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Abstract

Most decisions made in the cockpit are related to safety, and have therefore been proceduralized

in order to reduce risk. There are very few which are made on the basis of a value metric such
as economic cost. One which can be shown to be value based, however, is the selection of a flight

profile.
Fuel consumption and flight time both have a substantial effect on aircraft operating cost, but

they cannot be minimized simultaneously. In addition, winds, turbulence, and performance vary

widely with altitude and time. These factors make it important and difficult for pilots to (a) evaluate
the outcomes associated with a particular trajectory before it is flown and (b) decide among possible

trajectories. The two elements of this problem considered here are (i) determining what constitutes

optimality, and (ii) finding optimal trajectories.
Pilots and dispatchers from major u.s. airlines were surveyed to determine which attributes of

the outcome of a flight they considered the most important. Avoiding turbulence--for passenger

comfort--topped the list of items which were not safety related. Pilots' decision making about the

selection of flight profile on the basis of flight time, fuel burn, and exposure to turbulence was then

observed. Of the several behavioral and prescriptive decision models invoked to explain the pilots'

choices, utility maximization is shown to best reproduce the pilots' decisions.

After considering more traditional methods for optimizing trajectories, a novel method is devel-

oped using a genetic algorithm (CA) operating on a discrete representation of the trajectory search

space. The representation is a sequence of command altitudes, and was chosen to be compatible

with the constraints imposed by Air Traffic Control, and with the training given to pilots. Since

trajectory evaluation for the CA is performed holistically, a wide class of objective functions can be

optimized easily. Also, using the GA it is possible to compare the costs associated with different

airspace design and air traffic management policies.
A decision aid is proposed which would combine the pilot's notion of optimality with the CA-

based optimization, provide the pilot with a number of alternative pareto-optimal trajectories, and
allow him to consider unmodelled attributes and constraints in choosing among them. A solution

to the problem of displaying alternatives in a multi-attribute decision space is also presented.

Thesis Supervisor: Thomas B. Sheridan

Title: Ford Professor of Engineering and Applied Psychology
and Professor of Aeronautics and Astronautics
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Notation

Decision Theory

A_-B

A<B

A_B

A_B

0

R m

rx(x )

x, y, z

Xo

Xl

X
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An objective function to be maximized or minimized by the GA

An m-dimensional space
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Chapter 1

Introduction

1.1 Motivation

This research was primarily motivated by the need at NASA Ames to model more aspects of human

decision making than were embodied in the rule-based models of MIDAS 1 (Corker _ Smith, 1993).

The research charter was to improve models of value-based decision making, and to apply them to

appropriate areas of the pilot's task. Early in the course of the research, it became clear that most

aeronautical decisions are not v_lue-based in the decision theorist's sense--although they may have

been when aviation was less regulated--but rather are rule-based procedures, or follow some other

simple paradigm (Patrick, 1993).

This realization prompted examination of several different cockpit decision-making problems.

The remainder of the research was focused on a particular decision problem--one which was both

hypothesized and observed to involve value-based decision making, and for which there appears to

be a significant need for decision support systems: the optimal constrained vertical navigation of

long-haul aircraft (Patrick, 1995).

1.2 Objectives

Broadly, there are two aspects to any optimization problem: deciding what criterion constitutes

optimality, and finding solutions which are optimal with respect to this criterion. This thesis con-
siders both in the context of the vertical navigation of long-haul aircraft. The main objectives of

this research may be divided into the three areas shown in Figure 1-1.

The Engineering Objective is to improve the fuel consumption, safety, economy, schedule ad-

herence, ride comfort, and other attributes of a flight, by providing the decision makers with a

suitable decision support system, or an automatic trajectory optimization system, as appropriate.

The Scientific Objectives are (i) to understand where pilots make value-based decisions, (ii) to

improve the understanding of the way in which human pilots make decisions involving trajectory

selection; and (iii) to examine the implications of this decision-making behavior on air transportation

system design.

1NASA'SMan-Machine Integration Design and Analysis System
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L Engineering Problem

_ Scientific Questions

Experimental Objectives

Figure 1-1: The engineer's hierarchy of research objectives, in which the

engineering problem drives both the scientific questions and the experimen-

tal objectives. Note that a physicist might reverse the precedence of the

engineering and science items.

The Experimental Objectives are (i) to determine which attributes of the outcome of a flight

are important to pilots, and how these attributes differ from those which are important to dispatch-

ers; (ii) to model pilots making decisions involving trade-offs between these attributes, and evaluate

how such a model might be different from that used by the airlines; and (iii) to build an experimental

system to explore trajectory optimization under a wide set of constraints and objectives.

1.3 The Profile Selection Problem

1.3.1 Decision Makers

Aircraft guidance decisions for an air carrier flight--like the typical route shown in Figure 1-2 from

Los Angeles to Sydney, Australia2--are made by three main groups: the pilots (there are typically

two), the airline's operational control center (AOC, or dispatch), and Air Traffic Control (ATC), as

shown in Figure 1-3. Currently, the airline's AOC plans the flight (Grandeau, 1995; Beatty, 1995),

and produces a flight plan, which the pilot--who is the final authority in matters affecting the safety

of the aircraft--can accept or revise. One of the pilot's jobs is to take wind and weather into account

in-flight, and potentially make altitude changes enroute after coordinating with AOC and ATC. Much

work has been done on the group decision-making involved in this process (e.g. Orasanu et al., 1993;

Smith et al., 1994), but value-based models of the individual decision-maker's behavior are not well

developed in this context.

The advent of Free Flight (RTCA, 1994) 3 may change some of this decision-making process, by

removing ATC from their current role as providers of enroute separation between aircraft. If and

when this change occurs, there will be increased scope for the kinds of path-selection decision making

considered in this research.

1.3.2 Search Space

The decision-making problem is complicated by the number and complexity of the elements facing

the pilots. Some of these are described below.

2Coastline data for Figure 1-2 were obtained from the U.S. Geological Survey (1996).
3Formerly the Radio Technical Commission for Aeronautics.
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Vertical Structure of the Airspace

Federal Regulations (see Federal Aviation Administration, 1996b, FAR 91.179.b) require that pilots

flying under Instrument Flight Rules (IFa) choose from a relatively limited set of cruise altitudes: be-

low 29 kft MSL 4 at thousand-foot intervals (e.g. westbound at 12 kft, eastbound at 13 kft, westbound

at 14 kft and so on); and above FL 290 at spacings of 2 kft (e.g. east-bound at EL 290, westbound

at FL 310, eastbound at FL 330 and so on). 5 This structure is shown in Figure 1-4. Some of these

restrictions may be lifted in the future as the accuracy of modern altimetry is recognized, and more

are being lifted under the National Route Program 6 or may be lifted under the Free Flight initiative.

Assuming only vertical exploration, no lateral exploration, a flight composed of s segments, each

of which can be flown at any of I flight levels will have n = I s unique profiles. Consider the flight

shown in Figure 1-2, which is divided into fifteen segments, each of which might be flown at one of

perhaps 10 altitudes: there are 10 i5 possible profiles in the search space. Clearly, the problem of

choosing a path in this exponential search space is not trivial.

4Above mean sea level.

5For example, an eastbound pilot may typically only choose from the following altitudes (in thousands of feet, or

kft): 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 33, 37, 41, 45, 49, 53.

6The National Route Program is a very limited version of free flight which is currently operating.
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Aircraft Performance Variation

Also, as can be seen from Figure 1-5, the performance of a typical transport aircraft varies signif-

icantly within its weight-altitude operating envelope. This makes the job of predicting the perfor-

mance consequences of a flight plan too difficult for the human pilot. Since fuel accounts for between

10 and 15% of an airline's expenses (Rubbert, 1994; Trujillo, 1996), planning a flight to minimize

operating cost is important.

Weather

Weather produces many factors which affect flight planning: turbulence, icing, thunderstorms, and

winds, to name a few. Some of these factors act as constraints on solution trajectories, but the

majority are better thought of as negative factors in the outcome: factors which can be tolerated to

some extent, but whose effects should be minimized. Timely and accurate dissemination of weather

information, particularly winds and temperatures aloft, although very important for accurate flight

planning (Barrows, 1993), will not be addressed in this thesis.

1.4 Outline

In Chapter 2, a broad framework for decision modelling is proposed. Within this framework, many

models of decision making--both prescriptive and behavioral--can be considered. Several behavioral

models of human decision making are discussed. Notions of optimality are then considered, starting

with the way in which optimality is curently defined by the airlines, and implemented in the typical

FMS, and concluding with a discussion of the prescriptive and behavioral uses of utility theory,

and its limitations. In Chapter 4, an experimental determination of a utility-maximization model
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Figure 1-5: Fuel economy (in nautical air miles per klb of fuel) against air-
craft weight and altitude showing the large variation in cruise performance

over the aircraft's operating envelope. Data are at Long-Range Cruise (LRC)
for the Boeing 747-400 with PW4056 engines.

of pilot decision making in the context of trajectory selection is described, and is compared with
several other behavioral models•

In Chapter 5, algorithms for finding optimal solutions for the trajectory selection problem are

considered. One of these, the Genetic Algorithm or CA, is developed, and its many desirable proper-

ties are enumerated: it can, for example, handle difficult-to-model constraints, and a wide variety of

objective functions like the non-linear utility functions elicited in Chapter 4. Finally, in Chapter 6,

the two main themes of optimality and optimization are combined into a decision aid, which is

proposed to help pilots with the trajectory selection problem.
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Chapter 2

Decision Models

Prescriptive and Behavioral

In this chapter, the nature of decision making is considered, several prescriptive 1 and behavioral 2

decision models are explained, and one--utility maximization--is developed. Its axiomatic basis is

described in detail, and is then used to draw conclusions about the efficacy of modelling different

types of aeronautical decisions.

2.1 A Framework for Decision Modelling

It is instructive to think of decision making in terms of the three-stage framework of Figure 2-1: (1)

selection of some or all of the alternative courses of action in the search space, 3 (2) evaluation of

their consequences, which maps the points in the search space into points in a decision space, and

(3) comparison of the points in the decision space, using a multi-attribute value or utility function

(or some simpler criterion) to produce points on a value or utility scale. Any or all of these stages

may be executed once or iteratively, allowing this framework to encompass a diverse set of decision

models.

From a prescriptive point of view the first two tasks are straightforward: find all allowable

trajectories, 4 and evaluate each of them using a high-fidelity flight simulation, s A prescriptive

model for the third task, however, is harder to define. From a behavioral point of view, while the

search and evaluation aspects of the larger decision problem are rich areas for research, it is again

the third task with which this thesis is initially concerned.

Perhaps only the third task in Figure 2-1, comparison, would be thought of as decision making by

a traditional decision theorist, but it is difficult to compare models in the aviation domain without

considering a broader definition of decision making.

1A prescriptive model defines behavior which is optimal with respect to some objective criterion. I have a slight
preference for the term prescriptive (which means based on prescription) over the term normative (which means of

or establishing a standard or customary behavior--which may or may not be optimal).
2A behavioral model is one which describes human behavior, which may or may not be optimal according to some

objective criterion.
3The search space consists of either the physical dimensions of space and time in which courses of action are

executed, or some other representation in which the actions can be described.
4In practice, it can be hard to determine which trajectories are allowable according to some constraints (e.g. fuel

burn) without first performing the evaluation step.
5This relies on the assumption that search and evaluation costs are negligeable when compared to the opportunity

cost associated with making a suboptimal decision.
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2.2 Simple Decision Models

2.2.1 Behavioral Models

In the decidedly behavioral field of Naturalistic Decision Making (NDM) humans are modelled as

making satisficing (Simon, 1955) rather than optimizing decisions: instead of looking for the best

course of action (COA), they may execute the first acceptable COA they find. This corresponds

to selecting a single point in the search space of Figure 2-1, evaluating it, and--if it produces

acceptable outcomes--selecting it by default. Klein (1993) has observed such recognition-primed

decision making in fireground commanders and military personnel--who assess a situation, and

then simply imagine or recall an apparently suitable course of action, run through its consequences

in their minds, and--it if is appropriate-execute it. There are many cockpit decisions for which

this model seems appropriate: choosing a point to turn from the downwind leg to the base leg

before landing at an unfamiliar airport, for example. Such a decision model does not qualify as

prescriptive, however, unless the time pressures or mental effort involved in a more optimizing

approach are considered, and would be prohibitive. 6 Lacking the third stage--comparison--such

decisions are not particularly fertile ground for efforts at value-based modelling.

Lexicographic ordering (de Neufville, 1990) makes some use of attribute values, while remaining

simple enough to have some behavioral application to the final operation of Figure 2-1. In this

scheme, the subject orders all relevant attributes in the decision space according to their importance,

then ranks each alternative according to its score on the most important attribute. The second

attribute is used to break any ties, and then the third is used to break any remaining ties, and so

on. 7

The Analytic Hierarchy Process (Saaty, 1977, 1990), in which intransitivities in preference are

resolved in the principal eigenvector of a judgment matrix, does not seem to embody either a

prescriptive or a behavioral model of decision making. It is at best a method for analyzing subjective

data (Yang & Hansman, 1995), and is considered by some (Dyer, 1990) to produce rankings which

6In such a case, a decision aid might profitably be deployed to help the human operator make a more optimal
decision.

7Asimov (1970) offers an interesting--though unworkable-example of lexicographic ordering in his Three Laws of
Robotics.
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aretooarbitraryevenfor thispurpose,s

2.2.2 Proceduralized Decision Making

Many aeronautical decisions have been proceduralized, or turned into standard procedures. For

example, pilots are extensively trained to respond to a wide variety of emergency situations with an

appropriate predetermined sequence of actions--a procedure. This kind of decision-making behavior

bypasses all but the first stage of the model of Figure 2-1, and is therefore not amenable to value-

based modelling.

2.2.3 Prescriptive Models

The Airline's Notion of Optimality--What the FMS minimizes

Some optimization is currently performed by the FMSS installed in aircraft such as the Boeing 747-400

(Honeywell, 1994) and the Boeing 737-300 (Schreur, 1995). The objective function embodied in

these FMSs is the total monetary cost of the flight, C, which is defined in terms of fuel burn, f, in

thousands of pounds, and flight time, t, in hours:

C = 10c/f + ce t dollars, (2.1)

in which ct is the operating cost (excluding fuel) in dollars per hour, and c/is the cost of fuel in cents

per pound. 9 By defining a cost index, Ic, as the ratio of these two costs, ct and ci, Equation 2.1

may be rewritten as:
ct Ic

C'= f + l--_.cft= f +-_t. (2.2)

Because C and C _ differ by only a constant factor, any policy (i.e. flight plan) which minimizes

one, minimizes the other. Operationally, the pilot enters a cost index determined beforehand by the

airline, and when it is in the ECON mode, 1° the FMS acts to minimize C _.

Clearly, airlines use the FMS to minimize a linear combination of fuel and time. This institutional

cost function may be appropriate at the higher levels of airline management, where fuel consumption

is the sum of fuel consumptions on many thousands of flight each year. There are, however, two

ways in which this objective function might be considered inadequate. First, it does not take into

account the fact that, after takeoff, resources like fuel and time are constrained. Second, it spans

only two attributes.

Constrained Resources

The form of the pilot's cost function for fuel and time may be quite different: studies of human

decision-making in other fields (e.g., blood-bank management in Keeney & Raiffa, 1993) suggest

that an individual's preferences are noticeably non-linear.

Before an aircraft leaves the ground, fuel can be added or off-loaded and the departure time can

be adjusted to meet all of the foreseeable constraints imposed on the flight. These resources are

tradeable: there is an unlimited supply of fuel, available at a constant price. To maximize its profit

from providing a large number of revenue-generating flights, an airline needs to be most concerned

with cost. Safety, and therefore fuel reserves are not part of the airline's objective function: they

sit seems roughly to produce the cardinal equivalent of the ordinal Kendall coefficient of concordance used in
Section B.2.

9The factor of 10 is required to convert the fuel cost, cl, from cents per pound of fuel to dollars per thousand
pounds of fuel.

