Equation 2-2

As wi|l be seen shortly,/n many problems of interest a surface is often designed so that either p_) or
x_) is effectively zero.

Region I

I

R

Region II Region III

A

v

T
L
V

X "_

Figure 2-1. Incident (!), reflected (R), absorbed (A), and transmitted (T) energy.
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In general, the energy drop over a region of thickness Ax is given by

= Equation 2-3

where l(k,Ax) is defined as the energy flux of wavelength ;L reaching depth Ax. The amount of

absorption can be expected to be directly proportional to the thickness of the region, Ax, and the

amount of incident energy, 1(_.,0), so that

t,/(x,o)= Equation 2-4

where ai(_.) is defined to be the experimentally determined absorption coefficient of the contaminating

layer. Solving Equation 2-4 it is seen that

t(x,x)- Equation 2-5

From the definition of absorption, the absorptance of a contaminated surface is therefore given by

Equation 2-6

Consider the specific case of a surface that is designed to be totally reflective, such as a mirror or a

thermal radiator, but is covered with a thin layer of a contaminant film. That is, Region I of Figure 2- I

is free space, Region II is the contaminant layer, and Region III is a material that, (when clean),

effectively salsifies the constraint x(k) = 0. Substituting Equation 2-6 into Equation 2-2 produces an

expression for the decrease in surface reflectance as a function of contamination thickness

Equation 2-7

Note that the factor of 2 is present in the exponential of Equation 2-7 because a ray of light would

have to transverse the contaminant film, be reflected, and transverse the contaminant film a second

time to avoid being absorbed. The equivalent expression for a surface that is designed to be totally

transmissive, such as a solar array coverslide, is

Equation 2-8

The factor of 2 does not appear in t|:." exponential of Equation 2-g because the ray of light need only
transverse the contaminant film a single time before being transmitted.

2.1.1 Effects ; ", Reflecting or Radiating Surfaces

Two importaiv :lasses of surfaces that are degraded by molecular contamination are thermal

control surfaces and mirrors, which would be part of the optical train of a telescope. As implied by

Equation 2-6 through Equation 2-8, the effect of molecular contamination will be to alter surface

properties.
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2.1.1.1 Thermal Control Surfaces

In space, the primary source of heat energy to a spacecraft is usually the Sun. The air mass zero

(AMO) solar flux as a function of wavelength, S(X), is illustrated in Figure 2-2. Integrating S(X) over

all wavelengths gives the average value for the total solar flux, S, as 1350 + 5 W/m 2 at the nominal
Earth-Sun distance of I AU. j

Irmdlance
ONIcm: tim)

0.25

0.20 Jl i?_

0.10 i ,S

]J

0.05 i I
I 1

0 0.6 1.0 1.$ 2.0 2.6 3.0

Wavelength (l_m)

Figure 2-2. Solar flux as a function of wavelength.

An object will absorb heat, Q Okr), from the Sun according to the relation

Q. = a .A,,S , Equation 2-9

where/1 n (m 2) is the surface area normal to the solar flux and a, is the solar absorptance of the surface,

which is defmed by

Equation 2-10

in space there is no air to aid in convective cooling, so a spacecraft can lose heat only by conducting it

to cooler parts of the spacecraft, often with heat pipes, or by radiating it back to space. Radiation loss
to space, assuming an unobstructed view, is described by the relation

Qo_, = F_,o, CIT4 , Equation 2-1 i

where E is the emittance, (a fundamental property of the surface material), Ato t (m 2) is the total surface

area, T(K) is the object temperature, and o = 5.67 × l0 s W/m2K 4 is Boltzmann's constant. (Note that

] A STM E 490, Standard Solar Constant and Air Mass Zero Solar Spectral lrradiance Tables, 27

September 1973.
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c may be a function of wavelength, but can usually be treated as a constant for a broadband radiating

source.) An object will either heat up or cool down until the heat gain, (Equation 2-10), is balanced by

an equivalent heat loss, (Equation 2-1 !). In a first approximatk;:_, one can assume that the material

temperature is much greater than that of the surrounding space environment so that radiation to the

vehicle from sources other than the Sun are small in comparison. (This is not always a valid

assumption for a thermal engineer, especially in low Earth orbit where Earth albedo may be

significant.) Subject to this constraint, the equilibrium temperature of the surface is approximated by

[a _ ll' SA. I a, (392.8 K).
T = _ _-) _,oA,o,---------/ -_

Equation 2-12

As an example, consider the case of a sphere which produces no internal energy with A. = nr 2 and A,o,

= 4n/. The blackbody (as/c = !) temperature of a sphere at the distance of the orbit of the planets is

shown in Figure 2-3. For comparison, the equilibrium temperature of a sphere and of an inclined

plane, as a function of 0r/c, is shown in Figure 2-4.

Temperature
(K)

45O

40O

3O0

3O0

2SO

20G
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_ ,_Mercuty: 449 K

\

: 226 K

_'_upittr:. 122 K

Ilal_m: IlO K___"pl_to K 4IlK
Neptune: Ill K

L; '. 4

10T 104 lot lOIO

Distance from Sun (kin)

Figure 2-3. Equilibrium temperature of a blackbody sphere.
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Figure 2-4. Equilibrium temperature of an inclined plane and a sphere in AMO solar flux.
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As shown in Figure 2-4, if the value of either a s or _ is altered by contamination, either molecular

or paniculate, the result will be a change in the equilibrium temperature of the surface given by

AT 'rl"o,IA9]T =4 i "
Equation 2-13

Thermal control surfaces usually fall into one of two categories. Sun facing surfaces are oftentimes

designed to be highly reflective to minimize the amount of heat that is absorbed by the spacecraft. If
the low initial value of a, is increased by contamination, the heat load to the spacecraft will increase.

Deep space facing surfaces, (and many Sun facing surfaces as well), are often designed to be highly
emissive, so that radiation heat loss to space is maximized and certain parts of the spacecraft, (such as

infrared focal plane detectors), can be passively cooled. Because they radiate heat more effectively
than they absorb it, these surfaces are usually called radiators. If radiators are contaminated with a

material that lowers their effective emissivity the heat loss will decrease and the "cold" parts of the

spacecraft will warm up. Each of these scenarios is discussed separately in the following sections.

2.1+1.1+1 Effects on Solar Absorptance

To minimize spacecraft mass and volume, materials having low values of cts are often used for

reflective surfaces designed to minimize heat absorption. Thermal balance can be maintained over the

spacecraft's lifetime only if the reflector maintains its thermal properties, (its initial a s value, or

equivalently, its cts/c ratio). Three examples of materials used for this application are: i) optical solar

reflectors (OSR's), essentially a mirror protected by a thin quartz coverglass, it) SI3GLO, a white

paint, and iii) Teflon with a 2 rail coating of silver. The experimentally determined reflectance of

these materials is illustrated in Figure 2-5. Assuming that t(_.) is effectively zero, these values of p(Z)

can be used to determine ¢x(_.) which in turn can then be used to determine cts. Typical values of %

and c are listed in Table 2-1 for these, and other, common spacecraft materials, z

1.0" T

-¢,

o.9 t

Reflectance ÷

0.8 #
i

0.7

0.6 -
i

T
0.S L

0

/

f

' OSR

! :
,-- $13G1.0
i i

0.$ 1.0 1.5 _0 _S 3.0 3.5

Wavelength (_n)

Figure 2-5. Reflectance values for three typical spacecraft thermal control materials.

2 Hall, D. F., and Fote, A. A., "¢¢/¢ Measurements of Thermal Control Coatings on the P78-2

(SCATHA) Spacecraft," in Heat Transfer and Thermal Control, ed. A. L. Crosbie, Vol. 78, p.
467, Progress in Aeronautics and Astronautics (1981).

Henninger, J. H., "Solar Absorptance and Thermal Emittance of Some Common Spacecraft Thermal
Control Coatings", NASA RP 1121, (1987).
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Table 2-1. Absorptance/emittance of typical spacecraft materials.

Material o.s c as/c

Aluminum -polished 0.35 0.04 8.75

Beryllium-polished 0.4 0.05 8.0

Copper -polished 0.28 0.13 2.2

StainlessSteel-polished 0.5 0.13 3.85

Gold -on AI 0.26 0.03 6.5

Grafoil 0.66 0.34 1.9

Silicon Solar Cell
- bare 0.82 0.64 i.3

- Si cover 0.82 0.81 1.0

- Si cover, blue filter 0.78 0.81 0.96

-Sicover,redfilter 0.7 0.81 0.86

Material c(s c

Kapton/Al 0.48 0.81 0.6

In203/Kapton/AI 0.4 0.71 0.56

Quartz Fabric/Tape 0.19 0.6 0.3
OSR (quartz mirror) 0.06 0.81 0.07

FEP (5miD/Silver 0.Il 0.8 0.14

FEP (2mil)/Silver 0.08 0.62 0.13

Black Paint

-Epoxy 0.95 0.85 1.12

-Acrylic 0.97 0.91 1.07

White Paint

- Silicone(SI3GLO) 0.24 0.88 0.27

As shown by Equation 2-7, the presence of a thin contaminant film on the surface of

will alter its solar absorptance according to the relation

ct_ =ct, +Act, =

a material

Equation 2-14

The absorption coefficient that was determined from a mixture of"typical" spacecraft contaminants is

shown in Figure 2-6. 3 Note that the absorption profile of a single contaminant may be noticeably
different, especially in different wavebands, Figure 2-7. 4 Also, the abse-_tion profile of contaminants

that have been baked on through a photochemical deposition process may be significantly darker, see

Section 2.4.1. A contaminant layer with the absorption coefficient shown in Figure 2-6 would increase

the solar absorptance of a reflecting surface, (possibly upsetting the thermal balance of the spacecraft),

as shown in Figure 2-8. Historically, most spacecraft experience some degradation in (zs after reaching

orbit, Figure 2-9. Some spacecraft have end of life (EOL) increases in a s as great as 0.15 - 0.20. s

3 Charnpetier, R., "Effects of Contamination on Optical Characteristics of Surfaces," Spacecraft

Contamination from Propulsion Systems Workshop, The Aerospace Corporation, El Segundo,

CA, 22 September 1981.
' Wood, B. E., Bertrand, W. T., Bryson, R. J., Seiber, B. L., Falco, P. M., and Cull, R. A., "Surface

Effects of Satellite Material Outgassing Products,"./. Thermophys. Heat Trans., Vol. 2, No. 4, pp.

289 - 295, Oct., (1988).

Muscari, J. A., "Nonmetallic Materials Contamination Studies Final Technical Report," Martin
Marietta TR MCR-80-637, 16 December 1980, (NASA JPL Contract NAST-100).

s Ahem, J. E., Belcher, R. L., and Ruff, R. D., "Analysis of Contamination Degradation of Thermal

Control Surfaces on Operational Satellites," AIAA Paper 83-1449, AIAA 18th Thermophysics
Conference, Montreal, Canada (1983).

Curan, D. G. T., and Millard, J. M., "Results of Contamination/Degradation Measurements on

Thermal Control Surfaces of an Operational Satellite," AIAA Paper 77-740, AIAA 12th

Thermophysics Conference, Albuquerque, NM, (1977).
Mossman, D. L., Bostic, H. D, and Carlos, J, R., "Contamination Induced Degradation of Optical

Solar Reflectors in Geosynchronous Orbit," Society of Photo Optical Instrumentation Engineers,

Optical System Contamination Effects, Measurement, Control, Vol. 777, p. 12, (1987).
Pence, W. R., and Grant, T. J., "ct, Measurements of Thermal Control Coatings on Navstar Global

Positioning System Spacecraft," in Spacecraft Radiative Transfer and Temperature Control ed.

T. E. Horton, Vol. 83, p. 234, Progress in Aeronautics and Astronautics, (1984).
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Figure 2-6. Absorptance profile of"typical" spacecraft contaminants in the visible.
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Figure 2-7. Absorptance profile of specific contaminants in the infrared.
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Figure --#. Thermal control surface solar absorptance changes.

In situ observations of thermal control coating degradation on the GPS Block I satellites are

shown in Figure 2-10. Much of this degradation is associated with photochemical deposition of
contamination, which will be discussed in section 2.4.1. Depending on the orbit, there are a variety of

other mechanisms that may contribute to degradation of surface materials, such as the Solar ultyaviolet,

atomic oxygen, nuclear radiation, and micrometeoroids/orbital debris impact.

o.s T

....... oar I

0.4 .... Savm_1"_ i

S13GLO i
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0 i .....

0 100 200 300 400 500
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Figure 2-10. Degradation in thermal control materials seen on the GPS Block I spacecraft.

Recall that for OSR's a typical beginning of life (BOL) value is 0.08. In order to maintain thermal

control and still allow for a large degradation in %, the thermal engineer would have to provide some

means of eliminating the excess heat load at EOL, most probably by oversizing a thermal radiator at

BOL. Oversizing radiators at BOL may require the designer to take active steps, (such as providing

heater power, controlling the radiator area through the use of louvers, placing requirements on

spacecraft orientation, etc.), to offset the increased heat !o._, at BOL when heat absorption by the

OSR's is low. Consequently, controlling contamination • minimize the change in % can also

minimize spacecraft size, weight, and cost.

2.1.1.1.2 Effects on Emittance

For many -ospace applications, particularly infrared remote sensing, the spacecraft must

maintain a payluad at very cold temperatures. The temperature of liquid nitrogen, 77 K, is not

uncommon for many telescopes while others, like the Space Infrared Telescope Facility (SIRTF),
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make use of liquid helium, 4 K. In order to achieve these temperatures the payload must be provided

with sufficient radiator space so that the steady state heat loss from the radiator is sufficient to balance
the heat load from the spacecraft and the payload electronics. If the emittance of the radiator were to

decrease, the radiator would not be able to radiate heat as effectively and the temperature of the

payload would increase. Many electro-optical focal plane detectors lose sensitivity or cease to
function entirely when warmed above a threshold value of temperature, consequently maintaining high

emissivity on radiator surfaces is critical for mission success. Fortunately, the effects of contamination

on emissivity are usually not as severe as the effects on solar absorptance.

Typical emissivity values for most materials, (contamination included), are high, in the range 0.8
< c < 1.0. For any surface, the critical emissivity is its value near wavelengths in the vicinity of the

Wein displacement law maximum, found from kT ~ 0.29 cm-K. For room temperatures, T ~ 300 K

and _. - 10 _m. The maximum wavelength increases as temperature decreases. For such wavelengths,

E is usually > 0.8 with the exception of some polished metals, for which c may be < 0.2 far into the IR.

However, even visible white paints have c - 0.8 at the 1R wavelengths of interest for spacecraft

designers.

Molecular contamination will predominately be either transparent or opaque at radiating

wavelengths. If transparent, the radiating surface is basically unaffected; if opaque it takes over the

job of the radiator. Only if there is a significant decrease in the thermal conductivity leading to the

radiating surface will the equilibrium temperature of the underlying surface be changed. For thin (< l

p.m) layers of molecular contamination this is not usually the case. Therefore, to a first approximation
molecular surface contamination should have little thermal effect on high emissivity surfaces at
< 300 K.

The effects of molecular contamination on low emissivity surfaces, such as polished metals, can

be dramatic. While molecules which are transparent to wavelengths > 10 _tm will not increase the

surface emissivity, and therefore not decrease the surface temperature, molecules which are opaque at

these wavelengths, which most molecules are, will increase emissivity and decrease temperature. For

many situations this can be desirable, if the extra energy is radiated to space and not to some other

temperature sensitive spacecraft surface. However, for some spacecraft components, such as batteries,

a low temperature, (< 0° C), results in a reduced output. If the battery temperature drops below a

critical value, on the order of-50 ° C, failure will result. Moving parts, such as tape recorders,

steerable sensors, antennas, propulsion tanks, etc. are more likely to "freeze up" if temperatures get too

low. Most semiconductor devices, which depend upon dopants for their charge carriers, should not be

affected. However, any intrinsic semiconductors will have their charge carrier populations reduced as

temperature decreases. Thus, for some spacecraft materials and components, a reduced temperature
due to contamination on low emissivity surfaces is undesirable.

There have been only a few studies of the effects of molecular contamination on emissivity.
Henninger found that E for black surfaces, (0.84 < c < 0.94), was not affected, while dark surfaces, (r ~
0.75), experienced a small increase. 6 Stechman measured the effects of pulsed rocket exhausts on both

black, (c_, - 0.8), and white, (c_j ~ 0.2), surfaces. _ The effective c_, values increased, but c values

actually decreased. The cts increase was 2% - 50% for the white surfaces, and 2% - 4% for the black
surfaces. The c decreases were < ~ 4% for all non=metallic surfaces, and > 300% for the one metallic

surface, (Mistic Tape), reported. Thus, high _ surface were little effected, but surfaces with low values

of either ct, and/or c had those values appreciably increased by the deposited molecular contamination.

Note that an additional contamination concern in thermal control pertains to thermal radiator
baffles which are highly specular. These surfaces are used to shield the radiator from external heat

sources and can cause significant back scatter into the radiator when illuminated by the Sun or Earth.

Often the thermal designer is more concerned with the baffles than with the initial radiator, since the
radiator is protected from the Sun.

6 Henninger, J. H., "Solar Absorptance and Thermal Emittance of Some Common Spacecraft Thermal

Control Coatings", NASA RP 1121, (1987).

7 Stechman, R. C., "Space Shuttle Plume Contamination," Proceedings of the USAF/NASA

International Spacecraft Contamination Conference," NASA CP-2053, AFML-TR-78-204, pp.
401 - 411, 7 - 9 March 1978.
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2.1.1.2 Optical Elements- Mirrors

A mirror is often used as the first optical element of a remote sensing telescope. The mirror is

designed to reflect light energy, of the proper wavelength, from a distance target - through the optical

train - and eventually onto an electro-optical detector. As shown by Equation 2-7, the effect of

contamination on the mirror would be to decrease the signal strength, (the number of photons),

reflected by the mirror. This would, in turn, decrease the signal to noise ratio (SNR) at the focal plane

array.
As shown by Figure 2-6, molecular contamination is generally more absorptive in the ultraviolet

then in the infrared. The effect on SNR for a given sensor would depend on the absorption coefficient

of the contaminants in question and also on the waveband of interest. Narrowband measurements may

be totally compromised by a localized peak in the absorption coefficient, while broadband

measurements may only see a slight decrease in SNR. Note that most optical references do not deal

with the absorption coefficient ctc(_.) directly, but use an extinction coefficient k, where

Equation 2-15

The extinction coefficient also forms the imaginary part of the complex index of refraction

n = n+ik. Equation 2-16

In addition to absorbing the signal, molecular contamination may also cause an increase in
thermal emissivity of the mirror surface or scattering from the mirror surface. Both of these effects

may give rise to additional noise, and decrease the sensor SNR. Because scattering is usually more of

a concern with particulate contamination, the issue of scattering is discussed separately in section
3.1.3.

2.1.2 Effects on Transmitting Surfaces

2.1.2.1 Solar Array Coverslides

If a c,:ntaminant film builds up the cover: 'de over a solar cell less light will be ffansmitted to the
cell and the power output of the cell will degrade according to the relation

DF(x)=

j's(x)/.(X)aX

Equation 2-17

where Is(Z ) (W/m) is th_ :pectral response of the cell, a measure of how effectively the cell converts a

particular wavelength of light into power. A typical solar cell response curve is shown in Figure 2- I !

and the resulting degradation in cell output due to contamination is shown in Figure 2-12. (This figure

has assumed the contaminant absorptance profile shown in Figure 2-6.) As with previous examples,
the specific result is slightly dependent on the nature of the contaminant and the response curve of the
cell in question.
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2,1.2.2 Optical Elements- Lenses, Focal Plane Arrays

As with a mirror, the presence of a contaminant film on a lens or a focal plane will decrease the

intensity of the signal by decreasing the amount of energy transmitted, (Equation 2-8). Because of the

factor of two difference between the exponent of Equation 2-7 and Equation 2-8, contamination on a
lens would be less damaging to SNR than contamination on a mirror. That is, a contaminant film on a

lens would only have to be U'aversed once, while a contaminant film on a mirror would have to be

traversed twice. The design of an optical telescope usually leaves the inner optical elements protected
from external contamination. Similarly, the deposition of molecules tends to be by direct path which

would yield a favored side to the contamination, (see section 2.3.1.2). For this reason, it is primarily
the external components of a telescope which are most contamination critical. However, this must be
evaluated on a case by case basis.
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2.1.3 Additional Conc, "s

2.1.3.1 Cryogenic Surfaces

Many modern space-based sensors operate in the infrared (Ig) portion of the electromagnetic

spectrum, defined as wavelengths greater than - 0.7 p.m. There are at least two reasons for this. First,
many objects radiate either completely or partially at these wavelengths, primarily because they are

relatively cool. "l"< 1000 K). Second, the transmission of infrared radiation through the Earth's

atmosphere (including clouds, dust, etc.) is better (at selected wavelengths) than for visible or UV

light. For some applications, e.g. observing objects in space against an Earth background, selecting

the proper IR wavelength has the advantage of almost eliminating background radiation emitted and/or
scattered by the Earth. For any space-based optical sensors the choice of wavelength(s) and its

associated bandwidth are critical. For many applications those wavelengths lie in the infrared.

An optical sensor which operates in the IR, especially MWIR ( _. > - 5 _m) must generally be
cooled in order to limit the background noise produced by the sensor itself. That background will

consist of photons emitted by the mirrors, lenses, and other parts of the sensor, and may also consist of

thermal (Johnson) noise in the sensor electronics (associated with the sensor focal plane). The optical

IR background will have a Pianck wavelength distribution. Fortunately its i:.tensity will be reduced by

the low emissivity of most optical surfaces to - 5% of that of a blackboG.,, or less. The electronic

noise may have several non-thermal components such as l/f noise (due to electron quantum

mechanical tunneling at the boundary), generation-recombination (GR) noise if the number of charge
carriers in sensitive circuits fluctuates, shot noise (due to the random arrival of charge carriers at

barriers), in additi,_n to the Johnson noise. Since it is desirable to maximize the SNR in any sensor,

cooling the sensor, especially an IR sensor) accomplishes this by reducing the optical and usually the
electronic noise. This cooling is often necessary to obtain a detectable signal.

The contamination issue associated with cooling any part of a spacecraft, especially an IR sensor,

is that the average molecular residency times are exponential functions of temperature, see section

2.3.1.3. Molecules which would not stick to a warm surface will have lengthy residence times on a
cold surface. For example, water (the most common outgassing molecule from spacecraft surfaces)

resides less than a microsecond, on average, at room temperatures, but will have a residence time on

the order of the age of the universe (~ 10 _ s) on a surface at a temperature of ~ 77 K. Thus, cold

surfaces act as "getters" for most molecules which strike them.

The consequences of molecular contamination on cold spacecraft surfaces depend on the nature of

the contamination as well as the sensitivity of the surface. Molecules which do not scatter, reflect or

absorb IR photons at the wavelength of interest are of little concern. This is true of one atom gas

molecules, (e.g. Ne, Ar) and often true of two atom gas molecules (e.g., N 2, O2). This is because one

atom molecules have no vibration modes, and two atom molecules have only one vibration mode.

(Rotational modes lie in the microwave portion of the specmun and are of little concern in

contamination studies.) However, three atom molecules, (e.g., H20, CO2.... ) and four atom molecules

(e.g., NHs .... ) have several vibrational modes, some of which could lie in the IR regions of interest

and be and additional source of noise. Hence, molecular contamination on cooled optical surfaces are
a special problem for IR sensors, j

s Bertie, J. E., Labbe, H. J., and Whalley, E., "Absorptivity. oflce I in the Range 4000 - 30 cm-l, "J.

Chem. Phys., Vol. 50, No. 10, pp. 4501 - 4520, 15 May 1969.
Pipes, J. G., Roux, J. A.., Smith, A. M and Scott, H. E., "Infrared Transmission of Contaminated

Cryocooled Optical Windows," ,4 Journal, Vol. 16, No. 9, pp. 984 - 9oc, Sept., (1978).

Pipes, J. G., Sherrill, F. G., Wood, ' .... and Clark, W. L., "Cryocooled Optl. and Contamination,"
Opticoi Engineering, Vol. 18, No. 6, pp. 620 - 625, Nov. - Dec., (1979).

Thompson, S. B., Arnold, F., and Sanderson, R. B., "Optical Effects of Cryodeposits on Low Scatter

Mirrors," AIAA Paper 73-732, 8th Thermophysics Conference, Palm Springs, CA, July 1973.

Wood, B.E., and Roux, J.A., "Infrared Optical Properties of Thin H20, NH3, and CO2 Cryofilms,"
J. Opt. Soc. Am., Vol. 72, No. 6, pp. 720-728, June, (1982).
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There is also the concern that a frozen contaminant layer would appear more opaque than its

unfrozen counterpart. Freezing a clear liquid, such as water, can often produce a much more opaque

solid. As a result, the presence of cryogenic surfaces are a sure indication that contamination control

will be a significant factor in the design, development, and operation of a space system.

2.1.3.2 Thin Molecular Films - Interference and Scattering

One property associated with thin films is an effect known as interference. As is well known, thin

films whose thickness are Z/4, 3L/4 .... tend to be non-reflecting at those wavelengths. A ray of light

being reflected by a film of thickness Z/4 would exit the film exactly out of phase with the incoming

ray. They would interfere destructively and cancel. Thin films of thickness k/2, _..... tend to reflect

well because the incoming and outgoing rays would be in phase. For the problem at hand, the

following observations can be made. If _. = 1 lam, (the near IR), then )J4 is 0.25 I_m, or about 100

molecular monolayers. This is a fair amount of contamination, especially for sensitive optical surfaces

such asmirrors and lenses. As will be quantified in the next section, maintaining surface cleanliness to

level A or B should be sufficient to prevent thin film effects from occurring on most surfaces. When

combined with the fact that contaminant layers are typically more absorptive in the UV than in the JR,

Figure 2-6, this conclusion is even more true for MWIR (_. ~ 5 _m) and LWIR (_. > 10 p.m).

Consequently, this phenomena is of more concern at visible and ultraviolet wavelengths.

