
Benjamin

TOWARDS AN EFFECTIVE THEORY OF REFORMULATION
Part 1: Semantics

D. Paul Benjamin

Department of Mathematics and Computer Science

St. Joseph's University , _ .

5600 City Avenue

Philadelphia, PA 19131-1395 ! "'

pbenjami@sju.edu

ABSTRACT

This paper describes an investigation into
the structure of representations of sets of
actions, utilizing semigroup theory. The goals
of this project are twofold: to shed light on the
relationship between tasks and representations,
leading to a classification of tasks according to
the representations they admit; and to develop
techniques for automatically transforming
representations so as to improve
problem-solving performance. A method is
demonstrated for automatically generating
serial algorithms for representations whose
actions form a finite group. This method is
then extended to representations whose actions

form a finite inverse semigroup.

Introduction

This paper describes an algebraic approach
to building systems that can automatically

change their representations. Representation

change, also called reformulation, has long

been recognized as an essential component of

intelligent systems (Amarel, 1968) (Simon,
1969), but the automation of representation

change has proved elusive. The understanding
of representations and their properties lags far

behind the understanding of search methods

and their properties. This difference is
reflected in the structure of AI programs: most

contain a large number of search methods

acting on a single representation. This was
true for GPS, and remains true today, e.g.,

SOAR, Prodigy, and automated theorem

provers, which typically possess a multitude of

variants of resolution acting
representation in normal form.

on a

This paper attempts to begin to rectify this

situation, with a formal investigation of the
properties of representations, and algorithms

for representation change. This paper does not
examine representation changes that are
heuristic or inductive (these have been

investigated by a large number of researchers

in machine learning), but rather deductive

reformulations that preserve logical soundness

and completeness: no solvable problems are
rendered unsolvable, nor are unsolvable

problems rendered solvable.

Deductive reformulations are much less

well understood than heuristic or inductive

transformations. In this type of reformulation,

representations are not changed to alter their

logical properties, but are changed to improve

their computational properties, especially their

search and input characteristics. As we will

see, these computational properties can be
well characterized algebraically.

Representations

It is well understood that representation
selection sets the stage for both problem

solving and learning, and that the choice of

representation can greatly affect the cost of

both. The examples in the next section will
illustrate that the proper choice of

representation is data-dependent, so how can a

system know the best concept language for the
data before seeing the data?

13

https://ntrs.nasa.gov/search.jsp?R=19960047149 2020-06-16T03:25:45+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42776548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This leads to a problem: a system must choose

a representation before it can know what
representations would be good.

In AI practice, this problem is resolved by
the humans who develop the system. They

have prior knowledge of the classes of tasks
that the system will face and the demands that

will be placed on it, and they engineer a
representation whose properties will aid the

system in meeting these demands.

This has led to the current situation in AI:

research is concentrated almost exclusively on

development of planning and learning

algorithms, and these algorithms are cast as

search in problem spaces and concept spaces,
respectively. The search through the space of
representations is performed by skilled

humans. Although research on planning and
learning algorithms is certainly important, the

neglect of research on reformulation has led to
three major limitations of AI research.

First, a wide variety of truly autonomous
systems cannot be constructed as long as

skilled humans are required to engineer the

representations for the systems. It will only
remain possible to build expert systems that
can function in small, static domains, in which

the representational demands on the system do
not change over time. This limitation has

special significance for the application of AI

techniques to robotics.

Second, the dependence of planning and

learning algorithms on the properties of the

representation is unstated in AI papers,

thereby raising questions about the validity of
the conclusions drawn about the properties of

the algorithms, as it is unclear how to separate

the properties of the algorithms from those of

the representations. This leads to the

unsettling possibility that researchers may
have (subconsciously) engineered

representations that cause planning or learning

algorithms to perform well. If true, research
results would be irreproducible (as other

researchers might engineer different
representations), and the underpinnings of AI
as a science would we weakened.

Third, this leads to very narrow
conceptions of problem solving activities. For

example, research in planning has focused on
algorithms that construct a set of behaviors for

the agent to exhibit for a particular task. These

behaviors may be organized so that different
behaviors are executed dependent on runtime
conditions in the environment, but the

limitation is that planning has been conceived

as the process of constructing this set of
behaviors. This conception has been

challenged by recent work (Agre & Chapman,
etc.) which argues that in complex domains the

number ot behaviors necessary for a successful
plan is). i;_rge to construct before execution.

Instead. system plans by designing a

program !:at will generate at execution time a

behavior to attain the goal. In this new

conception, planning becomes a design
process, consisting of repeated cycles of
design and performance testing. The design

steps consist of both representation design and

algorithm design, and the performance testing

is the actual execution. In this way, the
planner is constantly redesigning the program

(if necessary) during execution. (Note that the

bees of Agre & Chapman or the robot insects

of Brooks are programs that are designed by
humans, so the planning was done by the

humans.) The classical conception of planning
as constructing a set of behaviors is a _pecial

case, when the program .;imply consists of the

actions to perform in v', :,_us situations.