1°Economy mode.
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aretreatedasconstraints.However,outcomesof aflight--suchasfuelandtime--arenot tradeable
onceanaircraftis airborne.Thusthereisnomarketwithinwhichtheirpricescanbeset.11

Giventhemultidimensionalnatureofboththedecisionproblemandthepilot'svalues,andgiven
theconstraintsonseveraloftheresourcesinvolved,it isappropriateto turn to utility theoryfor a
quasi-prescriptivemodelof decisionmakingbehavior.

2.3 Utility Theory

2.3.1 Axiomatic Basis

Utility theory is built on six axioms (de Neufville, 1990; Keeney &= Raiffa, 1993). The first three

form a basis for the construction of a value function, _(x), and the latter three provide the necessary

extensions for the construction of a utility function,/g(x).

Complete Preorder of Preferences For all possible pairs of outcomes, xa and Xb, the subject

either prefers one, or is indifferent to them: xa _- Xb, Xa -_ Xb, or Xa N Xb.

Transitivity of Preferences For all possible sets of outcomes, xa, Xb, and xc, if xa _- Xb and

Xb _- Xc, then Xa _- Xc.

Monotonicity of Preferences For every outcome, x, between x0 and xl, where x0 -_ x -_ xl,

there exists a number w, where 0 < w < 1, such that _(x) -- w V(Xl) + (1 - w) _2(z0).

Existence of Probabilities Probabilities exist, and can be measured.

Monotonicity of Probabilities For a lottery with a fixed pair of outcomes, increasing the prob-

ability of the more desirable outcome increases the desirability of the lottery: for all x_ and

Xb, where Xa _- Xb, if pl > P2 then (xa,pl; Xb} _- (xa,p2; Xb).

Substitution Preferences are linear in probability: for all x_, xb, and x_, ifx_ _ Xb then (x_, p; x_> .-_

<xb,;; xc>.

That human subjects might behave according to the first three axioms and the fifth axiom is not

hard to postulate. There is, however, some debate about the applicability of the sixth axiom to

human decision making.

2.3.2 Model Decisions About Performance, Not Safety

It is much easier to define a better outcome in domains which are not safety-related. While it is not

unethical to trade off economic cost against risk of injury or death (Keeney, 1995), it is very difficult.

Two postulated utility functions are shown in Figure 2-2. On the left is a utility function for the

outcome of a safety-related task such as landing an aircraft, where x might represent the distance

between the centerline of the runway and the aircraft's touch-down point. Note that the worth of

the outcome is relatively insensitive to changes in the outcome, except at the extremes, where in this

example the aircraft touches down beside the runway, usually with disastrous results. On the right is

the utility function for a performance-related task, in which x might represent effort expended on a

project. In this case, the value of the effort increases fairly steadily, and there are no "pathological"

outcomes:_ith very (unmeasurably) low values. There are two problems with assessing value for

the safety-related task on the left. First, the bad regions are extremely bad: if there is a utility

llIt is true that fuel and flight time can--to some extent--be traded against one another within a single flight.
However, this does not constitute a market, which involves the trade of a single type of good.
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functionwhichmapsx into the standard utility interval of [0, 1], then these extrema dominate, and

everywhere else the utility is indistinguishable from 1. Second, the outcomes associated with low

value for the safety-related task are---either by design or naturally--very unlikely events. Examples

of such unlikely events include in-flight structural failure or engine failure.

U(x)

1

U(x)

1

X X

(a) Co)

v

Figure 2-2: Hypothetical examples of two types of utility, U (x), as functions

of outcome, x, (a) for a safety-related task, and (b) for a performance-

related task. Note the avoidance states at one extreme of x in (a).

Extreme Values

There are outcomes in aviation whose values are so extreme as to be unmeasurable. While actuaries

routinely calculate the value of a life, an individual decision maker cannot be expected to appreciate

the value of his own--even though it would seem to be a prerequisite for rational decision making

in the face of threats to his safety, and aviation is full of these.

Extreme Probabilities

The fourth axiom also presents a problem. Although it seems reasonable that probabilities exist, it

is not clear that they can be measured easily--much less comprehended by human decision makers--

for outcomes which happen only very rarely. Even where accident rates can be measured, there is

often insufficient experience to quantify the associated probabilities precisely (Patrick, 1996).

Previous experiments conducted by the author (See Appendix A) involved observing pilot's

decision-making in situations in which the safety of the outcome was sometimes in doubt. Not only

do most safety-related decisions in aviation follow the simple decision paradigms of Section 2.2, but

those which might be value based are not amenable to modelling with utility theory for the reasons

given above.

2.3.3 Prescriptive Use of Utility Theory

Decisions like those involved in altitude selection are often made by people, because avionics designers

do not have objective functions with which to automate the decision-making. But without such an

objective function, there is no prescriptive model against which to evaluate the optimality of the

human's decisions. In other words, the situations in which a human is the decision maker are

usually those in which it is impossible to judge the quality of his decisions. This has been called

Roseborough's dilemma (Roseborough, 1988).

Human decisions are often conservatively judged against a cost-minimizing (e.g. expected mon-

etary value, or EMV) model. An alternative is to use the notion that--to the extent that he is
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consistent--thehumandecisionmaker(DM) always makes the correct decision. A sensible middle

ground is to measure the DM's consistency with decisions made according to a model of his pref-

erences: the subject's utility function is derived after observation of the subject's choices, and the

subject's decisions are then judged against this model. This might be called the utility-consistency

heuristic of behavioral decision theory, and it is this criterion against which the subjects observed

in Chapter 4 were measured.
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Chapter 3

Pilot and Dispatcher Surveys

This chapter describes two surveys given in the course of this research. The first, an exploratory

survey given only to pilots, was used to determine which attributes constituted the decision space

for the vertical navigation problem, and to discover where pilots obtained the information they used

in making their decisions. The second, given to both pilots and dispatchers, was used to determine

both groups' rankings of the decision-space attributes.

3.1 An Exploratory Survey of Pilots

no. of subjects 32

mean age 48.7 yrs

mean time flying 27.8 yrs

mean flight experience 15,600 hrs

mean FMC experience 4,600 hrs
fraction who were captains 56%

Table 3.1: Some data for the subject pilots in the first, free-response survey.

"FMC experience" refers to flight experience in FMC-equipped aircraft.

In an effort to determine which attributes of the outcome of a flight are considered important, thirty-

two line pilots--all of whom were captains or first officers flying for major U.S. air carriers (see the

data in Table 3.1)--were asked to list any elements of the outcome of a flight which they felt were

important:

Question 1 "In evaluating a flight plan, what elements of the outcome of a flight are important

to you? Please list as many relevant elements as you can think of."

Their answers are shown below in Figure 3-1, which is constructed from the raw data in Table B.1.

Time and weather responses have been aggregated into super-categories for comparison, since it was

hard to distinguish exactly what the subjects had meant by each response. If specific categories had

been provided for responses to the question, then the classification of the responses would have been

much easier, but many unexpected responses might never have been given by the subjects.

Note the distinction between flight time, which is the duration of the flight, and schedule adher-

ence, which is the extent to which the flight arrives on time. A similar distinction exists between

fuel burn and fuel at destination. For both of these pairs, such a distinction is possible since there

are two controllable variables: in the case of fuel, both fuel burn and destination can be controlled

separately by adjusting the takeoff fuel load and the aircraft's route.

31



iil_l__'_,_li#ii_iiliiiiiiiiiit Ride Quality

_ Weaiher :

F_el Bum

_Time

  her0n e:

Destin:ation Fu(_l

  ooo y, .  ,onoi

_ Alternates

_ 'Otl_ers

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of pilots giving each response

Figure 3-1: The attributes of the outcome mentioned in the first (free-

response) questionnaire by the 32 pilots, and the fraction of pilots who

mentioned each one.

Surprisingly, pilots mentioned ride quality more often than any other single attribute--even

more often than they mentioned safety. This observation helped focus this research on modelling

the decision making involved in avoiding turbulence, and trading off turbulence exposure against

fuel burn and flight time.

3.2 A Forced-Response Survey of Pilots and Dispatchers

A problem with the free-response format of this questionnaire was that pilots were free to mention

items that aren't attributes in the decision space, but rather are part of the search space. 1 Weather

is a good example of this: inclement weather may force a detour, resulting in a longer flight with a

greater fuel burn; it may contribute to increased turbulence, thus lowering ride quality; or it may

increase the probability of an accident. However, weather shouldn't be accounted for separately

from its effects--unless it produces a constraint on operations. Its value should be measured by its

effect on attributes such as flight time and fuel burn.

3.2.1 Pilots' Rankings of Attributes of the Outcome

To make up for this shortcoming of the free-response format, but armed with the wide range of

responses it produced, a second questionnaire was devised. In this second survey, thirty five pilots (28

of 32 respondents from the first questionnaire, and 7 additional subjects--see the data in Table 3.2)

were asked the following question.

1Recall the specific definitions of the search space and the decision space in Section 2.1.
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no. of subjects 35

mean age 49.3 yrs

mean time flying 28.8 yrs
mean light experience 15,600 hrs

mean FMC experience 4,400 hrs

Table 3.2: Some data for the subject pilots in the second, forced-response

survey.

Question 2 "How important are these elements of the outcome of a flight to you? Please mark the

importance of the following six items (flight time, schedule adherence, fuel burn, fuel at destination, 2

ride quality--i.e, passenger comfort, and safety) on the scale below. Your ordering of the items is

most important."

The position of each item along the scale, which had been marked from "irrelevant" to "very

important", was converted into a rank. 3 The raw results are shown in Table B.3, and the rankings

are summarized here in Table 3.3.

Attribute R

Safety 1

Ride quality 2.57
Fuel at destination 3.44

Schedule adherence 4.14
Fuel burn 4.33

Flight time 5.51

m

Table 3.3: The averages, R, of the ranks assigned by the pilots in the

second (forced-response) survey, for the six most popular attributes of the
outcome.

In fact, it is not possible to separate some of these attributes. Fuel burn and fuel at destination

are linked: they must add to the fuel load at takeoff. Flight time and time ahead of schedule must

sum to the difference between actual departure time and scheduled arrival time. For this reason

these attributes were combined into only two: fuel at destination, and flight time. Given that safety

is an attribute which we wish to avoid modelling--following the logic expressed in Chapter 2--this

leaves only three attributes in the decision space: fuel at destination, flight time, and ride quality.

A Measure of Agreement Between Judges The Kendall coefficient of concordance, W (see

Seigel & Castellan, 1988, p. 262) was used as a measure of the agreement between the k = 35 pilots'

(judges') rankings of the n = 6 attributes shown in Table B.3:

n
W = Ei=l( i - _)2 (3.1)

n(n 2- 1)/12 '

2 "Fuel at destination" refers to the quantity of fuel remaining in an aircraft's tanks upon lauding at the destination

airport, rather than to the availability of fuel at that airport.

3Although the locations of the items could have been measured to provide a more cardinal estimate of importance,

it was felt that such a measure would be unreliable. Respondents varied in their treatments of the scale--for instance

by marking all the items near oue or the other of the extremes--sufficiently to bring into question the cardinality of

the data. For this reason, only the ordinal information (i.e. rank) was used.
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whereRi are the mean rankings for each of the n attributes:

k

Ri = -_
j=l

(3.2)

and R is the grand mean, or mean of the Ri's. W can lie anywhere on the range [0, 1]. If W has a

value of 0, then there is complete disagreement between the judges' rankings, whereas if W has a

value of 1, then there is complete agreement between the judges' rankings. Values between 0 and 1

imply partial agreement.

For the data from the pilots in Table B.3, W = 0.701. Since the critical value 4 of W for a 1%

level of confidence, W1%, is less than 0.146, this indicates strong, statistically significant agreement

among the pilots.

It is no surprise that safety is ranked first by all of the subjects. In fact, any other rank for this

item would be a cause for concern! It is therefore illuminating to remove safety from the table, and

recompute the level of concordance. In this case, with n = 5 attributes, W = 0.477, which is still

well above the critical value: W1% _< 0.16.

3.2.2 Dispatchers' Rankings of Attributes of the Outcome

The same question (Question 2) was put to dispatchers at a major U.S. airline's operational control

center (or AOC). The means of the ranks assigned by the dispatchers are shown in Table 3.4, while

the raw data are shown in Table B.4.

m

Attribute R

Safety 1

Ride quality 2.57
Schedule adherence 2.86

Fuel burn 4.71

Fuel at destination 4.86

Flight time 5

m

Table 3.4: The averages, R, of the ranks assigned by the dispatchers in

the second (forced-response) survey, for the six most popular attributes of
the outcome.

For the dispatchers' ranks, W = 0.748. Since the critical value of W for a 1% level of confidence

is 0.398, this indicates strong agreement between the dispatchers. After removing safety form the

rankings, as for the pilots results, W dropped to 0.559, which is still statistically significant.

3.2.3 Agreement Between Pilots and Dispatchers

Figure 3-2 shows the mean rankings produced by both groups--pilots and dispatchers--graphically.

If all the points had been on the gray line, there would have been perfect agreement between the

two groups' rankings. Three is, however, some disagreement. It is interesting to note that this

disagreement involves destination fuel, which pilots seem to value more highly than dispatchers do,

and schedule adherence, which dispatchers seem to value more highly than pilots do. There is,

however, complete agreement between the two groups that safety and ride quality have the highest

priorities among these six items.

4Critical values of W for n = 6 are only tabulated for k < 20 in Seigel and Castellan (1988). Since these values

diminish as k increases, the value for k --- 20 is taken as a conservative estimate of the value for k -- 35.
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Figure 3-2: A quasi-cardinal representation of the mean ranks assigned by

both pilots and dispatchers to each of the six attributes of the outcome.

3.2.4 Pilots' Rankings of Sources of Information

In order to determine whence pilots obtain the information they require for decision making about

vertical navigation, thirty pilots (again 28 of the 32 respondents from the first questionnaire, and

this time 2 additional subjects) were asked to rank 5 sources of information 5 for the selection of a

new cruise altitude in the following question.

Question 3 "How important are the following sources of information to you when selecting a new

cruise altitude? Please mark the importance of the following five items--Flight Management System

(FMS), Flight Plan, Dispatch, Pilot Reports (PIREPs), Pilot's Operating Handbook or Flight Manual

(POH)--on the scale below. Your ordering of the items is most important."

The location of each item along a linear scale (again marked from "irrelevant" to "very impor-

tant") was used to determine the rank of the importances of each item, from 1 (most important)

through 5 (least important). These results are shown in full in Table B.5. Average rank for each of

the i items was calculated using Equation 3.2, with k = 30. The raw data are presented in Table B.5,

and are summarized here in Table 3.5.

Source of Information R
PIREPS 1.52

FMS 2.88

flight plan 3.13
POH 3.47

dispatch 4.00

Table 3.5: Average rank, R, assigned by the pilots to each of the five sources
of information for the selection of a new cruise altitude.

5In the initial, exploratory survey, the pilots had been asked to list sources of information which they considered
important. The five most frequently mentioned responses were used in this question in the second survey.
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Forthethirty pilots'rankingsofthefivesourcesof information,W = 0.345. Since the critical

value 6 of W for a 1% level of confidence is less than 0.160, this again indicates good agreement

between the pilots.

Most noticeable in these data is the fact that pilots place dispatch--a body of people who are

trained and certified to help pilots in such decision-making tasks--last in the list of sources of

information for altitude planning.

3.3 FMS Features Desired by Pilots

As part of the first survey, the pilots were also asked to describe any additional features they would

like in their FMSs to help them with altitude selection and flight planning,

Question 4 "If you could have any additional features in the FMS to help with these tasks, what

would you want?"

The individual responses to this question are listed in the long table in Section B.I.1, along with

the principal aircraft the pilots were flying at the time of the survey. The responses and frequencies

with which they were given are summarized in Table 3.6. The two most frequently requested

Function frequency

Improved display of... 16

performance 7
weather and winds 3

terrain 3

airspace 2
traffic 1

Improved flight planning... 11
vertical 7

unspecified 3
horizontal 1

Better use of wind data... 9

uplink of data 7
calculation of effects 2

display 1
Nothing 6

Improved performance model 1

Table 3.6: Desired FMS/CDU features mentioned by the 32 subjects, and

the frequencies with which they were mentioned.

features were improved display of performance, and improved vertical fiight-planning capability.

This is perhaps not surprising, since the question was asked in the context of vertical navigation

decision making. What is noteworthy, however, is that only 6 of the 32 subjects desired no additional

features.

