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TECHNICAL PAPER
ON THE IMPORTANCE OF CYCLE MINIMUM IN SUNSPOT CYCLE PREDICTION

I. INTRODUCTION

The current sunspot cycle, cycle 22, began in 1986, peaked in 1989, and is now in its 10th year.
Based on annual averages for cycles O to 22, cycle 22 has the highest minimum amplitude (Rmin = 13.4)
and the second highest maximum amplitude (Rmax = 157.6) on record, and its rise to maximum (3 years)
is among the fastest. Similarly, in terms of smoothed sunspot number (i.e., 12-month moving averages),
cycle 22 began in September 1986, peaked in July 1989, and, with the start of April 1996, entered its
115th month. Again, comparison to other sunspot cycles reveals that it has the highest minimum amplitude
(Rm = 12.3), the third highest maximum amplitude (RM = 158.5; tied with cycle 3), and is the fastest
rising cycle (ASC = 34 months) on record.

Recent studies by Wilson! 2 and Wilson et al.3 strongly suggest that cycle 22 is a short-period
cycle (Rabin et al.# and Wilson’ 6), with onset for cycle 23 expected before April 1997, probably near
December 1996 (+3 months). Furthermore, Hathaway et al.” have shown that the size and placement of
cycle minimum is crucial for the accurate forecast of solar activity, especially with regard to the size and
placement of cycle maximum and to the declining phase of the cycle. In this paper, several features of the
sunspot cycle that relate to cycle minimum and to the prediction of sunspot maximum are examined more
closely, in particular, with application to cycle 23.

II. RESULTS

Table 1 summarizes the various statistical aspects of the sunspot cycle for cycles 0 to 22 (adapted
from data published in Waldmeier8 and McKinnon,? and updated from monthly mean sunspot number
values published in “Solar Geophysical Data,” available from the National Oceanic and Atmospheric
Administration, National Geophysical Data Center, Boulder, CO). Tabulated as a function of sunspot
cycle number are the epochs of sunspot minimum and maximum and their amplitudes, based on both
smoothed sunspot numbers and annual averages, and their ascent and descent durations and periods in
months for the smoothed data and in years for the annually averaged data. From table 1 (ignoring the
division of the sunspot record into a pre- and post-modern sunspot era, based on the completeness of
sunspot data), it is found that smoothed sunspot minimum amplitude has ranged from 0.0 to 12.3,
smoothed sunspot maximum amplitude from 48.7 to 201.3, ascent duration from 34 to 81 months,
descent duration from 48 to 123 months, and period from 108 to 164 months. Similarly, it is found that
annual average minimum amplitude has ranged from 0.0 to 13.4, annual average maximum amplitude
from 45.8 to 190.2, ascent duration from 3 to 7 years, descent duration from 5 to 11 years, and period
from 9 to 14 years. Values for cycle 22 (the present cycle) remain incomplete, owing to the lack of a
discernible onset for cycle 23.

From table 1, it is noted that fast-rising cycles (ascent duration <4 years) tend to be better
associated with cycles of larger than average RM, while slow-rising cycles tend to be better associated
with cycles of smaller than average RM. This relationship between the ascent duration of the cycle and its
maximum amplitude is often known as the Waldmeier effect (Bracewell!® and Wilson!!) and is shown in
figure 1 (left panel), both in terms of smoothed (top) and annually averaged (bottom) data. The probability
of obtaining the observed distributions, or ones more suggestive of a departure from independence
(chance), is P < 1 percent. Therefore, given that a cycle is known to be of larger (smaller) than average
maximum amplitude, one can infer that it will also be fast (slow) rising, or vice versa. Such a relationship
has been true for 20 of 22 sunspot cycles.



The relationship between maximum amplitude and ascent duration can also be described using the
regression fit given in figure 1 (left-top panel), which shows that about 54 percent of the variance can be
explained by the fit. Based on the regression fit, it is found (right panel) that, given the observed value of
maximum amplitude for a cycle, the observed value for the ascent duration usually lies within 15 percent
of its predicted value, true for 14 of 22 sunspot cycles; 20 of 22 cycles are noted to have their observed
values within 30 percent of their predicted values. As an example, if one suspects that a cycle will have an
RM of about 160, from the regression, it is inferred that its ASC should be about 3916 months for the
*15-percent range or about 39+12 months for the more inclusive +30-percent range.