Similarly, research in learning has
primarily focused on algorithms for

constructing a new hypothesis from an existing

hypothesis, given a set of new examples. But,

beginning with the work of Mitchell and

Utgoff, machine learning researchers began to
realize the importance of representation

design. It is by now widely recognized in the

machine learning community that the design of
the hypothesis language is crucial in efficient

learning: the language must be restricted to
permit the system to successfully identify a

hypothesis without having to see all the

possible cases, but choosing a sublanguage
that doesn't contain any good hypotheses will

lead to failure no _atter what learning

algorithm is used. Recently, conferences and

workshops have been held on this topic, and
books have begun to appear. In this respect,

14

the machine learning community is ahead of
the planning community. Researchers in

planning should note that Amarei's seminal

paper dealt with reformulation in problem
solving, not in learning.

As a result of these three limitations, we

are led to the conclusions that representation

change is a necessary capability of any
autonomous intelligent system, and that AI

needs a fuller understanding of representations
and their properties. In the next section, we

consider the types of properties that

characterize good and bad representations, to
understand the goals of reformulation.

Computational Properties of

Representations

Representations vary as to the amount of

search they require, the input they require,
their memory usage, etc. Similarly, agents

vary as to their memory, sensory, and motor
capabilities. T_tsks have constraints on usage

of various resources, e.g., time. We have
argued that only agents with the capability to

change representations can select a

representation whose characteristics are
appropriate for the particular task at hand. For
example, the agent may not need to find a

globally optimal solution, but only one that

meets certain criteria; in this case, the agent

may be able to simplify the task description,
and find an acceptable solution more quickly.

In order to investigate the relevant

properties of representations, we must first

choose the appropriate tools. Virtually all of
the knowledge representation community uses

the tools of logic to investigate the properties
of representations. Certainly, the soundness,

completeness, and complexity of a

representation are important properties;
however, in this paper we are concerned with

the computational properties of a

representation, rather than whether it models
the task environment accurately in all cases.

The computational properties of a
representation are independent of soundness,

completeness, or complexity. To see this,
consider the following two representations of
the two-disk Towers of Hanoi:

Representation TOHI: Let us number the
nine states of the 2-disk Towers of Hanoi:

1

2 3

4 7

6 8 9

Let the two possible actions be denoted by

"x" and "y". "x" moves the small disk right one
peg (wrapping around from peg 3 to peg 1),

and "y" moves the large disk one peg to the
left (wrapping around from peg 1 to peg 3). In

the figure, "x" is shown by narrow,
counterclockwise arrows, and "y" is shown by
thick, counterclockwise arrows.

Representation TOH2: Let the states be

numbered in the same way, and let the six

possible actions be:

Xl = move the top disk from

X2 = move the top disk from

X3 = move the top disk from

YI = move the top disk from

Y2 = move the top disk from

Y3 = move the top disk from

peg 1 to peg2

peg2topeg3

peg3 to peg 1

peg 1 to peg 3

peg2topeg 1

peg3topeg2

These two representations are both sound

and complete, Furthermore, they have exactly

the same complexity, as they have the same
number of states and possible actions in each

state. The only difference is in the labeling of
the actions.

Yet, these two representations have very

different computational properties: the first
representation decomposes: it has a subgoal

15

reduction, whereas the second has none. This

decomposition permits an agent to solve each

subgoal independently, and then compose the
solutions to form a solution to the task. In this

case, the set of actions decomposes into
actions for moving the larger disk and actions

for moving the smaller disk, permitting the
system to first bring one disk to its goal

position and then bring the other disk to its
goal position without disturbing the position of

the first disk. As we will see, it is possible to
solve either disk first and then the other.

Certainly it is possible for a system using

the second representation to bring one disk to

its goal position _nd then bring the other disk
to its goal positron, n; obviously, it must do so to
solve the task. However, there is no structure

in this second representation of actions that
can be used to find this decomposition, i.e.,

the actions do not admit a subgoai reduction.

Thus, we see that a good representation

facilitates problem solving by structuring the

knowledge in a way that helps the agent to
identify relevant actions - the actions for the

first subgoal. We also see that we cannot
characterize this structure by considering

soundness, completeness, or complexity. This

approach is consonant with the ideas of Doyle

& Patil (1991), who argue that "logical
soundness, completeness, and worst-case

complexity are inadequate measures" for

evaluating representations. We are therefore
led to consider an alternative formal method of

chararacterizing the structure of sets of

actions. One of the primary purposes of this
paper is to show that the tools of algebra are

well suited to this purpose.

In particular, the method used in this work
is to apply the theory of semigroups to the

analysis of representations of actions, to yield

both an intuitive understanding of

representations and algorithms for
reformulation. The theory of semigroups is

important in the study of algebraic linguistics

(Chomsky, 1957), (Lallement, 1979), so it is

not surprising that it can prove useful in the
study of the languages used to represent tasks.