0 0 0

6Again, the criticM vMue of W (n -- 5, k = 20) of 0.160 is used as a conservative estimate of the true 1% value.
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Chapter 4

Utility Assessment Experiment

Eliciting Pilots' Objective Functions

In this chapter, one particular model of decision making for the trajectory selection problem--

maximization of expected utility--is constructed by experiment, for the attributes determined in

Chapter 3, and validated by comparison with several of the other decision models described in

Chapter 2.

4.1 Background

Active line pilots--all of whom were flying or had recently flown intercontinental routes for major

U.S. air carriers--were interviewed at NASA Ames Research Center. Some aggregate data for the

group are shown in Table 4.1. The pilots were each asked questions (1) to determine which attributes

they considered relevant, (2) to elicit their utility functions over those attributes, and (3) to make

many comparisons between pairs of points (i.e. attribute combinations) in the decision-space.

no. of subjects 5

mean age 51.2 yrs

mean time flying 30.2 yrs

mean flight experience 14,800 hrs

mean FMC experience 2,520 hrs

Table 4.1: Aggregate data for the pilots in the utility-assessment experi-
ment.

The subjects were instructed to answer the questions as though they were planning a long

intercontinental flight on a route with which they were very familiar (e.g. Los Angeles to Sydney,

Australia), in the aircraft they would normally fly on that route. The weather, except for winds and

turbulence, was described as no factor, and the cost index (as used in Equation 2.2) was specified as

Ic -- 100. Subjects were also informed that there were no "correct" answers to any of the questions

they would be asked: their answers would only be judged by their consistency.

4.2 Verification and Scaling of Important Attributes

The subjects were asked to confirm that the first three independent attributes determined in Sec-

tion 3.2--destination fuel, flight time, and ride quality--were the most important decision attributes
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of a flight, which they all did. The pilots were then asked to set end points for destination fuel and

flight time at the smallest and largest values each pilot considered reasonable for the route he had

chosen.

Ride quality was a more difficult attribute to deal with, since there exists no universally accepted

measure which covers both its strength and duration. I The subjects were asked questions to de-

termine what level of turbulence 2 they would endure for between zero and 60 minutes to save 2000

ib of non-critical 3 fuel. All but one of the subjects, it was determined, would make such decisions

for moderate turbulence, the exception would make them for light turbulence. The results of these

assessments are presented in Table 4.2, in which f0 and fl are respectively the least desirable (small-

est) and most desirable (largest) amounts of destination fuel, and to and tl are the least desirable

(longest) and the most desirable (shortest) flight times, respectively.

Aircraft from to f o f l to t 1 turb.

type (klb) (klb) (hrs) (hrs)

$1 B-747-400 KLAX Sydney 30 50 15.0 13.0 mod.

$2 MD-11 PANC Seoul 18 30 9.5 7.5 mod.

$3 B-767 KSFO London 10 40 10.5 9.0 mod.

6:4 B-747-400 KSFO Hong Kong 17 37 14.5 12.5 light

$5 B-747-400 KLAX Sydney 25 40 16.5 13.5 mod.

Table 4.2: Attribute data for the pilot subjects in the utility-assessment

experiment.

4.3 Comparisons of Pairs of Alternatives

The subjects were asked to choose the more attractive alternative from each of forty pairs of

trajectories 4 on the basis of destination fuel, flight time, and length of exposure to turbulence.

The data for a typical pair of trajectories are shown below: 5

[24 klb, 14:00 hr, 20 mini or [30 klb, 14:30 hr, 10 min].

4.4 Using a Multilinear Utility Function

It would be possible to build a full n-dimensional utility function, one point at a time. Assuming

that utility over each of the n axes is defined by 5 points, and that the two extrema Ix0, Y0, z0] and

[Xl, Yl, zl] have utilities of 0 and 1 by definition, there are 5n - 2 points to determine, which in this

3-dimensional case would be 123 points. Since each assessment typically takes about half a dozen

questions, this process would be very time consuming.

Fortunately, with one important assumption, it is possible to construct a simple alternative

model--the multilinear utility function--which is equivalent. The required assumption is that the

1Although there are obvious measures for each element individually, e.g. light turbulence, and 20 minutes,

respectively.
2The Aeronautical Information Manual (or AIM Federal Aviation Administration, 1996a) defines four levels of

turbulence: light, moderate, severe, and extreme.
3Non-critical fuel was defined as fuel which would not be required to reach the destination, or meet minimum fuel

requirements upon arrival.
4Although these questions were asked in the middle of the experiment, they are described here because their results

were used extensively in the following sections.
5Subject 4.
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n attributes being incorporated into the decision model are utility independent. 6 In other words if,

for all possible combinations of m of the n attributes (where rn C n), the subject's preference among

lotteries involving those m attributes is unaffected by the levels of the remaining n - m attributes,

then a strategically equivalent 7 multilinear utility function may be constructed for the n attributes.

Given that there was demonstrable utility independence between all subsets of the attributes (as

described later in Section 4.7), it was possible to use such a multilinear utility function to model each

subject's preference structure in the 3-dimensional decision space of destination fuel, flight time, and

turbulence duration. The 3-dimensional incarnation of a multilinear utility function, first proposed

in 2-dimensional form by Yntema and Klem (1965) and later generalized by Keeney (1968), is:

Uxyz(x,y, z) k_ux(x) + 4_(y) + kzUz(z)

+ k_yk_kyU_(x)Uy(y)

+ kx_k_kzbt_(x)lgz(Z)

+ ky_b k_U_(y)Uz(z)

+ k_zk_k_kzU_ (x)U_(y)Uz(Z) (4.1)

Note that Equation 4.1 is constructed of 3 conditional utilities, Ux(x), lgy(y), and ldz(Z), and 7 scaling

constants, k_... kxyz. Each of the conditional utilities can again be defined by--say--5 points, but

for each attribute the end-point utilities are 0 and 1 by definition, leaving only 3n points to cover

all n attributes. Of the seven scaling constants, 6 can vary, the seventh is constrained by the fact

that btxyz(Xl, Yl, zl) = 1.

In the general n-dimensional case, there are 2n-2 independent scaling constants to be determined,

each of which requires the assessment of a single utility value. Thus the multilinear utility function,

where applicable, can be constructed by determining only 2n - 2 + 3n utility points. In this 3-

dimensional case, that amounts to 15 points, a substantial reduction from the full 123 points that are

required when the independence assumptions do not hold. Table 4.3 outlines the differences between

the number of points which must be assessed with and without the ability to use a multilinear utility

function.

n full multi.

1 3 3

2 23 8

3 123 15

4 623 26

5 3123 45

6 15623 80

Table 4.3: Estimates of the number of points at which utility must be

assessed to specify a DM's preference structure in an n-attribute decision

space (i) when a full utility function must be used, and (ii) under the

assumptions required for the use of a multilinear utility function.

6Or if they meet other slightly less restrictive criteria involving partial utility independence and partial preferential
independence (see Keeney K=Raiffa, 1993, p. 292 for a detailed description of these criteria).

7Two utility functions are said to be strategically equivalent if and only if they produce identical decisions between
all possible pairs of lotteries.
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4.5 Evaluation of the Conditional Utilities

Each subject was asked a series of questions to determine his conditional utility for each of the

attributes, one at a time. This involved giving the subject a choice between a lottery, s L =

(x_,50%; xb/, where /d(x_) > ld(Xb), and the certain outcome whose utility was being assessed,

xc, as shown in Figure 4-1. If the subject preferred the lottery, then the value of xc was moved

00"__ xa _'_ O

1.0

Xb

Lottery Outcome

X c

Figure 4-1: The choice between the lottery (x_, 50%; Xb) and the certain

outcome x_ offered to the subjects.

towards the more desirable outcome x_, but if the subject preferred the certain outcome, the value

of x_ was moved towards the less desirable outcome Xb .9 This process was repeated until the subject

was indifferent between the lottery and the certain outcome. For this to be true, the utility of the

certainty must equal the expected utility of the lottery: 1°

xc _ L _ b/(x_) :b/(L). (4.2)

Therefore

u(x ) = 0.SU(x ) + 0.5u( b). (4.3)

Since U(xo) and U(xl) are defined to be 0 and 1 respectively, by starting with the lottery (xl, 50%; x0),

x0.5 was determined using Equation 4.3. Then, xo.25 and x0.75 were determined using the lotteries

(Xo.5, 50%; xo) and (xl, 50%; Xo.5) respectively. Finally, the value of x0.5 was checked using the lot-

tery (x0.75, 50%; xo.25). If the new value of x0.5 did not agree with the first value, then the decision

maker was considered not to be acting in a consistent manner, and the conditional utility for that

attribute was elicited again, m Figure 4-2 shows the three component utility functions assessed from

a typical subject, along with the exponential functional form chosen to describe them.

SThe notation L = (xa,p; Xb) denotes a binary lottery, L, in which there is a probability p of obtaining outcome

Xa, and a probability (1 - p) of obtaining outcome Xb.
9For example, to assess the 0.5 utility point for flight time, between attribute extrema of 12.5 and 14.5 hours,

the lottery used would be L = (12.5, 50%; 14.5). The subject might first be asked for his preference between L and
the certain outcome of 13.5 hours. If he chose L, then the certain outcome was moved towards the more desirable

extremum of 12.5 hours, say to 13 hours. On the other hand, if he preferred the certain outcome of 13.5 hours, the
value of the certain outcome was moved towards the less desirable extremum of 14.5 hours, say to 14 hours. This

process was repeated until the subject was indifferent to---say--L and a certain outcome of 14.25 hours.
1°This relies on the assumption that the subject's preferences are linear in probability: the Substitution Axiom

discussed in Chapter 2.

11In practice, it is difficult to reassess these indifference values. In this experiment, subjects would remember the
values they had given to previous questions and--perhaps to appear consistent--usually gave identical answers when

the same question was asked again. Also, since repeated questions do not produce answers which are independent and

identically distributed about the a true value, it is difficult to use the standard techniques for statistically analyzing
repeated measures to estimate parameters and their confidence limits. These two facts conspire to make the statistical
treatment of assessed utilities difficult.
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Figure 4-2: One subject's conditional utilities for each of the three at-

tributes, showing the exponential fit of Equation 4.7. ($4)

4.5.1 The Importance of Resource Constraints

In Chapter 2, the constraints on in-flight resources such as fuel and time were mentioned as impor-

tant factors in the choice of a normative decision model. To demonstrate human pilots' risk-averse

behavior in the presence of such constraints, an extra utility assessment was performed on one sub-

ject: his conditional utility for flight time was assessed both with and without a schedule constraint

(an operations curfew at the destination airport). Figure 4-3 shows these two utility functions over

flight time for the subject. The lower utility function, which is marked with circles, shows the

subject's preference over time when there are no constraints on the aircraft's schedule; the upper,

marked with solid circles, in the presence of the constraint. Note the concavity of the unconstrained

utility: the subject exhibited risk-seeking behavior without the constraint. This was confirmed dur-

ing the questioning, when the subject mentioned that he was willing to take a gamble for the chance

of obtaining the desirable low flight time outcome. The constrained utility function, however, is

convex. With a curfew scheduled for 15 hours after departure, the subject was no longer willing to
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gamblewith thepossibilityof beinglate,andhavingto divertto anearbyairport:hewaswilling
to sacrificetimein thecertainoutcometo avoidthispossibility.Clearly,andnot surprisingly,the
presenceofa constrainthasasignificanteffectonthepilot'sdecisionmaking.Whilesuchbehavior
is capturedin thismultilinearutility model,it isnot replicatedin theFMS'slinearcostcriterion.

1,_' : '. :
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._0.6__\-\] ":.... _ .............
unconstr_ined_:_\ N $

°4t..........;........
°2I........i..................
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13 13.5 14 14.5 15
Time (hr_

Figure 4-3: One subject's conditional utilities for time, both with and with-
out a schedule constraint at 15 hours. ($1)

4.6 Fitting the Conditional Utility Functions

Given that b/(xo) = 0 and b/(xl) = 1 by definition, it is necessary to find a functional form for the

conditional utilities which passes through these points, and which provides the best possible fit to

the elicited utility points x0.25, x0.5, and x0.75. There are several candidate functions which meet

these criteria to varying degrees. Some are shown in Figure 4-4 and are described below.

U(x)

1

U(x)

0.75

0.5

0.25

X o X 1 X

(a)

X.25 X.75 X 1
X0 X. 5

¢o)

r

x

U(x)

1

0.75

0.5

0.25

0
X.25 X.75 X 1 X

Xo X.5

(c)

Figure 4-4: Three models for a conditional utility function: (a) linear, (b)

piecewise linear interpolation, and (c) exponential.
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4.6.1 Linear Utility Function

Theuseof a linearcomponentutility functioncorrespondsto normalizingthevalueofanattribute
withthat attribute'sextrema,producingthestraightlineshowninpanel(a)ofFigure4-4:

if x _ X0,

if X0 -_ X _ Xl,

ifxl -<x.

(4.4)

Lockheed's Diverter (Rudolph et al., 1990), a prototypic system for aircraft route planning, uses

weights based on rankings of each decision alternative's attainment of each attribute. This is equiv-

alent to using such a linear comditional utility function. Although not appealing as a normative

model, 12 the linear conditional utility model of Equation 4.4 is provided for comparison.

4.6.2 Piecewise Linear, or Interpolated Utility Function

The second simple model considered, linear interpolation has the advantage of fitting all of the

elicited points by definition, and is shown in panel (b) of Figure 4-4:

00 + 0.25 xo_xo

,025 + 0254

|0.5 + 0.25xj x?2o°

if x _ xo,

if xo -< x __ x0.25,

if x0.25 _ x _ xo.5,

if Xo.5 -< x _ x0.75,

if x0.75 -< x __ Xl,

if xl -< x.

(4.5)

While the most accurate at fitting each of the assessed points, this model is not appealing because it

lacks simplicity: in addition to the locations of the attribute extrema, it requires three parameters

to specify the Dg's preferences, and is susceptible to assessment errors inany one of them.

4.6.3 Least-Squares Exponential Utility Function

A generalized form (capable of handling arbitrary values of xo and xl) of an often-used model for

conditional utility (see, for example, Keeney &: Raiffa, 1993) is the following exponential function,

also shown in panel (c) of Figure 4-4:

bl¢xp. (x) = a - be -_x. (4.6)

Writing Equation 4.6 for each of the end points, 5/(x0) = 0 and _(Xl) = 1, and solving for a and b

gives:

0 if x __ x0,
1-_-_-_°) if x0 -< x -< xl, (4.7)-

[_ if xl -< x.

Since the utility function of Equation 4.7 need not pass through all of the elicited points, the single

parameter c must be adjusted to minimize the errors in some meaningful way.

12When such linear models are combined into a multilinear utility function, they produce a simple surface called a

regulus in the n-attribute space.
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Adjusting the Parameterc Since subjects were adjusting the abscissa (resource variable) values

in the experiment, it would not be appropriate to use traditional least squares, as that would involve

adjusting errors in the ordinate (utility) estimates. It is more appropriate to perform a least squares

minimization of errors in the abscissa values. Following this logic, the parameter c was adjusted to

minimize the following measure of error, $:

= (x0.25- 20.25)2 + (x0.5 - 2o.5)2 + (xo.75- 20.75)2, (4.8)

where

2a =/d-l(Ua) = xo - -" log(1 - ). (4.9)
c

4.6.4 Choosing Between Conditional Utility Models

These three models are shown for a typical subject in Figure 4-5. Each component modelling

technique was used as part of a multilinear utility function to predict the subjects' paired comparison

choices. Since there was no difference in the performances of the piecewise linear and the exponential

models 13 the exponential model was chosen for its simplicity and generality. 14

0.75

-_ 0.5

0.25

0
9

_b

_...:.".._._.. ..... :..............

2"
: c -. : \\a
i \,i \\
• " \x \ \

............. : .............. ;..,\. ......"._

............. !.............. i). ,,. \_ \
\

\,

9.5 10 10..
Flight Time (hD

Figure 4-5: A typical subject's conditional utility for time ($3), showing

both methods of fitting a utility function to the elicited points: (a) linear

interpolation, and (b) an exponential function. A straight-line (c), which

represents a hypothetical risk-neutral utility function, is shown for compar-
ison.