Close inspection of table 1 (annual averages) also reveals another interesting aspect of fast-rising
cycles. Namely, not only do fast risers (asc < 4 years) tend to be better associated with larger than average
maximum amplitude (8 of 8), but they more often have been found to be better associated with cycles of
shorter than average period (5 of 7; the period of cycle 22 is not yet known). Of the 7 examples of cycles
with asc = 3 years, two had per = 9 years (cycles 2 and 3), three had per = 10 years (cycles 17, 18, and
21), one had per = 11 years (cycle 11), and one had per = 14 years (cycle 4). Because cycle 22 also has
an asc = 3 years, it is strongly suspected that it, likewise, will have per < 11 years. Recent work by
Wilson,! 2 in fact, strongly supports the notion that cycle 22, indeed, will be of shorter than average
length; hence, an Emin of 1996 for cycle 23 seems very likely.

While a meaningful (i.e., statistically significant) regression is not apparent between RM and PER
for the same cycle 7 (in contrast to that reported by Schatten et al.12), one is found when RM (cycle n) is
compared against PER (cycle n—1). This amplitude-period effect, which was previously noted by
Hathaway et al., is depicted in figure 2. Based on the observed 2 by 2 contingency table, it is found that
the probability of obtaining the observed result, or one more suggestive of a departure from independence,
is P = 2.3 percent. Thus, when the immediately preceding cycle is of short duration (PER < 132 months),
RM for the current cycle is usually larger than average, while, when the length of the preceding cycle is of
long duration, RM for the current cycle is usually smaller than average. Such a relationship has been true
for 16 of 21 sunspot cycles. For the three regression fits (all; all excluding 16, 19, and 21; and modem
only) shown in figure 2 (right panel), it is found that the observed value of RM typically lies within 30
percent of its predicted RM. As an example, if one measures a cycle’s length to be about 120 months, one
would expect the following cycle to have an RM greater than average in size and to be about RM = 140£42
(for the +30-percent range).

Figure 3 displays another seemingly important relationship involving minimum amplitude; namely,
the maximum-minimum effect. Given that a cycle has a larger (smaller) than average size minimum
amplitude, one can infer that it usually will also have a larger (smaller) than average size maximum
amplitude. This has been true for 16 of the 22 sunspot cycles. The probability of obtaining the observed
distribution, or one more suggestive of a departure from independence, is P = 4.3 percent. A comparison
of observed and predicted RM values, based on the regression fits shown in figure 3 (right panel), shows
that the later-occurring RM typically lies within 30 percent of its predicted value. Again, as an example, if
a cycle has an observed minimum amplitude Rm = 10, one would expect the later-occurring maximum
amplitude RM to measure about 140+42 (for the £30-percent range).

III. DISCUSSION AND CONCLUSIONS

Figure 4 depicts cycle 22 from onset (1986) through its ninth year (1995) of elapsed time from
Emin (0) and shows the relative placement of the epochs of conventional smoothed sunspot number
minimum (Em) and maximum (EM) with respect to Emin and Emax years. Based upon the values of
sunspot number now being reported at the start of 1996 and the observed range of observed Rmin values
for cycles 1 to 22 (0.0 to 13.4), it appears that Emin for cycle 23 will be 1996. Support for this also
comes from the inferred average slope in sunspot number during the decline of cycle 22 (e.g., Wilson!!
and Wil.zson et al.3) and from the first occurrence of a spotless day during the decline of cycle 22
(Wilson+<).
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Thus, presuming that Emin for cycle 23 will be 1996, one infers that Em should occur sometime between
December 1995 and March 1997, with the most likely date being December 199613 months (Wilson et

al.3).