A second concern arises from that fact that molecular contamination does not deposit itself in

uniform layers, but in clumps. This is especially true for the first 100 monolayers or so. If the

molecules are not transparent at the wavelengths of interest, scattering rather than reflection will

usually be the primary effect of concern. Because scattering is usually of more concern from

particulates, the discussion of scattering from molecular films will be postponed until section 3.1.3.

2.2 Quantifying Molecular Contamination

2.2.1 MIL STD 1246C

Both molecular and particulate contamination levels are quantified by MIL STD 1246C.

Molecular contaminant films are referred to as Non-Volatile Residue (NVR), which is defmed as the

soluble material remaining after evaporation of a volatile liquid or determined by special purpose
analytical instruments. NVR is usually measured in milligrams per unit volume, such as milligrams

per 100 milliliters of fluid sample, but may also be measured in milligrams per 0.1 square meters of

surface area. The NVR levels quantified by MIL STD 1246C are specified in Table 2-2. A

requirement that a surface must be clean to level "C" means that molecular films cannot exceed 3 mg
per 0. I m 2, or 3 llg/cm 2, on that surface. If the density of the contaminant is known, (1 g/cm 3 is a

reasonable value), the MIL STD level can be converted to a contaminant thickness, Table 2-3.

Table 2-2. MIL-STD-1246C molecular contamination levels.

Level NVR Limit NVR Limit Level NVR Limit NVR Limit

mg/0.1 m 2 rag/liter rag/0.1 mz mg/iiter
(_tg/em 2) (_tg/em 2)

A/100 0.0 ! 0. I C 3.0 30,0

A/50 0.02 0.2 D 4.0 40.0

A/20 0.05 0.5 E 5.0 50.0
A/I 0 0. l 1.0 F 7.0 70.0

A/5 0.2 2.0 G i0.0 100.0

A/2 0.5 5.0 H ! 5.0 ! 50.0

A 1.0 10.0 J 25.0 250.0
B 2.0 20.0
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Table 2-3. Molecular contamination thickness versus MIL-STD-1246C cleanliness level.

Contamination Thickness (nm)

NVR Pc = 0.75 Pc = 1.0 Pc = 1.5 Pc = 2.0

"Level" (pg/cm 2) g/cm3 g/cm3 g/cm3 g/cm3

A/100 0.01 0.13 0.10 0.07 0.05

A/50 0.02 0.27 0.20 0.13 0. I0
A/20 0.05 0.67 0.50 0.33 0.25

A/10 0.1 1.33 1.00 0.67 0.50

A/5 0.2 2.67 2.0 1.33 1.00

A/2 0.5 6.67 5.00 3.33 2.50

A 1.0 13.33 10.00 6.67 5.00

B 2.0 26.67 20.00 13.33 10.00

C 3.0 40.00 30.00 20.00 15.00

D 4.0 53.33 40.00 26.67 20.00

E 5.0 66.67 50.00 33.33 25.00

F 7.0 93.33 70.00 46.67 35.00

G 10.0 133.33 I00.00 66.67 50.00

H i 5.0 200.00 150.00 100.00 75.00

J 25.0 333.33 250.00 166.67 125.00

Note that contamination thicknesses of 0.01 pro, (I0 nm), corresponds to cleanliness level A

(assuming p - ! g/cm3). As shown in Figure 2-8 and Figure 2-12, less than 0.01 ttm of molecular
contamination will have little effect on thermal conl_l surfaces and solar arrays. As will be discussed

in Chapter 3, maintaining cleanliness level A is, relatively speaking, not ",hat difficult. This is an
indication of the fact that optical surfaces are often the most susceptible to contamination.

2.3 Generation, Transportation and Deposition of Molecular
Contaminants

Even ifa spacecraft's surfaces are clean when installed in the launch vehicle, the spacecraft itself

will be a source of contamination during launch or on orbit operations. All but the purest organic

materials will contain fractional amounts of "volatile" chemicals, either on the surface or dispersed

through the material, Table 2-4. 9 These volatile chemicals, which may be simply excess chemicals left

over from improper catalyst/resin ratios, improper c. :_ng, etc., may, over time, migrate to the surface

and escape into the local environment. This process, called outgmsing, is responsible for the familiar

odor of plastics or rubber, in addition, thruster plumes are a potentially serious threat if the backflow

is capable of reaching sensitive surfaces. Similari.s deploying or operating mechanisms, releasing

covers, or conducting proximity operations are all potential sources of contamination once on orbit.

Table 2-4. Examples of common spacecraft contamination sources.
I

Structures Epoxies, polycarbonates, polyurethanes, polyamines,

polyimides, flourocarbons

Potting/Encapsulation Polyurethanes, epoxies, silicones

Conformal Coatings Polyurethanes, epoxies, silicones

Adhesives Epoxies, silicones, polyurethanes

Tapes Polyesters, acrylics, polyamides, flourocarbons

Other Acetates, epoxies, aceta!s, polyamides

9 Vest, C. E., Buch, R. M., and Lenkevich, M. J., "Materials Selection as Related to Contamination of

Spacecraft Surfaces," SAMPE Quarterly, Vol. 19, No. 2, pp. 29 - 35, (1988).
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2.3.1 Contamination due to Materials Outgassing

Experimental data indicate that outgassing is seen to vary either: i) as an exponential function of

time, ii) inversely as a power of time, or iii) independently of time, depending on the mechanism

responsible for the outgassing process. These three outgassing processes are known as desorption,

diffusion, and decomposition, respectively. Desorption is the release of surface molecules that are held

by electrical (chemical) forces. Diffusion is the homogenization that occurs from random thermal
motions. Contaminants that diffuse to the surface of a material may have enough thermal energy to

escape the surface forces and simply evaporate into the local environment. Finally, decomposition is a

type of chemical reaction where a compound divides into two or more simpler substances, which may

then outgas through desorption or diffusion.
In addition to the time dependency, each process is seen to depend exponentially on a unique

range of activation energies, E_, (the energy required to initiate the process), and temperature, T, (the

measure of the available thermal energy), according to the relation exp (-L°/Rr) . The activation

energies define a temperature range over which the _,'arious reactions are considered likely, (provided
that they are chemically possible in the first place), Table 2-5. Because desorption involves only

surface films it will usually contribute comparatively little to total mass loss on orbit, even though it

has a low temperature dependence and fast time constant. Note, however, that desorption is the

mechanism responsible for removing contaminant layers from metals. Similarly, decomposition

usually contributes comparatively little to total mass loss due to its high temperature dependence and

time independence. Diffusion, on the other hand, has a mid-range temperature dependence and mid-

range time constant. Because diffusion is the mechanism responsible for outgassing from organic

materials, and involves the total mass of organic material present, it is the mechanism that is the major

source ofoutgassing on orbit.

Mechanism

Table 2-5. Characteristics of various outgassing mechanisms.

Time Activation Energy l/e Temperature Range

Dependence (kcal/mole) T = EJR, (K)

Desorption r -I tot-2 1 - 10 500- 5000

Diffusion t--It2 5 - 15 2500 - 7500

Decomposition n/a 20 - 80 I0,000 - 40,000

2.3.1.1 Contamination Generation - Diffusion

The amount of mass loss due to diffusion can be represented by the relation

dm T) cm exp-E'/Rr= ,
Equation 2-18

where C (s '_) is a normalization constant that must be experimentally determined, m (kg) is the

amount of mass contributing to the outgassing, Ea (kcal/mole) is the activation energy, R (kcal

K/mole) is the gas constant, T(K) is the temperature, and t (s) is the time. Integrating Equation 2-18

provides an expression for the amount of mass outgassed between time t I and/2, which is

Am= 2Cexp_E./_(t_/2 _,:,2).
m

Equation 2-19
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The amount of matter that is outgassed by a material is dependent on the material's specific outgassing

characteristics, which are contained in the normalization constant C and the activation energy Eo.

2.3.1.1.1 ASTM E 595 - Materials Outgassing Test

A standard test of a material's outgassing characteristics, which can be used to determine C, (near

room temperature), is ASTM E 595. in this test, a sample of the material being studied is held at a

temperature of 125° C for 24 hours at a pressure of less than 7 x 10-3 Pa. Comparing the initial and
final mass of the sample yields the change in mass, Am, which is known as the Total Mass Loss

(TML). Because T, t,, and t2 are known, once Am is determined the reaction constant C can be

evaluated, provided that the activation energy of the material is known. For most spacecraft organic
materials, the activation energy is in the range 5 - 15 kcai/mol. Knowing the specific value for a

specific material will infer C. More often, the outgassing will be due to a conglomeration of material

so that a rough estimation of the "average" activation energy, (usually taken to be 10 kcai/mole), is all
that is available. Note that ASTM E 595 is incapable of deducing C ifEo is unknown. If this is the

case, the more robust ASTM E 1559 must be used, section 2.3.1.1.2.
The concern in contamination control is not merely over how much mass will be outgassed, but

also over how much of the outgassed mass will condense on a sensitive surface. To determine this

second parameter, the ASTM E 595 outgassing test utilizes a collecting plate, held at 25 ° C, to measure
the amount of Collected Volatile Condensable Material (CVCM). That is, CVCM is a measure of the

fraction of the TML that could condense on a 25" C plate. Recall that MIL STD 1246C specifies
molecular contamination levels in terms of NVR, where NVR is defined as the amount of mass per

unit area and is measured by chemical wiping. While NVR and CVCM are closely related, they are

distinct quantities. (Note also, that CVCM will typically be a strong function of temperature. This
will be discussed in section 2.3.1.3.)

Usually, much of the TML is due to very light chemical species, such as water, which will not

condense on room temperature surfaces. ASTM E 595 also measures a third pmmneter, Water Vapor

Regained (WVR), by subjecting the post-test sample to a 50% relative humidity environment at 23 ° C

for 24 hours. The mass gain is used to infer WVR.

As a starting point, the conventional wisdom defines typical pass/fail criteria for most spacecraft

materials to be i% TML and 0.1% CVCM. That is, a material with a TML of 0.5% would pass the
screening test, while a material with 0.2% CVCM would fail. Using these criteria alone, without

taking into consideration the materials activation energy or its absorption coefficient can be quite

misleading. A material with an activation energy o- '2 kcal/mole or greater would outgas very slowly

and could still pass the test although most of th_ outgassable matter had yet leave the material.

Similarly, a material which has a significant TML value may be quite innocuous if its CVCM is near

zero or it is essentially transparent. Conversely, a material may have a small TML and be quite

optically black for correspondingly small values of CVCM. If problems are foreseen, more detailed
analysis is usually warranted, l°

Outgassing parameters and activation energies for several typical spacecraft materials are shown

in Table 2-6. The mass density ofoutgassed contaminants is typically on the order of I g/cm 3.

,0 Campbell, W. A., Jr., and Sciaidon¢, L L, Outgassing Data for Selecting Spacecraft Materials,

NASA RP 1124, Rev. 3 (1993).

Glassford. A. P. M., and Liu, C. K., "Outgassing Rate of Multilayer Insulation Materials at Ambient

Temperature,".]. Vac. Sci. Tech., Vol. 17, No. 3, pp. 696 - 704, (19_1).

Muscari, J. A., and O'Donnell, T., "Mass Loss Parameters for Typica_ Shuttle Materials," Society of

Photo Optical Instrumentation Engineers, Shuttle Optical Environment, Vol. 287, pp. 20 - 24,
(1981).

Scialdone, J. J., "An Estimate of the Outgassing of Space Payloads and its Gaseous Influence on the

Environment,",/. Spacecraft, Vol. 23, no. 4, p. 373 (1986).
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Table 2-6. Outgassing parameters for typical spacecraft materials.

TML (%) TML (%) CVCM

Material at 75 ° C at 125 ° C (%)

Adhesives
R-2560 ! .58 1.53 n/a

RTV-566 0. I ! 0.26 0.02

DC 93-500 0.07 0.08 0.05

DC 6-1104 0.29 0.58 0.03

Films

Kapton FEP n/a 0.25 0.01

Kapton H n/a 1.17 0.00

Mylar n/a 0.32 0.04
FEP Teflon n/a 0.77 0.35

Oils & Greases

Brayco 815Z n/a 0.25 0.01

Braycote 803 n/a 0.24 0.13

Krytox 143AD n/a 28.54 5.7 !
Vakote MLD73-91 0.40 n/a n/a

Paints & Coatings
SI 3G/LO 0.45 1.00 0. ! 3

Chemglaze Z306 2.40 2.52 0.07

DC Q9-6313 0.40 0.39 n/a
Aremco 569 2.28 3.58 n/a
LMSC 1170 1.88 2.89 n/a

2.3.1.1.2 ASTM E 1559 - Contamination Generation Characteristics of Spacecraft Materials

Because the ASTM E 595 screening test maintains the outgassing source and collector at fixed

temperatures, it does not provide complete insight into the outgassing characteristics of a mater/al. For
this reason, it is often necessary to conduct more detailed tests in order to determine outgassing

characteristics over a wider temperature range and determine relevant time dependencies. This is the

purpose of ASTM E 1559, which is capable of determining both the total mass flux outgassed by a

material and the deposition of the outgassed by-products on surfaces held at various temperatures.

To obtain more precision, ASTM E 1559 utilizes Quartz Crystal Microbalances (QCM's), (see

section 4.2.1.3), to make measurements of outgassed matter at different temperatures. Essentially, a

QCM compares the resonance frequency of a shielded quartz crystal, which remains contamination

free, with one that is exposed to the environment and experiences a deposition of contamination. By

calibrating the QCM the amount of mass deposition can be determined. Two test methods can be

utilized. Test method A specifies three QCM's with operating temperatures of 90 K, 160 K, and 298
K. Test method B utilizes the 90 K QCM, and the user selects a temperature for up to three additional

QCM's. The test sample is subjected to three different runs, at temperatures of 398 K (125 ° C), 348 K

(75 ° C), and 323 K (50 ° C) with the test continuing for 1 - 5 days for each sample. Although this test

is more expensive than ASTM E 595 it is capable of providing much more insight into the specific

outgassing characteristics of a material. By heating up the QCM's at the end of the test it is also

possible to determine the temperature at which many of the outgassed constituents will condense.

2.3.1.2 Contamination Transport

The amount of contamination that is produced by a spacecraft is important, but the amount of

contamination that reaches, and sticks to, a sensitive surface is much more important. In general,

transport processes are generally either line of sight or non-line of sight as discussed in the following
sections.
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2.3.1.2.1 Line of Sight

Once the electrical attraction to the surface of the material has been broken, the outgassed

molecules are free to follow ballistic trajectories and may randomly impact other surfaces having a line
of sight to the point of departure. The contaminant mass may originate interior to a subsystem or

payload, such as the outgasing from the baffle coating of an optical sensor, or from its exterior.

Spacecraft are typically vented to allow for pressure reduction during launch. Once on orbit any mass

that is outgassed interior to the vehicle would be expected to exit from the spacecrat_ vents in

proportion to their geomeuic area. This will of course be modified by the presence of interior
bulkheads and/or the proximity of high outgassing sources to certain vents.

The rate at which mass is outgassed is given by Equation 2-18. The question of interest is, how
much of the outgassed material can reach a sensitive surface? The arrival rate of contaminants at a

given point is dependent on the rate ofoutgassing from all potential sources and the physical geometry

of the point in question relative to each source. In a vacuum, the arrival rate is the product of the rate

at which mass leaves the source, which can be calculated from Equation 2-18, and a geometrical view

factor, which is simply a measure of the fraction of matter that leaves the source and impacts a given
point of interest. The outgassing view factor bears a strong resemblance to the thermal view factor, or

angle factor, used in calculations of radiative heat balance. We will maintain this analogy in the
following derivation.

Consider a plate of area dA I which is radiating heat (outgassing mass) to space with radiance/q

(Wm -2 sr't). What fraction of this heat (mass) will impact a surface dA2 located a distance r from the

first plate in the relative orientation shown in Figure 2-13?

normal to dA 1
to dA 2

Figure 2-13. View factor geometry.

The rate at which heat (mass) leaves d,41 in the direction of d,42 is

/_v/,= L, cosedA,, Equation 2-20
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where 0 is the angle between the normal to dA I and the radius r connecting the center of the plates.

The amount of heat (mass) that leaves d,41 and is intercepted by d42 is

_/,2 = L_ cosOdAzdo 2, Equation 2-21

where do_2 is the solid angle that dA 2 subtends, with dA I as its origin. It is easily seen that

COS_ Equation 2-22

do) 2 = r 2 dAz"

If we consider the case of d,41 radiating (outgassing) over an entire hemisphere, dA 2, it can be seen

that

x/2 2n

q, = L, dA, [ _cosO sinOdOdct = 7tLtdA, = M,d.,,l,,
0 0

Equation 2-23

where M (Wm 2) is defined as the exitance. Consequently, in terms of the exitance of the radiating
source, Equation 2-21 reduces to

_12 = MI COSOCOSd_dAld.,42 Equation 2-24
11:r2

The total heat (mass) transfer between the two surfaces is found by integrating over dA_ and d_ 2. The
radiative view factor, FI2 , is defined by

ffcos0cos¢
F,2=J 

Equation 2-25

so that the total heat (mass) transfer from dAt to dA 2 is given by

q12 = MIFI2 • Equation 2-26

As previously seen, the thermal exitance, M, has units of W m 2, or J s_ m "2. We confirm that Equation

2-24 and Equation 2-26 are equally applicable to the case of outgassing, provided that the mass
exitance is measured in units of mass per unit time per unit area. By analogy, the mass exitance is
defined by

Mj = dm_ 1
dt dA I '

Equation 2-27
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where dm/dt is obtained from Equation 2-18 and dAi is the area of the outgassing source, (for

example, the cross sectional area of a vent). Using this expression in Equation 2-26 would produce an

expression for the mass per unit time which left d.4, and impacted dA 2.
Recall that MIL STD 1246C defines molecular contamination levels in terms of mass per unit

area. What is oftentimes more useful than the amount of mass distributed over dd 2 is simply mass per

unit area at a specific point within d,42. For this reason, we define the view factor used in many

outgassing calculations a

VF 2 fc°s0c°s dA
= j _r 2 i"

Equation 2-28

Note that the values of 0 and _ are defined by the point of impact within dA 2. Using this expression,

the mass of contaminants per unit area per unit time which arrive at a specific point in dA 2, after

having originated from dA _, is given by

Equation 2-29

The thickness of contaminants at a specific po_.mtin dd 2 is obtained by simply dividing Equation 2-29
by the density of the contaminant, Pc (g/cm). Explicitly, the thickness of contamination that is

outgassed by dAj and impacts a specific point within dA 2 is given by

Ax 2 1 f dm, 1 "_ ,cos0cos_b
-.ll12_II ) J .gr 2

Equation 2-30

where 0 is the angle between the normal to the outgassing source and the radius vector to the

collection point, _b is the angle between the normal to the collection point an, - radius vector from

the collection point, and r is the distance between source and collector as iliustr...: d in Figure 2-13.

If there are numerous sources contributing to outgassing, the total mass reaching a given point of

interest is simply the sum of the pans. lfa source does not have a direct line of sight to the collection

point of interest, its view factor for direct deposition is zero. An outgassing source may be an

extended surface, such as a thermal control panel covered with an outgassing paint, or may be quite

localized, such as outgassing through a spacecraft vent or from a single electrical componept.

Contamination may also come from thermal blankets or multilayer insulation. If two or more payloads

are carried into orbit on the same launch vehicle, one payload may be degraded by contamination from
the other payload. Any material that may outgas is a potential source of contamination.

23. 1.2.2 Non-Lir,¢ of Sight

2.3. 1.2. 2. 1 Desorptive Transfer and Scattering

It is not always necessary for a contaminant source to have a direct line of sight to a sensitive

surface in order for the source to contaminate the surface. A source may outgas matter onto an

intermediate surface, which will in turn desorb matter onto the surface of concern. Consequently,
reflection, or desorptive wansfer, may also need to be considered in a comprehensive contamination
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analysis. _ Contaminants may also exit a vehicle and be scattered back through collisions with

ambient atmospheric molecules. Obviously, this phenomenon is of greater concern in LEO where the

atmospheric density is greatest. Scialdone reports a 50% return flux at 160 km altitude, but only a
0.000]% return at 1000 kin. _2 For extremely sensitive surfaces, these non-line of sight transfer

mechanisms may be significant.

2.3.1.2.2.2 Electrostatic Reattraction During Spacecraft Charging

One non-line of sight deposition mechanism that may be of concern even in the absence of
extremely sensitive surfaces is electrostatic reattraction during periods of intense spacecraft charging.'3

Under certain orbital conditions the ambient plasma environment may charge a spacecraft to large

negative voltages, (-20,000 volts was seen on ATS-6)) _ Spacecraft charging to high voltages is a

phenomena that is usually associated with higher altitudes, or polar orbits. If a molecule is outgassed

during a spacecraft charging event, and if the molecule is ionized while within the Debye sheath, (the

plasma shielding distance), it may be electrostatically reattracted to the vehicle, Figure 2-14.

solar UV electron

photon _ repelled

vehicle ionizes _ - by charged

charged contaminant / vehicle

by plasma r_.J'__l_/]['environment -_

outgassed / \ Ionized contaminant

neutral _ \ reattracted to negatively

_'_ _con:min_//,- 1 _ charged vehicle

VENT

Figure 2-14. Electrostatic reattraction of ionized contaminants.

in situ measurements of molecular contamination made on the Spacecraft Charging at High Altitudes

(SCATHA) spacecraft indicated that as much as 31% of the contamination received was deposited
during periods of spacecraft charging. This phenomena is of greater concern at higher orbits where the

plasma screening distances are greater. This provides the contaminant molecule more time to become

ionized as it exits the vehicle. In low Earth orbit, the plasma screening distances are on the order of I

cm and this phenomena is not expected to be an issue. In geosynchronous orbits, where plasma

_' Alan Kan, H. K., "Desorptive Transfer: A Mechanism of Contamination Transfer in SpacecraR," J.
Spacecraft, Vol. 12, No. 1, pp. 62 - 64, (1975.)

m2Scialdone, J. J., "Self-Contamination and Environment of an Orbiting Satellite,",/. Vac. ScL Tech.,

Vol. 9, No. 2, pp. 1007 - 1015, (1972).

,3Clark, D. M., and Hall, D. F., "Flight Evidence of Spacecraft Surface Contamination Rate

Enhancement by Spacecraft Charging Obtained with a Quartz Crystal Microbalance, "Spacecraft
Charging Technology Conference ! 980, NASA CP-2182, AFGL-TR-81-0270, (1981 ).

Hall, D. F., and Wakimoto, J. N., "Further Flight Evidence of Spacecraft Surface Accommodation

Rate Enhancement by Spacecraft Charging," AIAA Paper g4-1703, 19th Thermophysics
Conference, Snowmass, CO, 25 June 1984.

Liemohn, H. B., Tingey, D. L., Stevens, G. G., Mahaffey, D. W., and Wilkinson, M. C., "Charging

and Contamination During Geosynchronous Orbit Insertion," Society of Photo-Optical

Instrumentation Engineers, Optics m Adverse Environments, Vol. 216, pp. 80 - 86, (1980).
,40lsen, R. C., MclIwain, C. E., and Whipple, E. C., Jr., "Observations of Differential Charging

Effects on ATS-6," J. Geophys. Res., Vol. 86, No. A8, pp. 6809 - 6819, (1981).
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screening distances are on the order of meters, reattraction is a much greater concern. It is important
to note that reattr_'-'zion is only possible during periods of time when I.) the contaminant flux is sunlit,

(so that it may be ionized by the solar UV), and 2.) the vehicle is charged negatively.

2.3.1.3 Contamination Deposition - Surface Residence Time/Accumulation Rate

If an outgassed molecule impacts a surface, experimental evidence confirms that, in most cases,

the outgassed molecule will adhere to the surface and establish thermal equilibrium. The contaminant
molecule will then re .in attached to the surface until, following the random probabilities of quantum

mechanics, it acquirt -nough energy to escape the electrical attraction to the surface. The average
residence time on the surface is therefore related to the surface temperature and is approximated by the

expression

x(T) -- _oexp _'°/xr, Equation 2-31

where _o is the as, ltion period of the molecule on the surface. Is Scialdone reports oscillation times

on the order of 10-" to 10 -_2 s, with l0 -_ s being average, t6 Conversely, Naumann reports an

oscillation period for water of 10-_6 s. m7For most applications, the actual value of xo is not :,,at critical

as most outgassed contamin_ will have a very short residence time on all but cryogenically cooled

surfaces. For example, ware: *,ith an activation energy of- 11 kcai/mole, has a residence time of I x
!0 Ims on a surface at 100 K, but only 10 tts on a 300 K surface, Figure 2-15. If a contaminant

molecule has a residence time long in comparison to the life of the mission, it can be assumed to

remain permanently.

250 ""- I
" _ ..... 10 kr.al/moie ;

_ -- -- 16kcal/male I

Surface i ......... _ '

Temperature(K)160 -: - ..............................

100 -_- _ _ _ .
I

6O

104 10""* 100 101 102 103 104 10s 10e

Residence Time (a)

Figure 215 Residence time of molecules as a function of surface temperature

A cot ,rant layer may build up on a surface provided that the arrival rate of contaminants

exceeds the r-re of departure That is, contamination will accumulate if at least some of the incident

,s Chen, P. T., Hedgeland, R. J., and Thomson, S. R., "Surface Accommodation of Molecular

Contaminants," Society ofPhote- ,otical Instrumentation Engineers, OpticaiSy ,,1

Contamination." Effects, Measurt 1,ent, Control 11, Vol. 1329, pp. 327- 336, (19" ,.

_6Scialdone, J. J., "Characterization of the Outgassing of Spacecraft '_!aterials," Society of Photo-

Optical Instrumentation Engineers, Shuttle Optical Environment >1.287, pp. 2 - 9, (I 98 i).
_7Naumann, R. J., "Contamination Assessment and Control in Scientitic Satellites," NASA TN-D-

7433, October, (1973).
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contaminant molecules have a residence time that is long in comparison to the time period of interest.
The accumulation rate is approximated by

Equation 2-32

where _, (T) is the sticking coefficient, i.e., the fraction of incident molecules that attach "permanently"

to the surface, and Ax2/At is the arrival rate given by Equation 2-30. y may be assumed to be 1.0 for

worst-case predictions or for cryogenic surfaces where the residence time of most contaminants is

long. However, the ASTM E 595 results would predict a sticking coefficient of 0.1 for room
temperature surfaces, in agreement with the fraction of TML that remains as CVCM. If more detailed

calculations are required, the evaporation rate can be estimated from the accumulation rate and the

residence time or from the BET equation.