4.7 Verification of the Independence of Conditional Utilities

Recall that in order to use a multilinear utility function, we require utility independence among the

attributes. At several points during the assessment of the conditional utilities, this independence

was verified by asking the subject if changes in the levels of any of the other attributes or sets

of other attributes would effect the indifference value for the choice between the lottery and the

13Both produced errors rates of 7.5%.

14Although both piecewise and exponential models produced better results than the linear model, there were

insufficient data to substantiate the differences.
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certainoutcome.In everycase,the subjects'responseswerenegative.This resultjustifiesthe
assessmentofconditionalutilitiesandscalingconstantsrequiredforamultilinearfunction,instead
of theassessmentofa full 3-dimensionalutility function.

4.8 Determination of the Scaling Constants, kx... kxyz

With the component utilities determined, the more difficult job of determining the preference struc-

ture between attributes remained. When a multilinear utility function is used, this structure is

embodied in the scaling constantsl ks .. • kxyz. Because of the difficulty of conveying the required

ideas to the subjects, who were not experts in decision theory, two methods were used to assess the

scaling constants required in Equation 4.1. The first, graphical scaling, proved the easier to explain

to the subjects. The second, probabilistic scaling, provided a check, and for several of the subjects

it produced better internal consistency.

4.8.1 Graphical Method

In this technique, the subjects were given a scale like that shown on the left-hand side of Figure 4-6

on which was marked the utility of the best possible outcome: Uln = 5/(x111) = 5/xyz(Xl, Yl, zl) = 1,

corresponding to low flight time, low fuel burn, and no turbulence, and that of the worst possible

outcome: U00o = Uxyz(Xo,Yo, z0) = 0, corresponding to high flight time, low destination fuel, and

long exposure to turbulence. They were asked to mark the utilities of the six intermediate corner

points (5/001, U010, 5/011,5/100, 5/101, 5/110) in such a way that the position on the scale was proportional

to the desirability of the outcome, given the desirabilities of the two end points. The right-hand side

of Figure 4-6 shows the scale as returned by a hypothetical subject. The required values were then

Good GoodUlll

Bad UO00 Bad

Ulll

UOOl

Ullo

u(u0

UIOO

Uooo

Figure 4-6: Graphical assessment of the corner utility points. The subjects
were shown the scale in the left hand panel, and were asked to fill it out,

producing something like the scale shown in the right hand panel.

measured directly from the scale.

4.8.2 Lottery Method

In this method, the subjects were given the choice between the certain outcome whose utility was to

be assessed, say xl00 = (xl, Y0, z0), and a lottery, L = (Xln,P; x000}, and the lottery's probability p

was adjusted until the subject was indifferent between the two: xl00 _ L. Assuming that preferences
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arelinearin probability,thentheutility ofthecertaintycanbecalculatedthus:

5/(x100)= 5/(L)= p5/(x111) + (1 - p)/d(x000) = p. (4.10)

This procedure was repeated for each of the six intermediate corner points. This parallels the method

used in Section 4.5, except that in this case it was the probability--rather than the bracketing values

of the attribute--which was varied.

For each subject the corner points were assessed both ways. 15 Since the assessment procedures

were difficult to describe to the subjects, and since there was no a priori reason to prefer one method

over the other, the better of the two at predicting each subject's paired-comparison choices was used

to build the model of his utility function.

4.8.3 Calculation of the Scaling Constants

With the values of the corner points obtained using the better of the above methods, it is possible

to calculate the scaling constants by writing Equation 4.1 for each of the assessed corner points:

5/100 = kx,

5/010 = ky,

5/OOl ---_ kz,

5/11o = k_ + ku + k:_uk_ku,

5/lOl = k_ + kz + k_zk_k_,

5/Oll = ku + kz + ky_kukz,

L/ill = kz + ky + kz + kxykxky + kxzkzkz + kyzkykz + kzyzkzkykz. (4.11)

Solving Equations 4.11 in order, with 5/111 = 1, gives the required constants:

kz = 5/loo,

ky = 5/olo,

kz = 5/001,

5/11o - 5/loo -/2olo
kxy :

5/1005/010

5/lOl -/41oo - 5/ool
kXZ

5/1005/001

5/011 -- 5/010 -- 5/001

kvz = 5/olo5/ool '

1 -{- 5/100 + 5/010 -{'- 5/001 -- 5/110 -- 5/101 -- 5/011

kxvz = 5/100L/0105/001 (4.12)

The coefficients for each subject are presented in Table C.1.

4.9 The Complete Multi-Attribute Utility Function

Combining the scaling constants determined in Equation 4.12 and the component utility functions of

Equation 4.7 into Equation 4.1 provides each subject's multilinear utility function of flight time, fuel

at destination, and exposure to turbulence. Figure 4-7 shows three views of the four-dimensional

15 One of the subjects was unable to understand the lottery method of assessment, and his component utilities could
not be reliably determined.
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utility functionfor a typicalsubject,eachwith oneof the attributesheldconstantat its most
desirablevalue. Figure4-8highlightsthedifferencesbetweentheelicitedutility functionsfor a

Turbulence=0 min

. • -" ..

Dest. Fuel (klb) 25 14 Time (hr)

1

0.75

0.5

0.25

Dest. Fuel (klb)

Time = 13.5 hr

""" " ';"_i."

p

m

... _%_'-. :

30 _5 30

25 0 Turb. (min)

Dest. Fuel = 40 klb

, i ? i

Figure 4-7: Three views of the final multilinear utility function for a typical

subject ($5). For each plot, the omitted variable is held constant at its most
desirable value.

typical subject, and the cost function for his aircraft. Iso-preference lines according to the utility-

maximization model are shown in the left hand panel, and according to the cost-minimization model

in the right hand panel. For the purposes of comparison, exposure to turbulence was held constant

at zero for the utility model. Note the marked curvature of the iso-preference lines on the left.

The significance of the difference between the utility and cost models shown in Figure 4-8 is

apparent, since the two sets of iso-preference curves are quite different. Even if the cost index were

varied, which is equivalent to adjusting the slope of the family of lines in the right hand panel

of Figure 4-8, it would not be possible for the cost model to reproduce the preference structure

exhibited by the utility model.

4.10 Risk Aversion

As can be seen in Equation 4.7, each conditional utility function is specified completely by two

end-points and a single parameter, c. It is this parameter which contains the most valuable infor-
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Figure 4-8: Iso-preference curves for two different decision models over

flight time and destination fuel for a typical subject ($5): the multilinear

utility function (shown in two dimensions, with turbulence held constant

at zero) on the left, and the cost-minimization model on the right. The iso-

preference curves are marked in utiles and thousands of dollars respectively.

mation about a subject's preference structure, but it is not independent of scale36 Risk aversion--a

measure of the extent to which a DM prefers a certain outcome to a lottery with the same expected

consequence--provides a more general measure.

Risk aversion is traditionally defined (see Keeney & Raiffa, 1993, p. 183) as the ratio of the

second and first derivatives of utility: 17

( u:'(x) dU.
)-_ if -_-- > 0,

rx(X) - ] u:'(_) du_
u'_(_) if _ < 0.

(4.13)

However, the exponential utility function used in Equation 4.6 is not scaled in the traditional way:

it is not necessarily increasing, and does not necessarily start at x = 0 and end at x = 1. For these

reasons it was necessary to redefine risk aversion in the following dimensionless form: is

G'(x) .(xl -xo). (4.14)
r_(x)-- G(_)

Substituting values of U_(x) and b/It(x) from the exponential utility function of Equation 4.7, gives:

r_(_) = c. (_1 - _o). (4.15)

Risk aversions for each attribute, calculated using Equation 4.15, are shown by subject in Table 4.4

16Specifically, the scaling of the attribute axis affects the value of c. Since the exponent c(x - x0) must be dimen-
sionless, the units of c must be the inverse of the units of x. Thus c will depend, among other things, on the units

chosen for x--an unsatisfactory situation.

17For utility functions which are twice continuously differentiable.
1SNore that another solution to this problem would have been to redefine the exponential utility function thus:

/d(x) = (1 - e-C'x')/(1 - e-C'), where x' = (x - xo)/(xl - xo). However, this form tends to obscure the scaling of
the ordinate values.
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and in Figure 4-9.

subj. r f r t rq

1.774 1.744 0

1.478 7.673 -1.527

1.052 2.162 0

1.836 4.872 -0.458

4.022 0 0.947

means 2.032 3.290 -0.208

Table 4.4: Least-squares risk aversion by attribute and subject. Negative

values indicate risk-seeking behavior.
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Figure 4-9: Risk aversions by subject and attribute. Note the risk-seeking

behavior of some of the pilots in their preference structure for exposure to
turbulence.

Of the fifteen mean risk aversions shown in Table 4.5, five are statistically significantly different

from zero at the 5% level: r/4 , r/5 , rt4, rq2, and rqb. Also, the only statistically significant risk-seeking

behavior observed was subject 2's preference for exposure to turbulence. 19

19It is interesting that any of the subjects exhibited risk-seeking behavior at all. It might best be explained by the

pilot's perception of a premium on exposing passengers to no turbulence--perhaps some passengers consider some

turbulence to be quite bad, but more turbulence to be little worse. With such a premium, pilots would be willing to

gamble in order to achieve the very desirable outcome of a smooth ride for the entire flight, and would thus appear

to be risk-seeking.
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subj. r/ p(Ho) rt p(Ho) rq p(Ho)
1

2

3

4

5

1.854 0.062

1.912 0.076

1.206 0.075

2.071 0.019

4.101 0.0003

2.205 0.053

12.285 0.052

3.247 0.084

5.690 0.013

0 1

0 1

-1.690 0.017

0 1

-0.528 0.294

0.843 0.049

Table 4.5: Mean risk aversion, and p-values associated with a two-tailed

null hypothesis that the mean was zero, by attribute and subject.

4.11 A Comparison of Several Decision Models

During the course of the experiment, several of the subjects indicated that they were choosing

between the pairs of flight plans using lexicographic ordering (described in Chapter 2). They were

deciding on the value of the attribute which they considered most important, and using other

attribute values only as needed to break ties in the first. For each subject, each of the six possible

lexicographic decision models 2° was used to predict decision behavior, and the best was retained for

comparison.

The subjects had Mso been given a cost index of 100 for their flight. Predictions of their decisions

were made on the basis of minimizing the cost calculated using Equation 2.2 with Ic = 100.

These three models of human decision making--utility maximization, lexicographic ordering, and

cost minimization--were evaluated against the subjects' answers to the paired comparison questions.

Figure 4-10 shows the fraction of errors made by each of the three models of the pilots' decisions.

The Student t-test was used to make the comparisons between models. The utility model was

significantly better at predicting pilot decisions than was the lexicographic model (p = 0.023) 21 and

the cost minimization model (p = 0.00015). The lexicographic model was just significantly better

than the cost model (p = 0.048).

From these results, it is clear that the utility model is the best predictor of the subjects' decisions.

This result may be attributed to two of its features: it models the non-linearity of the pilots'

preferences, and it models more of the attributes they take into account when making these decisions.

"Man in sooth is a marvellous, vain, fickle, and unstable sub-

ject." Michael de Montaigne (1533-1592)

2°There are nPn = n! lexicographic models in an n-attribute decision space. For the profile selection problem, in
which n ----3, the six models are all possible permutations of destination fuel, flight time, and turbulence.

21All comparisons were made with a null hypothesis that the two means were equal, and an alternate hypothesis
that the first mean was lower than the second -- all one-tailed tests.
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Figure 4-10: A comparison of the predictive performance of the three de-

cision models: utility maximization, lexicographic ordering, and minimiza-

tion of linear cost. The horizontal gray lines mark the sample means, the

vertical gray lines mark the extent of the 95% confidence intervals for the

population means; the black boxes mark the 25 th, 50 th, and 75 th percentile

points for the samples; and the whiskers mark the 0 th and 100 th percentile

points for the samples. In some cases, several sample points were at the bot-

tom of the range, so that the 0 th and 25 th percentile points were coincident,

hiding some of the whiskers.
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Chapter 5

Trajectory Optimization

Maximizing the Objective Function

Putting aside the matter of the selection of an objective function, let us turn our attention to the

algorithmic side of trajectory optimization: finding the trajectory or trajectories which maximize

the value of an objective function. This chapter begins with a survey of methods which have been

applied to the problem, with attention to their advantages and disadvantages. It continues with

a discussion of an appropriate representation for the problem, and ends with the development of

one particular method for optimizing trajectories: a stochastic directed search, which operates on a

discrete representation of the trajectory search space.

5.1 A Survey of Methods

Many methods have been applied to the problem of finding fuel-, time-, and cost-optimal trajectories

for aircraft. Several of these techniques are discussed below.

5.1.1 Gradient-Based Techniques

The calculus of variations has been used to optimize the flight profile for a DC-10 (Shaoee _ Bryson,

1976). For long-range flights, a profile may reasonably be divided into climb, descent, and cruise

segments, and optimization may be performed on the cruise segment using calculus (Lee & Erzberger,

1980; Katz, 1994). While these classical techniques are computationally simple, they are limited in

the types of policy they can be used to explore.

A simple method for determining the optimum flight profile is to simply fly at whatever altitude

instantaneously provides the lowest time, fuel, or cost given the current winds and aircraft weight.

This is the procedure used by the FMS in the Boeing 747-400 (Honeywell, 1994). One limitation of

this method, however, is that it does not take into account the additional fuel and time expended

during climb and descent. 1

All of these methods produce continuous-climb cruise solutions, which are not compatible with

ATC-imposed constraints on altitude or airspeed, and are not necessarily globally optimal. It is also

difficult to provide meal service to passengers during a climb or low-airspeed flight 2 increasing the

desirability of having level cruise segments.

1These quantities are not negligible. According to its Operations Manual (Boeing, 1988), a 760 klb Boeing 747-400
consumes about 7% more fuel and travels about 7% more slowly during climb and descent around 32 kft, than it does
in level cruise at 32 kft.

2This is because it can be difficult to pull the food carts uphill at high body angles (Gifford, 1996).
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5.1.2 Filtered Cruise-Climb Solutions

Thisapproachto optimizationstartswith thedeterminationof anoptimalcruise-climbprofileby
anyoftheaforementionedmethods.Theresultingprofileisoftenunflyable,sinceit usesablockof
altitudesratherthanasinglealtitude,andsinceit ofteninvolvesanunacceptablyhighnumberof
climbsanddescents.Tofixtheseshortcomings,theoptimaltrajectoryisthen"filtered"3to constrain
it to useonlyappropriatealtitudes(Lid6n,1992). This techniqueis guaranteedto producean
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Figure 5-1: An illustration of an optimal cruise-climb trajectory (labeled

raw), and the result of filtering (labeled filtered) by using the nearest al-

lowable eastbound flight level.

admissible solution, but while it can--at best--produce an optimal solution, the filtering process

is almost certain to degrade the optimality of the cruise climb. Another drawback is that in the

presence of winds, this method can produce "spikes"--additional pairs of climbs and descents which

don't contribute significantly to optimality.

5.1.3 A Discrete Representation

Because the required filtering operation results in a loss of optimality, it seems evident that there is a

problem with the continuous representation of the search-space which is used in the aforementioned

methods. It would be more appropriate to use a discrete representation of the airspace, one which

only uses appropriate altitudes, and therefore need not be filtered to meet ATC requirements or

workload constraints.

Given the airspace constraints illustrated in Figure 1-4, it seems logical to represent a profile

by a sequence of constant-altitude cruises, with climbs and descents made only as required to move

between admissible cruise altitudes. This approach is also appealing from the pilot's point of view,

as pilots are trained to see flight planning in this manner (Jeppeson, 1996b, 1996a).

5.1.4 Optimization by Search

Many standard search techniques can be used to find optimal trajectories in a discrete search space.

They can be broadly categorized as exhaustive, informed, or stochastic, as defined below.

Exhaustive Search

Exhaustive search 4 produces all possible solutions to a search problem, and is therefore complete.