Furthermore, presuming that Em for cycle 23 occurs before September 1997, it follows that cycle
22 is a short-period cycle (PER < 132 months), and, from the amplitude-period effect, one can infer that
the maximum amplitude for cycle 23 will probably be larger than average in size. Likewise, presuming that
the maximum amplitude for cycle 23 will be larger than average in size, from the Waldmeier effect, one
can infer that it probably will be a fast-rising cycle. Hence, Emax should follow Emin by 3 years (or, less
likely, 4 years—38 of 12 large amplitude cycles have had asc = 3 years and 3 of 12 have had asc = 4 years;
see fig. 1), suggesting that Emax for cycle 23 may very well occur in 1999. Consequently, from figure 4,
one infers that EM for cycle 23 should occur sometime between November 1998 and March 2000. If, on
the other hand, Emax for cycle 23 turns out to be the year 2000, then EM would be expected to occur
between November 1999 and March 2001.

Additional corroborating evidence, supporting the claim that cycle 23 may be a large-amplitude
cycle, will be available once Rm has finally been measured (from the maximum-minimum effect). Note,
however, that Rm for cycle 23 probably will be large, and that, consequently, its RM should be larger than
average, as well. This is gleaned, not only from the current behavior of the decline of cycle 22 (from
figure 4 and Wilson et al.3) and the aforementioned effects, but also from the behavior of the first
difference of Rm and RM, shown in figure 5.

The first difference (fd) of a parameter is computed as parametric value for cycle n+1 minus
parametric value for cycle n. The first differences for Rm and RM (top and bottom panels of fig. 5,
respectively) display behaviors that appear to be statistically important (supportive of an even-odd cycle
effect in the sunspot record). For each parameter, the central 50-percent interval is identified, inferring that
about half of the sunspot cycles have first differences that fall within the central 50-percent spread. Thus,
for Rm, its central 50-percent spread is inferred to be about 3 units, and for RM, its central 50-percent
spread is inferred to be about +40 units. It follows then that, because the Rm and RM values for cycle 22
are already known, one can easily calculate the expected 50-percent probability range of Rm and RM for
cycle 23; namely, Rm = 12.323 and RM = 158.5+40. Thus, for cycle 23, there is about a 50:50 chance
that its Rm will be between 9 and 15, or about a 75-percent chance that it will be either above (Rm > 9.3)
or below (Rm < 15.3) the extremes of the prediction limits. For RM, there is about a 50:50 chance that its
value will be between about 120 and 200, or about a 75-percent chance that it will be either above (RM >
118.5) or below (RM < 198.5) the extremes of the prediction limits. A more restrictive range for Rm and
RM for cycle 23 is found, however, when fd is separated into even- and odd-numbered cycle groupings.
For the modem era, the average fd for an even-numbered cycle is 0.0 units for Rm (having a standard
deviation of 2.9 units) and 40.3 units for RM (having a standard deviation of 14.2 units). Therefore,
minimum and maximum amplitudes for cycle 23 can be easily computed as Rm(23) = Rm(22)+0.0%7.5
and RM(23) = RM(22)+40.3£36.5, where Rm(22) = 12.3, RM(22) = 158.5, and the prediction intervals
refer to the 95-percent level of confidence limits. Thus, Rm(23) = 12.3£7.5 and RM(23) = 198.8%36.5.
Looking at the lower extremes, one finds that Rm(23) > 4.8 and RM > 162.3 at the 97.5-percent level of
confidence, and, for the upper extremes one finds Rm(23) < 19.8 and RM(23) < 235.3 (Kopecky 13 and
Wilson!4). Hence, based on the expected fd values for cycle 22 (using only the modern era cycles), we
infer that maximum amplitude for cycle 23 will possibly be near record value, either the second largest or,
perhaps, the largest cycle ever observed!