In 1938, Brunauer, Emmett, and Teller developed an expression to describe multilayer adsorption,
and their equation has become known as the BET equation. In essence, the BET theory assumes that

adsorption sites are independent and may each accommodate an unlimited number of molecules. That

is, adsorption occurs by the formation of piles of molecules on each site. Without derivation, (which

would involve the Fermi-Dirac distribution function and other expressions from statistical mechanics),

the volume of gas present on a surface V, (normalized to the volume required to form one monolayer
v.), is

expt Rr j
V

V. e
1- 1+ exp L Rr j_ 1 P

Equation 2-33

where U I is the binding energy of the contaminant molecule to the surface, I/2 is the binding energy of

contaminant molecules to one another, P is the ambient pressure, and Po is the saturating vapor

pressure of the contaminant gas. The form of the BET equation is illuswated in Figure 2-16. As

shown, only contaminants with extremely low vapor pressures, so that P/Po is large, and/or high
surface binding energies, could be expected to form condense in layers on a surface.
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Figure 2-16. The form of the BET equation. Energy = (U! - Ui)/RT.

18Brunauer, Emmett, and Teller, 3. Am. Chem. Sot., Vol. 60, p. 309 (1938).
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2.3.2 Contamination due to Thruster Plumes

Studies of thruster exhaust plumes indicate that thrusters are known to scatter a very small fraction

of the ejected mass at angles greater than 90 ° off of the thruster axis, Figure 2-17. '9 Typically the

amount of mass ejected at the higher angles is less than one part in 103, but this is dependent on the

specific thruster design. Because mass ejection at high off-axis angles is a real possibility, there is

often a concern that firing a sp-cecraft's propulsion system could cause contaminants from the exhaust

plume to impact sensitive surfaces. (This is particularly of concern during rocket stage separation. 2°)

Plume impingement could be the indirect result of ejection at high off-axis angles, which would be due

to scattering within the plume itself, or the result of scattering from ambient molecules near the

spacecraft. (This last scenario is highly unlikely to begin with due to the mass difference between

ambients and fuel products, and would also decrease in probability with altitude as atmospheric

density decreases.) Hydrazine monopropellant and bipropellant fuels are commonly used for nominal

on-orbit station-keeping maneuvers. Both on-orbit measurements and laboratory tests have indicated

that hydrazine exhaust does not collect on surfaces warmer than about --45" C. _n Analine impurity

decomposition products were wimessed at -101 ° C, water was collected at-129 ° C, and ammonia was

detected at -167 ° C. Conseque,-ly, deposition from hydrazine thruster plumes will not be a problem

for most non-cryogenic surfa. Bipropellant exhaust constitutes a larger contamination concern.
The predominant species in t_, oipropellant plume resulting from incomplete combustion of MMH

and N204 is monomethylhydrazine nitrite (MMH-HNO3). With an activation energy of 20.48

kcal/mole, MMH-HNO 3 is a "ntamination concern for cooled surfaces. _ That is, it would have a

residence time longer than th. _ of the universe on a ! 00 K surface.

Normalized
Ma_ Flux

(_-,r)

10o

lO_

lO4

104 , _ ,
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160

Figure 2-17. Thruster plume off-axis scattering.

_9Etheridge, F. G., Garrard, G. G., and Ramirez, P., "Plume Contamination Measurements," Rockwell
International, SSD84-0073, June (1984).

20Allegre, J., Raffin, M., and Lengrand, J. C., "Experimental Study of the Plume Impingement

Problem Associated with Rocket Stage Separation," Y. Spacecraft, Vol. 23, No. 4, pp. 368 - 372,
July - August (1986).

Arnold, G. S., Doi, J. A., and Sinsheimer, F. B., "Estimates of Environmental Interactions of

Contaminant Films from Titan IV Staging," The Aerospace Corporation, TOR-93(3409)-3, 15
April 1993.

21Fore, A. A.. and Hall, D. F., "Co,tamination Measurements during the Firing of the Solid Propellant
Apogee senion Motor on t '78-2 (SCATHA) Satellite," in Society of Photo Ovtical

InstJ'um_,_tation Engineers, S. ,ztle Optical Environment, Vol. 287, p. 95 (1981).

Carre, D. J., and Hall, D. F., "Contamination Measurements during Operation of H) _razine

Thrusters on the P78-2 (SCATHA) Satellite," J. Spacecraft, Vol. 20, no. 5, p. 444 (1983).
Liu, C.-K., and Glassford, A. P. M., "Contamination Effect of MMH/N204 Rocket Plume Product

Deposition," J Spacecraft, 'vol. 18, no. 4, p. 306 (1981).
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2.4 Synergistic Effects

2.4.1 Photochemically Enhanced Deposition

As with many space environment effects there is often the possibility that synergistic interactions

between two or more effects may result in a total degradation that is greater than the sum of its pans.

An excellent example is the interaction between the solar UV and molecular contamination. On orbit,

illuminated solar arrays would be thought to be too warm, (- 60 ° C), to allow for the buildup of
molecular contamination due to the very short residence times anticipated for most contaminants, (, 1

s). However, it is well documented in the laboratory that the presence of UV light can cause
contamination to condense on surfaces that would otherwise remain clean.:3 Presumably, the UV light

initiates a polymerization process that either: i) binds the contaminant molecule to the surface, or ii)
binds several contaminant molecules into a larger molecules with a correspondingly longer residence

time. It is now accepted that this photochemical deposition process was responsible for an accelerated

degradation in solar array output noted on the GPS Block I satellites, Figure 2-18. z4 As a result, even

warm surfaces may be subject to the deposition of contaminant layers if they are exposed to the solar

UV. The rate of photochemical deposition of contaminants is seen to increase as the molecular arrival
rate decreases, Figure 2-19. 25 Consequently, the photochemical sticking coefficient will increase as

outgassing rates decrease. The sticking coefficient, SC, is related to the impact rate, IR (A/hr), by

log SC = -0.797 log IR - 1.156. Equation 2-34

The result may be a fairly linear buildup of contamination and photochemical deposition may continue

to create problems long after outgassing rates have subsided to low values. The contamination related

power degradation from the GPS Block I satellites did not become noticeable until after about 3 yeats
on orbit. At this point in a mission the majority of the outgassing has long since ceased and

contamination concerns, if not already apparent, have faded.

Another important consideration for the case of photodeposited films is the issue of contaminant

absorptance. As shown in Figure 2-20, laboratory investigations confmn that photodeposited films

may be much darker than the "typical" contaminant film used in Figure 2-6. z6 Consequently, when

estimating contamination effects on sunlit surfaces the use of the more pessimistic absorptance profile
is advised.

:3 Stewart, T. O., Arnold, G. S., Hall, D. F., and Marten, H. D., "Absolute Rates of Vacuum-Ultraviolet

Photochemical Deposition of Organic Films,"./. Phys. Chem., Vol. 93, No. 6, pp. 2393 - 2400,

(1989).

Stewart, T. B., Arnold, G. S., Hall, D. F., Marvin, D. C., Hwang, W. C., Young Owl, R. C., and

Marten, H. D., "Photochemical Spacecraft Self-Contamination: Laboratory Results and Systems

Impacts," ,I. Spacecraft, Vol. 26, No. 5, pp. 358 - 367, (1989).
24Tribble, A. C., and Haffner, J. W., "Estimates of Photochemicaily Deposited Contamination on the

GPS Satellites,",/. Spacecraft, Voi. 28, No. 2, pp. 222 - 228, (1991).
25Hall, D. F., Stewart, T. B., and Hayes, R. R., "Photo-Enhanced Spacecraft Contamination

Deposition," AIAA Paper g5-0953, 20th Tbermophysics Conference, Williamsburg, VA, June

(1985).

26Judeikis, H. S., Arnold, G. S., Young Owl, R. C., and Hall, D. F., "Design of a Laboratory Study of

Contaminant Film Darkening in Space," Aerospace Report No. TR-94 (4935)-3, I October i 993.

Arnold, G. S., and Lucy, K., "Photochemicaily Deposited Contaminant Film Effects: Data Archive,

Vol. 2 - Appendices A through D.," Aerospace Report No. TR-94 (4935)-13, 15 September 1994.
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Figure 2-18. Evidence of photochemically deposited contamination on GP$ Block 1.
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2.5 Estimating End of Life Molecular Cleanliness Levels

In order to establish allowable contamination levels for sensitive surfaces it is necessary to know:

i) how contamination will affect the performance of the spacecraft subsystem, and ii) what

performance degradation the subsystem can tolerate. With this information it will be possible to
quantify how much contamination the subsystem can tolerate. This is usually done for end of life
conditions, since a more stringent contamination limit has cost and schedule impacts, while a less

stringent limit may shorten mission life.

2.5.1 Solar Arrays

Using the solar output shown in Figure 2-2, the spectral response shown in Figure 2-11, and the

absorptance profile shown in Figure 2-20, (because films resident on a illuminated solar array would

most likely be due to photochemical deposition), the resulting power output is shown in Figure 2-21.

As shown, A I% power margin equates to roughly level A depending on the specific nature of the
contaminant. Note that the degradation due to photochemically deposited films, Figure 2-20, is much

greater than that associated with non-photochemically deposited films, Figure 2-12.
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Power 0.90

Output O.88
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0.84
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10-2 10-1
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_ _ _0C704 1

i

Figure 2-21. Solar array power as a function of MIL STD 1246C cleanliness levels.

The preceding example has made two key assumptions that may or may not be justified,

depending on the problem at hand. First, the power degradation in Figure 2-12 is based on the spectral

response characteristics of a solar cell as specified in Figure 2-11 and a contaminant absorptance

profile as illustrated in Figure 2-20. If the values for the problem in question are noticeably different,

it may have an effect on the required surface cleanliness.

More importantly, the surface cleanliness requirement requires interpretation to understand if it is

viewed as an "average" contamination requirement or "worst case" contamination requirement. The

answer depends on the actual spacecraft design. A solar array is manufactured by connecting the

individual solar cells in series into a "string" of cells that produces the required voltage. A single cell

usually produces - I volt, while the spacecraft bus requires much more, (28 volts is typical for most

U.S. spacecraft). The number of cells in a string, and the number of strings in the panel, is therefore
determined by the power requirement. Because of the nature of solar cells, if a single cell in a string is
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degraded by contamination the power output of the entire string will be effected. That is, the power
output from a single string of solar cells is governed by the "worst case" deposition on that string. The

power production from the entire array is simply the sum of the power produced by the individual

strings.
Consider the two options illustrated in Figure 2-22. A solar array that has its strings of solar cells

oriented parallel to the spacecraft boom presents a high view factor between the spacecraft body, and
all of its contamination sources, and one cell in each string. This design is vulnerable to contamination

as a single outgassing source could contaminate every string on the panel. Conversely, a design which
orients its strings perpendicular to the spacecraft boom presents a high view factor for the string

nearest the body and a much lower one for the string farthest away. This option will be much more
tolerant to contamination since an outgassing source on the vehicle would be expected to deposit most

of its contaminants on the string nearest the body, and proportionately less on the strings further away.

For this reason, the end of life surface cleanliness requirement that is specified for a solar array must

also factor in the orientation of the strings in order to be meaningful.

STRINGS STRINGS

PERPENDICULAR PARALLEL

TO BOOM TO BOOM

I II I I II

Figure 2-22. Solar array design options.

2.5.2 Thermal Control Surfaces

Consider the example of a thermal control surface, assumed to _ an optical solar reflector (OSR),

with an end of life ch/_ requirement of 0.12. The data shown in "..'.,te 2-5 indicate a contamination
free value for solar absorptance of 0.06. As shown in Figure 2-23, an end of life oh/c value of 0.12

equates to a contaminant thickness of about 0.1 parn,or surface cleanliness level G. This contamination

requirement is interpreted as the "average" contamination value. The radiator will absorb heat from

space in proportion to its solar absorptance and its area. Consequently, it may be acceptable for certain

portions of the radiator to be degraded below the level G requirement, provided that the remaining

portions of the radiator are clean enough to compensate for the dirty parts.

This result is predicated on a surface reflectance as specified in Figure 2-5 and a nominal

contaminant absorptance profile as shown in Figure 2-6. Consequently, this result is more applicable

to surfaces that are not illuminated b.', the Sun. Using the photochemically deposited contaminant

absorptance profile from Figure 2-20 would produce a greater degradation in ch for a given value of
contaminant thickness.
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2.5.3 Optical Surface Contamination

Consider the example of a visible sensor, composed of 3 reflective mirrors, 2 transmissive lenses,

and a focal plane, operating in the 0.35 - 0.90 pm waveband. We will assume that the sensor has an

initial signal to noise ratio (SblR) of 10.0 and requires a value of at least 9.0 for acceptable operation.

The contaminant absorptance profile shown in Figure 2-6 would reduce the signal strength in this

waveband as shown in Figure 2-24.
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Figure 2-24. Degradation in signal strength as a function of MIL STD 1246C cleanliness level for
a broadband visible sensor.

A signal strength reduction by 9.0/10.0 = 0.90 equates to a surface cleanliness requirement of about

0.2 pro, or level H. However, this is a total contamination requirement to be distributed between all
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elementsoftheopticaltrain. That is, the total contaminant thickness that the signal can traverse, and
still have the minimum required strength, is 0.2 pm. The signal will not care whether all of the

contamination is present on the first optical element or evenly dispersed over all elements. As a result,

the requirement must be interpreted before it can be flowed down to specifications. Evenly

distributing this requirement between three mirrors, two lenses, and a focal plane array would imply an

"average" surface cleanliness of 0.2 _tm/i I = 0.018 pm, or level A. (Note that the factor of 11 arises
because a light ray would have to traverse each mirror surface twice, plus the front and back of each

lens. This is not necessarily physically accurate in that the outer surface of a lens will usually act as a

contamination barrier, protecting the inner surface of the lens and other elements "downstream" in the

optical train, from contamination which originates "upstream".)

Obviously, the waveband of interest, the contaminant absorptance profile in that waveband, and
the design of the sensor are all a critical pan of determining the contamination requirement. 2_ Note

that, as illustrated in Figure 2-6 and Figure 2-20, most contaminants are more absorptive in the
uitraviolent than in the visible or infrared. For this reason, UV sensors are much more sensitive to

contamination, it is not unusual for many sensors to go "blind" in the UV before even leaving the

ground, due to the build up of contaminant films that are too small to noticeably affect visible or IR

operations. The Earth Radiation Budget (ERB) instrument on Nimbus 6 and 7 experienced a 45%

transmission loss in the 0.3 - 0.4 pm waveband after 3.5 years on orbit. Similarly the Strategic

Aerosol and Gas Experiment (SAGE) instrument on AEM-B experienced between 5.5% and 11%
transmission loss in four wavebands between 0.385 and 1.0 I,tm. _

2.6 Design Guidelines for Controlling Molecular Contamination

As summarized in Table 2-7, while many spacecraft elements are sensitive to contamination, the

actual amount of contamination that an element can tolerate is highly dependent upon its function. As
shown, UV sensor elements are the most sensitive to contamination, while IR sensor elements are least

sensitive. This Table ignores the effects of particulate contamination, and the issue of contamination

control, and should not be taken out of context. As will be seen in the next two chapter, visible and IR

sensors are extremely sensitive to paniculate contamination. For these elements, the required
particulate contamination levels often drive the design of the entire spacecraft. The effects of

molecular contamination can best be conWolled by minimizing tr_e.amount of contamination that is: i)
generated, ii) transported, and iii) deposited on a surface. The effects of contamination would also be

reduced if the absorptance profile of the contaminants were minimized, but since this is rarely (if ever)
an option it is not seriously discussed here.

As shown in Table 2-8, design options to minimize contamination fall into four categories:

materials, design, operations, and margin. Most organic materials on board a spacecraft can be a

source of outgassing. For this reason, simply choosing materials that do not generate many outgassed

by-products is the simplest solution. Due to the diverse nature of materials on the vehicle, (RTV
adhesives, cabling, wiring, paints .... ), eliminating all outgassing is simply not possible. However, the

mass properties list can provide information for pre-flight analysis to identify those materials which

will be expected to be the greatest sources. When possible, selecting low outgassing versions from a

list of candidates can prevent many problems from occurring. If this is not an option, pre-flight

2_Chcn, A. T., Abe, N.D. Mullen, C. R., and Gilbert, C. C., "Contamination Sensitivity and Control of

Optical Sensors," S.,:iety of Photo-Optical Instrumentation Engineers, Optical Sensor

Contamination: EJJects, Measurement, Control, Vol. 777, pp. 97 - 126, (1987).

Ostantowski, J. F., "Contamination Sensitivity of Typical Mirror Coatings - A Parametric Study,"

Society of Photo-Optical Instrumentation Engineers, Spacecraft Contamination Environment, p.
80, (1982).

2s Mouldin, L. E., I11, and Chu, W. P., "Optical Degradation due to Contamination on the

SAGE/SAGE II Flight Instruments," Society of Photo-Optical Instrumentation Engineers,
Spacecraft Contamination Environment, pp. 58 - 64, (1982).
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treatment of the material may be necessary to reduce its on orbit outgassing. 29 Vacuum baking of

materials will force outgassing to occur on the ground, rather than in space, and reduce the amount of

volatiles that will be generated on orbit. Because this method is costly and the material will

undoubtedly reabsorb water and other contaminants from the atmosphere between the bakeout and

launch, it is used only when pre-flight analysis indicates it is the best systems level, (lowest cost),

solution.

Table 2-7. Summary of molecular contamination concerns.

Required Cleanliness

Affected Operational if Single if5 Optical
Parameter Criteria Surface SurfacesElement

UV Sensor'

Solar Arrays °

Signal < i0% Absorption - 0.05 jam - 0.004 [am

Strength (0.2 - 0.3 }am) (Level B) (- Level A/20)
Power < 2% Power Loss - 0.015 lam" N/A

Production (Level A)

Thermal Control

Surfaces

a/e Ratio ha, < 2.0 initial a_ - 0.2 jam N/A

(Initial OSR cq = 0.06) (Level H)

Visible Sensor Signal < 10% Absorption - 0.2 _m - 0.04 p.m

Strength (0.35 - 0.90 pm) (Level H) (Level D)

IR Sensor c Signal < 10% Absorption - 1.5 pm - 0.3 Izm

Strength (1.0 - 2.0 pm) (>> Level J) (- Level J)

"assumes nominal contaminant absorptance profile - highly absorptive in the UV

bassumes darker, photochemically deposited contaminant absorptance profile

Crequires cryogenic surfaces that retain contaminants

Table 2-8. Design guidelines to minimize molecular contamination.

Materials Selection

Choose low outgassing materials for all applications, (adhesives, paints, coatings .... )
Pre- Treatment

Consider vacuum bakeout of critical materials before installation in the vehicle

Design Locate vents and thrusters with minimal view factors to sensitive surfaces

Operations Ground

Insure good contamination control procedures during assembly and test, provide for

inspection and cleaning of sensitive surfaces

Flight

Allow time for on orbit bake out during early operations, provide cooler surfaces the

opportunity to warm up and outgas condensed films

Margin Allow for degradation in both ground and flight operations

Although multi-layer insulation (MLI) blankets, paints, and other materials on the exterior

surfaces of a vehicle will be sources of outgassing, most of the outgassed mass originates internal to

the vehicle where the electronic boxes and cabling are located. The matter that is outgassed interior to

the vehicle will undergo multiple scatterings until it can locate a vent path and escape. Consequently,

the design and location of the vents, and thrusters, are an equally critical part of contamination control.

Designing a vehicle so that view factors from possible spacecraft sources to sensitive surfaces are

minimal is straightforward, but does require a conscious effort on the part of the designer.

_90'Donnell, T., "Evaluation of Spacecraft Materials and Processes for Optical Degradation

Potential," Society of Photo-Optical Instrumentation Engineers, Spacecraft Contamination
Envtronment, Vol. 338, p. 65, (1982).

2-31



Contamination Control Engineering Design Guidelines for the Aerospace Community

The last stage in the process, deposition, is rarely anything that the designer can control directly.

The fundamentai chemical nature of the contaminant, and the nature of the surface material and its

temperature, will control the deposition rate. This rate can only be indirectly affected by warming the

surface, to minimize deposition, and keep them pointed away from the Sun, to minimize

photochemical deposition. Obviously, the mission objective must be considered before designing

these alternatives into a system.

Once the design has been cast, ground operations will still play an important role in determining

the surface cleanliness of the vehicle when ready for launch. Outgassing from test equipment or

surrounding facilities can contaminate a spacecraft while it is being assembled. Periodic inspection

and, if necessary, cleaning will be required to veri. ¢_ beginning of life cleanliness levels. End of life

performance can often be extended through prope: on orbit flight operations. Allowing a spacecraft

several days, or weeks, to outgass upon reaching orbit, and before opening sensor covers, is one means

of insuring that contaminants dissipate before sensitive surfaces are exposed. Cooled surfaces, such as

IR focal planes, can be allowed to warm up in an attempt to "boil off" condensed contaminants.

However, this example would subject the focal plane to thermal stresses, would render the sensor

useless during the procedure, and would require recalibration after the procedure. For this reason it is

viewed as a last resort option.

The final, and often most critical, step that a design engineer can take to ensure proper on orbit

performance is to allocate a proper margin. As we have seen, contaminant thicknesses on the order of

0. I #am are sufficient to cause noticeable degradation of many surfaces. Therefore, some allocation

must be made for the degrading effects of molecular contamination on most surfaces. The actual value

to be used will be dependent _..lJ the nature of the surface, criticality of the subsystem, mission

objective, cost and schedule. As a general rule, the more sensitive a surface is to contamination, the

more costly and time consuming it will be to insure that it performs properly on orbit. Providing a
generous margin, if possible, will minimize cost, schedule, and risk.
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3. Quantifying Particulate Contamination Level Requirements

3. I Effects of Particles

By definition, particles are visible (pro-sized) conglomerations of matter that deposit onto surfaces

exposed to the environment. In the colloquial sense, they are simply "dust". Particles are a natur'

part of the environment as is familiar to anyone who has ever dusted a mantlepiece or washed a,
windshield. Modeling a particle as a sphere of arbitrary size, as shown in Figure 3-1, we see that the

effect of the dust on the surface may be twofold.

First, the dust will prevent some light from

reaching the underlying surface. Some effects of

particulate contamination are therefore

proportional to the surface obscuration, or the

percent area coverage (PAC). Solar arrays,
thermal control surfaces, and optical surfaces

may all be degraded due to surface obscuration.

Secondly, the particles may scatter light off of its

original direction of tz'avel. This is a critical
concern for many optical systems. Figure 3-1. A particle on a surface.

3.1.1 Surface Obscuration - Effects on Reflecting Surfaces

3.1.I.1 Optical Elements- Mirrors

The presence of particles on a reflecting mirror will reduce the stTength of the signal that is

reflected to the next optical element. Normally, particles would be expected to have a rather high

absorptivity, consequently any light from the signal which falls on a piece of dust, rather than the
actua_ mirror, will be lost to the optical system. The magnitude of the loss in signal strength is

therefore expected to be proportional to the fractional surface area that is obscured by the particles.

3.1.1.2 Thermal Control Surfaces

The presence of particles on a thermal control surface will have the net effect of altering its

effective solar absorptance and/or emissivity.' By design, many thermal control surfaces are chosen to

have a low value of solar absorptance. Panicles, which would typically have a higher solar

absorptance than the underlying surface, would block some light from reaching the radiator directly.
However, most of the obscured solar flux would be absorbed by the particles rather than reflected back

to space. As a result, the particles would seek a higher equilibrium temperature than the surface on
which they are sitting. The panicles would then radiate, and conduct, more heat to the surface than

they receive in return and the end result would be an increase in the equilibrium temperature of the
surface. By inspection, the change in solar absorptance due to panicles is given by

ct _ =ct, + Act, = ct,._.,y (1- PAC)+ct,.p,.,,(PAC), Equation 3-1

Or

Hamberg, O., and Tomlinson, F. D., "Sensitivity of Thermal Surface Solar Absorptance of

Particulate Cointamination," AIAA 71-473, 6th Thermophysics Conference, Tullahoma, TN,

April (1971).
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A_., = PA C(a ,._,,,. - a.,..,,,_. ), Equation 3-2

where c(_,_ and as.p_ refer to the solar absorptance of the clean surface and particles, respectively,
and PAC is the percent area coverage of the particles. Similarly, particles will also change the

effective emissivity of a surface according to the relation

Equation 3-3

or

Ae = PAC(e _,:/. - e p,,,,.) .
Equation 3-4

Consequently, it is seen that the effective increase in solar absorptance, emissivity, and equilibrium

temperature, (Equation 2.13), is directly proportional to the PAC. Note that the biggest concern is to

be expected if black (highly absorptive) particles are deposited on white (highly reflective) surfaces, or
if white (low emissivity) particles deposit on black (high emissivity) surfaces. Most particulate

contamination is dust, with some sand and soil particles, especially out of doors. Lint, pieces of

thread, and hairs may also be present where people are active. Most of these panicles are a dull gray

having a, > - 0.5, e > - 0.5, and are optically opaque. Gray panicles would have little effect on gray
surfaces.

3.1.2 Surface Obscuration - Effects on Transmitting Surfaces

3.L2.1 Solar Arrays

Because solar cells are non-imaging devices, surface obscuration at the wavelengths of interest, (-

0.4. 1.1 _tm), is the only effect of surface panicles. At f_t glance it would appear that the power
reduction would be exactly equal to the PAC of those panicles. However, individual solar cells are

less sensitive to surface particles that expected. Experiments indicate that a 1% PAC produces only a

0.2% power loss, Figure 3-2. 2 A PAC of ~ 2.7.% was required to produce a 1% power loss. While

some of the particles may be partially tramsmissive, the major effect is believed to be scanering

around the panicles. Consequently, the power degradation is almost invariably less than the PAC.