This paper describes only the semantics of
representation change, i.e., it examines the
structure of sets of actions. The various

symbolic encodings of each such structure in
terms of state description functions is

agent-dependent and deserving of a separate
treatment, and so will be examined in a

subsequent paper.

A Prototypical Example of

Reformulation

To get a more intuitive feel for the issues
involved in reformulation, let us first consider

a familiar example. When we are posed the

problem of finding the volume of a cylinder in
an arbitrary position, the first thing we do is

c!' _,_ge the coordinates of the problem so that

aL_. _xis passes lengthwise through the middle
ot _ne cylinder (the coordinates are moved, not

the cylinder).

We do this because otherwise the

calculations are very expensive. For example,

we could compute derivatives at two places on
the edge of one of the circular ends, find

perpendicular lines (with slopes that are

negative reciprocals of the tangent lines), find
the intersection point of these lines (the center
of the circle), and use the distance formula to
find the radius of the circle. We could then

compute the area of the circle, and apply the
distance formula again to yield the length of

the side of the cylinder. A final multiplication

gives the volume. This is a very expensive

procedure involving 3-dimensional
calculations. Another computationally

expensive possibility is performing an

integration to find the volume.

Changing the basis gives a nice
representation of the cylinder. Now, all we

need to do is read the x-value when y and z are
both zero to get the radius, and read the

z-value when x and y are both zero to get the

length. Just two multiplications are required

(squaring the radius and multiplying the areas
by the length). No 3-dimensional computations

are used. The 3-dimensional problem has been

decomposed into two 2-dimensional
subproblems: finding the area of the circle and

extending this area through the length of the

cylinder. Note especially the reduction in the

perceptual and memory abilities required of

the problem solver: it need only be able to
read values at which the surface intersects

16

coordinateplanes,which are singlenumbers,
and needonly manipulatetwo numbersat a
time. This contrasts with the original
representation,which requires the problem
solver to read triples of numbers,and to be
able to simultaneouslystoreseveralnumbers
at a time, e.g., theequationsof thetwo lines
that intersectat the centerof thecircle. Low
memoryand perceptual(input) cost are key
computational properties of a good
representation,and henceare importantgoals
for reformulation.

The subproblems are obtained by
projecting the cylinder onto the x-axis and

z-axis, respectively. In the new coordinates,

good subproblems are obtained by projection.
In the original coordinates, this is not the

case; projecting onto any coordinate axis or

coordinate plane yields a subproblem that is

not cheaper to solve than the original problem.

As long as the coordinate change process is
not too expensive, this will result in a net

savings, especially if many computations are

performed on the cylinder. Good subproblems
are characterized in this case by their

dimensionality: the lower the dimensionality,
the better the subproblem. The goal of general

reformulation is to find a representation that

facilitates problem solving by permitting
projection to more tractable subproblems, i.e.,

by permitting creation of good abstractions.

The 2x2x2 Rubik's Cube

It is remarkable that we can use this

approach to reformulation on tasks that appear
very different. Let us examine the 2x2x2

Rubik's Cube. The techniques we will use here
scale up; we are using this small Cube to save

space in the paper. Let the 8 cubicles (the
fixed positions) in the 2x2x2 Cube be

numbered as in the figure (8 is the number of
the hidden cubicle).

Number the cubies (the movable, colored

cubes) similarly, and let the goal be to get
each cubic in the cubicle with the same

number. For brevity of presentation, we will

consider only 180" twists of the cube.

Let f, r, and t denote 180 ° clockwise turns

of the front, right, and top, respectively (cubic
8 is held fixed; Dorst (1989) shows that this is

equivalent to factoring by the Euclidean group
in three dimensions). Note that this cubic

numbering is just a shorthand for labeling each
cubie by its unique coloring. This holds true

for the Cube with only 180" twists, as position
determines orientation.

Finding Serial Algorithms for Tasks

Represented by Groups

Finite groups can be reformulated utilizing
group representation theory to find coset
decompositions. This is illustrated on the

2x2x2 Cube. We use group representation
theory to represent f, r, and t as matrices:

f

0010000

0100000

1000000

0000010

0000100

0001000

OO00O01

r

1000000

0010000

0100000

0000001

0000100

0000010

000100O

17

0100000

1000000

0010000

0000100

0001000

000001O

0000001

These matrices are 7-dimensional,

corresponding to the 7 unsolved cubies. The
reformulation method consists of finding

eigenvectors of eigenvalue 1; these are the
invariants. Any invariant of all the actions is

irrelevant for the task, and can be removed, by
first changing the coordinate system so that

the invariant eigenvectors are axes, and then

projecting to the noninvariant subspace,
removing all irrelevant information at once. In

this case, the eigenvectors are:

[0]E1]r: 1 , 0 for

1 0

_L = I, and
_1]for

_,=- 1

[1]E0]f: 0 , 1 for

1 0

_L = I, and -,]0 for

1

_,=- 1

[1][o]t: 1 , 0 for _, = 1, and

0 1

_,=- |

and the common inVariant eigenvector is:

1

1

1

f z

t

10 0 0 0 0 0

01 0 0 0 0 0

1 _ 0 0 000 2 2

00 _ 100 0
2 2

00 0 0 1 0 0

00 0 0 0 0 -1

00 0 0 0 -1 0

10 0 0 0 0 0

01 0 0 0 0 0

' --._-_ 0 0 o00 T z

oo_Z. o o o
2 2

00 0 0 0 0-1

00 0 0 0 1 0

00 0 0 -100

10000 0 0

01 0 0 0 0 0

00-100 0 0

0001000

00000-10

0000-1 0 0

00 0 0 0 0 1

This procedure computes the irreducible
invariants of a group. The irreducible factors

of dimension 1, l, 2, and 3 are found along the

diagonals of the matrices. Projecting to these
subspaces yields two interesting subproblems:

1
T "3-

r= /_ 1

2 2
Note that we have abbreviated the above

eigenvectors to save space; they are actually (-1 0
7-vectors. We then change the basis, yielding t = L Jthe new representations for r, f. and t: 0 1

f /]2 2

2 2

On cubelets 1, 2, and 3, the subgroup
generated is {i. r. f. t. rt. tr}.

18

1 0 0
r= 0 0 -I

0 -I 0

I 0 -I 0
t= -1 0 0

0 0 1

I 0 0 -I
f= 0 1 0

-I 0 0

On cubelets 4, 5, 6, and 7, the subgroup
generated is

{i, r, f, t, rf, rt, fr, It, tr, If, rfr, rft, rtr, rtf,

frt, ftr, ftf, trf, tfr, rfrt, rftr, rftf, rtrf, rtfr}.

Using each set of matrices as generators,
we get two subgroups of actions, the second of

which is a faithful representation of the whole

group. The first subgroup moves cubies 1,2,

and 3, while holding 4,5,6, and 7 in position.
The second subgroup moves cubies 4,5,6, and

7 while holding 1,2, and 3 in their positions.
We then repeat this procedure on the first set

of actions to obtain a full set of prime factors
of the Rubik group.

These factors can be assembled in different

ways to form serial algorithms. There is more
than one way to decompose this group. This is

analogous to the different ways of multiplying

the prime factors of a number. Five serial

algorithms are obtained in this way. We now
examine two of them.

Serial Algorithm 1:

R . (i,rax) {i,rtn) (i,t) (t,r,t)
0 0 o

1. One of { i,r,f } brings cubelet 3

into cubicle 3.

2. One of { i,t } brings cubelet 1 and

2 into their places.
3. One of { i, rtft I brings (4,6) and

(5,7) in the proper planes ('the

front face looks right').
4. One of { i, frtr) finishes the Cube.

The above figure is read right-to-left; solved

cubicles are shaded. "i" denotes the identity
(null) action. The average number of moves

required to solve the Cube in this way is 5.17.

Each step in the decomposition

corresponds to bringing a feature to its goal
value. Subsequent steps hold that value

invariant. In this way, sensory planning is
decomposed, i.e., the agent need only sense

part of the Cube at each step. For example, the
first step solves cubicle 3. Knowing the colors
of the solved cubicle 8, we know the colors of
cubicle 3 - it has the same color as the bottom

of cubicle 8, and two new colors. There is only
one such cubie, and it must be in one of three

locations: in its goal position, or in cubicle 1

or 2. The agent need only look in those 3
locations to determine what action to take.

Once cubicle 3 is solved, it need not be sensed

again. The agent next solves cubicles 1 and 2;

it need only sense either position to see if the

proper cubie is there; if so, it does nothing,

otherwise, it twists the top. Finally, the agent
uses macros to solve the remaining four
cubicles, by examining the front face to see if

it's a uniform color, and then examining the
top or right face to see it is of uniform color.

This reduction in the complexity of sensing
(the input requirements) is one of the salient

aspects of task decomposition. In large,

realistic tasks, it is not possible to fully sense
the world, e.g., in a changing environment one

part of the world may change while the agent
is sensing another part. Even when possible, it

is often too expensive. A good decomposition
can greatly reduce the sensory expense. This

gain, however, is at the cost of suboptimality

of the solution. The above decomposition has
average cost of 5.17, whereas an optimal

solution is of average length 2.46. There are
better decompositions. We now examine the

best decomposition.

Serial Algorithm 2:

19

I. One of { i,f,fr,ft} brings cubelet 6

into cubicle 6.

2. One of { i,r,rt} brings 3,7 in place

(bottom layer correct).

3. One of { i,t} finishes the Cube.

The average number of moves to solve the

Cube using this decomposition is 2.75.