It is, however, prohibitively time-consuming. Assuming only vertical exploration, no lateral explo-

3It has been pointed out that this operation isn't filtering in the traditional sense: instead of removing undesired

high- or low-frequency components of the trajectory, it adds desired high-frequency components. The word "filtered"

is, however, prevalent in the literature.
4Named the British Museum procedure by the ever-humorous hi community (Winston, 1992).
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ration,a flight composedof s segments, each of which can be flown at any of l flight levels will

have n = Is possible unique profiles. Consider the flight shown in Figure 1-2, which is divided into

fifteen segments, each of which might be flown at one of perhaps 10 altitudes: there are 1015 possible

profiles in this search space. If simulation and evaluation of the consequences of a single flight profile

took only 0.0001 seconds, exhaustive search for the best solution might still take 3000 years. Clearly

exhaustive search is not an option.

Informed Search

There are several solutions to this problem, all of which involve the use of additional information in

the search process--hence informed search. The best known of these is perhaps Dynamic Program-

ming (Bellman &: Dreyfus, 1962), in which the principle of implicit enumeration 5 is used to reduce

the effort required to span the search space. For a route with s segments and l flight levels, the

number of complete profiles to be simulated, n, is of the order of 12. For the previous example, with

l = 10, the number of solutions, n, is 100, which is a significant reduction from the original 1015

solutions.

However, the method is not without its drawbacks. Aside from the complexity of keeping track of

the progress of the search, constraint information must be added in the part of the algorithm which

generates small admissible steps for exploration, making it difficult to change the constraints once the

algorithm is written. In addition, dynamic programming is limited in the types of objective functions

it can be used to optimize: it can only be used with objective functions which are separable. 6 In the

case of profile optimization, this requires that fuel burn on one segment does not affect fuel burn

on any other. Since fuel flow depends heavily on aircraft weight (see Figure 1-5) this assumption

is not valid. This problem can be circumvented by iterating over final weight (Bellman _ Dreyfus,

1962, use this method to find the profile which minimizes time-to-climb for an interceptor), or by

augmenting the search space, but these solutions are both complex and computationally intensive.

Combining dynamic programming with a heuristic to direct the exploration towards the most

promising part-paths first reduces the search time significantly. In the so-called A* algorithm, the

heuristic is to use an underestimate of the total objective function associated with each part-path to

sort the paths before further exploration. This method is very efficient at finding optimal solutions

but again suffers from the limitation of one of its components--dynamic programming--which is

that it requires a separable objective function. Barrows (1993) used a modified A* search to find

the optimal profile for a Piper Arrow. The Arrow's fuel fraction by weight was only about 16%, 7

so its mass and fuel consumption could reasonably be considered independent of prior fuel burn,

making the objective function--a linear combination of fuel and time--separable. By contrast, the

Boeing 747-400--a typical long-haul transport aircraft--has a fuel fraction by weight of about 44%, s

making this assumption much less tenable. Niiya (1990) used an A* search to optimize the orbital

trajectory of a small spacecraft. He was able to make the same separability assumption because the

fraction of propellant by weight was small.

5In implicit enumeration, a partial optimization is performed at each stage of the search, progressively reducing
the size of the search space.

6A separable objective function is one in which the value of the objective function for each stage of the search--in
this case, each stage of the flight--is independent of the values of the objective function for every other stage of the
search.

7The Arrow's usable fuel capacity is 72 gallons or 432 lb, and its maximum gross weight is 2750 lb (Piper Aircraft
Corporation, 1978).

SThe 747-400's fuel capacity is about 383 klb, and its maximum takeoff weight is about 870 klb (Boeing, 1988).
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5.1.5 Stochastic Directed Search and the Genetic Algorithm

Becauseof the complicationsinvolvedin implementinganyof thesesearchalgorithms,a simpler
approachseemedwarranted.TheGenetic Algorithm or GA (Goldberg, 1989), which is a stochastic

directed search loosely based on the evolution of species observed in nature, provides relief from

many of the problems described in the previous sections. In a GA, the sexual reproduction of

pairs of solutions and the mutation of some individual solutions are used to span the search space

stochastically, and selection based on an explicit objective function is used to prune some of the

worst individuals to make room for better ones. 9 The basic operations which make up the simple

GA are crossover, mutation, evaluation, and selection.

A good search algorithm is one which uses operators which are complete, l° non-redundant, 11

and informed 12 (Winston, 1992). The operators involved in a genetic algorithm (initialization,

mutation, and crossover) are not complete, 13 and they are redundant, because several individuals

in a population can be identical.

However, the GA has the distinct advantages of being relatively simple to implement: it does not

rely on any derivative information about the objective function, and it requires simpler trajectory

extension algorithms, since most of the constraints are handled in the evaluations, as described in the

next section. While undoubtedly viewed as inefficient by traditionalists, it is amenable to parallel

computation, and produces workable solutions well before it approaches an optimal one. Traditional

search techniques like A* do not provide such progressive refinement in the solution: one must wait

until the end of the algorithm for any solution at all.

Perhaps most importantly, the GA employs a holistic 14 approach to evaluation: each trajectory

is evaluated as a whole, removing the requirements of separability and monotonicity of the objective

function. This allows the technique to be used to optimize a much wider class of objective functions,

such as the nonlinear utility functions elicited from pilots in Chapter 4.

Constraint Handling

A significant benefit of the GA is that it can easily handle a wide variety of constraints. In the

trajectory optimization problem the constraints can be divided into three groups, each of which is

handled in a different way: search-space constraints, aircraft performance constraints, and objective

constraints.

Search-Space Constraints ATC imposes altitude restrictions which have the effect of discretizing

the altitude components of the search space, and speed restrictions, which remove many of the

speed components of the search space. These constraints are best handled in the GA's operators

(generation, reproduction, crossover, and mutation), which can be designed to ensure that solutions

which do not meet these restrictions are not generated.

9There is also an almost-separate body of literature on "genetic programming", which deals with the application of

GAs to program generation. However, I do not think that the distinction is a useful one. The two fields are equivalent

since any optimal policy may be considered to be a program of action for execution by an operator.

1°Complete operators are capable of spanning the entire search space to find the global optimum.

11Non-redundant operators reach each part of the search space only once.

12Informed operators use heuristics to ensure that they concentrate the search on the most promising areas of the

search space. :

13But they are asymptotically complete. That is to say, given sufficient time, the probability that they have not

generated all possible admissible solutions approaches zero.
14I use the word holistic in the medical sense, in which it refers to a treatment which acts on the whole, rather than

on the parts individually (see the definition in Thomas, 1993), rather than in the lay sense, in which it refers to the

philosophy that entities are more than the sum of their parts (see the definition in Sykes, 1982).
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Aircraft Performance(Evaluation) Constraints Performance-relatedconstraintscannotbe
easilyhandledin theCA'soperators,whichwouldhaveto performatime-consumingsimulationto
predicttheir effectsbeforebeingableto generatenewadmissiblesolutions.Theyarebesthandled
in the evaluationroutine. Forexample,anaircraft'sceilingincreasesasfuel is burnedoff, but
is initially a limiting factor,asshownin Figure5-2. A trajectorywhichis knownto violatean
altitudecapabilityconstraintcanbeappropriatelymodified(ortheoffendingcommandaltitudecan
beignored)duringtheflightsimulation.
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Figure 5-2: Altitude capability as a function of weight for the Boeing 747-

400 with P&W 4056 engines.

Objective Constraints Aircraft are often required to arrive at a certain time, and are always

required to land with a specified minimum of fuel. These constraints are not an explicit part of

the search space, rather they are constraints on attributes which are used in the objective function,

and thus are best dealt with through direct manipulation of the objective function, rather than

by the application of more informed GA operators. For example, flight time is determined by very

complex combinations of the chromosome parameters, which therefore cannot easily be manipulated

individually to adjust schedule adherence.

Several researchers have used CAs to solve guidance problems. Schultz (1991) used a CA to evolve

strategies for navigation and collision avoidance for an autonomous submersible craft, van Deventer

(1993) used a CA to determine an optimal sequence of aircraft bank angles, effectively finding a

horizontal trajectory which would allow the aircraft to pass near certain waypoints while remaining

clear of threat areas. Delahaye et al. (1994) used a CA to distribute aircraft between several ATC

sectors to reduce sector workload and thus maximize airspace capacity, and Durand et al. (1995)

used a CA to provide lateral guidance for conflict resolution between aircraft. However, the CA has

not previously been applied to vertical flight-path planning.
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5.2 Optimization by Genetic Algorithm

A system was implemented in ANSI-standard C++, following the flow chart shown in Figure 5-3

whose elements are described individually below, to optimize the vertical navigation for a typical

route from Los Angeles to Sidney, Australia shown in Figure 1-2.

(

)
-7

-7

start

initialize-profile-population

fly-profiles

evaluate-profiles

save-best-profile

select-and-reproduce-profiles

crossover-pairs-of-profiles

Y

)

mutate-profiles

are-completion-criteria-met?

stop

Figure 5-3: A flow chart for the simple genetic algorithm.

Representation 8z Chromosome The GA operated on the airspace representation discussed

in Section 5.1.3: the route was divided horizontally into 15 segments, as shown in Figure 1-2,

and distance and course for each of the segments was pre-computed using the algorithms given in

Appendix D. The route was also divided vertically into the many allowable flight levels. The CA was

designed to find the best sequence of 15 flight levels, using the command-altitude 15 representation

shown here in Figure 5-4.

Initialization The population, which typically consisted of a few hundred individuals, was seeded

with a mix of single-altitude profiles and multiple-altitude profiles to ensure sufficient genetic diver-

sity.

15The term command-altitude refers to the fact that desired altitudes are encoded in the chromosome. The sim-

ulation limited the actual altitude on a segment according to the altitude capability of the aircraft at the prevailing

weight. This representation allowed the CA's operators to be ignorant of the aircraft's performance constraints, making
their design much simpler.
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Figure 5-4: The chromosome used to represent a typical profile for the

fifteen-segment flight. Note that the sequence of command altitudes is read

from left to right.

Evaluation by Flight Simulation Each profile was first evaluated by simulating the flight of a

typical long-haul aircraft--the Boeing 747-400--over the route at the profile's specified altitudes.

A detailed description of the aircraft performance model used is given in Appendix E.

For segments on which the commanded altitude was above the maximum altitude for the air-

craft for the whole segment, the profile was "edited"--the unattainable altitude was reduced to the

aircraft's maximum altitude. This speeded up convergence of the GA significantly: it ensured that

the command altitudes were always low enough that any changes that were made to them in the

course of the optimization actually affected the profiles as flown. 16

Objective Function Evaluation After a profile was flown, the resultant attributes (e.g. fuel at

destination, flight time, and turbulence exposure) were combined using an objective function--such

as cost or utility--to produce a single metric of the quality for that profile. This metric was then

normalized to produce a fitness index, which was used in the selection and reproduction routines.

At this point, the best member of the population was saved for reintroduction after the crossover

and mutation operations, 17 which might otherwise have destroyed it.

Selection and Reproduction Individuals were selected for reproduction into the next generation

stochastically, ls and on the basis of their fitness. First,. a scaled fitness, fs, was calculated for each

individual according to Equation 5.1:

0 -- Omi n
(5.1)

fs = Omax _ Omin ,

where Omin and Omax are respectively the lowest and highest values of the objective function found

in the population. 19 Next, roulette-wheel selection (as described in Goldberg, 1989) was used to pick

individuals for reproduction into the next generation. In this way, more fit individuals were more

likely to be reproduced, and were therefore more and more frequently represented in subsequent

generations.

Crossover Adjacent pairs of profile chromosomes 2° were subjected to crossover with a probability

of Pc. If a pair were to be crossed over, a crossover point, P, was chosen along the length of the

chromosome using a uniform random distribution, as shown in Figure 5-5. The crossover involved

the creation of two new chromosomes, one with the head (everything up to location P) from the

16For example, if the command altitude was 10,000 feet above the aircraft's maximum altitude, then any change of

a few flight levels in the command altitude would result in no change at all in the altitude at which the aircraft flew,
which would still be its maximum altitude.

17This strategy is called elitism.

lSTo avoid the problems often associated with system-supplied random-number generators (e.g. sequential correla-

tion) I implemented a version of the "shuffling" random-number generator attributed to Bays and Durham, in Press

et al. (1988).

19This scaling ensures that the selection process can work both at the beginning of the algorithm, when there is a

large difference between the best and worst trajectories in the population, and at the end as the population converges,

when this difference is relatively small.

2°Adjacent in the array structure used to hold the population in the program.
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first parentandthetail (everythingfromlocationP on) from the second, the other with the head

from the second and the tail from the first.

A 0 0 0 0 010 0 0 0
B 0 0 0 0 0 • • •OI

A' 0 0 0 0 0 • • • •

B' Q Q Q 0 0 0 0 0 0

Figure 5-5: Single-point crossover of two chromosomes, A and B, to produce

two offspring, A' and Bq

Mutation Two types of mutation were employed to prevent the premature loss of potentially good

solutions from the population. 21 The traditional point mutation, shown in Figure 5-6, in which a

single gene (altitude) is changed at random, was used with probability Pm, on each element of each

chromosome. In addition, a block mutation, shown in Figure 5-7, was used on each chromosome

with probability Prob. In this second type of mutation, two sites--P1 and P2--were chosen in the

chromosome at random (again using a uniform probability distribution for site selection) and all

altitudes between them were raised or lowered a small random number of flight levels. The block

mutation was added because point mutations are fairly ineffective at producing beneficial changes

in a profile. This is because the addition of--say--a closely spaced climb and descent is unlikely to

improve the fuel consumption and flight time of a profile.

C 0 0 0 0 0 0 0 0 0

C' 0 0 0 0 0 0 0 0 0

Figure 5-6: Point mutation of a chromosome, C, to produce a new chromo-

some, C'.

P1 P2

o olo o o olo o oD

D' 0 0 0 0 0 • 0 0 0

Figure 5-7: Block mutation of a chromosome, D, to produce a new chro-

mosome, Dq

21It is interesting to note that most viruses evolve only by mutation--they cannot exchange genetic material by

crossover as many organisms do during sexual reproduction. This severely limits their rate of adaptation.
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Clean-upby "Hill-Climbing" The directed nature of the GA's search comes from the distri-

bution of individuals in the population, rather than from any intelligent operations performed on

individuals. For this reason, the CA is unlikely to remove small imperfections in a profile, except

by chance. Some "post-processing" was therefore required to clean up any such imperfections in

the best profile found by the GA. This was achieved by successive unidimensional (single-segment)

optimizations: for each segment the altitude was cycled through all allowable flight levels, and that

which produced the best trajectory was kept. This process was performed over the whole flight, and

repeated until convergence, which was usually after between one and three cycles. These cycles were

quite time-consuming, since each required ls complete flight simulations. 22

5.3 Results

After the GA's adjustable parameters had been tuned 23 to the values shown in Table 5.1, the GA

was run to produce several pareto-optimal trajectories. The GA was used to produce the minimum

parameter value

population size, N 150

max no. generations, r_ma x 300

block mutation prob., Pm_ 0.05

point mutation prob., pro, 0.02
crossover prob., Pc 0.5

Table 5.1: Parameters used in the GA to produce the results shown in the

figures below.

fuel profile shown in Figure 5-8, the minimum time profile shown in Figure 5-9, the minimum cost

profile shown in Figure 5-10, the minimum cost profile with no winds shown in Figure 5-11, and the

maximum utility profile (using the multilinear utility function of Subject 5) shown in Figure 5-12.

For an explanation of the symbology used in the figures, see the caption to Figure 5-8.

5.3.1 Excessive Climbing and Descending

Most optimization schemes produce an excessive number of climbs and descent in their solutions.

These additional climbs and descents are undesirable because they add to pilot workload, they add

to the number of cycles the engines are subjected to, and they make life in the cabin less pleasant.

Most methods deal with this problem by adding a constraint, either on the number of climbs and

descent, or on their proximity (Lid@n, 1992; Barrows, 1993). This is a poor strategy, since such

constraints do not take into account the costs associated with each climb and descent. A better way

of handling the problem is to add a penalty for climbing or descending to the objective function: 24

Ic 1
O = f + ]-6" t + 2" (no +nd -- 2), (5.2)

where Ic is the airline's cost index, and nc and nd are the number of climbs and descents respectively

in the profile. 25 Minimizing Equation 5.2 with Ic = 100 produces the optimal profile shown in

22This method of optimization alone is not sufficient to find optimal trajectories: it can converge on a local optimum,
as was verified experimentally during the optimizations described in the next section.