As with molecular contamination, the effect of surface particle contamination on a string of solar

cells depends upon the manner in which the contamination is deposited. If each cell in a string is

equally contaminated the overall effect will be as shown in Figure 3-2. However, if one cell were to
receive all of the contamination the power reduction will be much greater. That is, if all of the

panicles were collected to form a sheet obscuring 1% of the solar cell, a power decrease on the order

of !% would be expected. This is due to the fact that the contaminated cell not only produces less

power, but also becomes a resistive load also, (neglecting temperature effects, which can be important

if the cells are not all at the same temperature). As discussed in section 2.5.1 of this report, string

orientation is important if the cells in that string are not equally contaminated.

2 Raab, J. H., Particulate Contamination Effects on Solar Cell Performance, MCR-86-2015, Rev A,

Final Report for F04701-83-C-0045, January (1997).
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Figure 3-2. Solar array power loss due to surface obscuration by particles.

3.1.2.2 Optical Elements- Lenses, Focal Plane Arrays, and Concentrated Optics

As with the optical mirror, any particulate contamination which resides on a lens or a focal plane

array would prevent the optical element from transmitting the signal and reduce its signal strength in

proportion to the PAC. A critical difference for most lenses, and especially focal planes, is that these

locations are typically where the signal from a wide collecting area, (the primary mirror), has been
focused into a much smaller cross section. The end result is that particulate contamination on the final

optical element, or the focal plane, will be much more damaging than would particles on the primary
mirror. For example, if the primary mirror is 1 m 2 in area, but the focal plane is only 10 cm 2, the

signal gathered by the primary mirror has been focussed by a factor of 1000 before reaching the focal

plane. Absorption at this last location is therefore 1000 times as damaging to the signal strength.

More importantly, because of the small size of modem focal plane detector elements even small

particles, < 5 l_m in diameter, can block one or more focal plane pixels which are of the same order
This effectively blinds the pixel permanently. Because of the magnification of the telescope, even a

small particle on the focal plane blocks more of the signal that many large panicles on the primary
mirror or lens. Since panicles are comparable to the wavelengths for many IR sensors, they can also

scanner light to other pixels not directly obscured.

3.1.2.2.1 Additional Concems for Focal Planes

It"the panicle is even partially electrically conducting it may short out one or more pixels unless

the focal plane is covered by a non-conducting filter, (which is often the case). As for panicles on the

primary optical surface, mechanical or chemical damage is seldom a problem. It is possible for a

panicle to produce a thermal problem since focal planes for IR sensors typically operate at low

temperatures (< 77 K). The cooling requirements for these focal planes arc typically a few milliwanns.

If a panicle were to be located where it produces a thermal "short" to a warmer sensor component

close to the focal plane, the refrigeration may be unable to maintain the focal plane temperature. If the

focal plane is cooled by onboard cryogen, the result would be a reduced mission life. Incidentally,
molecular contamination, such as ice), can also form thermal shorts near the focal plane with similar

results.

While focal planes are nearly always protected against external contamination, they are vulnerable
to internal contamination. It is very important that all components of optical sensors be fabricated

from materials which do not outgas, flake, or otherwise produce contamination. The launch

environment may shake particles loose from some part of the sensor which could land on the focal
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plane.Whilesmall particles are difficult to remove by "g" forces, (it takes a force several thousand
times the acceleration due to gravity to dislodge pro-sized particles), the possibility should not be

overlooked.

3.1.3 Scattering

In addition to surface obscuration, which effectively reduces signal strength, the presence of

particles on optical surfaces can induce other disastrous consequences into an optical train. By design,
a baffle is intended to block extraneous signals from off axis sources and prevent them from being able

to reach the focal plane. A perfectly absorptive surface would prevent all incident light from the Sun,

for example, from reaching the focal plane. Consider the effects of dusting this surface with particles

that are less than 100% absorptive. If particles on an optical baffle are even partially reflective they

may scatter light from the Sun, (or other off-axis source), back into the optical train. Because of the

large intensity of the Sun, 1350 W m':, if even a small fraction of this energy were scattered into the
optical train and able to reach the focal plane it could be sufficient to overwhelm the signal from the

sensors intended target and possibly even damage the focal plane itself. For this reason, keeping any

surface within an optical element clean is of utmost importance.

As a first step in relating surface cleanliness to surface scattering it is appropriate to emphasize
some of the key objectives of optical design. 3 We first define stray light to mean light from any source

other than the object that the sensor is interested in observing. Typically, the biggest sources of stray

light for an orbiting sensor are the Sun, Earth, and Moon. A system can be designed to reject stray

light by forcing the stray light out of the optical train, so that it cannot reach the detector, or by causing
it to make the maximum number of reflections off of absorbing surfaces before reaching the detector.

For example, a baffle surface with a reflectance of 0.01 would attenuate the signal by a factor of
(0.01)' after n bounces. The amount of stray light radiation reaching a detector due to scattering offa

small element of an internal surface, such as a baffle or a mirror, is the product of three factors: i) the

amount of radiation incident upon the surface, (the strength of the stray light source), ii) the reflectivity

of the surface for the particular incoming and outgoing directions, and iii) the projected solid angle of
the detector as seen from the element.

The amount of radiation incident upon a given surface will be determined primarily by operations.

That is, the geometry between the Sun and the object of interest will determine the amount of sunlight

that can strike a given location within the baffle, Figure 3-3, For this reason, one requirement flowing

from the design characteristics of the sensor will be an operational constraint on the Sun exclusion

angle, (and possibly also an Earth/Moon exclusion angle). Surface reflectivity is ultimately related to

surface cleanliness. A surface with a reflectance of 0.01, (an absorptance of 0.99), will be a better
attenuator of stray light when it is clean than it will be when dirty. When dirty each and every panicle

of dust will act as a separate scattering source and will increase the reflectance of absorbing surfaces.

One challenge of stray light analysis is to relate surface cleanliness requirements to sensor design and

operational constraints. Finally, the projected solid angle of the detector from a given element within

the sensor is a factor that is fixed by design. Once the design of the sensor has been fixed based on the

characteristics of the target, and the operations geometry has determined the strength of off-axis

sources, surface cleanliness remains the last barrier to ensuring effective operations. This is seen as
follows.

3.1,3.1 Mie Scattering

The first systematic study of scattering by larger particles was done by Mie. 4 These studies were

aimed at understanding the scattering by spherical, colloidal metal particles. The results provide a

qualitative understanding of scattering by non-spherical panicles, and reduce to Rayleigh's theory

J Race, L. B., personal communication from "Stray Radiation Analysis of the Brilliant Eyes Line of

Sight Pointing Mirror Assembly and Alternative Configuration Designs," Rockwell International,

2 ! September 1993.
( Mie, G., Ann. Phys., Vol. 25, no. 4, pp. 377 - 445, (1908).
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Figure 3-3. Geometry determines scattering on baffle surfaces.

when the spheres are very small, gayleigh scattering is the name applied to the incoherent scattering

of light by particles of dimension smaller than the wavelength of the light. 5 Mie theory shows that the

ratio of scattered energy to the incident energy intercepted by the geometrical cross section of the

particles is given by

2
./-!

where aj and b; are functions of spherical Bessel functions and Hankel functions of the second kind

with complex arguments.. This is illustrated in Figure 3-4.

10
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Figure 3-4. Ratio of scattered energy to incident energy as predicted by Mie theory.

5 Rayleigb, J. W. S., Philos. Mag., Vol. _.., pp. 107 - 120, (187 l).
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For dO, << Ithe behavioris(dfA)"(.This istheRayleighscatteringwhich accountsforthe bluecolor

of the sky. For dO, - I the scatteringcrosssectionoscillatesbetween about 0.4 and 4.0 times the

geometricalcrosssection,sothatMie theoryisnecessaryforparticlesofthissizeand larger.For d/'A

greaterthan about 3, the scatteredenergy isnot stronglydependent on k and the methods of

geometricalopticsare used. Experimentalobservationsof scatteringtypicallyindicatefairlygood

agreementwith Mie theory.6

3.1.3.2 Bidirectional Reflectance Distribution Function (BRDF)

Based on conservation of energy and momentum, a perfectly smooth surface would satisfy the

condition that the angle of incidence e_ is equal to the angle of reflection Or. Because no physical

surface can ever be perfectly smooth, all real optical devices will have surface imperfections due to

cracking, pitting, or particulate contamination. One effect of these imperfections is to scatter a small

fraction of the incident light at angles other than Or = 0_. One measure of the scatter of optical

components is the bidirectional reflectance distribution function (BRDF), which is the scattered

surface radiance divided by the incident surface irradiance. _ BRDF is a function of many variables

and is defined by

BRDF = f,(O ,,_),:0,,_),) =
dl,(O,,#,)

Equation 3-6

where L s (W m -2 sr -z) is the scattered radiance measured at (0. ¢_.) and 1_ (W/m 2) is the incident

irradiance from (0, ¢_i)as illustrated in Figure 3-5. The units of BRDF are sr"-i. Intuitively, BRDF can

be defined as the ratio of the scattered power measured by a detector to the incident power on the
sample, divided by the projection of the solid angle of the detector on the sample surface.

Closed form solutions for BRDF are difficult to obtain, but there is general agreement that BRDF
can be deconvolved into three independent terms. That is,

BRDF = F_ FoF,, Equation 3-7

where Fz is the wavelength, or spectral, factor given by

k 4 (2_2 1 16_ 2
F_ =_-_'=k k ,/ _'T=_ '

Equation 3-8

6 Schade, H., and Smith, Z. E., "Mie Scattering and Rough Surfaces," Applied Optics, Vol. 24, No. 19,
pp. 322 ] - 3226, (1985).

Bartell, F. O., Dereniak, E. L., and Wolfe, W. L., "The Theory and Measurement of Bidrectional

Reflectance Distribution Function (BRDF) and Bidirectional Transmittance Distribution Function

(BTDF)," Society of Photo-Optical Instrumentation Engineers, Radiation Scattering m Optical
Systems, Vo]. 257, pp. 154 - 160, (1980).

Nicodemus, F. E., "Directional Reflectance and Emissivity of an Opaque Surface," Applied Optics,
Voi. 4, No. 7, pp. 767 - 776, (1965).

Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T., "Geometrical

Considerations and Nomenclature for Reflectance," Department of Commerce, PB-273 439,
October (1977).
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Figure 3-5. BRDF geometry.

Fo is the optical factor, which includes information about the surface material and geometry, and F, is
the surface factor, which includes the measure of surface roughness. The form of Fo and F_ vary

depending on the theory used to obtain them. s Because no real materials or surface finishes can ever

reach their theoretical values experimental measurements of Bi_F are relied upon in most

applications. Emperically, BRDF is seen to agree with the expression

L J •

Equation 3-9

or equivalently

logBRDF = logb + m log['l_O_O_ 'I]
' " 9

Equation 3-10

where 0, is the angle of scattering, 0r is the angle of incidence (usually 0° in a test configuration), m is
the observed slope, and b is the BRDF when sin 0 - sin 0o = 0.01. For smooth surfaces, m is typically
between -1 and -3.

In practice, the theoretical BRDF cannot be reached even for non-symmetric telescope designs.

Figure 3-6 shows what has been achieved for eight sensors which have been built. It is seen that off-

s Beckmann, P., and Spizzichino, A., The Scattering of Electromagnetic Waves from Rough Surfaces,

Pergamon Press, (1963).

Davies, H. O., "The Reflection of Electromagnetic Waves from a Rough Surface," Proc. IEEE, Vol.

101, p. 209, (1954).

Wolfe, W. L., "Induced Angle invariance in Surface Scatter," Society of Photo-Optical

Instrumentation Engineers, Scatter from Optical Components, Vol. 1165, pp I0 - 17, (1989).
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axis(non-symmetric)designscanachievelowerBRDFvaluesattheexpenseof designandfabrication
complexity.Thesemeasurements were on clean mirrors under controlled conditions and were
achieved by super-polishing techniques. It will be noted that achieving these low BRDF numbers

require an almost-perfect mirror figure, which is more easily done if the mirror is to be used at IR

wavelengths.
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Figure 3-6. BRDF measurements for selected space sensors.

Often a BRDF of 10" at an angle of ! °, (i.e., the off axis source is I° out of the sensors field of

view), is taken as the idealized goal for reflecting telescopes. The smaller the _) ratio, the ratio of the

wavelength to the telescope diameter, the easier this is to attain if the primary mirror has a perfect

figure. However, the smaller the X/D ratio, the more difficult it is to achieve even with an almost

perfect figure. Considering that small XJD ratios increase signal to noise ratio and also dramatically
increase sensor weight, the sensor designer has a serious optimization problem.

As will be seen, even a little contamination on the mirror will increase its BRDF dramatically.

Especially, if that contamination can scatter light. This is especially _'ue for particles, but even a small
amount of molecular contamination will increase the BRDF of a good mirror (however, if the mirror

figure is bad, it takes more contamination of any kind to make it worse.) in essence, the presence of
9

contaminantion acts to alter the surface factor F,. The presence of panicles, or molecular films, will

increase the surface roughness and, consequently, the BRDF. It should be pointed out that BRDF

values add linearly. That is,

BRDF_ol = BRDF.,,,.. + BRDF._,. Equation 3-1 !

Beyond about 8° off axis, the scatter is dominated by dust, not surface roughness. )° Because of

difficulties associated with manufacturing ideal surfaces, BRDF values for "perfect" surfaces can

rarely be less than lO"_ at I °. Machined surfaces may be in the range 10-.5 to 10-3 at I% while a

9 Bennett, H. E., and Poneus, J. O., "Relation Between Surface Roughness and Specular Reflectance at

Normal Incidence,",/. Opt. Soc. Am., Vol. 51, No. 2, pp. 123 - 129, (1961).

Elson, J. M., and Bennett, J. M., "Relation Between the Angular Dependence of Scattering and the

Statistical Properties of Optical Surfaces,",/. Opt. So¢. Am., Vol. 169, No. !, pp. 31 - 47, (1979).

:0 Dowling, J. M., Hills, M. M., Arnold, G. S., Ran, A. K. A., "Contamination Effects on Surveillance

Telescopes," The Aerospace Corporation, TR 93(3935)-14, 22 October 1993.
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complete optical train may be more on the order of 10-2 at I°. Note that the BRDF values required of

a completed optical train must be decoupled in order to identify the required surface cleanliness

requirement for individual surfaces.

3.1.3.2.1 Point Source Transmittance (PST)

BRDF is closely tied to sensor performance characteristics. For example, one measure of sensor

performance is Point Source Transmittance (PST). PST is defined as the fraction of the signal strength

from an off-axis point source that is transmitted to the focus of the optical train. The relation between
BRDF and PST is

PST =

r
n cos0 |1 0

4 tan"

BRDF,

Equation 3-12

where L is the focal length of the optical train, D is the aperture diameter, 0 (tad) is the angle between

the normal and the point source, and s is a parameter that varies from 1, for typical optics, to 2, for

superpolished mirrors. Consider the example of a space-borne sensor, such as the Hubble Space
Telescope, that is pointing at a faint star cluster that lies within a few degrees of a bright object such as

the Sun. The fraction of energy from the Sun that reaches the focal plane will be the product of the

total solar output, 1350 W/m 2, and the sensor PST. The PST value, and consequently the BRDF value,

would have to be quite small in order for the reflected solar radiation not to overwhelm the faint signal

from the star clu_,er, or possibly even damage the sensor itself. This places a dual constraint on both

the Sun exclusion angle (the minimum angular separation between the Sun and objec _f interest) and
surface cleanliness levels.

3.2 Quantifying Particulate Contamination

3.2.1 MIL STD 1246C

As with molecular contamination, surface particle cleanliness is quantified by MIL STD 1246C,
Table 3-1 and Figure 3-7. The surface cleanliness is specified by a numerical value, which is

interpretted as the size, in lain, of the largest particle that has an average distribution of one per fi2.
Larger particles would occur less frequently than once per ft2, while smaller particles occur more

frequently. Emperical observations indicate that particle size distributions on surfaces exhibit a

geometric mean near 1 lain, and are described by the relation

logN(x)=C'[log2Xi -log 2 x],
Equation 3-13

where N(x) is the number o_ 2nicles/ft 2 greater than or equal to x, x (lain) is the panicle size, X I is the

surface cleanliness level, an0 C' is a normalization constant approximated in the MIL STD by 0.o"'i0.

It is important to note that the value of C' is based on measurements of precision cleaned pans a_ _ is

:herefore representative of cleaned products. As shown in Table 3-2, (and Figure 4.8), the coefficients

that were measured on uncleaned surfaces in a variety of cleanrooms disagree
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Table 3-1. Particulate contamination as quantified by MIL-STD-1246C.

Cleanliness Particle Count Count Count

Level Size 0tin) per ft"-2 per 0.1 m -2 per Liter

1 I 1.0 1.08 I0

1 2.8 3.02 28

2 2.3 2.48 23
5 1.0 ! .08 10

10 I 8.4 9.07 84

2 7.0 7.56 70

5 3.0 3.24 30

I0 1.0 1.08 10

25 2 53 57 530

5 23 24.8 230

15 3.4 3.67 34

25 1.0 1.08 10

5O 5 166 179 i,660
15 25 27.0 250

25 7.3 7.88 73

50 1.0 1.08 10

100 5 1,785 1,930 17,850

15 265 286 2,650
25 78 84.2 780

50 11 il.9 110

100 1.0 !.08 10
200 15 4,189 4,520 41,890

25 !_40 1,340 12AO0

50 170 184 1,700
100 16 17.3 160

200 1.0 1.08 10
300 25 7,455 8,050 74,550

50 1,021 1,100 10_!0
100 95 103 950

250 2.3 2.48 23
300 1.0 1.08 10

500 50 11,817 12,800 ii8,170

100 1,100 1,190 11,000
250 26 28.1 260

500 1.0 1.08 10
750 50 95,807 105,000 958,070

100 8,900 9,630 89,190

250 214 231 2,140
500 8.1 8.75 81
750 1.0 !.08 10

1000 100 42,658 46,100 426,580

250 !,022 1,100 10,220
500 390 42.1 390

750 4.8 5.18 48

1000 1.0 1.08 10
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Figure 3-7. MIL STD 1246C surface particle cleanliness levels.

Table 3-2. Measured surface cleanliness values from various cleanroom facilities.

Source Coefficient C'

MIL-STD-12 46C O.926

NASA/KSC 0.31 I

Aerospace Corp./KSC 0.380
Martin Marieaa/KSC 0.315

TRW Vactory 0.354

JPL/Easter. _,Test Range 0.557

Average O.383
Std. Dev. O.! O!

significantly from the value of 0.9260 assumed by the MIL STD." For uncleaned surfaces a

coefficient of 0.383 may agree better with observations. That is, the particle fallout from the air

produces a size distribution weighted toward large particles, while surface cleaning is more effective at

removing large particles than small particles. Consequently. when using the MIL STD to specify

cleanliness levels it is important to limit its use to surfaces that have been cle:::,cd after exposure to

fallout. Note that the metric equivalent to Equation 13, where N(x) is de:, :cd as the number of
particles per 0. I r,-z greater than or equal to x, is obtainc, by adding a second variable to the equation

logN(x)--C'[lo 2X,-log C", Equation 3-14

where C" has the value 0.03197. N(x) is related to the frequency function n(x), defined as the
frequency of particles of size x per m "z, by the relation

it Hamberg, O., "Particle Fallout Predictions for Cleanrooms," J. Env. Sci., Vol. 25, No. 3, p. 15,

(1982).
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N(x) = fn(x' )dx' .
%

Equation 3-15

Note that while air quality can be added linearly, surface cleanliness cannot.

3.2.2 Percent Area Coverage

The geometrical PAC of a particle on a surface is simply the area of that panicle, viewed normally
to that surface, divided by the area ofthe surface. The total PAC of a collection of particles is simply

the sum total of the area for each particle, assuming that panicles do not lie on top of each other.

In principle, the PAC should be discernible from the number density, or frequency function, of

particles on a surface. However, attempting to derive this information from Equation 3-14 proves

difficult, as this equation actually predicts negative numbers of particles for sizes smaller than 1 p.m.

That is, the MIL STD was apparently intended to describe larger particles and will require
modification for PA C calculations. _2

As shown by Kelley, this modification can be obtained by assuming a frequency function of the
form

subject to the constraints

n(x) = K(X I )f(x), Equation 3-16

" f(x)ax = z,
o

Equation 3-17

the statement that._x) is normalized, and

_ xf (x )dx = 1 pro,
o

Equation 3-18

to agree with observations that indicate a geomelric mean in the size distribution near 1 pro. The
solution to,x) which satisfies these constraints is

Equation 3-19

where a = 0.3578 and b = 2.4866. (Note that the constants are determined both by a need to match the

constraints in Equation 3-17 and Equation 3-18, and by a need to match the slope of the MIL STD
particle distribution for larger particles.) By definition,

_: Barengoltz, J. B., "Calculating Obscuration Ratios of Contaminated Surfaces," NASA Tech. Briefs,
Vol. 13, No. 8, Item 2, August (1989).

Kelley, J. G., "Measurement of Particle Contamination,",/. Spacecraft, Vol. 23, No. 6, p. 641, Nov.
- Dec., 1986.
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eo

t.X) = K(X) ) _f(x)dx .
x

Equation 3-20

From Equation 3-14, Xt will retain its definition from the MIL STD only if

N(X, ) = 10" = 11. Equation 3-21

Combining the previous two Equations, it is seen that

11
K(X, ) =

f(x)dx
Xl

Equation 3-22

If we assume that particles can be modeled as spheres of diameter x, the total surface area of particles
on a surface is given by

A,,,,,. = _n(x dr..
o

Equation 3-23

The fractional surface area, or PAC, is therefore given by

0

Equation 3-24

where the factor of 10 "12 is needed to covert the units ofx from _tm to m. Evaluating the integral it is
seen that the expression for PAC reduces to

PAC=(9.5× 10-U)K(X,),

and, from Equation 3-19 and Equation 3-22, K(X 0 reduces to

22

K(X,) = _ ( lnX, _"

e*t J

_iuation 3-25

Equation 3-26

This analysis modifies the results ofMIL STD 1246C as shown in Figure 3-8. The original expression
for N(x), Equation 3-14, has been modified to the form
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logN(x) = C'[log _X_-log 2x]+ log(_],

Equation 3-27

where the last term approaches zero for large X: and large x. Surface cleanliness as a function of PAC

is illustrated in Figure 3-9 As shown, a PAC of 1% equates to surface cleanliness level of about 500

# of Particles
per ft2> D

107

10s _

1 5 10

PRODUCT CLEANLINESS LEVELS

- 1000

.'x

1

50 100 200 300 5O0 1000

Particle Diameter (pro)

Figure 3-8. Surface cleanliness levels with the inclusion of submieron sized particles.
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Figure 3-9, Percent area coverage as a function of surface cleanliness.

Based on the relationship between PAC and surface cleanliness the PAC may be estimated by
counting particles of various sizes on the surface in question as shown in Table 3-3.

:3Ma, P.T.,Fong,M. C.,and Lee,A. L.,"SurfaceParticleObscurationand BRDF Predictions,"SPIE

Vol. 1165,Scatterfrom OpticalComponents, pp.381 -391,(1989).
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Table 3-3. Calculating particle percent area coverage.

Particle Size Particles

Range per 0.1 m 2 × Coefficient

>1 - 10 pm × 1.737 × 10-" --
>I0 -25 p.m x 1.528x 10-7 =

>25 -50 lain x 7.078 x 10-7 =

>50- I00 l_m × 2.435 x I0-6 =

>I00 - 150 Izm x 5.186 × 104 =

>150 -250 p.m x 7.484 x 104 =

>250 -500 l_m x 6.522 x I0"_ =

>500 -750 Izm x 1.048× I0-s --:

>750 l_m x 1.922x I0-s =

Percent Area

= Coverage

Sum all values to obtain total percent area coverage

3.2.2.1 Additional Concerns

in reality, the effective PAC due to a collection of particles is a function of viewing angle and

wavelength. If the relevant viewing direction is not normal to the surface, or is an integration over

many angles, the effective PAC may be affected, especially if the particles are not spherical which is

usually the case. Also, any directional properties of the surface itself must be taken into consideration.
Similarly, if the particles are not large compared to the wavelengths of interest, the effective

obscuration will be less than the geometrical obscuration of the particle. This is usually the case.
Since the surface characteristics arc nearly always determined by how the surface interacts with

electromagnetic radiation, these are usually the major areas of concern. However, if the particles
interact mechanically, (e.g., abrasively, like rocket exhaust), or chemically, (e.g., like an acid etch),

with the surface, these factors may be paramount. In the usual case, the particles are deposited gently,

by fallout from the air, and do not interact chemically with the surface. Because the particles have

values of a, and c which differ from those of the underlying surface, the effective PAC is usually the

parameter of interest.

3.2.2.1.1 Directional Effects

The directions at which electromagnetic radiation arrives at or leaves a surface are different for

different spacecraft surfaces. For solar cell arrays, th_ electromagnetic radiation, (sunlight), is usually

normal to the surface. By orienting the solar cells in this way the maximum electrical power output is
attained. However, spinning spacecraR with body mounted solar cells are exposed to sunlight at

various arrival angles. This angular dependence must be taken into account in evaluating effective

surface particle contamination since such particles, usually dust, arc irregular in shape and do not

necessarily project the same geometrical cross sections in different directions.
Spacecraft radiators are generally placed where they do not view the Sun and where they have a

clear view of space. For a Lambertian surface the effective PAC would be independent of direction

only for spheres, because emissivity has a cos 0 dependence, (with 0 being the angle relative to the

surface normal). While many dust particles are quasi-spherical, some are fiber segments with //d,

length to diameter ratio, > 10. The orientations or'such fibers generally average out over angle, but if
the radiator is a second surface mirror, which has a non-Lambertian ¢, the fiber effects may not

average out.

Some optical sensors have exposed mirrors, gratings, lenses, baffles, etc. which are very
directionally sensitive to the incoming electromagnetic radiation. In addition, they are usually

designed to accommodate that radiation from different directions. Whether the contaminating surface

particles act diffusively or specularly upon that fraction of the incoming radiation which they reflect
can be as important as how large that reflected component is.