Each decomposition can be thought of as a

coordinate system whose origin is the goal

state. For example, the second serial algorithm
can be thought of as a 3-dimensional
coordinate system (a,b,c) where a is in

{i,f, ft,fr}, b is in {i,r,rt}, and c is in {i,t} (Leo

Dorst produced the geometric interpretation of
this coordinate system):

rf frf

I t

rtf

tf _frf

tr

fgr

The first coordinate brings us to the proper

hexagon, the second coordinate to the proper
pair of opposing vertices in the hexagon, and

the third coordinate to the goal state.

In this coordinate system, each subproblem
is obtained by projecting onto that coordinate.
For example, projecting to the first coordinate

yields a 4-element state space whose states are

the hexagons. Reaching the goal state

(hexagon) in this space is equivalent to the

subproblem of bringing cubie 3 into its goal
location.

From the Rubik's Cube example, we see

that we can view a representation as a

coordinate system whose axes are the

components of the task. Using group
representation theory, we represent the actions

as matrices. Changing the basis so that
invariant eigenvectors are axes eliminates

irrelevant information, and identifies a good
task decomposition. We now formalize this

notion in a general way.

Coordinate Systems in
Transformation Monoids

We are interested in the structure of

transformation monoids, so a natural first step
is to examine Green's relations (Lailement,
1979). Green's relations are defined as

follows: given any semigroup S, we define the
following equivalence relations on S:

aRb iff aS I=bS I

aLb iff Sta= S1b

H=R_L

D=RvL

aJb iff StaS I=S_bs I

where S a denotes the monoid corresponding to
S with an identity element adjoined.

Intuitively, we can think of these relations in

the following way: aRb iff for any plan that

begins with "a", there exists a plan beginning
with "b" that yields the same behavior: aLb iff

for any plan that ends with "a", there exists a

plan ending with "b" that yields the same
behavior: aHb indicates functional

equivalence, in the sense that for any plan
containing an "a" there is a plan containing
"b" that yields the same behavior; two
elements in different D-classes are

functionally dissimilar, in that no plan

containing either can exhibit the same
behavior as any plan containing the other.

Let us examine these relations in a

representation for the Towers of Hanoi. Let Q
= { 1,2,3,4,5,6,7,8,9} be the set of states for
the 2-disk Towers of Hanoi. Let A be the

semigroup of transformations generated by:

2O

X _--

123456789 /231564897

1 2 3 4 5 67 8 9 _Y= 4 83 J
"x" moves the small disk right one peg

(wrapping around from peg 3 to peg 1), and
"y" moves the large disk one peg to the left

(wrapping around from peg 1 to peg 3). Then
A is a semigroup with 31 elements. We name
this representation TOHI. Each element of A

is a partial function on the set of states.
Green's relations in A are:

D0[_ D2 I x, XX,xxx [DI

y, yxxy,

yxxyxxy

xy, xyxxy,

xyxxyxxy

xxy, xxyxxy

xxyxxyxxy

yx, yxxyx,

yxxyxxyx

xyx, xyxxyx,

xyxxyxxyx

xxyx, xxyxxyx,

xxyxxyxxyx

yxx, yxxyxx,

yxxyxxyxx

xyxx, xyxxy_

xyxxyxxyxx

xxyxx, xxyx_

xxyxxyxxyxx

where the R-classes are horizontal and the

L-classes are vertical. The D-classes model the

structure of the task representation, in the
sense that the n-th D-class is equivalent to the

n-disk Towers of Hanoi. Adding additional
disks merely adds additional D-classes. Each
D-class Dn contains the macros that move all

of the disks 1 through n.

Let us examine D2. There are three

subgroups in this D-class, containing the

idempotents (an idempotent is an element x

such that xx = x). The idempotents are in bold
type. These three H-classes are maximal

subgroups of A and their generators are the

macros for moving the large disk. Now we
define a coordinate system for any semigroup.

Definition. Let R be an R-class of a

semigroup, and let H_ (_,e A) be the set of

H-classes contained in R. A coordinate

system for R is a selection of a particular

H-class, denoted H_ contained in R, and of
#

elements q_, q x E S * with _,e A, such that

the mappings x --_ xq_ and y --_ yq't are

bijections from HI to I-Ix and from H_. to HI,
respectively. A coordinate system for R is

denoted by [H_; {(q_'q'x):_"• A}].

This says to choose an H-class in a D-class,

and find 1-1 mappings to all other H-classes in

the same R-class. We are justified in calling
this a coordinate system for a D-class, as any

two representations of coordinate systems for

any two R-classes are isomorphic, giving 1-1
mappings to all the H-classes in the D-class

(Lallement, 1979, p.46).

This definition of coordinate system
provides an intuitive conceptual framework for

homomorphic reformulation. The groups in the
decomposition can be viewed as levels of an

abstraction hierarchy, or subproblems in a

serialization. Each such decomposition yields
a coordinate system, which is the index of the

group in the decomposition, together with the

indices given by the decomposition of the

group, as illustrated in Rubik's Cube. Change
of representation involves generating a
different decomposition for the given monoid,

and thus is a change of coordinate systems.
This fits perfectly with the intuition we

developed in the cylinder example.