The above findings may be somewhat surprising in that, recently Schatten et al.!> have forecast
cycle 23 to have a 1-sigma prediction interval for RM equal to about 138+30 and an EM of about May
2000 (+9 months), somewhat different from what had been predicted for it earlier (Schatten and Pesnell!?)
based on the same prediction technique (the so-called Solar Dynamo Amplitude or SODA index); namely,
a size comparable to that of cycle 22 and an EM of about 1999.7+1 year. Some comments seem to be in
order. First, concerning their prediction of the size of cycle 23, it should be noted that it too predicts that
cycle 23 will be larger than average. Presuming that +30, indeed, is the 1-sigma standard error (based
upon the most recent 10 sunspot cycles), one finds that the prediction interval at the 95-percent level of
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confidence based on the SOLA ‘Index should be 138+69.2, where the prediction interval limits are 2.306
times 30 (assuming 8 degrees of freedom, the ¢ value is 2.306). Presuming that the bulk of the cycles have
their observed RM within 30 percent of their predicted value (as found in this study using the amplitude-
period effect or the maximum-minimum effect), it is inferred that their prediction should be about 138t41
units. This value, in fact, is very close to that which is found based on the amplitude-period effect and
maximum-minimum effect, using a period of about 120 months for cycle 22 and an expected Rm of about
10 for cycle 23.

Second, concerning their prediction of EM for cycle 23, because they too predict that cycle 23 will
be above average in size, based on the Waldmeier effect (true for 20 of 22 cycles), one should expect EM
to follow Em by <48 months and Emax to follow Emin by <4 years. In their study, however, Schatten et
al.!5 ignore the occurrence of sunspot minimum. Instead, they estimate the timing of sunspot maximum
based on an inferred relationship of the time differences between occurrences of solar maxima and the last
16° latitude appearance versus maximum sunspot number, and on the presumption that the period of a
cycle is linearly related to the amplitude of the cycle at that instance. Because the last 16° latitude crossing
was January 1991 and the sunspot amplitude at that instance measured 147.6, they deduce that the time to
the next last crossing of the 16° latitude occurrence will be about 123 months later (a value that happens to
be the average length of a short-period cycle, based on a bimodal distribution of cycle lengths; see Wilson?
and Wilson et al.3). They then deduce that the offset to this period should be about —11 months, based on
their prediction of the size of cycle 23 (RM = 138). Hence, they deduce that EM should occur about
January 19914123 months—11 months, or that it should occur about May 2000 (with a stated uncertainty
of about 9 months). (A word of caution, however, seems warranted in that the stated standard error for
their offset is 5.7 months, implying that the 95-percent level of confidence limits on their prediction,
employing their offset, for a sample size of 11 cycles is about 13 months! So, EM could come as much as
1 year either earlier or later than the predicted date for EM.)

In some respects, this date seems somewhat later than it should be, while in others it seems very
close to that which one should expect. For example, presuming cycle 23 to have Emin in 1996 and that it,
indeed, will be larger than average in size, it is inferred that Emax should follow in about 3 years, making
the year 1999 as the expected Emax. If true, then EM would be expected to occur before April 2000,
based upon the distribution of EM dates of occurrences relative to Emax occurrence (fig. 4), very
probably sometime during 1999. However, presuming an Em of December 1996, it is inferred that EM
will occur before December 2000 and, because large-amplitude cycles tend to be fast risers (the Waldmeier
effect), one expects EM probably to occur several months prior to December 2000. Because the average
ASC for a fast-rising cycle is about 41 months (¥7 months), it is inferred that EM should occur after
September 1999, probably near May 2000 (in agreement with Schatten et al.!3). However, because the
uncertainty in period length is £3 months for short-period cycles, it is noted that Em for cycle 23 could
come as early as September 1996 or as late as March 1997, inferring that EM could come as early as July
1999 to as late as October 2000. Resolution of this uncertainty will come once Em for cycle 23 has
occurred and the early-rise portion of the cycle (Hathaway et al.?) has been experienced.

In closing, note that this study has pointed out the importance of sunspot minimum in the
prediction of maximum amplitude (and its timing), and several methods have been identified that utilize
either the occurrence or size of cycle minimum to forecast the size (maximum amplitude) of the ensuing
cycle. In particular, these methods strongly suggest that cycle 23 onset is imminent, that cycle 22 is a
short-period cycle, that maximum amplitude of cycle 23 will be larger than average, and that cycle 23
probably will be a fast-rising cycle. Because on-orbit construction of the International Space Station is
scheduled to begin in late 1997 and will require several years to be completed, it is apparent that this
activity will be concurrent with the volatile rising phase of cycle 23 through its maximum phase, which
should persist through the year 2001. Thus, mission planners should pay very close attention to solar
conditions as they unfold, especially between the years 1998 and 2001.
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Table 1. Summary of selected parameters for sunspot cycles O to 22.