In practice, the only practical way to deal with the directional effects of surface particle

contamination is to measure the performance of the sensitive spacecraft components, (usually these are

solar cell panels, radiators, or optical sensors), with and without contamination present. It is usually
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tootimeconsumingtotrytocalculatesuchdirectionaleffectsexceptinsimplecases,andtherequired
inputparametersforthesurfaceparticlesmay not be available. This conclusion is reinforced once the

other effects, wavelengths and composition, are considered.

3.ZZ2 Wavelength Effects

The wavelengths of interest for spacecraft are usually 0.4 - 1.1 ttm for solar cells, and 0.5 - 20

Jam for radiators. In addition, ultraviolet light sensors may operate at < 0.4 ttm and RF antennas at >

1000 _m. For comparison, the particles of interest generally lie in the 0.5 - 500 ttm diameter range.
Thus, the particles have dimensions right in the middle of the range of the wavelength of interest. This
means that Mie scattering effects must be considered.

3.2.3 Bidrectional Reflectance Distribution Function 0BRDF)

3.2.3.1 The Effects of Particulate Contamination on BRDF

Mie scattering theory can be used to relate BRDF to surface cleanliness levels as shown in Figure
3-10 for 10.6 ttm wavelength. 14 BRDF increases as surface contamination levels increase because

each particle is able to scatter light away from the desired angle of reflection. Note that more exact

calculations of BRDF predict roughly double the value obtained from Mie theory, t5 This emphasizes

the fact that the scatter from a smooth mirror may dominated by the scatter from surface panicles. _6
Typically, BRDF measurements of materials are measured directly in the laboratory and are fed into

stray light analysis programs such as APART/PADE for systems level analysis. _ For this reason, it is
often suggested that BRDF be used as the direct measure of surface cleanliness, rather than MIL STD
1246C.

"Young, R. P., "Low-Scatter Minor Degradation by Particulate Contamination," Optical Eng., Vol.
15, no. 6, pp. 516 - 520, Nov. - Dec., (1976).

t5 Johnson, B. R., "Exact Calculation of Light Scattering from a Particle on a Mirror," SPIE Vol.

1754, Optical _ystem Contamination, pp. 72 - 83, (1992).

Johnson, B. R., and Arnold, G. S., "Radiation Scattering from Particulate Contaminated Mirrors,"
Aerospace Report No. ATR-94 (7281)-1, ! March 1994.

16Spyak, P. R., and Wolfe, W. L., "Scatter from Particulate-Contaminated Mirrors. Part I: Theory

and Experiment for Polystyrene Spheres and 3. = 0.06328 ttm," Opt. Eng., Vol. 3 I, No. 8, pp.
1746 - 1756, (1992).

Spyak, P. R., and Wolfe, W. L., "Scatter from Particulate-Contaminated Mirrors. Part 2: Theory
and Experiment for Dust and 3. = 0.632 ttm," Opt. Eng., Vol. 31, No. 8, pp. 1757 - 1763, (1992).

Spyak, P. R., and Wolfe, W. L., "Scatter from Particulate-Contaminated Minors. Part 3: Theory

and Experiment for Dust and 3.= 10.6 _tm," Opt. Eng., Vol. 31, No. 8, pp. 1764 - 1774, (1992).

Spyak, P. R., and Wolfe, W. L., "Scatter from Particulate-Contaminated Mirrors. Part 4: Properties

ofscatter from Dust for Visible and Infrared Wavelengths," Opt. Eng., Vol. 31 No. 8, pp. 1775 -
1784, (1992).

17Arizona's Paraxial Analysis of Radiation Transfer/program for the Analysis of Diffracted Energy,
Breault Research Organization.
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Figure 3-10. BRDF as a function of surface cleanliness at 10.6 _m wavelength - Mie theory.

BRDF values at I° for very clean surfaces are listed in Table 3-4. These values must be added to

the BRDF for the clean surface to obtain the total BRDF for a dirty surface. BRDF as a function of

radiation wavelength is shown in Figure 3-11. The decreasing values of BRDF at larger wavelengths,

for a given angle, are due to the fact that more of the particle lies in the Rayleigh scattering region (k >

r) where the Mie scattering cross sections are smaller than their geometrical cross sections.

Table 3-4. Approximate BRDF at ! ° due to surface particles - Mie theory.

Surface Level Fractional Area Obscured BRDF at ! °

i

10-1

115 3 x 10 "_ 1 x !0-"

145 1.2 x 10 -5 3 × 10 -4

165 2.3 x lO-s 5 x 10 -4

195 5.0 x l 0-_ 1 x i 0 -_

250 1.5 x 10-4 3 x 10-3

280 2.2 x lO'4 .5 x lO-3

330 4 x 10-4 I x l0 =2

BRDF 10-=
(ar1)

T

_ ....... 5 r_ron
l ,'.... 10micron

""" I_ 20 micron

0 5 10 15

0, - 0, (deg.)

2O

Figure 3-11. BRDF as a function of wavelength for a level 300 surface - Mie theory.
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3.2.3.2 The Effects of Molecular Contamination on BRDF

In many circumstances molecular contamination may also be a source of scattering. One reason
that molecular contamination effects the BRDF of a mirror is that the molecules tend to forrn clumps

on the mirror's surface rather than depositing themselves in a smooth layer The tendency to clump is

the result of the fact that the contaminant molecules are usually more strongly attracted to each other
than to the mirror molecules. Thus, a mirror with molecular contamination will look spotty if

examined in detail,
There have been relatively few experimental studies of the effects of molecular contamination on

mirror BRDF since, in general, particulate contamination is a far more serious problem. At the same

time, scatter from molecular films is difficult to analyze theoretically, difficult to evaluate by simple

observation, and difficult to correct, n Williams and Lockie exposed a SiC mirror to dust and,

separately, to hydrocarbon diffusion pump oil and compared the contaminated BRDF readings to those
of the clean surface, s9 As indicated by Figure 3-12, dust degrades BRDF by the largest factor at larger

angles while oil degrades the BRDF by by largest factor at smaller angles. Williams and Lockie did

not quantify the contamination levels after exposing the mirror to a "contaminating" environment, but
Somers and Muscari report no change in BRDF up to 0.1 ! pm of CVCM. :°

BRDF

(st')

100

I __Oil

f ", , _ --=--,..-,Clean/
J

104

104 _ _ _ _ _ _ , * _ I

0 5 10 15 20 25 30 35 40 45

Oe - 0, (deg.)

Figure 3-12. Experimentally determined BRDF change of a contaminated SiC mirror.

The Arnold Engineering Development Center has examined the effects of condensed gases on
21

cryogenic surfaces. BRDF measurements on an 18 K surface were obtained for films of: air, N2, 02,
H20, CO2, CO, and Ar. BRDF measurements on a 68 K surface were obtained for films of: H:O,

is Bousquet, P., Flory, F., and Roche, F., "Scattering from Muitilayer Thin Films: Theory and

Experiment," J. Opt. Soc. Am., Vol. 71, No. 9, pp. I 115 - 1123, (1981).

,9 Williams, V. L., and Lockie, R. T., "Optical Contamination Assessment by Bidirectional

Reflectance Distribution Function (BRDF) Measurement," Optical Eng., Vol. 18, No. 2, pp. 152 -

156, (1979).
2oSomers, g., and Muscari, J. A., "Effects of Contaminants on Bidirectional Reflectance Distribution

Function," Society of Photo-Optical Instrumentation Engineers, Spacecraft Contamination

Environment, Voi. 338, pp. 72 - 79, (1982.)

21Seiber, B. L., Bryson, R. J., Bertrand, W. T., and Wood, B. E., "Cryogenic BRDF Measurements at

10.6 gm and 0.63 ttm on Contaminated Mirrors," Arnold Engineering Development Center,

AEDC-TR-94-16, February (1995).

3-18



Contamination Control Engineering Design Guidelines for the Aerospace Community

RS12M polycyanate resin, Nusil CV2500 Silicone, Solihane 113/C! 13-300 Urethane, and RTV 560
Silicon. As shown in Figure 3-13, there was little effect on BRDF for very thin layers of I']20.

However, as the film thickness increased beyond 3 _tm there was a two order of magnitude increase in
the visible scatter. This effect is attributed to a shattering or fracturing of the contaminant film

surface. 22 This fracturing is observed to occur near 20 K for water (ice) films. Similar effects are

noted for other cryogenic films.

BRDF
(st I)

10o _

10"_ i. _-- -" A A i----------_

104 1

104

104 ,I ....
0 2 4 6 8 10

e,- (_ (deg.)

D Clean

i-O-- 0.77 microns

] + 1.88microns

; --o-- 2.95 microns

I __ 4.11 morons

Figure 3-13. Effect of H20 deposition on 16K mirror BRDF- 10.6 ttm.

3.3 Generation, Transportation, and Deposition

3.3.1 Air Quality: FED STD 209E

The buildup of particles on a surface is directly related to the amount of particles in the

surrounding air. Viscous drag will balance the fall of particles under the influence of gravity, but over

time more and more particles will fall out of the atlnosphere onto exposed surfaces. FED-STD-209E

defines air quality in terms of the maximum allowable number of particles per cubic meter, or cubic
foot, o_ air. In SI units, the name of the air class is taken from the base 10 logarithm of the maximum

allowable number of particles, 0.5 ttm and larger, per cubic meter. In English units, the name of the

class is taken from the maximum allowable number of particles, 0.5 ttm and larger, per cubic foot.

The concentration limits are approximated by

P artic|eS / ITI 3 "-" ] OA41 O.5_rrl 12.2

Iparticles / f[3 = Nc

Equation 3-28

22Arnold, F., "Degradation of Low Scatter Metal Mir , by Cryodeposit Contamination," Arnold

Engineering Development Center, AEDC-TR-75- i28, Octrober (I 975).
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where M is the numerical designation of the class in SI units and N c is the numerical designation of the

class in English units. Class limits are illustrated in Figure 3-14 and Table 3-5. Class 10,000 (M 5.5)
cleanrooms are typical of most spacecraft manufacturing cleanrooms. Nominal industrial quality air

may be class 3,500,000, (M 8), or worse, while class 100, (M 3.5), laminar flow benches may be
required for the assembly of sensitive optical components. Note that air class is specified in terms of

the maximum allowable. Air quality in operational cleanrooms is generally well below maximum.

(m-_) Particle Concentration

107 _
_\_ _ 100,000

1.111111 _ "

10s _- _.. "_.\

.100_ " . . .\ \104 _

103

10 z

10-_

(ft-3)

\. \\

100 101

.10s

'104

_103

_t02

Particle Diameter (l_n)

Figure 3-14. FED STD 209E air quality classifications.

Table 3-5. Air quality as defined by FEI)-STi)-209E.

Class l_imits

0.l pm 0.3 pm 0.$ pm 5 pm

Air Class Volume Volume Volume Volume

si English (m3) (fP) (m3) (fP) (m3) (rP) (m3) (fP)
M 1 350 9.91 30.9 0.875 10.0 0283

M 1.5 ! 1,240 35.0 106 3.00 35.3 1.00
M 2 3,500 99.1 309 8.75 100 2.83

M 2.5 10 12,400 350 1,060 30.0 353 10.0

M 3 35,000 991 3.090 87.5 1,000 28.3
M 3.5 100 - 10,600 300 3,530 100

M 4 30,900 875 ! 0,000 283

M 4.5 1,000 - 35,300 1,000
M 5 - - 100,000 2,830

M 5.5 10,000 - 353,000 10,000

M 6 - 1,000,000 28,300

M 6.5 100,000 - 3,530,000 100,000

M 7 - - I0,000,000 283,000

247 7.00

618 17.5

2,470 70.0

6,180 175

24,700 700

61,800 i,750

As shown in Figure 3-15, emperical observations indicate that the average fallout rate of 5 )_m
panicles onto a horizontal surface, (the floor), is given by

dN(Spm, l) _, 0.773 Equation 3-29
= cpJv _

dt
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Figure 3-15. Particle fallout rates as a function of air cleanliness.

where ¢and p are normalization constants, ]_c is the number of particles > 5 pm in size per f13 of air,

and dN/dt, the fallout rate is interpreted as the number of particles > 5 pm settled per unit area per

day. 2_ The coefficient ¢ ;_ ,_hosen for consistency with the desired units. The value ¢ = I is used if

dN/dt is measured in particles per square feet per day, while the value ¢ = 1.076 is used if dN/dt is

measured in particles per 0.1 square meters per day. Suggested values for p, as a function of
cleanroom characteristics, are listed in Table 3-6.

Table 3-6. Air quality parameters for various air classes.

Air Characteristics Criteria p

Still or low velocity air < 15 air changes/hr 28,510

Normal cleanroom 15-20 airchanges/hr 2,851

Laminar flow bench air velocity > 90 _min 57_
III

Integrating Equation 3-29 gives the total number of particles > 5 pm present on a surface as a
function of time,

N(5pm, t) ._.o.3= cplV¢ " t. Equation 3-30

From the definition of air quality, Equation 3-28, it is seen that

Equation 3-31

23 Hamberg, O., "ParticL .ate Fallout Predictions for Clean Rooms," J. Env. Sci., pp. 15 - 20, May/June
(]982).
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Inserting Equation 3-31 and Equation 3-30 into Equation 3-27 allows one to solve for particle surface

level as a function of exposure time in a given air-class environment 24 The expression for surface
cleanliness, (in English units), becomes

, FlogX,q
)= ,o,L

Equation 3-32

Solving this expression gives surface cleanliness as a function of time as illustrated in Figure 3-16.
Note that particle buildup on vertical surfaces should be about 1/10 of the horizontal value while

downward facing surfaces may see a buildup of only l/i 00 the horizontal value, Figure 3-17.

1000

Surface
Cleanliness 100

Level

10

Surface
Cleanliness

Level

Horizontal Upward Facing Surface - Normal Air

...... _- ...._. :._.- Air Cla,s

"" " "--" '-'__----_;_ 10,000_-------.-.". ................. 1oo,ooo

- ...... 100

_/ _ _. 10

- " - 1 week 1 month 1 year

10o 10' 102 10=

Exposure Time (days)

Figure 3-16. Horizontal upward facing surface cleanliness - normal air.

Vertical Surface - Normal Air
1000

__ i _I I week - -- 1 month 1 year 10

10

100 101 10 =

Exposure Time (days)

Figure 3-17. Vertical surface cleanliness - normal air.

10=

24Buch, J. D., and Barsh, M. K., "Analysis of Particulate Contamination Buildup on Surfaces,"

Society of Photo-Optical Instrumentation Engineers, Optical System Contamination.. Effects,
Measurement, Control, Vol. 777, pp. 43 - 54, (1987).
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Figure 3-18. Horizontal downward facing surface cleanliness - clean air.

Based upon Equation 3-32, 10 days in class 100,000 air will produce level 445 on a horizontal

upward facing surface. Vertical surfaces can expect to receive about 10% the buildup of horizontal

upward facing surfaces, (or level 275), while horizontal downward facing surfaces can expect to
receive about !% as much, (or level 165). Scaling these results for air class, which is linear, and pre-

launch time will yield the expected surface particle level_ which are non-linear, at launch. Because

the air in any given facility will be perturbed by the day to day operations, it is appropriate to estimate

particle levels on spacecraft surfaces prior to launch using Hamberg's statistical relationships between

particle air class and particle surface level, Figure 3-] 5.

An example of the magnitude of surface degradation that an optical sensor may encounter during

assembly, test, and launch is provided in Table 3-7. As shown, good housekeeping practices alone

(class 10,000 air) can rarely provide beginning-of-Ill _ surface cleanliness values better than level 550

unless pl_,ts are made to clean the surfaces during launch-processing operations. Reducing on-orbit

contamination below level 450 will require stricter attention to detail, such as limiting exposure to

class 100_ or better air. Finally, reducing beginning-of-life surface cleanliness below level 300 will
require near heroic contamination control measures. /__ a benchmark, the Hubble Space Telescop(

primary mirror requireme" - was level 300, while the ex ._al surfaces of the spacecraft were level 950.

3.4 Particle Redistribution During Launch and On Orbit

Most panicles are deposited on surfaces during ground operations. However, these panicles may

be released on orbi nominal spacecraft operations and allowed to redeposit on sensitive surfaces.

On unmanned st" craft this may occur due to articulation of solar arrays, thermal

expansion/contraction, the release covers, etc. On manned missions, like the shuttle, venting and

_ter dumps may generate panicic_. Sudden collisions with micrometeorites or orbital debris may
aJsodislodge panicles, and could also generate new panicles from the impact site. Regardless of the

source, panicles released on orbit may interfere with optical operations.

3.4.1 The Shuttle Launch Environment

Consider the example of the Shuttle. For virtually all spacecraft, it is possible to quantify the

expected pre-launch and launch induced contamination levels. (This information is discussed in

Chapter 4.) The panicles that are deposited during ground operations may be redistributed during

launch and/or on orbit operations. Optical measurements taken by a photometer in the Shuttle bay

having a 32 ° field of view during STS missions 2, 3, 4, and 9 reported panicles during every available
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viewing opportunity during the first 13 hours of a mission, z5 After about 24 hours on orbit the panicle

viewing rate decayed to a quiescent rate of about 500 panicles of size > 10 lain per orbit. Other

experimenters have reported detecting 1100 particles from 4 hours of data taken early in the Spacelab
2 mission (STS-54F). 26 The panicles were slow-moving and had temperatures in the range 190 to 350

K. As expected, the size distribution was in agreement with that observed at the shuttle preparation

facilities.

Table 3-7. Sample surface cleanliness calculations.

Sensor Location

Surface Particle Level

Exposure Air Quality
Time 100 ! 000 I0,000

Manufacturing n/a IO0 1O0 ! O0

Telescope Assembly
Focal plane integration 1 week 130 195 290

Assembly alignment 2 weeks 165 145 355
Install covers 1 week 180 270 390

Spacecraft Assembly
Integration 3 months 245 360 510

Test

Subsystem tests 4 months 285 410 535
Thermal vacuum tests 1 month 295 420 537

Final preparations 1 month 300 430 538

Launch Processing

inspection/check out 1 week 302 433 539

Load propellant 1 week 304 435 540
Vehicle cioseouts 1 week 305 437 541

Install in launch vehicle 2 weeks 307 440 542

Ready for launch 1 day 307 441 542

Launch

Ascent 10 rain 320 445 545

Initial On-Orbit Checkout

Instrument deployment 2 weeks 325 450 550

3.4.2 Micrometeoroid & Orbital Debris Impact

Because spacecraft travel at extremely high velocities, ~ 8 km/s is typical for circular low Earth

orbit, collisions with even small pieces of matter can have disastrous consequences. In support of the

shuttle program, studies of micrometeoroid and orbital debris (MMOD) impact have found that small

MMOD, which are numerous, are able to dislodge large panicles from surfaces quite easily but do not,

25Clifton, K. S., and Owens, J. K., "Optical Contamination Measurements on Early Shuttle Missions,"

App. Optics, Vol. 27, No. 3, p. 603, (1988).
26Simpson, J. P., Witteborn, F. C., Graps, A., Fazio, G. G., and Koch, D. G., "Particle Sightings by the

infrared Telescope on Spacelab 2," J. Spacecraft, Vol. 30, No. 2, p. 216, (1993).

3-24



Contamination Control Engineering Design Guidelines for the Aerospace Community

in general, remove submicron-sized particles. 27 Larger MMOD, which are less frequent, are able to
remove both large and small particlc._. However, because of the nature of the hypervelocity impact

particles will be generated by the backsplash of material from the crater produced by the impact, it is

predicted that 5.7 x 103 particles of size > 5 p.m would be liberated from the surface of the shuttle each

day by MM impact alone. Conversely, between 6.9 × l05 and !.4 x l0 ? particles of size _>2 _m, or

2.0 - 3.3 × 105 particles > l0 I_m in size, would be generated from the crater backsplash. If OD

impacts are factored in, (the OD environment is a function of altitude and inclination), these numbers

may increase significantly for certain orbits.

3.5 Estimating End of Life Particle Cleanliness Levels

3.5.1 Solar Array Contamination

As shown in Figure 3-2, the actual power degradation from a contaminated solar array is seen to
be less than the PAC. This is presumably because the particles do scatter some light into the

cove_qide itself, rather absorbing it all or scattering it back to space. In any case, a I% power

degrauation due to particles equates to a 2.25% PAC. This PAC in turn equates to a surface cleanliness

of level 520, Figure 3-9. As will be seen in the next section, this is sufficiently dirty to be easily seen

during pre-launch ins.": :tion. We can therefore conclude that this level of pre-launch contamination
would be seen and removed before flight. Given that the particle levels deposited on orbit shoulc£ ,_e

small enough to be of concern only to optical sensors, paniculate contamination should not produce

any noticeable power losses on orbit. Consequently, as a rule almost the entire contamination budget

for a solar array ma) oe allocated to molecular contamination.

3.5.2 Thermal Control Surface Contamination

As shown in Equation 3-1 and Equation 3-3, the change in tx/c due to particles is a function of

PAC. While experimental values of temperature increase due to surface particle contamination are not

found in the open literature, a little calculation shows that the effect will be small. Consider an

extreme case where the emissivity of a radiator is altered by the particles, if _ = I and t,_ ,= 0, it

can be shown that a surface particle level of- 650 will be required to increase the temperature by 1%,
Table 3-8. The other extreme would be contamination with _ -- I on a surface which has a low

emissivity, (_c_ - 0. I is about as low as ¢c_ can reasonably be for infrared wavelengths), in this
case, it can be shown that a surface pan,de level of- 450 would be required to have a 1% effect on

radiator temperature, Table 3-9. Facey and Nonnenmacher report that black particles on light surfaces
appear to hay, to have an effective emittance of approximately 0.50, not ! .0.2t This is presumably due

to thermal conductance between the particle and the surface. This implies that the surface partl
levels where the I% effect would be noticed can be raised to ~ 775 and - 600, for the two cases jh_t

discussed, respectively. It is noted that the effect of dark contamination on a light surface is to lower

the temperature. This can cause problems if the contamination causes a fuel tank to freeze, for

example.
Additionally, problems can arise due to mismatch of solar _,orptance. Again, dark

contamination on a light colored surface would lead to undesirably high temperatures. Here ch._,_,

can be as low as 0.05, while ¢c_ cannot exceed 1.0. If the contamination has cq._ -- 1.0 the effect

on the temperature of a passive sphere will be as shown m Table 3-10. A surface particle level of-

350 is required to increase the temperature by 1%. This confirms the fact that effects on solar

absorptance arc usually more critical than effects on emissivity.

2vBarengoltz, J., "Particle Release Rates from Shuttle Orbiter Surfaces due to Meteoroid Impact, "J.

Spacecraft, Vol. 17, No. i, p. 58 (19g0).

:8 Facey, T. A., and Nonnenmacher, A. L., "Measurement of Total Hemispherical Emissivity of
Contaminated Mirror Surface," Society of Photo-Optical Instrumentation Engineers, Stray Light

and Contamination in Optical Systems, Vol. 967, pp. 308 - 313, (1988).
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Table 3-8. Effect of white (c = 0) particles on a dark (c = I) radiator facing deep space.

Percent Area Coverage Effective Emitting Area
Particle Level (PAC) (! -PAC) AT/To

200 0.0002 0.9998 -5 × 10-_
300 0.0008 0.9992 -2 x 10-4

400 0.0026 0.9974 -6.5 x 10-4

500 0.0080 0.9920 -2 x 10-3

600 0.025 0.975 -6 × 10 -3
700 0.053 0.947 -I.3 x I0 -2

800 0.I 1 0.89 -2.75 x 10-2

900 0.20 0.80 -5 x l0 -2

I000 0.36 0.64 -9 x 10 -2

Table 3-9. Effect of black (_ - I) particles on a light (t_- 0.1) radiator facing deep space.

Percent Area Coverage Effective Emitting Area

Particle Level (PAC) [ 0.1(1 - PAC) + I(PAC) ] AT/Te

200 0.0002 -0. I +5 × I0 -_
300 0.0008 - 0. I +2 x lO-3

400 0.0026 0.102 +6 x I0-3

500 0.0080 0.107 +2 x 10-2

600 0.025 0.123 +6.2 x 10 -2

700 0.053 0.148 +1.3 x 10 -I

800 0.1 ! 0.199 +2.7 x !0 -I
900 0.20 0.280 +5.0 x 10 -I

i000 0.36 0.424 +8.9 x 10 -I

Table 3-10. Effect of black (oz, - I) particles on a light (a, - 0.05) radiator facing the Sun.

Percent Arts Coverage Effective Absorptanee
Particle Level (PAC) [ 0.0_! -PAC)+ I(PAC) ] ATFF,

200 0.0002 0.05019 +9.5 x 10"_
300 0.0008 0.05076 +3.8 x 10 -3

400 0.0026 0.05247 + !.2 x !0 -3

500 0.0080 0.0576 +3.8 x 10-2

600 0.025 0.0738 +1.18 x 10 -I

700 0.053 0.1004 +2.52 x 10 -t

800 0.II 0.1545 +5.23 x I0-I

900 0.20 0.240 +9.50 x lO-I

1000 0.36 0.392 +l.71 x lO°

The effects of contamination on thermal control coatings thus depends on the nature of the surface

and whether or not it faces the Sun, as well as upon the differences in a, and c between the coating and

the surface. Since most contamination has a,- ¢ ~ 0.5, the effects are not severe unless particle levels

become high, > - 600. it is also im_ortant to note that while effective values of a, or c may change,
the ratio ofa,/_may remain usable.

29Adlon, G. L., Rusert, E. L., and Sicmp, W. S., "Effects of Simulated Mars Dust Erosion

Environment on Thermal Control Coatings,"./. Spacecraft, Voi. 7, No. 4, pp. 507 - 510, (1970).

Dyhouse, G. R., "Martian Sand and Dust Storms and Effects on Spacecraft Coatings," J. Spacecraft,

Vol. 5, No. 4, pp. 473 - 475, (1968).
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Because a PAC of a few percent should be visible before launch, section 4.2.3.1, one can assume

that beginning of life panicle levels for thermal control surfaces correspond to surface obscurations of,

at most, a few percent. A degradation in ct/_ of a few percent should not be noticeable for most
surfaces as end of life ct/c margins are usually more on the order of 100% for critical surfaces. In

general, particles should pose no credible threat to thermal control surfaces and their entire

contamination budget may be allocated to molecular contamination.