A good example of such reformulation is
switching between serial algorithms for

Rubik's Cube. Such reformulation is performed
to match the unique characteristics of each

decomposition to the characteristics of the

agent and the requirements of the task, e.g.,
serial algorithm 2 has a lower expected search

cost, whereas serial algorithm 1 never requires
sensing cubicle 5.

Each coordinate system generates a Rees

matrix representation for A, permitting us to

change basis within a semigroup and find

serial algorithms in a manner analogous to the
Rubik's Cube example. The reader is referred
to Lallement (1979) for details of Rees matrix

representations. Unfortunatety, application of
this technique to general semigroups can be

very expensive computationally. Even the

21

decomposition of small semigroups may

require a large number of groups. The minimal

number of groups required for a decomposition

of a given semigroup is called the group
complexity of that semigroup. It is not known

whether the group complexity is decidable.

This makes it very difficult to design good
algorithms for finding such decompositions.

Even more seriously, this form of

representation change is not fully general.

Homomorphic reformulation techniques
elucidate the structure of a transformation

semigroup, and thus possess a serious

limitation: they can only preserve the structure
of the semigroup, which limits the components

they can produce. Such techniques can only
remove extraneous information to uncover

existing structure in a given representation. If
this structure is not appropriate for efficient

problem-solving, then homomorphic
reformulation will be of little use.

For example, in ABSTRIPS (Sacerdoti,

1974) the relevant predicates must already
exist in the initial representation, or else
numbers cannot be assigned to them. Another

example is provided by Subramanian's work: if

the theory is stated in such a way that the
irrelevant information is distributed among the

statements of the theory, rather than
concentrated in a subset of the statements,

then it cannot be dropped without rendering
the theory incapable of solving the task. TOH2
is such a representation.

For these reasons, we utilize the technique

described in this section only within group
machines. In the next section, we will show

how to extend this technique to handle a wider

class of semigroups - inverse semigroups.

Related Work

Reformulating tasks in this way has been

described in various ways in the literature.
Sacerdoti (1974), Knoblock et al. (1990), and

Unruh & Rosenbloom (1989), among others,
describe this reformulation as building an

abstraction hierarchy. For example, in

ABSTRIPS an ordering was imposed on the

state-description predicates; bringing the
predicates to their goal values in this order

was viewed as top-down search in a hierarchy
of abstract problem descriptions.

Niizuma & Kitahashi (1985) and Banerji &
Ernst (1977) describe this reformulation as

projecting the states. In this view, an

equivalence relation is imposed on the states,
and the equivalence classes are the states in

the quotient space. The only actions retained
in the new representation are those that move
between equivalence classes.

Zimmer (1990) and Benjamin et al. (1990)

describe this reformulation as decomposing the
actions. In this approach, the set of sequences
of actions is decomposed into two sets: those

that are most relevant (according to some
criterion) for solving the problem, and those
that are less relevant. This induces an

equivalence relation on the set of states, as in

the previously described approach: a
difference is that sequences of actions
(macros) are used, rather than actions. The

decomposition procedure is then repeated on
the less relevant actions.

A similar approach is taken by
Subramanian (1987), who drops statements

from a theory if the reduced theory can still
derive the goal statement: the dropped
statements are considered irrelevant, in these

approaches, the state space is reduced by
removing states that can no longer be reached
by actions (statements) retained in the

representation (theory). These approaches
differ from the state projection approach
mainly in the order in which states and actions

are reformulated. In the state projection

approach, a feature is-Chosen, inducing an
equivalence relation that factors the states and
decomposes the actions. In the action

decomposition approach, the sequences of
actions are decomposed according to some
criterion, e.g., irrelevance (Subramanian) or

enablement (Benjamin), which induces an
equivalence relation on the states.

Korf (1983) and Riddle (1986) describe

this reformulation as serializing the subgoaJg.

Finding a set of serializable subgoals for L

problem permits solution of the problem h_
solving each subgoai in order. Korf points _)at

that this reduces the exponent of the searca.

possibly resulting in a big gain in efficiency.

22

Most of these authors refer to this type of
reformulation in more than one of the above

four ways. Also, this is not an exhaustive list

of work on this type of reformulation. In the

remainder of this paper, we refer to this type
of representation change as homomorphic

reformulation, as in Lowry (1990).

The General Reformulation Problem

Homomorphic reformulation changes the

presentation of a semigroup, thus
"re-presenting" it. The toughest cases of

reformulation occur when the necessary

problem -solving structures do not already
exist, and involve transforming the semigroup

into a transformationally equivalent semigroup
with the desired structures. We call this the

general reformulation problem. In keeping

with our intuition that homomorphic

reformulation is a coordinate change, we call
non-homomorphic reformulation a

deformation, because it changes the structure
of the set of actions.