23The parameters were tuned "by eye". See the proposal for a better method in Section 7.2.3.
24Note that performance penalties for climb and descent are already built into the flight simulation routine.
25Every flight is--hopefully_omposed of one climb and one descent, so 2 is subtracted from the total number of

climbs and descents, giving the number of excess climbs and descents in the flight.
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Figure 5-8: The minimum-fuel ((_9 = f) trajectory produced by the CA.

Note the winds--shown in gray--each acting over the third of the route up

to its vertical gray line. Note also the difference between the commanded

profile in gray, and the profile actually flown in black.

Figure 5-13, which should be compared with the standard minimum-cost profile shown in Figure 5-

10. The best possible way of handling the climb-and-descent problem would be to build a multi-

attribute utility function which modelled the pilots preferences over the number (and perhaps length

and spacing) of climbs and descents in addition to the attributes considered in Chapter 4, and then

find the profile which maximizes that utility function. Elicitation of such a utility function was

beyond the scope of this research.

5.3.2 Schedule Adherence

The CA can also be used to help an aircraft meet a schedule constraint. Figure 5-14 shows the profile

devised to minimize the following objective function:

0 = f + k. abs(t - 16), (5.3)

with k = 30. Minimizing this objective function almost produces a minimum-fuel profile, with the

k. abs(t - 16) term driving the schedule error towards zero. Another objective function which would

provide a level of schedule adherence is:

o{;+ k. abs(t - 16)

if abs(t - 16) < %
(5.4)

if abs(t - 16) > T.

where _- is some small time interval within which schedule adherence is not considered a factor•
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5.3.3 Airspace Design

The optimization system was also used to explore the consequences of the discretization of the

vertical structure of the airspace. Such discretization is used to provide vertical separation between

aircraft, because altitude has traditionally been easier to measure and prescribe precisely than has

location, and because aircraft have traditionally flown along routes defined by expensive ground-

based navigation aids. 26 Due to concerns about inaccuracy in altimetry, the separation between

opposite-direction aircraft increases from 1000 ft below 29 kft, to 2000 ft above 29 kft. As altimetry

is improved, this vertical separation can be reduced.

To examine the effects of such a relaxation of separation standards, the GA was run with each of

the following airspace structures: (1) with ICAO altitudes (2000 and 4000 foot separations between

same-direction traffic below and above 29 kft respectively) as shown in Figure 5-16, (2) with 2000

separations at all altitudes as shown in Figure 5-15, and (3) with 1000 foot separations at all altitudes

as shown in Figure 5-10. 27 In an attempt to remove any bias, three different wind conditions were

used: (a) the winds shown in Figure 5-10, (b) the same winds with their direction reversed, and (c)

no wind (i.e. calm). The results are shown in Table 5.2. The demonstrated increase of about one

separation figure % increase
1000 ft 5-10 0

2000 ft 5-15 0.13

ICAO 5-16 0.43

Table 5.2: The increase in cost associated with several different vertical

structures of the airspace. Note that percentage changes are based on the

1000-ft separation cost.

26With modern navigation techniques such as GPS, and separation techniques such as TeAs, such vertical separation

might be replace by horizontal separation, allowing aircraft to better optimize their flight profiles.

27Note that 1000-ft separation is as close as the CA's representation can get to simulating continuous profiles.
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half of a percent for the ICAO separations represents a substantial additional cost.
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Chapter 6

A Decision Support System

for Trajectory Optimization

6.1 The Current Situation

Subject to Air Traffic Control (ATC) separation constraints, airline dispatchers and pilots have

some latitude in selecting cruise profiles (Wagenmakers, 1991). Extensive flight-planning tools are

available to dispatchers for pre-flight use to aid in the performance of this task. However, once in

flight, pilots have only very limited tools available to help them evaluate the attributes of a proposed

trajectory. While the FMSS in some aircraft (e.g. the Boeing 757 and 767) have the capability to

evaluate the consequences of flying a single proposed altitude other than that actually being flown,

other FMSs do not even have this limited capability (Midkiff, 1996).

For example, there is a wind-altitude trade table in the B-747-400's Operations Manual (Boeing,

1988) which presents the break-even head-winds for different altitudes, but it does not account for

the time and fuel consumed in climbing to and descending from the proposed altitude.

In the exploratory survey described in Chapter 3, the pilots were asked what additional features

they would like in their FMSS to help them with the tasks of vertical navigation and altitude selection.

Considering the data of Table 3.6, however, it seems that pilots desire much more information than

is currently available. Such information can also be very valuable operationally: the NASA Cockpit

Weather Information (CWIN) system (Nolan-Proxmire et al., 1996), which provides pilots with real-

time weather information to help in their decision making, has produced fuel and distance reductions
of 5_ in an MD-11.

6.2 Design Considerations

Automation or Decision Aiding While it is tempting to automate the problem of trajectory

optimization, perhaps using a composite utility function and some capable optimization algorithm,

such a system would effectively take the pilot out of the decision-making loop, leaving him with

no opportunity to consider unmodelled factors in choosing a flight path. There is also evidence to

suggest that increasing the level of automation for a task in which the pilot is capable of performing

at some reasonable level does not necessarily improve task performance (Wiener et al., 1991). These

factors help make the case for decision-aiding, rather than automation, for trajectory planning.

Visual or Textual Display The literature abounds with examples of the fact that visual displays

confer on the human operator a far greater ability to assimilate information than do textual ones
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(e.g.Chandra,1989,whostudiedthepresentationof flightclearances).Muchworkhasalsobeen
focusedonthetypeof visualdisplayusedin thecontrolofVehicles.In astudyof displaysfor the
controlof high-speedtrains,Askey(1995)foundthat advisorydisplaysprovidedthelowestoverall
workload,andthebestperformance.:

Representation Researchhasincreasinglyfocusedonprovidingthehumanoperatorwithsitua-
tiondisplaysanddecisionaidswhichmakeuseofaconcreterepresentationofthecontrolordecision
problem:the search space of Figure 2-1. This may be appropriate in many cases. However, in the

case of a decision support system for a complex multiattribute problem, particularly one in which

the decision and search spaces are so different, it should be more appropriate to present information

in a more abstract representation: the decision space of Figure 2-1.

6.3 The Parallel-Axis Display

Consider the five trajectories presented in Table 6.1. These typical trajectories might be pareto-

optimal trajectories generated by an optimization algorithm, from which the pilot is expected to

choose the most desirable. In this tabulated form it is quite difficult to pick a suitable alternative.

These trajectories could be displayed on a conventional x-y plot, as shown in Figure 6-1, but

Dest. Fuel Flight Time Turbulence

(klb) (hr) (min)
29.208 15.823 10

25.146 15.288 13

29.665 15.708 20

20.500 15.750 9

28.000 15.475 0

Table 6.1: Tabular data on destination fuel, flight time, and exposure to

turbulence, for five candidate trajectories.

information about the third axis must then be shown either textually, or using some awkward

visual representation of the third dimension. An alternative form of display is the parallel-axis

plot (de Neufville, 1990; Keeney & Raiffa, 1993; Bassett, 1995), in which each point in n-space is

transformed into a segmented line joining the n component values on each axis. The five trajectories

of Table 6.1 and Figure 6-1 are shown in the parallel-axis plot of Figure 6-2. 2

Such a parallel-axis plot can be used to display points in an arbitrarily large decision space, but

it does not tell the decision maker much about the relative importance of the attributes. However,

armed with soine information about this relative importance_determined either from a knowledge

of the user's or the designer's utility function, 3 or from a cost function such as that used by the

airlines--it is a simple matter to scale the axes accordingly. Figure 6-3 shows the same trajectory

data in another parallel-axis plot, in this case with the axes scaled by Subject 5's multilinear utility

function constants kf, kt, and kq.

:She also found that these same high-performing displays resulted--undesirably--in the highest "head-down"
time. During head-down time, the human controller cannot pay attention to factors in his environment which are not
presented on the displays.

2This display was used to show the subjects in the utility assessment experiment of Chapter 4 several of the pairs
of alternative trajectories they were presented with textually. Every one of them preferred this graphical display to
the textual.

3A composite utility model, built using constants determined by averaging those from a number of pilots might
also be used scale the axes.
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Figure 6-1: A two-dimensional plot of the three-attribute options available

to the decision maker.

In comparing Figures 6-2 and 6-3, it becomes apparent that flight time is a less important outcome

than the other two, and that the differences between the candidate trajectories are diminished

accordingly. A further improvement to the display is possible if we use the risk aversions elicitied

from the subject to distort internal measures along the axes. Figure 6-4 shows such a parallel-axis

plot. It should be clear from this presentation that--according to Subject 5--the trajectories are all

fairly good when considering flight time, but vary markedly when considering destination fuel.

Finally, a further axis could be provided in which to display the residual utility from Equation 4.1.

This residual utility represents the terms kft kf kt lJf(f) ldt(t) .. . kftq kf kt kq Lid(f) Lit(t) L[q(q), which

are not already incorporated into the display of Figure 6-4.

From any of the parallel-axis plots it should be easy to judge whether or not one candidate

trajectory is dominated 4 by another. If the lines representing two trajectories do not cross, then the

lower trajectory is dominated by the upper trajectory.

4One solution is said to dominate another if it is better in every individual attribute.
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Chapter 7

Conclusions, Contributions, and

Suggestions for Further Research

7.1 Conclusions _ Contributions

7.1.1 Decision Theory

Value-Based Modelling Because of concerns about safety, most decisions made in the cockpit

are made procedurally (i.e. by following airline- or FAA-mandated procedures), and thus are not

amenable to value-based modelling. Many decisions which might be modelled using value involve

safety: they involve outcomes which are so unlikely, and so extreme in nature, as to be incompre-

hensible to the human decision maker. These features render them poor candidates for value-based

modelling. Vertical profile selection, however, has been shown to be an area in which value-based

modelling can be applied successfully. This is the first known use of value-based decision modelling

for this application.

Utility Theory Utility theory provides a better model of pilot decision making for the specific

multi-attribute profile selection problem examined herein than do the other behavioral and pre-

scriptive models--most notably the airlines' linear cost model--considered. This is because (a) the

resources in the decision problem are constrained, making preferences markedly nonlinear; and (b)

the decision makers are considering more attributes of the problem than some of the simpler models

account for.

Risk Aversion Risk aversion provides a simple measure of a decision maker's preferences over

an attribute. A modified measure of risk aversion--one which is insensitive to the scaling of the

attributes--was developed and was used to examine the pilots' preferences. Overall, while there were

significant differences between pilots, they were found to be moderately risk averse for destination

fuel, inconsistently risk averse for flight time, and essentially risk neutral for exposure to turbulence.

Pilots and Dispatchers Pilots and airline dispatchers have been shown to have similar prefer-

ences when prioritizing safety, ride quality, destination fuel, schedule adherence, fuel burn, and flight

time. Not surprisingly, pilots were observed to place a slightly higher emphasis on destination fuel,

with dispatchers placing more emphasis on schedule adherence.

A General Framework for Decision Modelling A general framework for decision modelling

has emerged. It consists of three operations: (1) the selection of one or more candidate points in the
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search space, (2) the evaluation of some or all of the selected points in the search space, to produce

candidate points in a decision space, and (3) the comparison of some or all of the points in the

decision space using a multi-attribute value or utility function to produce points on a value or utility

scale. This framework is seen as encompassing many models of decision making, from traditional

value-based models such as utility theory, to very behavioral models such as recognition-primed

decision making.

7.1.2 Optimization

A genetic algorithm (GA) has been developed which can be used to optimize the vertical compo-

nent of an aircraft's trajectory. It can handle a wider class of objective functions than can other

optimization methods since it does not require the same assumptions about the objective function

(e.g. separability and monotonicity). The GA also reduces the difficulty of including constraints,

which can be handled in any of three different ways: as search-space constraints, as performance

constraints, or as decision-space constraints. The GA's ease of implementation make it a powerful

tool for exploration of new airspace designs, air traffic management policies, and decision-aiding

techniques. This is believed to be the first application of a CA to the problem of vertical profile

optimization.

7.1.3 Airspace and Operations

The cost penalty associated with the present structure of the airspace (i.e. vertical separation in

4000-foot intervals above 29,000 feet) is significant, at about 0.5% excess cost compared to continuous

(non-discretized) airspace (as conservatively approximated in this research using 1000-foot intervals).

This argues for further relaxation of vertical separation standards, perhaps in favor of the provision

of separation laterally.

7.2 Suggestions for Further Research

7.2.1 Decision Theory

While the constantly risk-averse exponential model described in Section 4.6.3 for the conditional

utility functions fit the elicited preference data well, there was some evidence of increasing risk

aversion in the data. It would be illuminating to apply models which take this behavior into account,

and to test them against the models used herein.

7.2.2 Decision Aiding

It would be valuable to build a prototype of the decision aid described in Chapter 6, and evaluate the

differences between decision-making performance (as judged against the quasi-prescriptive criterion

of utility maximization) with a search-space display and a decision-space display of the profile

information. Such a display has the potential to simplify the presentation of multiple candidate

solutions to complex multi-attribute decision problems like this trajectory selection problem.

7.2.3 Optimization

Including Airspeed in the Representation Further research into the airspace policy issues

touched upon in this research would require an increase in the capability of the optimization software.

This could be achieved by including airspeed in the GA's representation (as shown in the proposed
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chromosomein Figure7-1),theaA'soperators,andtheaircraftperformancemodel.It mightalso
bebeneficialto includevariablesegmentlengthin therepresentation.

Altitude 31 31 35 35 35 39 43 43 43 43 43 43 43 43 43

MachNo. .84 .84 .86 .86 .86 .86 .85 .85 .85 .85 .83 .83 .83 .83 .83

Figure 7-1: The augmented chromosome proposed to represent both alti-

tude and speed for a profile. Note that the speed and altitude parts of

the chromosome would be manipulated separately--they are only shown

together for clarity.

In-Flight Reoptimization There are two ways to use an optimization scheme for flight planning:

it can be used only before the flight (which is then flown "open-loop" ) to figure an optimal trajectory

based on forecast winds and temperatures, or it can be performed in flight (in addition to before the

flight), taking current winds and temperatures into account. This second strategy might be called

inflight reoptimization. 1 A study might be designed--using actual wind and temperature data--to

discover what the long-run average benefits from inftight reoptimization would be.

A Meta-GA for Parameter _51ning A GA may have many parameters, including real-valued

parameters like crossover probability and mutation probability, integer parameters like population

size and the number of sites used in the crossover operation, and binary parameters like those used to

control elitism and profile editing (as done herein to meet performance constraints). These adjustable

parameters themselves constitute a substantial search space in which the implementer of a GA must

find an appropriate point. This is currently done by tuning the parameters heuristically. Instead,

these parameters could be combined into a meta-chromosome---one which would code for the type

of CA used for a particular optimization problem. A meta-GA could then be run to find the best

combination of parameters for that problem. This approach would effectively change the designer's

focus from specifying parameters of the problem-solving CA to specifying the objective function

used in the parameter-finding GA. Such an objective function might include several attributes of

the problem-solving CA it is trying to evolve, such as speed, computational requirements, and the

quality of the final solution.

1These two kinds of optimization are sometimes called open-loop optimization and closed-loop optimization re-
spectively (Bertsekas, 1995).
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Appendix A

Preliminary Decision Experiment

This preliminary experiment, which is described in more detail in Patrick (1993), was modelled on

one performed by Yntema and Klem (1965). It was designed to examine the possibility of applying

utility theory to cockpit decision making. Briefly, the experiment consisted of asking pilots to choose

between pairs of alternate airports on the basis of several relevant attributes, and then comparing

their decisions with those made according to several decision models, including a utility model.

A.1 Background

Experienced pilots I were instructed to imagine themselves on a long cross-country flight in Instru-

ment Meteorological Conditions 0Me) in an aircraft of their choosing, when the destination airport

became unusable (for an unspecified but non-weather-related reason). The conditions for the flight

were specified as completely as possible: there were neither thunderstorms nor icing conditions, there

was unlimited visibility below the an extensive overcast, and these conditions were not expected to

deteriorate. It was well before sunset. Fuel was limited by the fact that the questions were asked as

though the subject were 1.5 hours into a flight which had been started with full tanks. The alternate

airports were all equally inconvenient for reaching the ultimate destination, as shown in Figure A-1.