3.5.3 Optical Surface Contamination

As was previously discussed, the effect of PAC on optical surfaces is to reduce signal throughput.
This effect becomes more pronounced as one moves through the optical train to the focal plane, where

the concentrated signal can be completely absorbed by a single particle sitting atop a pixel. To avoid

this problem, optical elements are, for the most part, enclosed so that external contamination cannot
reach the inner surfaces. This is done through a combination of design, and by bagging the elements

and connecting them to a filtered purge when not in use. However, this still leaves the first surface
vulnerable to both surface obscuration and scattering. Scattering effects, which are not important for

solar arrays or thermal control surfaces, are often paramount here. Not only does scattering degrade

the image quality, but (for strong off-axis sources) may mask it completely.
Recall that the BRDF is a measure of the ability of a mirror or a lens to discriminate against off

axis sources, section 3.1.3.2. BRDF can have a value of 10 -3 sr-j to 10 -4 sr-l at 1°, for clean, high

quality surfaces, Figure 3-6. This can easily be degraded to 10 -2 sr-* or worse at I° by contamination.

It is seen that these particle levels are far lower than those which produce 1% effects on solar panels or

thermal control surfaces, even under extreme conditions. It should be mentioned that surface

roughness of optical surfaces is also important to BRDF. Lower quality surfaces may have BRDF

values of 10 -2 sr-j at 1°, (or even 5°), when clean. It takes correspondingly more contamination to

affect the off-axis rejection of poor quality surfaces as compared to good quality surfaces.

Once the BRDF requirement for an optical sensor has been established, the amount of surface

particle contamination which can be tolerated on the primary surface can be estimated. As Figure 3-6
shows, even clean off-axis sensors have trouble achieving 10-4 sr-_ at 1°, with 10 -3 or 10-2 being more

typical. Therefore, unless the mission requirements are rather relaxed, very few particles can be
tolerated. Attaining and maintaining such requirements on orbit is difficult.

Consider the example of a sensor that is viewing a target an angle 8 off axis from the Sun, (Figure

3-3). Because 'he PST of the sensor will be nonzero, some of the energy from the Sun will be

scattered onto to the focal plane. (This is the definition of PST.) As shown by Equation 3-12, the

number of photons reaching the detector will be a function of surface cleanliness, (BRDF), as well as

the angle between the Sun and the optical axis. The purpose of the detector, or focal plane, is to

convert the light from the signal into electrons. These signal electrons are stored in a capacitor in the

focal plane for some predetermined integration time that is necessary to build up the signal strength to
a level that can insure detection with a high level of probability. During the processing of the signal,

the signal will be "contaminated" with electrons from sources other than the signal, called noise. A
detailed discussion of all noise sources is beyond the scope of this work, but an example calculation of

noise terms is shown in Table 3-11. The critical parameter in optical design is the signal to noise ratio.

If the "usual" noise sources are supplemented by noise, (stray light), from the Sun, the strength of the

noise will increase and the signal to noise ratio will decrease.
Consider the example of a sensor with a primary mirror having an area of ! m2; a L/D ratio of 2.0;

operating in the 1.95 - 2.05 pm waveband. We assume that the initial SNR for an undefined target,

given the noise sources listed in Table 3.10, is 10.0. (This will ensure detectivity of the signal.) By

inspection, the number of focal plane electrons, (noise), generated by off-axis scarier from the Sun is
approximated by

Equation 3-33
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Table 3-11. Sample noise calculations for an arbitrary sensor.
I I

Noise Souce Focal Plane Electrons

Background 200
Cluner I00

Johnson 100

I/f 30

Readout 250

ADC/Preamp 175

TotalNoise 855

(withoutoff-axisscatter)

where Ap,,,i (m s) is the area of the primary mirror that contributes light to a single pixel, (equal to the
area of the primary mirror divided by the number of pixels in the focal plane array), S_ (Wm -2) is the

solar intensity in the waveband of interest, PST is defined by Equation 3-12, rl is the fraction of solar

radiation reaching the focal plane that produces an electron, and At is the integration time of the
sensor. It is easily seen that in the waveband of interest 5_ is 10 W m -2 and Ex = 9.91 x 10-20 j3o For

this example we will arbitrarily assume: the number ofpixels is 256 x 256 so that A_,,_ = 15.26 x I0-6

m2; s = 1.5; rl = 0.5; and At = 1 x I0 _ s. Utilizing these parameters, and the BRDF values provided in

Figure 3-10, the signal to noise ratio of the detector, as a function of cleanliness and off-axis angle, is
illustrated in Table 3-12 and Figure 3-19. With a Sun exclusion angle of 30 ° the surface must be kept

at cleanliness level - 200 or better to maintain a signal to noise ratio of- 8.0. If the surface is dirtier

than this, the Sun exclusion angle must increase. Ifthe surface is cleaner, the Sun exclusion angle may

decrease. Increasing the area of the primary mirror, L/D, or the integration time of the sensor will

relax the cleanliness requirement, (by raising the minimum value of cleanliness required), for a fixed
value of SNR. (Unfortunately, these first two options invariably add mass and volume to the sensor

and are not always viable options. Similarly, the sensor integration time must be kept small enough to

avoid blurring of the image and will be fixed depending on the processing requirements and

operational constraints of the system.) Conversely increasing the number of pixeis in the focal plane

or increasing the surface polish on the mirror, (the value of s), will make the cleanliness requirement

more stringent, (by lowering the minimum value of cleanliness required.)

Note that there are a family of curves, as shown in Figure 3-19, for various surface cleanliness

values and Sun-exclusion angles, that can ensure a minimum SNR value is met. For this reason, when

specifying surface cleanliness for an optical sensor the requirement must be tied to not only sensor

design characteristics, (waveband of interest, L/D, s, minimum SNR, ...), but also operational

constraints, (signal strength, Sun-exclusion angle .... ) so that the required surface cleanliness level may

be properly identified.

Table 3-12. SNR increase due to particulate contamination.
I I

Off-Axis Angle (deg.) Surface Cleanliness Off-Axis Electrons Sign'ai to Noise Ratio

15 100 333 7:20

300 33,285 0_.5

500 374,455 0.02

3O 100 18 9.79

300 1,821 3.20

500 27,313 0.30

45 100 I 9.99

300 178 8.28

50O 2,231 2.77

30Wolfe, W. L., and Zissis, G. J., The lnfraredHandbook, 2d Ed., Office of Naval Research,

Washington, DC (1985).
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Figure 3-19. SNR increase due to particulate contamination.

3.6 Design Guidelines for Control/ing Particulate Contamination

As shown in Table 3-13, the amount of particulate contamination that a spacecraft element can

tolerate is highly dependent upon its function, as well as spacecraft mission objectives and operational
constraints. In general, concerns for the effects of particulate contamination on the performance of

optical elements drive contamination control for the spacecraft. Particle cleanliness levels for thermal
control surfaces or solar arrays are, even in worst case scenarios, significantly relaxed in comparison.

In most cases, particulate contamination on thermal control surfaces and solar arrays can be controlled

below critical levels by pre-launch cleanings so that the entire contamination budget for these surfaces

may be allocated to molecular contamination. (This is definitely not the case for optics, however.)

Table 3-13. Summary of particulate contamination concerns.

Element ,;fleeted Parameter Operational Criteria Required Cleanliness

IR Sensor Signal to Noise Ratio SNR > 8.0 200"

Thermal Control absorption ct, - 0.05 350 °

Surfaces emittance ¢ - 0.05 450"

c- 1.0 650 °

Solar Arrays Power Production < 1% Power Loss 520

'based on the design/operational constraints of the example in Table 3.12.
b
assumes worst possible mismatch in ct, or e between contamination and surface

As with molecular contamination, the effects of particulate contamination can be minimized by

minimizing the amount of contamination that is: i) generated, ii) U'ansported, and iii) deposited on a

surface. As shown in Table 3-14, design options to minimize particulate contamination fall into the
categories: air quality, design, operations, and margin.

Because particulate contamination during ground operations is ultimately related back to air

quality, maintaining surfaces in as clean an environment as possible will minimize the buildup of
particles on a surface. Because it is not feasible to maintain an entire spacecraft in a class 10

environment for long periods of time it is usually accepted that sensitive surfaces wiil be covered and

maintained in the ;_ own mini-cleanroom environment until needed. By covering, or bagging, sensitive

components _ :7_ecting them to their own filtered air supply they will not be exposed to the usual

"dirty" enviror,- ,z of the assembly area. When needed, the assembly can be moved to a laminar

flow bench or _*2,er clean area for removal from its covers. Maintaining sensitive surfaces in an

environment free from contamination sources is costly, but will minimize inspection and cleaning
costsdownstream.
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Table 3-14. Design guidelines to minimize particulate contamination.

Materials Choose paints, coatings, etc. that do not flake or chip

Design Orient sensitive surfaces facing downward during launch

Operations Ground

Insure good contamination control procedures duing assembly and test, provide

for inspection and cleaning of sensitive surfaces

Flight

Allow time for launch related particles to disperse before opening covers on
sensitive surfaces

Margin Allow for degradation in both ground and flight operations

Although it is usually only optical systems that are sensitive to particulate contamination, the

entire spacecraft design must reflect this sensitivity. Particles carried aloft on other parts of the vehicle

may dislodge, float around, and redeposit on sensitive surfaces after launch. Consequently, care must

be taken to minimize particulate contamination on all surfaces. As with molecular contamination,

providing for some time after reaching orbit for particles within the launch shroud to dissipate can
help.

Finally, the last step in effective contamination control is always margin. Providing for a
significant difference between the amount of contamination that the surface can tolerate and the

amount of contamination that analysis predicts will be deposited, will minimize risk and enable

operations even if on orbit performance is below pre-flight worst case predictions.
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4. Contamination Control

Once the cleanliness requirement for a surface has been quantified, the issue becomes "Can this
level of cleanliness be maintained and verified?" If a surface can tolerate a large amount of

contamination no special procedures, other than pre-launch visual inspection and cleaning, may be
warranted. In the other extreme, analysis may indicate that the required cleanliness level is too clean

to be maintained on orbit. This would force the program to relax the contamination requirements by

either: a) redesigning the hardware, or b) altering the mission operations profile. In most cases, the

required cleanliness level lies between these two extremes and can be maintained only through
enforcement of the proper contamination control processes and procedures.,

The sections that follow provide a discussion of the various methods that can be used to prevent,

detect, and remove contamination from sensitive surfaces, as well as methods to help maintain surface

cleanliness. These sections may be tailored to specific program objectives and utilized in a

contamination control plan as part of the overall contamination control effort. Finally, the specific
case of the Shuttle Orbiter examined in order to provide the designer with a feel for the type of

environment a spacecraft will be exposed to during launch processing and early on orbit operations.

4.1 Preventing Contamination

To be effective, the contamination control process must start with conceptual design and procee_ 4

through on orbit operations. There are a variety of steps that the designer can take to minimize bo_.:

the contamination generated by a subsystem and the effects of contamination on a subsystem. Often

these steps impose no added effort to the program and can simplify problems during the later stages,

when solutions are more costly and time consuming.

4.1.1 Spacecraft Design

4.1.1.1 Configuration

The space vehicle design must reflect an understanding of the importance of minimizing view

factors between outgassing sources and sensitive surfaces and to facilitate inspection an,: cleaning,

where possible. The majority of the outgassing mass generated by a space vehicle originates interior to

the vehicle, from black boxes, cable harnesses, wire bundles, etc. The space vehicle configuration

should provide vent paths that direct contaminants away from sensitive surfaces. Thrusters that are

part of the propulsion and/or attitude determination and control subsystems may also be a source of

contamination. In order of decreasing risk: solid fuel, liquid bipropeilant, liquid monopropellant, and

cold gas thrusters may all pose risks to sensitive surfaces. The design should reflect an understanding
of this concern by minimizing view factors between thrusters and sensitive surfaces.

4.1.1.1.1 Honeycomb Panels

Honeycomb panel should be vented to the interior of the vehicle. From there the exhaust products
should be conducted to well defmed sDacecraft vents, as discussed above, for release. Honeycomb

panel may require vacuum baking, if supported by program specific analysis, to minimize the quantity
of outgassed products.

4.1.1.2 Materials and Processes

All parts, materials and processes should be reviewed and approved before use. Examples of

commonly used spacecraft materials which may be a source of contamination are listed in Table 4. I.

The quantity and outgassing characteristics of these items should be documented.

= Borson, E. N., "Contamination Control Documents for Use in Statements of Work and

Contamination Control Plans for Spacecraft Programs," The Aerospace Corporation, TOR-
93(3411)-5, 30 September 1993.
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Table 4-1. Examples of potential sources of molecular contamination.

Assembly/Application Outgassing Source

Adhesives Epoxies, silicones, acrylics ....

Conformai Coatings Polyurethanes, epoxies, silicones ....

Encapsulation/Potting Polyurethanes, epoxies, silicones ....

Small Hardware Acetates, acetals, polyamides, phenolics ....

Sn'uctural Components Epoxies, polycarbonates, polyurethane, polyamides, polyamines,
fiourocarbon$, ...

Tapes Polyesters, fluorcarbon acrylics, fluorcarbons, polyamides ....

4.1.1.2.1 Metals

Metallic surfaces are typically not a source of significant contamination, but may become a source

of both outgassing and particulates if allowed to corrode. To prevent this, cadmium, zinc and unfused

electrodeposited tin, and dissimilar metal combinations as defined by MIL-STD-889, should be

avoided. Metallic materials should be corrosion resistant or be suitably protected from corrosive
environments.

4.1.1.2.2 Non-Metals

Materials used in flight and qualification unit hardware should be selected to minimize outgassing
and should, in general, not include any which have a TML exceeding 1.0 percent or produce CVCM in

excess of 0. I percent when tested in accordance with ASTM E 595, or equivalent. Deviations from this

rule may be granted if: i) no materials which perform the intended function and pass the screening test

are available, or ii) it can be shown that the amount of mass outgassed by these materials is

insignificant in comparison with that generated by other sources. In these cases vacuum baking should

be used to the maximum extent feasible to precondition the material. Materials used in large quality or

in close proximity to sensitive surfaces, even through they meet the TML and CVCM requirements,
should be analyzed thoroughly to ensure the maintenance of minimum contamination levels.

Note that materials that are permanently housed in hermetically sealed containers are not required
to meet outgassing requirements. However, the possibility of container fracture or leakage must be

evaluated and shown not to be single point failure. Similarly, materials which fail the outgassing
requirements, but are overcoated with a material that does meet the requirements, are considered

acceptable if the overcoat is shown to prevent all outgassing. The possibility of pinholes, chipping and

other mechanisms for overcoat failure leakage should be evaluated and shown not to be a single point
failure.

Whenever feasible, all hardware should be vacuumed during assembly to remove particulate
contamination from the surface and. as far as feasible, from the materials interior. Materials which

require baking should be baked after their last exposure to molecular contamination, lubricants,

machining oils, etc., and before integration with more temperature sensitive components. Materials

should be baked at as high a temperature as they can tolerate to speed the migration of outgassing

components to the surface. Materials are to be baked at a temperature at least 10°C higher than the
highest temperature to be experienced thereafter. Baking should be continued until a monitor collects

less than I nanogram/cm2/hr for 24 hours. At this time witness plates should be exposed and the
baking continued for at least 24 hours more.

4.1.1.2.3 Processes

Assembly and integration should be performed in controlled work areas to maintain cleanliness at

all times. Optical elements should not be exposed in areas less clean than Class !00. Further,
exposure times for these surfaces should be minimized.

At the time of integration, each detail or subassembly should be visibly free of particulate
contamination to the level specified. Each part should be free of oils and other molecular
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contaminants at the start of assembly; preferably all parts will have been vacuum baked at this point

unless otherwise required. Existing joints should be covered to prevent the entrance of chips and

debris during subsequent operations. Parts drilled at assembly should be separated, deburred and

cleaned prior to actual assembly. Cleaning shall consist of such operations as vacuuming, dry wiping,

solvent wiping, or ultrasonic cleaning, as applicable, to remove shop oils and other contamination.

Any shaking, bt_. r.rag, drilling, or deburring operations which generate or transfer particulates should
be done outside the cleanroom assembly areas and prior to the integration of the payload with the

satellite.

Visible particulate or other contamination should not be allowed to accumulate on assemblies

during integration, and should be removed whenever detected. Suitable removal methods include

vacuuming and/or blowing, dry wiping and solvent wiping. The objective is to minimize the

accumulation of contamination in joints and recesseswhere it might evade final cleaning.

Every effort should be made to avoid performing particle generating operations, (drilling cutting,

turning of screws or bolts, etc.), in the presence of a clean surface. If such operations must be

performed, a suitable v,_"uuming fixture must be used with each tool to collect the particles generated.
All rivets, bolts, n= _-, washers, and similar fasteners and hardware used in integration should be

free of any oils, greases, etc., which fail to meet the required outgassing standards. Oil or grease
lubricated fasteners should be cleaned by an approved solvent and method prior ', _: _:. All assemblies

incorporating lubricated fasteners or upon which operations requiring the use o, |-i_ricants have been

performed must be subsequently vacuum baked to remove all outgassin_,products.

When subassembliesor parts are transported from a less controlled to a better controlled area, they

should be inspected and cleaned to the requirements of the cleanest part to be exposed in the more

highly controlled area.

Covers and bags should be used to maintain cleanliness during transportation and/or storage.

Outer covers and bags should be inspected for integrity and removed in the anterooms just prior to

cleanroom entry. If only one cover or bag is required, its outer surface should be vacuumed, and

wiped if required, just prior to cleanroom entry. Inner covers and bags should re-'_ain in place, except

when partial or complete removal is essential to the accomplishment of ope,- _ns. They should

remai_ in place as late into the operation as possible without causing undu: interference ro the
ope.,'_fions.

In controlled work areas, a clea_-oom-qualified portable vacuum cleaner should be used. If it is

impossible to exhaust it outside of the cleanroom, the exhaust should be connected to a HEPA, or
better, filter.

4.1.1.3 The Vehicle Interior-Electronic Boxes, Cable Harnesses ....

Electronic boxes and other closed, non-sensitive compartments are of cot. _ern because they will

vent particles 2, outgas products upon exposure to vacuum. The electronics and wiring are the

primary source, ' outgassing on most spacecraft. Analysis should be performed to determine if pre-

treatment of box:s and wtrmg harnesses by vacuum baking is necessary to minimize outgassing.
Exterior surfaces should be inspected and cleaned before closeout.

4.1.1., ¢ Electrical Power System- Solar Arrays

Ccatarnination will reduce the power output generated by a solar array. It _s necessary that the
solar arrays be kept as clean as possible in order to provide maximum margin for losses due to

radiation damage. Power losses from contamination and radiation damage will usually define system

lifetime. Three contamination control measures should be planned. During ground operations the

solar arrays should be periodically inspected and cleaned. Inspections must be performed before and

after shipment and immediately before installation in the launch vehicle. During launch, the solar

arrays will be protected from fairing fallout by orienting them vertically in the launch vehicle shroud

and by shielding them from sources of particulates or outgassing. (Vertical surfaces collect much less

particles that upward facing surfaces do.) Molecular contaminants will stick to the warm solar panels
if polymerized by the solar ultraviolet. Consequently, on orbit outgassing from the spacecraft must be
directed away from solar panels.
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4.1.1.5 Thermal Control Surfaces

The chief impact of contamination on thermal control surfaces is to increase their solar

absorptancc. A secondary concern is that contamination can also alter thermal emittance. Thus
contamination of thermal radiators may upset thermal balance and lead to overheating of critical

components. In many cases this is an issue only if the radiator surface is sunlit If the surface is
deemed to be sensitive one will employ the same precautions noted above for the solar arrays. MLI

should be embossed to eliminate the need for a spacer net between the layers. The vent holes should

be punched and the MLi thoroughly cleaned before the aluminum coating is applied.

4.1.1.6 Attitude Determination & Control- Attitude Sensors

There are two concerns for optics: i) to maximize signal throughput, and ii) to minimize
bidirectional reflectance distribution function (BRDF). The subsystem designer and supplier should

determine EOL requirements for all attitude sensors and compare their requirements to those required
for thermal radiators and solar arrays. If they are of the same order, employ the same precautions

noted above for the solar arrays. If they are more stringent, employ the precautions noted below for

payloads.

4.1.1. 7 Propulsion - Thrusters

Exhaust from thrusters, whether used for orbit insertion, drag makeup, or attitude con_'ol, should

be directed away from the vehicle in such a manner that view factors to sensitive surfaces are
minimized. If feasible, the use of thrusters for attitude control should be avoided in favor of

momentum wheels, torque rods, or similar technologies which do not generate potential contaminants.

4.1.1.8 Other Exterior Surfaces

Exterior surfaces of the spacecraft, which have line of sight to solar arrays, optical sensors or

payloads, must be thoroughly cleaned and outgassed. Structural panels and ML! should be fabricated

of low outgassing materials and vacuum baked, at the highest tolerable temperature for each, until: i)

there is no detectable outgassing, or ii) analysis indicates that the outgassing rate observed, when

multiplied by the view factor to any applicable sensitive surfaces and evaluated against the space

system operational concept, is not predicted to pose a contamination threat.

4.1.2 Optical Payload Accommodation

Optical payloads are often the most contamination sensitive surfaces on the space vehicle, and
drive contamination control for the entire system. When this is the case, contamination control must

start with the payload manufacturer. The payload should be assembled and tested; then disassembled
and thoroughly cleaned. This cleaning should, unless analysis indicates otherwise, include vacuum

baking. The payload module will then be reassembled and protected. The protection may be provided

by sealing in a clean, inert atmosphere, by purging with GN2, or by evacuating and sealing. Analysis

and testing will be required to determine the best approach. Testing and other exposure after

reassembly must be minimized; exposure will only occur in Class 100 or better environment.

Provision will be made for "aliveness" testing without opening the sensor module.

The upward facing surface, presumably the front of the satellite which includes the payload cover,

will collect the fairing fallout. During launch shocks, especially the cover opening, can scatter these

particles to surfaces in the line of sight. The cover opening will be directed to avoid exposing the solar

arrays or radiators. Unless otherwise indicated by analysis, all exterior payload surfaces will be

inspected and cleaned before launch.

4.1.3 Ground Equipment

Aerospace Ground Equipment (AGE) elements which are brought into the presence of flight or

qualification hardware should meet the cleanliness requirements of the exposed flight or qualification

hardware surfaces at that time. Any such elements which contact the flight or qualification hardware
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surfaces should use materials meeting the requirements of section 4.1.1.2 to avoid contamination

transfer. Any AGE exposed to in a low pressure or vacuum environment in proximity to flight or

qualification hardware shouldi also meet the requirements of section 4.1.1.2 to avoid u-,msfer of

outgassed products.

4.1.4 Manufacturing, Assembly, and Test

Most fabrication will be performed in general factory or good housekeeping areas and

subsequently cleaned to visibly clean. Subassembly. assembly, integration and test should be

performed in Class i00,000 or better cleanrooms with periodic inspections and cleanings. Optics

must be delivered clean to the specified level and should thereafter be exposed to only Class 100 or

better environments. Exposure after receipt must be minimized.

4.1.4.1 Parts Fabrication

Unless otherwise specified, parts fabrication may be performed in general factory or good

housekeeping area, as appropriate. During fabrication, cleanliness p),wisions of standard cleaning

specifications should be observed. Corrosion, all oils and greases, and gross particle contamination

must be removed and parts must be protected before moving to subassembly areas.

4.1.4.2 Subassembly, Assembly, and Test

Except as otherwise specified, parts should be cleaned to visibly clean level I! (VC-II) or better
and brought into Class 100,000 cleanroom for subassembly. S,abassembly, assembiy, and test should

be conducted in Class 100,000 cleanmoms unless otherwise noted. When not undergoing assembly,

or test operations, components must be covered or otherwise protected. Operations involving the use

of uncured or partially cured silicones must be performed in isolated area as they are a notorious

source of contamination during ground operations.

4.1.4.2.1 Test Chambers

Test chambers in which flight or qualification hardware will be exposed must be precleaned and

maintained at the cleanroom class specified for the hardware. In addition, after cleaning, the test

sequence should be prerun with all support equipment present but without flight or qualification

hardware. QCMs and/or witness plates should be installed to monitor the contamination deposition at

the location to be occupied by the flight or qualification hardware. If the monitors show excessive

contamination, the chamber must be recleaned and the test repeated until contamination deposition is

shown to be within the limits specified.

4.1.4.3 Controlled Work Areas

4.1.4.3.1 Access

As shown in Figure 4-1, the presence of people, (or more specifically activity performed by

people), in a cleanroom will greatly increase the quantity of contaminants in the air. Consequently,

access to controlled work areas should be strictly limited. Any individual entering a controlled work

area must undergo training to ensure familiarization with proper contamination control procedures.
The correct clearwoom gowning of each person entering the area must also be verified. The number of

persons permitted in the area should be restricted to the minimum required to perform the operation in
progress.
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Figure 4-1. Relative contamination levels in a cleanroom during daily operations.

4.1.4.3.2 Cleanroom Training

All personnel requiring access to controlled work areas, and their line supervision as deemed

necessary, should receive indoctrination in the purposes and practices of cleanroom operation, and any

additional training as is deemed necessary for their specific tasks, before being certified for entry to
controlled work areas. Additional contamination training and briefmgs should be conducted at

appropriate intervals to supplement the initial certification training. Suggested topics include:

1) A general introduction concerning the significance of contamination control to the success of

the program.

2) The significance of contamination control in all phases of design, fabrication, assembly,

integration, storage, shipment, test, and launch integration. Emphasize that anyone can get it

dirty; it requires full effort by all to keep it clean.

3) The importance ofdress and discipline in cleanroom operations.

4) Specific techniques of cleaning, clean assembly and packaging.

5) Monitoring procedures.

6) Review the Contamination Control Plan.

7) Familiarization with other appropriate documentation.

4.1.4.3.3 Before Entering the Controlled Work Area

Before entering the cleanroom, personnel should check to verify that they comply with the
following guidelines.

i ) Do not eat, smoke, or chew gum in the smocking areas or controlled work areas.