We begin our examination of the general
reformulation problem by describing a
representation for the Towers of Hanoi that
lacks good decompositions. We then define

transformational equivalence, and give an
algorithm for computing transformational

equivalence for a useful class of semigroups.

An Example: TOH2

In TOH2, the only feature available to the

agent is what disk is on top of each peg. This

is a sound and complete theory of the 2-disk
Towers of Hanoi, just as TOHI is. The search

complexity of this representation is exactly the
same as for TOH1, because the states are the
same, the same number of actions are

executable in any state, and the solutions are
of the same length. Thus, we see the

insufficiency of logical completeness,
soundness, and worst-case complexity for
evaluating representations.

The actions of TOH2 do not mention the
disk that is moved, and no abstractions can be

generated. We cannot find an abstraction

hierarchy that first solves the large disk, then

the small disk, because the set of actions
cannot be partitioned into moves for each disk.

Certainly the agent can first bring the large
disk to the goal peg, then the small disk, but
as was pointed out earlier, there is no structure

in this representation of the set of actions that

can be used to find that subgoal ordering, and
the set of actions has no decomposition. No
matter how we project these actions, we end

up with all six of them. Thus, we cannot apply
the type of reformulation we applied to the
cylinder or to Rubik's Cube. No
re-presentation of this transformation monoid

will help; we need a new monoid of actions.

This is a different semigroup than in
representation TOH1, and that its structure
does not reflect the structure of the task in as

helpful a manner. Relevant distinctions are not

made, e.g., between moving the larger disk
from pegl to peg2 and moving the smaller disk
between pegl and peg2; irrelevant distinctions

are made, e.g., between moving a disk from
pegl to peg2 and moving the same disk from

peg2 to peg3.

This semigroup possesses only trivial

(one-element) subgroups. We must find a way
of transforming this semigroup to a better one.

Transformational Equivalence

Although the representations TOH1 and

TOH2 are structurally dissimilar, they both
have the Towers of Hanoi as a model, and thus
map the states of the Towers of Hanoi in a

logically equivalent fashion. We state this

precisely with the following definitions:

Definition. Given two semigroups S1 and $2

acting on QI and Q2, respectively, a

function f: Q I --_ Q2 is said to be a

transformational reduction if for all p,q 6

QI, if q is reachable from p via S1 then
f(q) is reachable from f(p) via $2.

Definition. Two semigroups S1 and $2 acting
on QI and Q2, respectively, are said to be

transformationally equivalent if there exist

transformational reductions f: Q I _ Q2

and g: Q2 _ QI.

• 23

The preservation of reachability guarantees
that any solution in one representation is a
solution in the other. We will call a

transformational reduction a t-reduction, and

transformational equivalence will similarly be

called a t-equivalence. Semigroup morphisms
are t-reductions; however, not all t-reductions

are semigroup morphisms. For example, TOHI
and TOH2 are t-equivalent, but there are no

semigroup morphisms between them (there can
be no function from AI and A2, or from A2 to

A1.) Neither is a simulation or abstraction of
the other.

Computation of t-reductions can be

extremely expensive. By restricting
(specializing) and combining (by disjunction)

elements of the semigroup A2 of
representation TOH2. we can transform A2 in

a general way to obtain any semigroup of
actions that transforms Q2 in a similar manner:

however, the number of ways of transforming a

set of partial functions in this way is
hyperexponential in the number of elements of

A2. To make this problem tractable, we

proceed by investigating one class of
semigroups at a time. We examine the

structure of semigroups of that class, and

construct an algorithm that transforms that

structure into t-equivalent semigroups of a
class with superior computational properties.
In the next section, we will describe such an

algorithm, which transforms inverse

semigroups into t-equivalent groups.

Transforming Inverse Semigroups

into t-equivalent Groups

As we have seen, finite group
representations possess an excellent matrix

representation theory that permits efficient

computation of serial algorithms. Finite group
representations also possess another very
useful property: all the actions in a

transformation group are totally defined. The

absence of partially defined actions means that

there are no constraints on application of
actions, and therefore a problem solver need

not test actions for applicability when
generating and testing possible actions. In the

AI literature, this is referred to as _embedding

the constraints in the generator." Testing

partial actions is responsible for much of the

time spent by search algorithms. For example,
a production system spends much of its time

attempting to instantiate rules that do not fully

match. Thus, if a task admits a group
representation, it is very desirable to find that
representation. Consider a task that admits an

inverse semigroup representation.

Definition. A semigroup S is an inverse

semi&roup if for any element a of S, there
exists an element b of S such that aba = a.

Many interesting tasks admit inverse

semigroup representations, including many AI
tasks, e.g., the Towers of Hanoi, Rubik's Cube,

the Missionaries and Cannibals, Fool's Disk.
the Blocks World. and the g-Puzzle. Also

included are many motion and assembly tasks.
e.g., parking a car. Intuitively, a task admits

an inverse semigroup representation if it is
true that whenever any sequence of actions s is

performed in a state q. there exists a sequence

of actions w that will return to state q.