Em EM Rm RM ASC DES PER Emin
- Apr 1750 - 926 - 59 - -

Mar 1755 Jun 1761 8.4 86.5 75 60 135 1755
Jun 1766 Sep 1769 11.2 115.8 39 69 108 1766
Jun 1775 May 1778 7.2 1585 35 76 111 1775
Sep 1784 Feb 1788 9.5 141.2 41 123 164 1784
May 1798  Feb 1805 3.2 49.2 81 66 147 1798
Aug 1810 May 1816 0.0 48.7 69 84 153 1810
May 1823  Nov 1829 0.1 71.7 78 48 126 1823
Nov 1833 Mar 1837 7.3 1469 40 76 116 1833
Jul 1843 Feb 1848 10.5 131.6 55 94 149 1843
Dec 1855 Feb 1860 3.2 97.9 50 85 135 1856
Mar 1867 Aug 1870 5.2 1405 41 100 141 1867
Dec 1878 Dec 1883 2.2 74.6 60 75 135 1878
Mar 1890 Jan 1894 5.0 87.9 46 96 142 1889
Jan 1902 Feb 1906 2.6 64.2 49 90 139 1901
Aug 1913 Aug 1917 1.5 105.4 48 72 120 1913
Aug 1923 Apr 1928 5.6 78.1 56 65 12t 1923
Sep 1933 Apr 1937 3.4 119.2 43 82 125 1933
Feb 1944 May 1947 7.7 151.8 39 83 122 1944
Apr 1954 Mar 1958 3.4 201.3 47 79 126 1954
Oct 1964 Nov 1968 9.6 110.6 49 91 140 1964

Jun 1976 Dec 1979 12.2 164.5 42 81 123 1976
Sep 1986 Jul 1989 12.3 1585 34 - - 1986
19967

* Beginning of modern sunspot era (i.e., complete daily sunspot records).

Legend:

SCN is sunspot cycle number.

Em is the epoch of sunspot minimum based on smoothed sunspot number (SSN).

EM is the epoch of sunspot maximum based on SSN.

Rm is the minimum amplitude based on SSN.

RM is the maximum amplitude based on SSN.

ASC is the ascent duration in months (minimum to maximum) based on SSN.
DES is the descent duration in months {(maximum to minimum) based on SSN.
PER is the period in months (cycle minimum to minimum, equal to ASC + DES).
Emin is the epoch of sunspot minimum based on the annual average (AA).
Emax is the epoch of sunspot maximum based on the AA.

Rmin is the minimum amplitude based on the AA.

Rmax is the maximum amplitude based on the AA.

asc is the ascent duration in years (minimum to maximum) based on the AA.
des is the descent duration in years (maximum to minimum) based on the AA.
per is the period in years (cycle minimum to minimum, equal to asc + des).

Emax
1750
1761
1769
1778
1787
1804
1816
1830
1837
1848
1860
1870
1883
1893
1905
1917
1928
1937
1947
1957
1968
1979
1989

Rmin Rmax

9.6
11.4
7.0
10.2
4.1
0.0
1.8
8.5
10.7
4.3
7.3
3.4
6.3
2.7
1.4
5.8
5.7
9.6
4.4
10.2
12.6
13.4

83.4
85.9
106.1
154.4
132.0
47.5
45.8
70.9
138.3
124.7
95.8
139.0
63.7
85.1
63.5
103.9
77.8
114.4
151.6
190.2
105.9
155.4
157.6
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Figure 5. First differences (fd) of Rm and RM for cycles O to 21. Average fd is shown for Rm and RM
based on even- and odd-numbered cycle grouping for all cycles and modern cycles only. The

95-percent level of confidence prediction intervals are shown for both Rm and RM, as applied
to cycle 23.
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