2.) Do not bring food, beverages, gum, candy, cigarettes, tissue, pencils, or handkerchiefs into
the controlled work area.
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3) Avoid wearing clothes that generate particles, such as: fuz_ sweaters, velour, terry cloth, or

dirty clothing.

4) All jewelry, including watches, must be covered.

5) Take only lint-free paper and non-retractable ball-point pens into the controlled work area.

6) Avoid wearing cosmetics ;n any controlled work area. This includes: lipstick, blush,

eyeshadow, eyebrow pencil, mascara, hairspray, etc. These items will be prohibited in the

stricter areas as appropriate.

7) Smokers should take a drink of water before entering a controlled work area. Drinking water

will help reduce the particulates in the breath after smoking.

4.1.4.3.4 Entering the Garment Room and Controlled Work Areas

The purp,_se of the cleanroom garment is to protect hardware from contaminants generated by

people. Cleanroom garments should be selected based on hardware cleanliness requirements and the

types of operations that must be performed in the cleanroom. Smocks do not provide good isolation of
hardware from people generated contaminants. Fibers from street clothes worn under the smock will

fall out from under the smock. These fibers will generally be larger and will settle out of the air close

to where they are generated. There may be places and operations in a cleanroom where this is

acceptable, but only a full coverall will provide the required isolation when people are working in,

around, and above spacecraR hardware

Requirements for entry into the garment room and controlled work areas include:

I) Shoes should be cleaned with cleaning machine and mats at entry. Additional shoe coveting

may be required.

2) Cleanroom garments should be donned in the anteroom. Caps should be worn to cover as

much hair as possible.

3) Beards and mustaches should be covered. Do not groom hair in the smock room or
controlled work areas.

3) Garments should be inspected before donning to ensure they are clean, there are no tips or

open seams and all fasteners are usable.

4) Cieanroom garments should not be worn outside the controlled area and anteroom. When not

being worn they should be stored according to instntctions.

4.1.4.4 General Area Regulations

General area regulations include:

I) Outer garments designed and maintained for cleanroom use will be worn by all personnel any

time they are in these areas.

2) Smoking and eating is forbidden in these areas and in adjacent anterooms and entries. Notice

of this restriction should be displayed at entrances and in the anteroom areas.

3) Entry of paper in these areas will be limited and only approved types (limited-linting, plastic
coated, plastic covered, etc.) will be used.

4) Only approved wipers will be allowed into these areas.
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5) Only approved bali point pens will be allowed into thee areas. Pencils and erasers are

forbidden.

6) Depending on the severity of the contamination concer, sources of particulate matter and

volatile materials, e.g., cosmetics and lotions, shall not be worn or carried into these area.

7) Each person working in these areas shall clean his assigned work area before and after each

activity.

8) All hardware, tools and equipment shall be covered or packaged when not in use.

9) Lint-free gloves (cleanroom latex gloves unless otherwise specified) shall be worn at all times
when near critical surfaces.

lo)

ii)

No aerosol cans or mercury thermometers shall be allowed in these areas.

Personnel with a temporary physical condition which can generate contamination (e.g., head

or chest cold, hay fever, or other cause of coughing, skin or hair condition which produces

flaking) shall report it promptly to the supervisor. They shall be assigned work outside the
controlled area until the condition is cleared up.

4.1.4.4.1 Receiving Area Entry

Entry of items directly into the receiving area should be done so as to minimize any contamination

of the area. All exposed parksshould be protected by drapes and covers. A temporary floor covering

and drapes may be used to construct an anteroom area. The anteroom should be so constructed that

open doors arc isolated from the area. The doors may then be opened and the bagged parts moved in.
The doors should then be closed and the outer cover inspected, vacuumed and wiped. The outer

covering may then be removed and the part brought to the receiving area. Upon completion of the

receiving activities, the floor covering should be completely vacuumed and the drapes removed. The

floor covering should again be vacuumed and then removed. The whole area should then be

vacuumed and inspected.

4.1.4.4.2 Movement Between Areas

Personnel must be cognizant of the cleanliness classification of areas they are entering, leaving,

and passing through. Cleanroom garments must be appropriate for the area being entered; color

coding may be appropriate. Special care must be taken when entering the laminar flow areas; entry
must always be from the downstream end.

All items wansponed between areas must be cleaned to the requirements of the area being entered

and must be appropriately covered or packaged. This includes handcarried fixtures and tools which

shall be bagged or placed in precleaned and covered trays.

4.1.4.4.3 Area Monitoring

Initial and periodic measurement of particulate levels and airflow characteristics in areas of

controlled cleanliness shall be recorded for predetermined locations. Additional measurements may be

taken as required whenever necessary to assure cleanliness levels before and after critical operations
and tests.

4.1.4.4.4 Janitorial Service

A janitorial schedule should be developed for each controlled area. The schedule should be

updated as necessary and should include any temporary activities. Janitorial equipment (vacuum

cleaner, mops, buckets, etc.) should be cleanroom certified items and should not be used outside the

area. As shown in Figure 4-1 janitorial service is often the most contamination producing activity
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performed in the cleanroom. It is important that janitorial personnel be educated on methods that can
reduce the amount of contaminants "stirred up" by their activities.

4.1.4.5 Laminar Flow Area Regulations

All operations, access and training requirements listed in sections 4.1.4.3 and 4.1.4.4 above apply to
laminar flow areas as well. In addition,

I) Personnel will receive additional training and be specifically certified for these areas. Only

personnel so certified will be allowed in these areas.

2) Special cleanroom garments will be reserved for use in these areas. These garments may be
stored and donned in the same entry room as those for the less clean areas, and may be worn

while passing through those areas to reach the laminar flow areas. However, no work will be

performed in less clean areas while wearing these garments, nor will they be worn in close

proximity to operations in the less clean area.

3) Always keep in mind that anything that goes under a laminar flow hood will contaminate the

air.

4) Move slowly and avoid unnecessary activity at or around a laminar flow hood. Stand away

from the hood unless you are working there.

5) Do not cough or sneeze into or under a laminar flow station.

6) Exposed parts will be kept as near the filter bank as possible. In no event will personnel pass
between the filter bank and exposed parts.

7) Clean operations will be conducted upstream from dirty ones.

8) Particle generating operations are to be avoided in these areas, if such operations must be

performed they will be performed as far from the filter bank as possible.

4.2 Monitoring Contamination

The amount of contamination which can be tolerated on each sensitive surface will also determine

what monitoring techniques must be employed. The method of inspection, and frequency, are

ultimately determined by surface cleanliness levels and mission objectives. For minimal
contamination requirements, visual inspection may be sufficient. If it looks dirty, clean it. Otherwise,

leave it alone. For somewhat more stringent requirements, witness plates, (a small plate similar to the

sensitive surface that is placed next to that surface), ma,' be required. Every so often the witness plate

is examined with some degree of care. If the plate _ .ontaminated it is assumed that the adjacent
surface is also contaminated, if the contamination levels are unacceptable, or even borderline, the

surface and the witness plate are cleaned. For more stringent requirements, the sensitive surface are

examined directly and cleaned if borderline. Finally, for the most sensitive surfaces, component (or

full subsystem) tests may be run to verify that contamination has not impaired their performance.

Every spacecraft componen should have some margin of safety, even though each subsystem

specialist may be reluctant to admit it. A little probmg will usually elicit a power decrease, a

temperature rise, or a signal attenuation which can be tolerated without compromising mission success.
However, contamination is only one of the effects which must be considered in allocating this margin.

Among the other effects to be considered are manufacturing tolerances, storage, handling and testing

effects, launch and deployment factors, as well as on orbit environments. It is usually necessary to

reach a compromise so that no one effect is favored in setting the performance margins.

No matter how good the contamination contsol planning and procedures, there is always the risk

of accidents and there are schedule requirements which limit how clean an on orbit spacecraft can be.

In the process flow prior to launch, there is some point beyond which it will be impossible to clean the
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spacecraft and, usually, a later point after which it will be impossible to even inspect the surface.
Whatever contamination the spacecraft has then will only increase after that, with the launch process

often being the most contamination producing event in the life of the surface.

4.2.1 Molecular Contamination

As shown in Table 4-2, these are a variety of techniques that may be used to deduce surface

cleanliness. The actual method to be used in a given application depends on the surface cleanliness

requirement, the accuracy desired, and other program factors such as cost and schedule. Each of these
methods are discussed in the sections that follow.

Table 4-2. Molecular contamination monitoring options.

Method Sensitivity Pro's Con's Application

Gravimetric 0.2 mg/fl _ Generally 24 hr Turn Around; Ground Processing
Accepted Handling Errors; Only

Low Sensitivity

OSEE 0. I mg/ft" Fast Response Requires Calibration; Ground Processing
Low Sensitivity on Only

Some Surfaces

QCM 0.005 mg/fi" Real Time; Only Measures Mass Ground Processing

High Sensitivity Deposition & On Orbit

Calorimetry 0.01 mg/ft" Real-Time Only Measures On Orbit Only
Absorptance Changes

4.2. L 1 Gravimetric

Gravimetric procedures may used to determine the amount of molecular contamination, non-

volatile residue (NVR), remaining on a surface. These procedures are based on ASTM E 1234, ASTM
E 1235 or their derivatives. 2 In essence, the surface is solvent wiped and the NVR is extracted from

the wipers with additional solvent, which is either evaporated in a vacuum oven or in a Class 100

unidirectional air-flow hood. The mass of the residue minus the mass of a blank sample, divided by

the area wiped, is equal to the mass per unit area of NVR on the surface. ASTM E 1235 recommends

using Soxhlet-extracted wipers and methylene chloride. Because of potential toxicity, methylene
chloride is not recommended for use in a cleanroom. More environmentally friendly methods

recommend using ethyl acetate and/or ethyl acetate/cyclohexane azeotrop¢. 3 Because gravimetric

methods are so well characterized they are a standard means of measuring molecular contamination

during ground processing. The disadvantages of this method are that it does not provide real time

answers, it is unsuitable for use on optics or other easily damaged surfaces, and is not adaptable to on

orbit cleaning.

4.2.1.2 Optically Stimulated Electron Emission (OSEE)

A metallic surface that is subjected to a flux of UV light will emit electrons through the

photoelectric effect. This process forms the basis for one means of measuring surface contamination

called optically stimulated electron emission (OSEE). 4 A clean surface that is subjected to a UV flux

of a known strength and distribution will produce a certain measure of photoelectrons which can be

" Borson, E. N., Warts, E, J., and To, G. A., "Standard Method for Measurement of Nonvolatile

Residue on Surfaces," The Aerospace Corporation, SD-TR-89-63, 10 August 1989.

3 Arnold, G. S., and Uht, J. C., "Nonvolatile Residue Solvent Replacement," The Aerospace

Corporation, SMC-TR-95-28, I March 1995,

' Arora, A., "Surface Contamination Measurement and Control by Nondestructive Techniques. "J.

Env. Sci., p. 30, Nov./Dec. 1985.

Gause, g. L., "A Noncontacting Scanning Photoelectron Emission Technique for Bonding Surface

Cleanliness Inspection," NASA TM- 10036 I, February 1989.
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monitored. If the surface is contaminated, the contaminant layer will absorb some fraction of the

incident UV and reduce the strength of the UV that can reach the metallic surface. Consequently, the

number of photoelectrons will also be reduced. As shown in Figure 4-2, if the instrumentation is

properly calibrated it may be used to infer surface NVR levels. The advantages of this method arc that

it provides real time answers and does not require direct contact with the surface. This last factor
alone makes it suitable for use on optical devices. The disadvantage is that the instrumentation must

be calibrated for the surface in question, (large variabilities may be seen when level A is approached),

and may not be usable on all surfaces, (i.e., when the photoelectron current from the surface is too

small). As with gravimetric methods this technique is suitable only during ground operations.
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Figure 4-2. Optically stimulated electron emission response as a function of NVIL

4.2.1.3 Quartz Crystal Microbalance's (QCM's)

One device that is capable of directing measuring the deposition of contaminating material on a

surface is a Quartz Crystal Microbalance (QCM). Essentially, a QCM operates by comparing the
resonant frequencies of two quartz crystals. One crystal is exposed to the environment and the other is

shielded. The resonant frequency of the exposed crystal will change if mass is deposited on its

surface. Consequently, by examining the change in resonant frequency, mass deposition can be
inferred. The sensitivity of the device depends on the actual design, but is on the order of 4.43 x 10 -9

g/cm 2 Hz at 10 MHz and 25 ° C. s One big advantage of QCM's is that the temperature of the outer

surface may be controlled so that mass deposition as a function of surface temperature may be
determined. Conversely, heating the device gives knowledge of the temperature at which

contaminants will "boil off". Devices with this capability are 1o, _n as temperature controlled QCM's

or simply TQCM's. QCM's are used routinely in applications where direct deposition of mass is

needed. Because QCM's can be manufactured in very small packages, (- 3 cm diameter x 3 cm

length; 100 g; 140 mW at 10 Vdc), they are suitable for use as flight experiments. 6 Note however that
QCM's are incapable of relaying information about the absorptive nature of the mass that has been
collected.

s Wallace, D. A., and Wallace, S. A., "Realistic Performance Specifications for Flight Quartz Crystal

Microbalance Instruments for Contamination Measurement on a Spacecraft," AIAA Paper 88-
2727, (1988).

6 Bryson, R. J., Seiber, B. L., Bertrand, W. T., Jones, J. H., Wood, B. E., and Lesho, J. C., "Pre-Flight

Testing of Thermoelectric Quartz Crystal Microbalances (TQCM) for Midcourse Space
Experiment," Arnold Engineering Development Center, AEDC-TR-93-24, February 1994.

Mark 9 Contamination Sensor Specifications, QCM Research, Laguna Beach, CA.
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4.2.1.4 Calorimetry

In order to measure degradation of thermal control materials on orbit, spacecraft may be
instrumented with devices called calorimeters. Essentially, a calorimeter is a thermistor that is

calibrated to operate over the predicted range of temperatures. By isolating a sample material from the

spacecraft and allowing it to establish thermal equilibrium, its temperature will be indicative of its a/E

ratio. Changes in cx/e will be indicated by a change in temperature of the sample. If the thermistor

has been properly calibrated, the change in a s can be inferred. The relative uncertainty in absorptance

is dependent on the uncertainty in emittance, temperature, solar irradiance, and heat loss due to

coupling to the surrounding material. Because of this coupling, the absorptance is given by

caT A,o, +

SA.

Equation 4-1

where QL" is the heat loss due to coupling between the sample materials and its surrounding supports.

Differentiating this equation will provide the relative uncertainty in t_s. If preflight calibration is

performed, a sensitive design may be able to infer changes in absorptance as low as 0.0005. Although

calorimeters do not relay information about the mass of the material that has been deposited, they do

provide information on the absorptive nature of the contamination. In comparison to QCM's,

calorimeters are smaller, lighter, and require fewer spacecratt resources.

4.2.2 Air Quality

As has been previously seen, air quality and exposure time are the key factors that determine

particle fallout onto surfaces. For this reason, it is important to monitor air quality in the cleam-oom in

order to validate exposure conditions. As shown in Table 4-3, two accepted methods of doing this are

membrane filter sampling and light scattering.

Table 4-3. Air quality monitoring teehniques.

Method Sensitivity Pro's Con's Application

Membrane Filter - 5 pm Statistical Analysis of Not Real Time Ground

Sample Particle Sizes Processing

Light Scattering - 0.l pm Real Time; Calibration Required; Ground

Statistical Analysis of Limited Dynamic Range Processing
Panicle Size

Dark Field ~ 0. I pm Statistical Analysis of Not Real Time On Orbit

Photography Particle Size

4.2.2.1 Membrane Filter Sampling: ASTM F 25

The ASTM F 25 particle sizing methodology is based on the microscopical examination of

particles impinging on a membrane filter with the aid of a vacuum. Essentially, a membrane filter is

connected to a vacuum system which is used to gather samples of air at various locations in the

cleanroom. Subsequent examination of the membrane filter under magnification will provide particle

size distribution data for larger, - 5 Izm, particles. This information, when combined with knowledge

of the volume of air sampled, can be used to infer air quality in accordance with FED STD 209E.

4.2.2.2 Light Scattering: ASTM F 50

Continuous sizing and counting of airborne particulates can be conducted as described in ASTM F

50. in essence, the air in a controlled environment is sampled at a known flow rate. Particles

contained in the sampled air are passed through an illuminated sensing zone in the optical chamber of
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the instrument. Light scattered by individual particles in the air is received by a photodetector arid

conven,'_! into electrical signals. The signal pulse height can be related to particle size. The number

of particles of a given size can be registered or displayed. The advantage of ASTM F 50 over ASTM
F 25 is that ASTM F 50 can operate continuously, without a human operator.

4.2.2.3 Dark Field Photography

The last measure of air quality, and one most suited for on orbit operations, is dark field

photography. Essentially, illuminating any particulates near a spacecraft with a flash bulb, and taking

a picture against the dark background of space, will yield a count of particulates near the spacecraft.

By making a time exposure the particulates will leave a trail in the photographs that can be used to
induce velocity and point of origin. The strength of the signal from a given particulate will,

presumably, be proportional to its reflectance and geometrical size. Although this technique is not
very accurate for measuring particulate sizes, it is capable of quantifying the near spacecraft

environment. Obviously, flying such instruments on most spacecraft are unnecessary and their use is

usually restricted to applications, such as the Shuttle, where measurements during one flight will have

application to future flights.

4.2.3 Particulate Contamination

As shown in Table 4-4, several procedures have been developed to determine the distribution of

particulates on a surface. Visual techniques are

Table 4-4. Particle contamination monitoring techniques.

Method Sensitivity Pro's Con's Application

Visual Inspection - 5 _tm Standard Method Not Real Time Ground Processing

Scattering N/A High Sensitivity; Statistical Ground Processing
Fast Turnaround Analysis Difficult & On Orbit

4.2.3.1 Visual Inspection

4.2.3.1.1 ASTM "Statistical" Procedures

ASTM E 1216 and ASTM F 24 are procedures for measuring and counting particulate contamination

on surfaces. In essence, a tape sample is applied to a surface in order to cause any particulates present

to bond to the tap The tape sample is then removed and examined under a microscope. Provided

that the sample is laJ_e enough to be statistically significant, the results will yield surface cleanliness in
accordance with MIL S'I"D1246C.

4.2.3.1.2 NASA "Appearance" Procedures

Rather than perform an intensive, detailed statistical count of particles on a surface to determine

surface cleanliness in accordance with MIL STD 1246C, one would like to be able to correlate

appearance with cleanliness. Some of the first studies ot surface cleanliness were performed in order
to quantify the fallout of dust from chimney gases. _ In these studies, the objective was to determine

the maximum amount of deposition that would go unnoticed by a casual observer. In aerospace
applications, one is usually interested in determining the minimum amount of contamination that

would go undetected by a trained observer. In any case, the conclusions of this initial study remain
valid:

7 Carey, W. F., "Atmospheric Deposits in Britain - A Study of Dinginess," Int. J. Air Poll., Vol. 2, pp.
1 - 26, 1959.
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Surfaces that receive deposits of particulates appear dusty when the cover is sufficiently dense to

reduce the reflection of light perceptibly. Consequently, a surface will often appear dusty even

though individual panicles are too small to be distinguished.

Particles less than 1 mm (1000 lain) will not be visible on the ground from the standing position.
When viewed from a distance of 25 cm, a circle of 0.1 mm (i00 p,m) in diameter subtends an

angle of just over 1/60th of a degree and is the smallest dot visible to the human eye. This would

imply that, depending on the contrast, the human eye should be able to verify surface cleanliness
of about level 1000 at a distance of 2 m, and surface cleanliness 100 at a distance of 25 cm.

Contrast between the color of the particle and the background is a critical factor in distinguishing

decreased reflectance. The response of the human eye to color is illustrated in Figure 4-3. High

contrast makes it easier to detect contamination, (black particles on a white surface), while low

constrast makes it much more difficult, (gray particles on a gray surface). If viewed from a

distance too great to perceive individual particles, highly contrasting particles can be detected by

the human eye when 0.2% of the area is covered, (level 370). Weakly contrasting particles
require 0.4% coverage, (level 430), before the particulates could be noticed.

10e

10-t

10":

10":

i

t0 4
0.3 0.4 0.6 0.6 0.7' 0.8

Wavelength (Wn)

Figure 4-3. Response of the human eye to colon.

While visual inspection is a relatively unscientific way to evaluate cleanliness, some studies have

made progress in quantify!nag iL Levels of illumination, viewing distance, and other parameters, have
been quantified, Table 4-5. The calculated resolution limits are based on diffraction and assume a

wavelength of 0.5 p.m and a human eye with a 0.3 cm pupil. It is seen that while the standard VC-I is

not especially discerning, the more sensitive VC-1½, and sensitive VC-II should detect many of the
surface particles. Using ultraviolet light aided by visual magnification, VC-III and VC-IV, can

improve the results even further.

' Anon, "Specifications - Contamination Control Requirements for the Space Shuttle Program,'"

NASA-SN-C-0005, Rev. A, Jan. 1982.

R.aab, J. H., "Qualification of Shuttle Orbiter Payload Bay Cleanliness Levels," Martin Marietta,

MCR-86-2004, January, 1984.

4-14



ContaminationControlEngineeringDesignGuidelinesfortheAerospaceCommunity

Table4-5.Visuallycleanlevels.

Illumination Inspection Magnifi- UV Resolution
Level (It candles) Distance cation Light Limit (_tm)

Standard VC-I 50 5-10 ft I no 600-1200

Sensitive VC-IV, 50 2-4 ft 1 no 240-480

Highly Sensitive VC-II 100 6-18 in I no 60-180
VC-III 100-200 6-18 in 2-7 no 10-90

VC-IV 100-200 6-18 in 2-7 yes - 10

When these inspection criteria are applied to sensitive surfaces they yield information about the
cleanliness levels that may be verified during ground processing. Hafrmer reports that the quantization

of the levels of visually clean is primarily a function of contrast and only secondarily a function of the

percent area coverage (PAC). 9 Experiments conducted with dots of different sizes and colors on a
cathode ray tub_ indicate that at a distance of one foot, white particles on a black surface can be

detected by the human eye at a P,4C of 0.1% (level 320), Table 4-6. Conversely, black particles on a

white surface require a PAC of I% (level 5 ! 5) to ensure detection. Note that these values represent the

upper bound to surface obscuration detection while the diffraction limit of 120 gm represents the

lower bound. Similar results for 5 feet viewing distance are shown in Table 4-7.

Table 4-6. Visual detectivi_ at ! foot viewing distance VC-II).

Backgnd Particle PAC Backgnd Particle PAC
Color Color Contrast Detected Color Color Contrast Detected

Black White 102.6 0.1% Green White 34 0.3%

Blue 15.6 0.1% Blue -53 0. 1%

Green 68.6 0. 1% Yellow 14 0.3%

Yellow 82.6 0. I% Red -50 0.1%

Red I8.6 0. 1% Black -68.6 0.1%

Red White 84 0.1% Blue White 87 0.1%
Blue -3 0. ! % Green 53 0.1%

Green 50 0.1% Yellow 67 0. 1%

Yellow 64 0.1% Red 3 0.1%

Black -18.6 0.1% Black -15.6 0.1%

Yellow White 20 0.3% White Blue -87 1.0%

Blue -66 0. 1% Green -34 1.0%
Green -14 3.0% Yellow -20 3.0%

Red -64 0.1% Red -84 1.0%

Black -82.6 0. ! % Black - 102.6 1.0%

Contrast = (Particle Intensity - Background Intensity)/100

Diffraction Limit of Human Eye at I Foot - 120 txm

Plotting the data shown in Table 4-6 it is possible to construct a curve fit to the data as shown in Figure

4-4. The interpretation of this is that if surface cleanliness level and contrast are plotted and found to

lie above the line t" cleanliness can, with a high level of confidence, be verified by the inspection

criteria of VC-II. Vames lying below the line may be detectable, but with a lower level of confidence.

A similar process quantifies the visual inspection criteria for VC-I, VC-I , and VC-I! as shown in

Figure 4-5. As a point of departure, VC-I can verify to level 625, VC-1½ can verify to level 450, and
VC-II can verify -vel 320.

9 Haffner, J. W.. ' ?ontamination Study of GPS Spacecraft," Rockwell International, SSD86-0104, 30

May 1986.
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Backgnd
Color

Table 4-7. Visual detectivity at 5 feet viewing distance (VC-I).

Particle PAC Backgnd Particle
Color Contrast Detected Color Color Contrast

PAC

Detected

Black White i02.6 0.1% Green White 34 1.0%

Blue 15.6 0. ! % Blue -53 0.3%

Green 68.6 0. 1% Yellow 14 3.0%

Yellow 82.6 0. !% Red -50 i .0%
Red 18.6 0. 1% Black -68.6 ! .0%

Red White 84 0.1% Blue White 87 0.1%

Blue -3 1.0% Green 53 0.3%

Green 50 1.0% Yellow 67 0. !%

Yellow 64 0.3% Red 3 3.0%

Black - 18.6 1.0% Black - 15.6 1.0%

Yellow White 20 ! .0% White Blue -87 3.0%
Blue -66 1.0% Green -34 3.0%

Green -14 3.0% Yellow -20 6.0%

Red -64 1.0% Red -84 1.0%

Black -82.6 1.0% Black - 102.6 3.0%

Contrast = (Particle Intensity - Background Intensity)/100

Diffraction Limit of Human Eye at 5 Feet - 600 p.m

Percent Area Cleanliness
Coverage Level

100%

10%

! .
0.1% _, ., ,,,. ,,,, ,.

-- 1200

-- 1000

-- 800

_D

I

mD

600

S00
400

- 300

0.01% 1 _ ..........

0 0.25 0.60 0.75 1.00

200

Contrast

Figure 4-4. Visual cleanliness as a function of contrast for I foot inspection distance.

When these results are compared to previous studies the results show some agreement for solar

cells, which are blue, less for beta cloth, which is white, and considerable disagreement for black paint,
Table 4-8. t° The degree of gloss is probably a factor for painted surfaces.

,0 Raab, .I.H., "Qualification of Shuttle Orbiter Payload Bay Cleanliness Levels," Martin Marietta,
MCR-86-2004, January 1986.