A.2 Method

A.2.1 Paired Comparisons

Each subject was instructed to choose between three dozen pairs of alternates based on the distance

to, and the ceiling at, each alternate. For example, subjects were asked to choose between the

following pair of alternate airports: one at 200 n.mi. with a 1000-ft ceiling, and another at 50 n.mi.

with a 500-ft ceiling. The subjects were presented with these choices textually, thus:

[200 n.mi., 1000 feet] or [50 n.mi., 500 feet].

The subjects were also asked to indicate the subjective degree of difference between the alternates

on a continuous numerical scale of 0 to 7.

1Mean flight experience for the group was 1345 hours.
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Figure A-l: A graphical depiction of a typical situation presented to the

subjects. Note that the alternates were always located on the dashed cir-

cle, so as to be equally inconvenient for subsequent travel to the ultimate
destination.

A.2.2 Utility Assessment

A two-attribute multilinear utility function was assessed for each subject independently of the paired

comparisons. The two-part procedure used involved (i) determination of the two conditional utility

functions--one over ceiling, the other over distance--and (ii) determination of the scaling constants

required to stitch the two unidimensional functions together into a two-dimensional function.

Determination of Component Utilities

Subjects were given two scales, one for distance and one for ceiling, as shown in the left-hand and

center panels of Figure A-2, and instructed to mark three to five intermediate points on each scale

in such a way that, for example, the position of a mark on the ceiling scale was proportional to the

safety of an airport with that ceiling, given a constant value of distance. Anchor points for the best

and worst values of each attribute were marked on the scales. Values such as Uc(500) and Uc(2000)

were measured directly from the central scale in Figure A-2, and linear interpolation was used to

build a piecewise-continuous utility function, Uc(c), from them.

In order that the utility of the distance-related variable be increasing, distance was subtracted

from aircraft range to provide range remaining. Also, to account for the substantial differences

between different subjects' aircraft, range remaining was then non-dimensionalized with aircraft

range, to produce normalized range remaining:

Rma x --d

r- Rmox (A.1)

Values of utility were determined from the left-hand scale in Figure A-2, using Equation A.1. A

piecewise-continuous utility function,/dr(r), was built from these elicited points using linear inter-

polation.

Determination of Scaling Constants

Subjects were then given a scale with worst and best anchor points: [worst ceiling, worst distance]

(with utility,/d00 = 0) and [best ceiling, best distance] (with utility, Ull = 1) respectively already
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Figure A-2: The scales used in the utility assessment, as returned by a

typical subject.

marked, and instructed to mark on it the two intermediate points: [best ceiling, worst distance]

(with utility,/all0), and [worst ceiling, best distance] (with utility,/d01) in the same manner as before.

This scale is shown in the right-hand panel of Figure A-2, and is labelled "Corner Points". The

values of these corner-point utilities were measured directly from this scale.

Construction of a Multilinear Utility Function

These graphically determined utility "corner" points were used to build a multilinear utility function

(Keeney & Raiffa, 1993) of the form:

Ucr(c,r) = kcUc(c)+ krU_(_)+ kc_kck_U_(c)U_(_). (A.2)

Writing Equation A.2 once for each of the non-zero "corner" points gives these three equations:

ldlo = k_ld_(cl), (A.3)

///01 = kr/dr (rl), (A.4)

/An = k¢/dc(cl) + k_lX_(rl) + k_rk¢k_ld¢(cl)ldr(rl). (A.5)

Since /d_(cl) = 1 and bit(r1) = 1 by definition, the three constants kc, kr, and kcr are easily

determined:

_c = Z'_10,

kr = /do1,

1 - k_ - k_
kar

1 -/_1o -/-4'Ol

kc kr /2/10/_01

(A.6)

(A.7)

(A.8)

For the typical subject whose scales are shown in Figure A-2 (for whom Rmax = 350 nm),
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kc = 0.35, kr = 0.67, and kcr = -0.0682. Substituting these values into Equation A.2 gives: 2

ldcr(c, r) = 0.349Uc(c) + 0.667/dr(r) - 0.0159U_(c)/dr(r). (A.9)

Each subject's utility function was then used to predict his or her choices from the paired compar-

isons. The results are presented in Section A.3.1 below.

A.2.3 Discriminant-Function Models

The subjects might have been using linear combinations of the alternatives' attributes to discriminate

between alternatives in a decision, rather than non-linear functions of the attributes, (e.g. a utility

model). To examine this possibility, several linear discriminant-function models were tested on the

data. Each discriminant-function model attempts to find a hyperplane which will separate the two

classes of decision points (those in which the first alternative was chosen, and those in which the

second alternative was chosen).

Xlm

X2m

X3 m

8 _8 " --Y

8 8

G

Figure A-3: A perceptron, or single-element neural network, which was

trained to find a discriminant function (hyperplane) to fit each subject's

paired-comparison data.

A perceptron algorithm was written in LISP, and run with each of the subjects' decisions as

training sets. The perceptron is a very simple neural network. As is shown in Figure A-3, it consists

of a set of inputs, x_, a corresponding set of weights, w_, a summing junction, and a threshold. Once

trained, its output, y, is 0 for the greatest possible number of points on one side of the discriminant

hyperplane, and 1 for the greatest possible number of points on the other side of the hyperplane.

The perceptron was run with four inputs (rl, cx, r2, and c2) to find the best discriminant

hyperplane in four dimensions (called the 4-D case). To examine the possibility that the subjects

might have been using fewer than the full 4 variables available to them in each decision, the algorithm

was also run using only 2 variables for each subject. The variables used for this 2-D case were the

difference in normalized ranges remaining:

r'=rl - r2, (A.IO)

2It is interesting to note that the utility function for this subject ($4) is very nearly additive, since kckrkcr ,-_ O.
The assumption of additivity would simplify the utility function to/dot(c, r) = 0.349/de(e) + 0.667/dr(r). Strictly, the
two constants should sum to 1 under the additivity assumption. Thus it would be possible to test statistically for
additivity using the graphical assessment method by repeating the "corner-point" assessment I times, and constructing
a variable ai ----kci + kri, i = 1... l. The null hypothesis, H0: a = 1, could then be examined using a t test.
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andthedifferenceinceilings:
C ! _ C 1 -- C2.

The results are presented in Section A.3.1 below.

(A.11)

A.3 Results

A.3.1 Error Rates

Disagreement was measured using A, the fractional disagreement between choices the subjects made,

and the choices made with their utility functions:

= - _i, (A.12)
n

i=l

where n is the total number of comparisons, and _i takes the value 1 if the i th decision produced a

disagreement between the models, and 0 if the models were in agreement.

B

Model A

Utility maximization 0.16

4-D Perceptron 0.08

2-D Perceptron 0.13

Table A.I: Mean fractional disagreement, A, (averaged over all subjects)

between the decisions made by the subjects and those made according to
the three models.

As can be seen m Table A.1, the utility maximization model does not perform better than either

of the discriminant-function models, in spite of being built using a larger number of adjustable

parameters. It should be noted that the error rates observed using the utility model on the profile

selection problem of Chapter 4 were only half as large as those observed here.

A.3.2 Subjective Difference

The subjective degree-of-difference value recorded in the utility assessment experiment should be a

measure of the ease of the decision between the two alternatives. This measure was plotted against

difference in utility in the case of the utility model, and against distance from the decision plane

for the other models. The correlation coefficients for a linear relationship between these pairs of

difference measures are shown in Table A.2.

Model Mean R 2

Difference in utility 5.6

4-D Perceptron 6.5

2-D Perceptron 0.9

Table A.2: Correlation coefficients for linear relationships between objective

distance measures and subjective difference between the alternatives for the
three models.
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Surprisingly,thereis little correlationbetweenanyof thesemeasures.Effortsto correlatethe
subjectivedifferencewith thedifferenceindistancesaloneproducedsimilarresults.

A.4 Conclusions

These results indicated that the area in which we were applying value based modelling might not be

an apropriate one, and led to the conclusions mentioned in the opening chapters--that value based

decision models should not be applied to safety related decisions.
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Appendix B

Survey Data

B.1 Exploratory Survey

This first questionnaire was designed to discover which elements of the outcome of a flight pilots

considered important, and what additional features they would like in their flight management

systems. This information forms a basis for the construction of a behavioral decision model in

Chapter 4, and for the establishment of requirements for a decision aid in Chapter 6.

Attribute frequency

Ride quality
Weather...

unspecified 8
destination 7

enroute 4

departure 2

27

21

Fuel burn 20

Time... 20

of flight 16

unspecified 3
in the hold 1

Safety 17
Schedule adherence 12

Fuel at destination 10

Economy/Efficiency 7
Fuel 6

Alternates 6

Marketing factors 1

Crew fatigue 1
Aircraft maintenance condition 1

Table B.I: The attributes of the outcome mentioned by the 32 subjects,

and the frequencies with which they were mentioned.
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B.I.1 FMS Features Desired by Pilots

Listedbelowarethe FMS features desired by each pilot in the first survey. Also shown are the

principal aircraft the pilots were flying at the time of the survey.

s Aircraft Comments

16 A300

22 A300

3O A300

17 A300-600

23 A300-605R

15 B-727

7 B-757

20 B-757

2 B-757/67

4 B-757/67

In the A300 we have a map display. I would like to see more

information presented. Information like boundaries, FIR'S, min-

imum descent altitude, height of terrain, warning areas, etc.

An easy reference page for time-to-altitude predictions, that

requires less "head-in-cockpit" time. Likewise wind/altitude

change calculations take too long when choices of altitude are

requested by ATC on over-water routes. Most altitudes on over-

water routes are difficult to change. SATCOM would be very

useful for direct communication with ATC for altitude requests

and weather deviations. Note: FMS capacity needs to be en-

larged to accommodate more significant terrain features.

FMS that could send and receive information from other

aircraft as well as ground stations--real time information.

Temp/wind/g-forces (ride)/change in temperature over a pe-
riod of time. Same for wind. Prediction by FMS from all inputs

for down line ride.

(1) New features in the FMS would help if they give g-force pro-

tection information. (2) Over water, an ability to "downlink-

uplink" information to the "wind/prog" or "winds aloft" por-
tion of the FMS when not in VHF contact with ground stations

(i.e. HF ACARS or SATCOM ACARS uplinks).

Should more accurately depict the real capability of the aircraft.

If it could figure the time remaining until you could climb to

your optimum--or a new--altitude.

(1) Continuous and separate display of: max. altitude based on

performance (we can get this through a trick); max. altitude

based on 1.3 g buffet margin (we have to look this up); optimum

altitude (we have this now). (2) A planning mode that would

allow us to program a proposed altitude and wind profile for

an extended flight to compare fuel burn and time with current
conditions.

Ability to project routes that are not in use on the EFIS screen

for reference purposes.

Putting winds aloft into figuring an altitude change to see how
much fuel and time would be affected.

continued on next page...
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...continued from previous page

s Aircraft Comments

5 B-757/67 --

6 B-757/67

8 B-757/67

9 B-757/67

10 B-757/67

12 B-757/67

13 B-757/67

21 B-757/67

24 B-757/67

28 B-757/67

29 B-757/67

31 B-757/67

3 B-767

I'd like to see all warning/prohibited/restricted areas displayed

on the map. I'd also like to be able to display TCAS on the map.

Specific range (i.e. miles per 1000 pounds of fuel).

If FMS could forecast optimum and maximum altitudes for down

the road, based on predicted fuel burn, this would enhance

cruise altitude planning.

(1) Real time radar depiction for entire route of flight. (2) A
menu of several different routes to the destination with real time

winds used for a fuel computation (include pressure pattern

data too). Perhaps a ride rating for each route or segments of
the route also.

Continuously updated maximum altitude (we have to enter an

altitude in excess of max. for it to give us the max).

Flight conditions and turbulence probabilities utilizing weather

reports, winds aloft, temperature changes, and PIREPS; possibly

uplinked through ACARS and indicated in a FMS format.

"Nothing"--system works very well and up until now I have

always managed to get everything I need from the FMS in the

767/757/--.

PIREP ride report uplink, cruise altitude wind/ride trade-offs

(i.e. change altitude up/down for "x" level of ride improvement

if fuel burn increases less than "y').

It would be nice of it could get the winds uplinked at all times

(e.g. North Atlantic). Also, with the winds it would be nice if
there is some way of alerting you if there is a difference of winds

that would produce turbulence/wind-shear at cruise altitude.
Also in our FMS, there should be a way of showing max altitude

at a given weight at all times and at what position or time

instead of doing 3-4 step operation.

(1) GPS-based cPWS to display terrain for earlier warning. (2)

Constant readout of optimum cruise altitude. (3) Easier flight
planning enroute, to take advantage of changing conditions.

continued on next page...

87



...continued from previous page

s Aircraft Comments
11 B-767

14 B-767

18 B-767

19 B-767

25 B-767

26 B-767

27 B-767

32 B-767

1 MD-11

Memory page for winds and ground speed at altitudes you have

climbed or descended through. Page for proposed ground speed
at altitude above and below based on actual winds at those

altitudes.

Can't think of any additional features. What would help most

with cruise-altitude decision making would be for ATC to open

up altitudes above EL 290 to every 1000-ft. increment (i.e. EL

300, 320, 340, etc.).

Direct sharing of wind information between aircraft, without

the intervening ground/data-link.

Wind plots from forecast info, input by pilots displayed in a

map overlay.

Ability to predict wind changes with altitude and to factor this

into determining optimal altitude.

Additional memory capability for navigation (i.e. ability to

load/display high terrain, forecast frontal systems, SIGMETs,

AIRMETS information). Better ability to compute fuel burn and

time with varying winds, over length of flight.

Real time presentation of max altitude capability next to opti-

mum altitude. Miles per 1000 lb of fuel burn presentation.

The ability to test the cost consequences of any altitude

change, including new Mach, forecast wind grid (matrix) and

optimal/non-optimM fuel burn.
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Appendix C

Utility Assessment Experiment

Data

This Appendix contains supplemental results from the utility assessment experiment of Chapter 4.
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C.1 Conditional Utilities

Conditional utilities for each of the subjects are shown in Figures C-1 through C-5.

1 : ' . _'_

......... O" ....... . :'_ " ....... :.........

0.25

J
0
30 35 40 45 50

Fuel at Destination (klb)
h

0 i i r

13 13.5 14 14.5 15

Flight time (hr)

lq

0.75

0.25 ...... ........ . ...... ........ . ..... :""

0 i i J i

0 10 60

0.75

= 0.5

0.75

_'_ 0.5
"._

0.25

•_ 0.5

20 30 40 50

Time in Turbulence (min)

Figure C-1: Conditional utilities for subject one (B-747-400).
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Figure C-2: Conditional utilities for subject two (MD-11).
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Figure C-3: Conditional utilities for subject three (B-767).
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Figure C-4: Conditional utilities for subject four (B-747-400).
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Figure C-5: Conditional utilities for subject five (B-747-400).
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C.2 Multilinear Utilities

C.2.1 Multilinear Utility Functions

Equation C.1 shows the multilinear utility function used to model the subjects' decisions:

ldftq(f,t,q) kfbll(f ) + ktldt(t) + kqldq(q)

+kit kI ktldl(f) ldt(t) + kfq kI kqldl(f) ldq(q)+ ktqkt kqldt(t) l.iq(q)

q-kftqkf kt ]gqUf(I) l.'[t(t,) ldq(q). (C.1)

Values of the aggregated coefficients kt • .. kftq kf k t kq for each subject are shown in Table C.1.

kf
kt

kq

kft kf kt

kfq k,f k,q

ktq kt kq

kftq k,f kt kq

$1 $2 Sa $4 $5

0.150 0.359 0.175 0.821 0.500

0.307 0.096 0.250 0.010 0.350

0.614 0.012 0.650 0.154 0.400

-0.024 0.228 -0.125 0.015 -0.180

0.008 0.042 -0.150 0.010 -0.275

-0.008 0.036 -0.200 0.010 -0.175

-0.047 0.228 0.400 -0.021 0.380

Table C.1: Multilinear utility coefficients by subject.