Maag, C. R., "The Contamination Environment of STS Mission 5 I-C as Measured by the Interim

Operational Contamination Monitor (IOCM)," NASA JPL, DD-00023, August 1985.
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Percent Area Cleanliness
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Figure 4-5. Generalized visual inspection performance criteria.

Table 4-8. Comparison of visual detection of particles.

Measured Obscuration

Martin j'pI. Rockwell

lllumin. Particle Particle Particle

Surface (It caadles) Level PAC Level PAC Level PAC

Beta Cloth 100 385 1 x 10 -J 750 3 x 10-" 615 1 x 10-"

(white) 50 560 6 x ! 0 -3 750 3 x I0 -2

Black Paint 150 - 100 3 x 10 -_ 385 1 x 10 -J

(black) 50 - 385 I x 10 -3

Solar Cells 100 320 5 x 10-* - 385 I x 10 -_

(blue) 50 485 3 × 10-3 - 485 3 x 10 -3

Aluminized 100 365 7 x 10"_ 485 3 x 10-J

Kapton 50 615 ] x l0 -2
(yellow)

4.2.3.1.3 Solar Arrays

Solar cells appear to the human eye to be blue. Fortunately, both solar cells and the human eye

are sensitive to approximately the same portion of the electromagnetic spectrum. Consequently, if the

cells are visually clean to the eye they are probably not contaminated enough to be operationally

affected. The results of various attempts to quantify visually clean levels yield the best agreement for

solar cells, Table 4-8. Thus solar cells clean to VC-I can be verified to have surface particle levels <

485, while those clean to VC-II have surface particle levels of- 350. Interpolating yields a VC-I½
surface particle level of- 420. The corresponding surface obscurations are 3 x 10-3 (VC-I), 1.5 × 10-3
(VC- 1½), and 8 x 10-4(VC-ll).

Fortunately, all of these surface particle levels will result in power losses, (for individual cells), of

< 0.1%. Even adding pre-launch (10 days in Class 100,000 air) and launch (Shuttle Cargo bay)
contributions to surface particle levels of 625 and 600, respectively, would produce an on orbit level of
675, (SO - i.8 x 10-2). This would produce a solar cell power loss of- 0.5% This is a conservative
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number which assumes that the solar cells were facing up both before and during launch. While solar

panels performance may be affected more than this if the particle fallout is not distributed uniformly, it

is apparent that most solar panels should arrive on orbit with not enough particle contamination to

seriously degrade their power output.

4.2.3.1.4 Thermal Control Surfaces

Thermal control surfaces are usually white, if they face the Sun, or black, if they face deep space.

Some spacecraft body surfaces are wrapped with multi-layer insulation (MLI) which is sometimes
yellow in appearance, but more often appears silver as the result of aluminum deposited on the inside

of the inside layers. Since the main appearance difference between white and silver is the specular

component in the optical reflectance, white and silver surfaces are sometimes grouped together in their

sensitivities to visual inspection.

As shown in Table 4-8, diffuse white surfacesdo not show visual particle contamination as well as

darker surfaces, especially if the dark surfaces are shiny. While there is disagreement between the

various researchers in what particle levels can be visually detected on white surfaces, VC-I is

apparently sensitive to a - 700 level, while VC-II is apparently sensitive to a - 600 level.

Interpolating, yields a 640 panicle level possible for VC-ll/=. The corresponding surface obscurations
are: - 8 x 10-3 (VC-I), - 1.3 x 10-2(VC . 1½), and - 2 x 10-2 (VC.II). Assuming the thermal control

surfaces are just at the point of being visually contaminated by particles, adding the typical pre-launch

(10 days in Ci=s 100,000 air) and launch (- 600 panicle level) will produce on orbit levels of- 790
(VC-I), ~ 765 (VC- I½), and ~ 740 (VC-I[). The corresponding surface obscuration ratios are 3.8 x

10-2 (VC-I), 3.1 x 10-2 (VC- I½), and 2.6 x 10-2 (VC-II), respectively.

Since dust panicles are generally gray, their relative lack of contrast is responsible for their being

hard to see on white surfaces. However, this lack of contrast in the visual wavelength region also
reduces their effect on thermal control surfaces in the infrared region if their relative lack of contrast

extends into the far infrared (I > - l0 ttm).
As discussed in Chapter 2, under extreme conditions the thermal control surface and the

contaminating panicles are assumed to have opposite limiting values of c¢, or c. Black panicles on a

white radiator which do not face the Sun produce a !% temperature decrease if the panicle level

exceeds ~ 520, (- 0.35% obscuration), while a 1% temperature rise will be produced if the particle

level exceeds - 450, (0.2% obscuration). These levels are considerably below the dust particle levels

which can be detected on white surfaces. Fortunately, dust particles are grey, not black, and many
radiators do not face up during launch. The white panicles on a black surface is a better

approximation here, which analysis shows requires a - 830 surface panicle level to produce a 1%

effect. Because of this relative lack of contrast, radiators are almost always very tolerant to
contamination, both molecular and paniculate.

4.2.3.1.5 Optical Surfaces

As has been pointed out, optical surfaces are very sensitive to particulate contamination.

Fortunately, such sensors are always fabricated in special cleanrooms, (usually Class 10,000 or better),

kept covered when in storage, and sealed up between the time they are incorporated into a spacecraft

and when they are deployed on orbit. Even on orbit, if they are used only intermittently, it is not
unusual to re-cover them, especially if thruster operations are conducted nearby.

It is obvious that the usual visual inspection techniques are inadequate and even the stringent

visual inspection levels, (VC-III or VC-IV), may not be sufficient even if such inspections are possible

and they almost never are. Consequently, special test fixtures are usually constructed to verify the

performance of the optical sensor through directmeasurements of the sensors scattering
characteristics. This is the subject of the next section.

4.2.3.2 Scattering: ASTM E 1392

For many applications involving sensitive optics, the only flue measure of a sensors cleanliness is

a direct measurement of its scattering characteristics. The general procedure for meaasuring BRDF is
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ASTM E 1392. Because scatter measurements on aerospace optics must invariably be tailored to the

specific program at hand, the details of ASTM E 1392 will not be discussed. Essentially, light from a

source, (such as a laser), is scattered off of the surface in question and collected by a detector at some

predetermined off axis angle. The graph of energy received/energy input vs. scattering angle yields
BRDF. Because the test equipment necessary to make these measurements is usually quite

sophisticated it is app; opriate to discuss some of the unique requirements of these test fixtures.
Scattering test fixtures will often have their own vacuum chamber, may be cryogenically cooled,

and are sensitive instruments in their own right. In this chamber, it is possible to simulate the on-orbit

opening of the sensor, test its response to various simulated targets, and verify its calibration. Once
thi _ has been done the sensor is resealed, ready for incorporation into the spacecraft. Once

i_.... .-porated within the spacecraft, the usual testing is mainly electrical and thermal. Voltages,
currents, and waveforms are veri;,_d using laboratory generated signals which simulate the output

from the optical sensor. Temperatures, especially under thermal vacuum conditions, are monitored for
30 ",r more days to verify the calculated heat loads, the on board refrigerator performance, or the

c_:.gen use rate. During this time solar array performance, activation operations etc., will be
measured. During this time the optical sensor will often be sealed up, protected from all external

contamination.

With the optical sensors, especially cooled IR sensors, to well protected from ex_ d
environments, the main threats can be internal environments. Th: _article contamination which may

result is due to flakes of paint, metal or plastic burrs, and the like. For this reason the sensor is shaken

very vigorously before iL¢ final tests to make certain that no launch induced particulates will be

generated. In addition, th_ _ensitive optical surfaces are not allowed to face up except when necessary.

As expected, th_ on-orbit particle levels for optical sensors should be very low.
While mc_ drements of the scattering characteristics of an optical surface are usually performed

only on the ground, it is possible to design calibration devices into space sensors. Alternatively, the

mission operations profile may allow for the sensor to period ::y point toward the Sun, or other off-

axis source, in order to back BRDF and surface cleanliness ou, ,_fthe resulting SNR.

4.3 Cleaning Contaminated Surfaces

The issue of how dirty a system gets during ground processing is of somewhat academic interest if

the surface can be restored, with minimal effon, to the desired cleanliness before beginning orbital

operations. Any cleo.ning techniques used must satisfy certain general criteria. The process must not

be damaging to the underlying surface, must not leave a surface residue, and must be effective on a

var/ety of surfaces and substrate_ While chemical solvent wiping, the most obvious cleaning process,

is effective at removing both molecular and particulate contamination, other processes are effective at

removing only one or the other. Consequently, they are best discussed separately.

4.3.1 Removing Molecular Films

Various approaches have been considered to deal with molecular contamination on sensitive

surfaces. Where contact with the surface is allowed solvent wiping is perhaps the most obvious

method available, and relies on the chemical properties of a solvent to dislodge the molecular film

from a contaminated surface. Obviously, this method can only be used on accessible parts during

ground processing. Optical surfaces, or any device where direct contact with the surface is prohibited,

must approach the problem in a different manner. As a rule noncontact techniques attempt to impart a
large amount of energy into the film so that either: i) the recoil force that results from the absorption of

the energy dislodges the film, or ii) the film heats to a sufficiently high temperature that its residence

time is small and it can escapes the surface. At the same time noncontact techniques must minimize

t_ _nergy input to the underlying surface to avok damaging the surface finish. Both categories are

capable of cleaning a surface to better than level A (< ] mg per ..1 m 2 NVR). In general, solvent

wiping is relied upon as the standard method of choice for non-optical surfaces during ground

processing, while noncontact techniques continue to be evaluated for use on optical surfaces during
both ground processing and on orbit operations.
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4.3.1.1 Solvent Wiping

The solvent wipe method used for surface cleaning and preparation is identical to that described in

the gravimetric methods used to monitor surface cleanliness. The only difference is that when

"cleaning" is the objective, rather than "verifying" surface cleanliness, there is no need to keep track of

used wipes. The surface is wiped until a wiper appears clean under visual inspection, then a test wipe

is made to verify surface cleanliness. This is the standard method for cleaning during ground

processing. The only exception is made for optical surfaces which may be damaged by direct contact

with a wiper. However, since the larger concern for optical surfaces is from particulates the discussion

of cleaning polished optics will be reexamined in section 4.3.2.

4.3.1.2 Noncontact Techniques

As shown in Table 4-9, there are a variety of energy deposition techniques that may be used to

"evaporate" molecular contaminants from surfaces. For the majority of these techniques, the energy
absorbed by the contaminant layer is rapidly diffused throughout the layer, and then conducted to the

underlying surface. The problem is that the inter-molecular forces, (Van der Waals forces), are so

strong for molecular masses that techniques capable of removing molecules also damage optical

surfaces. These techniques are not normally used on solar arrays or thermal control surfaces in that

these surfaces may be cleaned via solvent wiping without damaging their t-mish.

Table 4-9. Noncontsct techniques for removing molecular contamination.

Method Pro's Con's Application

Thermal Heating Standard Method May not be 100% Ground Processing

Simplicity Effective & On Orbit

Charged Particle Beam Standard Method May Damage Finish Ground Processing
& On Orbit

Plasma Sputtering Can Remove all May Damage Finish Ground Processing
Contaminants & On Orbit

Laser Beam High Energy/Area; Wavelength Dependent Ground Processing
High Cross Section & On Orbit

4.3.1.2.1 Thermal Heating

The simplest method to stimulate evaporation of a condensed molecular film is simply thermal
heating. Connecting the optical surfaces to a heater and raising the temperature can be effective at

driving off much of the contaminants. This method can be used during ground processing or during

on orbit operations. On orbit, heating of the optical surfaces may also be accomplished by reorienting
the vehicle to point in the general direction of, (but not directly at), the Sun. The downside to this

technique is that it is not easily adaptable to cryogenic surfaces. Many IR focal planes require

cryogenic temperatures to operate properly. As discussed in Chapter 2, these cold focal planes open

serve as "getters" for contamination. These contaminants may be removed by heating the focal plane

to near room temperature, but this implies that the sensor will not be usable during the heating and

subsequent cooling periods and will require recalibration aP,_ the operation, it also subjects the focal

plane to significant thermal stresses. In theory, this practice can be repeated as often as is necessary,

(on orbit degradation of signal intensity would indicate when "cleanings" ate needed), but in practice
focal planes may usually only be cycled a few times before they are damaged and cease to function.

4.3.1.2.2 Charged Particle Beams

The effectiveness of charged particle beam, (electron or ion), cleaning of contaminated surfaces is

a function of many variables, including: beam species, beam energy, beam current density, and
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contaminant. I' This technique has proven effective for removing contaminants from cryogenic

surfaces, but one area of concern is the lack of a priori knowledge of the beam intensity that will

damage the underlying surface. Piper et. al report that heat source fluences should be at least 10 kW
cm "2. Lower fluences allow the needed energy to be dissipated into the underlying surface via thermal

conduction.

4.3.1.2.3 Plasma Sputtering

Plasma sputtering has been shown to be an effective cleaning technique in many semiconductor

applications. In essence, accelerated gas ions are projected onto the contaminated surface at low

pressure. The collisions between the ions and the surface atoms result in the ejection, or sputtering, of
surface atoms that are highly dependent on the ion energy and flux. Ion sputtering has proven

effective at rmoving virtually any contaminant, but it has proven difficult to find an ion energy that
will both: a) remove the contaminants, and b) leave the underlying surface undamaged. '2 RF plasma

sputtering can remove contaminants without damaging metallic surfaces, provided a DC bias is

applied to the metal. This method has also been shown to remove water on 120 K surfaces.

4.3.1.2.4 Laser Beams

Both ultraviolet and Infrared laser heating appear to offer the opportunity for contaminant

removal without optical damage. '3 Pulsed CO2 lasers are efficient energy sources, (conversion

efficiency - 10%), and many important contaminants, such as ice, arc highly absorping at CO2

wavelengt._ ;. CO2 lasers have proven capable of removing films in excess of 5 mm thick, who: :as

Nd:YAG =a_ersare only useful on films < 0. ] ram. This is a function of contaminant absorptance. If

the contaminating layer is absorptive to the laser light, the film absorbs the energy and can be

vaporized more easily. If the film is more transparent, (as is the case for Nd:YAG), much of the light

is absorbed by the underlying substrate so that the heating of the film comes from thermal diffusion.

This is ineffective on thicker films. The semiconductor industry utilizes UV lasers in certain cleaning

operations. Contaminant layers are typically very absorbing at UV wavelengths and energy densities
on the order of0.5 J cm"2have proven effective for cleaning mirrors.

4.3.2 Removing Particulates

Many of the methods utilized to clean molecular contamination may also be used to remove

particulate contamination. Solvent wiping, for example, is highly effective at removing particulates.

Many of the noncontact, molecular techniques will also work on particulates. The "shock" of

,, Fisher, R. F., George, P. M., Flammang, S. M., and Howard, T. L., "Ion Beam Cleaning of

Contaminated Optics, SPIE Vol. 1329, Optical System Contamination." Effects, Measurement,
Control II, pp. 86 - 97, 1990.

George, P. M., Lindquist, J. M., and Hankins, M., "Ion Beam Removal of Water and Dioctyl

Phthalate from Cryogenic Mirrors," J. Spacecraft, Vol. 27, No. 3, pp. 253 - 257, 1990.
Piper, L. G _pencer, M. N., Woodward, A. M., and Green, B. D., "CROSS: Contaminant Removal

offOptic Surfaces in Space," Rome Air Development Center, Interim Technical Report, June
1987.

_2Shaw, C. G., "Contamination Removal by Ion Sputtering," SPIE Vol. 1329, Optical System

Contamination: Effects, Measurement, Control ll, pp. 98 - 109, (1990).

13Piper, L. G., Frish, M. B., Pierce, V. G., and Green, B. D., "Laser Cleaning of Cryogenic Optics,"

SPIE Vol. 1329, Optical System Contamination." Effects, Measurement, Control H, pp. 110 - 126,
(1990).

Osiecki, R. A.. ,nd Magee, T. J., "Ultraviolet Laser Cleaning of Mirrored Surfaces," SPIE Vol.

1329, Optical System Contamination." Effects, Measurement, Control 11, pp. 127 - 133, (1990).

Pierce, V. G., Frish, M. B., Green, B. D., Piper, L. G., Guregian, J., and Anapol, M., "Laser-Mirror

Cleaning in a Simulated Space Environment," SPIE Vol. 1329, Optical System Contamination:
Effects, Measurement. Control 11, pp. 134 - 140, (i 990).
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absorbing energy from a charged particle beam or laser, for example, can often dislodge surface

particulates as well. However, as shown in Table 4-10, where particulates are the main concern there
are other noncontact cleaning techniques available. Stowers and Patton report that solvent wiping will

leave only 2 - 40 particles/cm 2 (> 5 pro), whereas spraying wi_high velocity liquid jets leaves 2 - 60
2 . . _ iq ....

particles/era, and strippable adheswe coatings leave - 500/cm. Strlppable adheswe coatings wdl be
examined in the next section as a means of preventing surface contamination, rather than as a means of

cleaning a contaminated surface.

Table 4-10. Noncontact techniques for removing particulate contamination.

Method Pro's Con's Application

Shaking/Agitation Simple Not Effective on Ground Processing
Smaller Particles

Jet Spray Simple Not Effective on Ground Processing
Smaller Particles & On Orbit

4.3.2.1 Noncontact Techniques

The forces adhering particulates to a surface are ultimately electrical in nature. _ in an air

environment, the attractive forces between a I pm glass particle and a wafer surface are estimated at

71% capillary (0.045 dynes), 22% van der Waals - London (0.014 dynes), 7% electrical double layer
(0.003 dynes), and 1% electrostatic image (0.001 dynes). In general, particle adhesive forces vary

widely with particle size, shape, and material characteristics. Some particles may fall off under the

influence of gravity, while others will remain attached under the influence of 1000 g's. in order to

clean particulates from a surface, an external force must be applied to the particulates in order to
overcome the adhesive forces. One method is to simply shake the "contaminated" device so that the

particulates are dislodged. The spacecraR will be subjected to significant vibrations during launch, so
prelaunch shake testings are one way to verify system integrity as well as remove contamination. This

is also the reason that launch typically initiates particulate redistribution within the launch vehicle

shroud. Ultrasonic and megasonic agitation methods are oRen used in the semiconductor industry, but

these are obviously unsuitable for bulk cleaning of assembled optics.

Another noncontact cleaning method is to simply blow air, or other fluid, across the surface. If

the shear force exceeds the adhesion force holding the particle, the particle will be removed and

suspended in the turbulent fluid. Increasing the fluid density and local velocity, and lowering the fluid

viscosity, increases the effectiveness of this cleaning method. In general, liquids are more effective

than gases. Ninety percent cleaning efficiencies associated with the removal of 10 w-sized particles
have been reported for > 150 psi cold gas jets. '6 Flushing or blowing with low pressure gas is largely

ineffective due to the surface adhesion forces involved. Pressures required to remove particles vary as

l/D, making particulates smaller than 0.5 ira1 extremely difficult to remove. CO2jet spray techniques
have been used in commercial applications for some time, and also prove to be effective at removing

surface particulates. I: The expansion of liquid CO2 will produce a CO2 "snow" which can wansfer

momentum to surface particulates, disloding and sweeping them off of the surface. Post cleaning

i, Stowers, I. F., and Patton, H. G., "Techniques for Removing Contamination from Optical Surfaces,"

Surface Contamination, K. L. Mittal, Ed., pp. 341 - 349, Plenum Publishing, (1979).
15Feicht, J. R., Blanco, J. R., and Champetier, R. J., "Dust Removal from Mirrors: Experiments and

Analysis of Adhesive Forces," SPIE Vol. 967, Stray Light and Contamination in Optical Systems,

pp. 19 - 29, (1988).
16Haffner, J. W., and Wang, J. J., "Dust Removal from Mirrors," Rockwell International, SSD-785-

240-005-87, 30 September 1987.
,7 Motyl, K. M., "Cleaning Metal Substrates using Liquid/Supercritical Fluid Carbon Dioxide," NASA

Tech Briefs, MFS-29611, 18 March 1979.

Peterson, R. V., and Bowers, C. W., "Contamination Removal by CO2 Jet Spray," SPlE Vol. 1329,

Optical System Contamination." Effects, Measurement, Control I1, pp. 72 - gs, (! 990).
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inspection indicates that this method should be capable of cleaning a surface to about level 250. While

these processes are adaptable to on orbit operations, these cleaning techniques are mainly used during

ground processing.

4.4 Maintaining Surface Cleanliness

4.4.1 Storage

Any time that clean components are not being processed, they should be covered with an antistatic

bag in a Class 100,000 or better cleanroom. During extended storage the system should be connected
to an air, or preferably dry nitrogen, purge supplied to the interior of the bag at a slight positive

pressure relative to the surrounding area. This will prevent particulates or other contaminants from

entering the enclosed atmosphere. The air (or nitrogen) should be filtered by HEPA filters, or better,
and contain no detectable hydrocarbons. Optical components must be similarly protected in a Class

I00 environment unless doubly - ,otected, e.g., under purge or inside a spacecraft housing and bagged.

Extremely sensitive optics may need to continue the purge up until launch, or even through early on

orbit operations._S Temperature and humidity should be controlled and monitored.

Optical devices may be further protected through the use of strip coating materials, t9 The strip

coating is poured, 'le surface asa viscous liquid and will dry within a matter of hours. The coating

will then protect tr,.._aderlying surface until it is removed. These strip coatings will typically leave a
small residue of molecular contaminants behind, but can totally mitigate other contamination concerns

while they are in place.

4.4.2 Transportation

Precision cleaned parts, subassemblies, assemblies, etc., should be doubly protected with bags or

suitable containers for shipping. Relative humidity should be 50% maximum. Desiccants, witness

plate, and temperature and humidity monitors should be used as required. Any air supplied to the

interior of the shipping container, should be filtered with HEPA filters, or better. Prior to entry to the

cleanroom, the shipping container should be cleaned and the outer protection examined for integrity.

The package should then be brought to a clean anteroom where the outer enclosure will be removed

and the cleanliness of the inner wrapping checked. Any discrepancies should be noted and resolved at
this time.

4.4.3 Accident Recovery

A note concerning accidents is appropriate here. While extreme precautions are being followed to
limit the contamination of optical sensors from design through on orbit operations, some thought must

be given to recovery from accidents. Such accidents may be as benign as a cleanroom which has

filters that have not been changed as scheduled, or as catastrophic as the dropping of the sensor onto a

concrete floor. All accidents have the potential to produce contamination, especially particulate

contamination, and must be minimized through proper contamination control procedures. When they

occur, accidents should be documented so that the proper recovery plans can be made.

4.5 Launch Processing

Years of careful prelaunch planning and testing can be rendered useless if the proper procedures

and cautions are not followed at the launch site. Specific processing procec -es for each launch

vehicle are different, with the time between shroud closeout and launch, the aval ility of purge in the

shroud, and nominal shroud cleanliness being some of the variables that must be examined. If

,8 Scialdone, J. J., ,"Abatement of Gaseous and Particulate Contamination in a Space Instrument,"

AIAA 83-1567, (1983).
t9 •

Free, J., and Pernick, B. J., "Use of Strippable Coatings to Protect and Clean Optical Surfaces," App.
Optics, Vol. 26, No. 16, pp. 3172 - 3173, 15 August 1987.
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standardproceduresare not sufficient, the contamination control engineer must work with the launch

vehicle provider to ensure that the proper environment is maintained. Because it is one of the most

well-studied examples, the specific case of the Shuttle Orbiter is examined in the sections that follow.

These sections provide an example of a typical launch processing flow, along with the associated

cleanroom environments, and early on orbit contamination environments.

4.5.1 Eastern Test Range Shuttle Processing Facilities

While each Shuttle payload is serviced in its own pre-launch facilities, they all pass through the

Shuttle access platform before installation in the Shuttle payload bay. These facilities usually have
Class/00,000 air, Figure 4-6 and Figure 4-7, respectively. Measurements of particle fallout in these

facilities show a relatively large fraction of big particles, Figure 4-8. However, these big particles are

more readily removed by cleaning than are small particles. They are also more likely to be dislodged

by the launch environment than are smaller particles. Lastly, they do not account for as large a
fraction of obscured area as smaller particles, which are more numerous.

(m4) Particle Concentration (ft-_)

10T t-.

,10 s

Figure 4-6.
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FLb_re 4-8. Measurement of surface particles in Eastern Test Range (ETR) facilities.

The story for other launch vehicles will be similar, but will vary depending on the specific launch

processing environment. Each launch vehicle has different rules about the minimum time from shroud
cioseout to launch, the availability of filtered purge within the shroud, and so on. Despite the best laid

plans, nature is also capable of ina'oducing uncertainty into an otherwise controlled situation. When

the Mars Observer spacecraft was on the launch vehicle at the launch pad, the area was struck by a

Hurricane. The gale force winds forced humidity and debris into the shroud and forced NASA to

return the spacecraft to the launch processing facility for a thorough cleaning before launch operations
could resume.

4.5.2 Early on Orbit Contamination Environment

The launch induced surface panicle levels must be added, on an obscured area basis, to the pre-

launch surface particle levels. For the Shuttle these have been two sets of measurements of the launch

induced contamination in the cargo bay. The Passive Optical Sample Assembly (POSA) and the
Induced Environment Contamination Monitor ([ECM). 2° The POSA consisted of witness plates, some

of which faced upward during launch, while the IECM consisted of various sensors including QCM's

which did not always work. The cargo bay liner was not in place for any of these measurements. The

POSA measurements suggest a 600 particle level on horizontal upward facing surfaces, while the

IECM date approximate a 550 level. Both sets of measurements show a flatter particle size

disa'ibution that than predicted by MIL STD 1246C. It is reasonably conservative to assume that a

launch in the shuttle cargo bay will produce a 600 particle level on horizontal facing surfaces and a
325 level on vertical surfaces. (Keeping in mind that the Shuttle is standing on its tail when launched.)

Both the POSA and IECM experiments indicated a molecular level A for the NVR deposited. Many of

the observed outgassed species were common solvents used in cleaning processes and appear to be

from spacecraft-related sources.

2oMiller, E. R., "STS-2, -3, -4 Induced Environment Contamination Monitor (IECM) Summary

Report," NASA TM-82524, February 1983.
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