C.2.2 Graphical Comparison of Utility and Cost Models

Figures C-6 through C-10 show two objective functions over destination fuel and flight time: utility

(with turbulence constant at zero) and cost (computed using Equation 2.2). Note that for every

pilot, there is a substantial difference between the shapes of the utility and cost models, and therefore

between optimal policy adjustments made according to each.

5O

45

4o

35

30
13
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50 . . . 480

75_ 55__

40 ........ ! ........ "

35 ....... :

30
13 13.5 14 14.5 15

Time (hr)

Figure C-6: A comparison of utility (with turbulence held constant at zero)

and cost models for subject one (B-747-400).
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Figure C-9: A comparison of utility (with turbulence held constant at zero)

and cost models for subject four (B-747-400).
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Figure C-10: A comparison of utility (with turbulence held constant at

zero) and cost models for subject five (B-747-400).
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Appendix D

Navigation Algorithms

The algorithms described in this chapter permit the calculation of distance and heading between

waypoints, and thus form a basis for the distance and heading calculations used in the performance

and optimization code. In addition, several sources of error are uncovered, and the magnitudes

of the errors they generate are estimated. These errors are important to consider when defining

requirements for an optimization system for the trajectory planning problem.

D.1 Coordinate Systems

Consider waypoints 1 and 2 in Figure D-l, which have latitudes ¢1 and ¢2 (measured in degrees

North of the Equator) and longitudes ¢1 and ¢2 (measured in degrees East of the prime meridian,

which runs through Greenwich, England) respectively. A cartesian coordinate system is defined with

its origin at the center of the earth, its x-axis (unit vector i) pointing through the equator at the

prime meridian (¢ = 0°, ¢ = 0°), its y-axis (unit vector j) pointing out through the equator at the

90 ° East meridian (¢ = 0°, ¢ = 90°), and its z-axis (unit vector k) pointing up through the North

Pole (¢ = 90°).

N _= 90 °

0o

5o

30 °

= 15 °

II_,"°: I I I J" I I $ III
_\_ _ -3o°qs° *=°° Is° 3°°45°6o°lh'=qs°

Figure D-l: The Earth-centered coordinate systems, showing great-circle

distance d, and initial true course w, from waypoint 1 to waypoint 2.
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D.2 Great-Circle Distance

D.2.1 Spherical-Earth Calculation

In order to calculate the great-circle distance between two waypoints, the latitude and longitude

of each waypoint are first transformed into a unit vector which points to that waypoint in the

aforementioned cartesian coordinate system:

ul = cos¢lcos¢l • i+ cos¢lsin¢l .j + sin¢l .k, (D.1)

U 2 : COS _/_2COS ¢2" i + cos ¢2 sin ¢2" J + sin ¢2" k. (D.2)

The dot-product of two vectors is proportional to the cosine of the angle, % between them:

ul .u2 - Ilulllilu211cos (D.3)

or, since u I and u2 are unit vectors:

[ u :u21
7 - arccos Lllulllllu2llJ = arccos (ul. u2). (D.4)

Note that 3' is never more than 180 °, and thus--appropriately--defines the shorter of the two great-

circle paths from waypoint 1 to waypoint 2. Assuming that the earth is a perfect sphere with radius

Re, the great-circle distance, d, measured along the surface of the earth I is simply:

7[

d = Re _ 180" (D.5)

D.2.2 Ellipsoidal Error

In fact, the earth is not a perfect sphere. It is more closely approximated by an ellipsoid of revolution

with a mean equatorial radius of 6,378 km, and a polar radius of 6,357 km (Smithsonian, 1996).

The ratio of these two numbers provides an upper bound on the error introduced by making the

assumption that the earth is a perfect sphere instead of an ellipsoid: it is the ratio of two short

paths, one at the equator and the other at the pole, which subtend the same angle at the center

of the earth, and is about 1.0033. Since neither of these radii is more correct than the other, we

can assume that the best value lies midway between them, and then the maximum error due to the

spherical-earth assumption would be reduced by a factor of about two, to about 0.17%.

D.2.3 Altitude-related Error

An aircraft flying at an altitude of several miles above the Earth's surface will follow a longer path

than it would flying just above the Earth's surface, as shown in Figure D-2. However, many navi-

gation devices (from hand-held GPS units to the FMSs in some large aircraft) use distance measured

along the surface of the earth instead of this flight distance for their performance calculations. In

order to examine the size of the resulting error, we can differentiate Equation D.5 with respect to

.Re:
Od _r d

OR---_= 7 "_ - Re" (D.6)

1We use Re = 3437.75 nautical miles
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Figure D-2: Altitude-related error.

Then the percentage change in flight-path length is equal to the percentage change in R_:

Ad AR_
- (D.7)

d R_

For an aircraft travelling at an altitude of 36,000 feet (AR_ ._ 6 nautical miles) Ad/d ._ 0.2%. Put

another way, each additional ICAO step climb (of four thousand feet) adds approximately 0.02% to

the distance which must be flown. Although small, this represents a significant error because the

fuel savings from optimization are on the order of only 0.5% (see Chapter 5), and a consistent error,

because the omission of an altitude correction consistently penalizes lower-altitude trajectories.

D.3 Great-Circle Course

To calculate the initial 2 true course for flight from waypoint 1 to waypoint 2, u2 and the unit vector

which points to the geographic (or true) North Pole (UN = k) are projected onto the plane whose

normal vector is Ul:

11_ = U 2 -- Ul(U 2 • Ul) , (D.8)

u_v = u N -- Ul(U N " Ul). (D.9)

The angle between these projected vectors, 5, is then calculated using their dot-product in the same

manner as in Equation D.4:

[' ]U 2 • U N

6 - arccos II_IVII_-TNll. (D.10)

However, since the inverse cosine function maps the range [-1, 1] into the range [0°, 180 °] by pro-

viding the inside angle, rather than the angle measure clockwise from North, and true course can be

anywhere in the range [0 °, 360°], there remains an ambiguity. To determine whether the course is in

the Eastern half or the Western half of the projection plane, we examine the sign of the Eastbound

component of vector u_ by taking its dot-product with a convenient East-positive reference vector

in the projection plane, UN x Ul:

Ceast = U_" (U N X Ul). (D.11)

2Note that the initial and final true courses of a great circle route are rarely the same. This can be seen in

Figure D-1.
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If ceast is positive, then u_ is Eastbound, and w = 5, but if Ceast is negative, then u_ is Westbound,

and w = 360 ° - 5.

5 if c_ast > O,
w = - (D.12)

360 ° - 5 if Ceast < O.

D.4 Heading and groundspeed in the presence of wind

Once the true course w has been determined, and given a predetermined value of true airspeed,

TAS, wind speed and direction must be used to find the heading to be flown, h, and the resultant

ground speed, GS, as shown in Figure D-3.

c

ws

cs

N, I.

Figure D-3: The wind triangle, showing the relationship between airspeed,
windspeed, and groundspeed. Note that all angles are measured clockwise

from True North, and that the wind angle, c, is the direction the wind

comes from.

D.4.1 True heading

First, the inside angle, b, must be calculated from the wind angle, c, and desired true course, w:

b = (180 + w) - c. (D.13)

Using the sine rule, the wind correction angle, 3 a, can then be calculated:

sin (a) _ sin (b) (D.14)
WS TAS '

and

a=arcsin[W_A1--l_(b) ] . (D.15)

True heading, h, is the sum of the true course and this wind correction angle:

h - w + a. (D.16)

3The wind correction angle is the agular correction which the pilot must add to the desired course to obtain the

heading to be flown. Positive wind correction angles are to the right, i.e. heading is greater than course.
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D.4.2 Groundspeed

Of primary importance for use in the point-mass simulation of an aircraft is groundspeed, GS. Again

using the sine rule, with the triangle's third--unmarked--inside angle:

sin (180 - a - b) sin (b)
cs = (D.17)

Rearranging, and including the pathological cases of b = 0°, 180 ° for which sin (b) = 0, gives:

TAS + WS

GS = _ TAS "-_sin (180-a-b)

[ TAS - WS

if b = 0°,

if0 ° <b<180 °,

if b = 180 o.

(D.18)

D.4.3 Effective headwind

Finally, airlines often provide pilots with the winds aloft forecast in a simpler format than the

heading and speed pairs used above. They provide a single number: effective headwind, EHW,

which is defined as the difference between the scalar values of true airspeed and groundspeed:

EHW =- TAS - GS. (D.19)

In this way, pilots may see the more important effect of a wind--its effect on their groundspeed--

without first having to compute the wind correction angle required to keep them on course.

<> <> <>

105



106



Appendix E

Aircraft Performance Simulation

In order to evaluate candidate trajectories, it was necessary to build an aircraft performance sim-

ulator to determine fuel burn, flight time, etc. Because actual aircraft performance data (such as

drag polars, engine thrust curves, etc.) are proprietary, and closely guarded by the manufacturers,

it was not possible to use them in the performance model. Instead, tabulated data from the Boeing

747-400 Performance Manual (Boeing, 1988) were used to construct a performance model of the

aircraft.

Performance data for the three major phases of flight (climb, cruise, and descent) were modelled

separately for use in the simulation. This section gives a brief overview of the way in which these

data were used, and of their limitations.

E.1 Altitude Capability

The sequence of altitudes specified in a profile was treated as a sequence of command or "desired"

altitudes. At each point in the simulation for which the command altitude was higher than the

current altitude, maximum altitude was determined based on current weight. All climbs were made

to the lower of the aircraft's maximum altitude and the desired altitude. In this way, it was possible

for the optimization algorithm to generate candidate trajectories without regard to the aircraft's

altitude capability, saving execution time and reducing program complexity.

Initially, altitude capability was modelled with a cubic least-squares fit to data from the perfor-

mance manual. These maximum altitude polynomials are depicted in gray in Figure E-1. However,

the maximum altitude routine was used so frequently in the simulation that it limited the execution

speed of the optimization functions. Also, the simulation needed to be constrained to "fly" at only

those altitudes for which there were fuel flow and airspeed data in the cruise performance tables.

Implementing a check for this criterion in the table look-up functions reduced their speeds exces-

sively. Both problems were fixed by the building of a maximum altitude function which consisted of

a binary lookup tree containing the maximum altitudes by aircraft weight from the cruise tables. A

stepped function representing the values of maximum altitude from the cruise tables is superimposed

in black in Figure E-1.

E.2 Climb

Figures E-2 through E-4 show the time, fuel, and distance required to climb as functions of gross

weight and target altitude. Fuel and distance data were used as they appear in these figures, but

the time data had been discretized (by up to 10%) when it was rounded to the nearest minute for
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Figure E-l: Altitude capability as a function of weight. The solid and the
continuous lines represent cubic least-squares lines fitted to the data from

the performance manual for two different temperatures, while the stepped
function represents the maximum altitude used in the simulation.

printing in the performance tables. To remove this discretization, a seventh-degree polynomial in

altitude was used to model the relationship between climb time and altitude at each of the 21 takeoff

weights (see the example for 560 klb in Figure E-5). Note that although the polynomial "misbehaves"

between the published values, it fits the points themselves well, and removes the discretizations. The

21 polynomials thus obtained were then used to reconstruct values of climb time at the published

altitude points. The lower panel of Figure E-2 shows the results of this smoothing process. The

reconstructed values of climb time and the unaltered values of climb fuel and climb distance were

placed in look-up tables for use in the simulation. The climb was simulated in 1000-foot intervals,

with groundspeed calculated in the manner outlined in Section D.4 based on the prevailing winds at

each thousdand foot level. An estimate of the climb velocity was obtained by dividing the distance

for each 1000-foot climb by the time taken.

E.3 Cruise

To simulate cruising flight, the aircraft's altitude, A, was held constant. Fuel flow, ], and true

airspeed, TAS, were obtained from lookup tables, which were based on the data shown in the upper

and lower panels respectively of Figure E-6. True airspeed and wind speed were then combined

in the manner outlined in Section D.4 to produce wind correction angle (which was incidental to

this work) and ground speed, GS. A forward difference integration scheme was used to update the

vehicle mass, m, and distance flown, D, from time tk to time tk+l:

mk+l = ink- ]" At, (E.1)

Dk+l = Dk + GS. At, (E.2)

where At = tk+l - tk.
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E.4 Descent

Fuel, time, and distance for the descent were computed from the tabular descent data in the Oper-

ations Manual. The descent time values were particularly noisy, since each entry had been rounded

to the nearest minute (this effect is visible in the step-like series of dots in the top panel of Figure E-

7). The data were smoothed using quartic polynomials of altitude in thousands of feet, A, whose

coefficients ao... 3/4 were found using an ordinary least-squares estimation. Terms which were not

statistically significantly different from zero were dropped (only 44 and V2 were this close to zero),

leaving the following polynomials in A:

td = ao + alA + a2A 2 + 43 A3 (E.3)

/d _-_ /_0 + J31A +/32 A2 + _3 A3 +/_4 A4 (E.4)

dd = 70 +71A+73A 3 +74A 4 (E.5)

The regressions were then rerun to give the coefficients shown in Table E.1. Figure E-7 shows the

coeff, time fuel distance

A ° +2.557 × 10° +7.300 × 10 -1 +5.818 × 10 °

A 1 +9.630 x 10 -1 +9.391 x 10 -2 +3.712 × 100

A 2 -2.050 x 10 -2 -3.483 x 10 -3 0*

A 3 +2.033 × 10 -4 +6.371 x 10 -5 -9.654 x 10 -4
A 4 0* -4.068 x 10 -7 +1.232 × 10 -5

R 2 0.998 0.999 0.999

Table E.I: Coefficients of the powers of altitude, A, in the models for

descent time, fuel, and distance. Also shown are the coefficients of deter-

mination, R 2, for each model. *Starred coefficients were constrained to be

zero.

performance manual data, and the polynomail models used in the simulation. Given the models of

Equations E.5 and E.3, true airspeed 1 in the descent, Vd, was determined thus:

ddd/dA 71 + 373 A2 + 474 A3
Vd ,-_ -- (E.6)

dtd/dA O_ 1 + 242A + 3o_3 A2

Groundspeed during the descent was calculated in the same manner as for the climb, combining Vd

with winds at each thousand-foot interval.

E.5 Implementation

E.5.1 Programming

The performance model was prototyped using MATLAB. An object-oriented implementation was

built in ANSI-standard C++ (Stroustrup, 1991) using Symantec's development system (Symantec,

1995).

1We ignore the vertical component of the aircraft's speed in this approximation. For a typical 3° glidepath, this
error only amounts to about 0.14%.
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E.5.2 Choice of Integration Interval

FigureE-9showsthepercentageoverestimationof fuelconsumptionagainstcruiseintegrationin-
tervalfor anentireflight.Basedonthesedata,anintervalof0.1hourswaschosenasacompromise
betweenaccuracyandspeedforuseduringoptimization.Althoughit resultedin a0.5%to 1%over-
estimationoffuelconsumption,andasimilarerrorincalculatedflighttime,it allowedtheGA-based
optimizationto berun in areasonableamountof time.

<> <> _
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Figure E-2: Time to climb and adjusted time to climb (in minutes) as
functions of takeoff weight and target altitude. Note the ragged nature
of the surface in the upper panel, which results from table entries being
rounded to the nearest minute, and that in the lower panel most of this
discretization has been removed.

iii



Figure E-3: Fuel to climb (in klb) as a function of takeoff weight and target
altitude.
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Figure E-4: Distance to climb (in nautical miles) as a function of takeoff
weight and target altitude•
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Figure E-5: Time to climb as a function of target altitude for a takeoff

weight of 560 klb. The dots represent values from the performance manual,

while the gray line represents the seventh-order least-squares fit used to
remove the discretization from the tabulated numbers. Note that this fitted

line was only used to recreate values of climb time at the tabulated values

of target altitude: the "hump" at about 4 kft does not interfere with the
model.
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Figure E-7: Time, fuel, and distance to descend, each as a function of initial

altitude. Speeds: M0.88/340kt/250kt.
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Equation E.6.
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Figure E-9: Percentage error in estimated fuel burn, as a function of cruise
integration time-interval. Note that the fuel burn for the 3.2 × 10 -6 hour

interval was used as the baseline for the calculation of percentage error.
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