We state the following theorem, but omit
the lengthy proof to save space.

Theorem. Any task admits a finite inverse

semigroup representation iff it admits a

finite group representation.

In the next section, we will illustrate the

procedure for transforming inverse semigroups
to groups with two algorithms, which form the

core of the proof of the theorem.

Algorithms

The transformation of inverse semigroups

into groups is illustrated on various
representations for the Towers of Hanoi.

Reformulating TOHI

Consider D2 of TOHI. The primitive

idempotents are in nontrivial subgroups. The
reformulation algorithm in this case is:

* Compute Green's relations.

• Find the primitive idempotents.

24

• Find the generators of the

corresponding subgroups.

• Select a coordinate system

originating at one of the subgroups.

• Map each generator and all its

corresponding generators under the
coordinate system to one new label.

The primitive idempotents are shown in

bold type in Figure 12.The generators of the

subgroups are xxy, xyx, and yxx. The
renaming process in this case just relabels

these three to one new label, forming the
disjunctive macro:

Define z = case {

little disk left of large disk: xxy

little disk on large disk: xyx

little disk right of large disk: yxx }

This new aotion is globally applicable, and
moves the two disks so that their relative

position is unchanged. The identification of
"the relative position of the two disks" as the

discriminating feature is not addressed in this

paper; it will be addressed in part 2, which
will deal with the syntactic aspects of

reformulation. The present paper is concerned
only with the functions that features must

compute, not with the formulae for computing
these functions.

This construction gives a partial morphism

from A to a group generated by z, with the
relation zzz = 1. This partial map is defined
only on the nine elements contained in the

three group H-classes. Any such partial map
can be extended with the identity map on all
totally defined actions. In TOHI, this means

mapping the action "x" to itself, giving a
group G_ generated by x and z, with the
relations x _ = 1, z _ = 1, xz = zx. In this case,

the result is a total morphism on A.

G 1

X

x 2

X

Z

XZ

z 2

As this group is abelian, the set of actions
of the Towers of Hanoi then decomposes in

two ways:
• executing the z macro the

necessary number of times to solve
the large disk, then

• executing "x" the necessary number

of times to solve the small disk;

or :

executing "x" the necessary number

of times to solve the small disk,
then

executing the z macro the

necessary number of times to solve

the large disk.

These decompositions do not lead to

optimal solutions (they can be improved by
including both right and left moves for both

disks); however, they possess the usual

advantage of task decompositions: they clarify
and simplify the task, leading to reduced

sensing and planning time. The partiality of
the actions in TOHI is encapsulated within

macros in this new representation, thereby

eliminating subgoal interference by moving
the constraints to the generator.

Reformulating TOH2

Consider TOH2. The groups containing the
primitive idempotents are all trivial. In this

case, a reformulation algorithm is:

_ 25

* Compute Green's relations.

* Find the primitive idempotents.

• Find a minimal word x_x2x3...x _ for
one of the primitive idempotents.

• Map the set of functions

XtX2X3...XnX 1, XsX3X_...XmXiX 2, etc. tO

one new symbol.

All the primitive idempotents are mapped

to the identity function. All primitive

idempotents can be found by cyclically
permuting a minimal word for a primitive
idempotent. Also, this word gives a cycle of Q
(executing the actions of the word visits each

state of Q exactly once). We restrict these nine

functions to single states by multiplying on the

left by the appropriate primitive idempotents,
and then map these nine functions to one new

symbol v, giving a cycle that visits each
element of Q exactly once, so that each v is a

counterclockwise arrow around the state graph
for the 2-disk Towers of Hanoi.

Notice that three of the elements of the

original semigroup are not mapped; they are

not necessary for teachability, but only for

efficiency. This gives a cyclic group G s of
order 9 generated by v, which decomposes into
two cyclic groups of order three:

G 2

1

V

2
V

V

3
V

V 4

6
V

6
V

7
V

$
V

Once again, these actions are totally
defined, so subgoal interference has been
eliminated and constraints have been hidden

by encapsulating them in macros.

This is isomorphic to the group found in
the previous example from TOH2, with z = v3,

and x = v s. But this group representation is not

related to the group representation from TOHI
by a homomorphism ,_f transformation monoids

That this is so is evident from the way the two
groups map the states. Group G t maps state 1

into state 3 via action x _, but Gs maps state 1
into state 4 via action v s. This shows that

non-homomorphic transformation groups can
exist in the category of representations for a

task. Although these two groups are
isomorphic as abstract groups, they possess

different computational properties when acting
on the states of the task, e.g., the average path

length between any two states in Gt is shorter

than in G s. The morphisms of transformation
monoids distinguish properly between these

two representations, thus illustrating the

usefulness of the formalism for reasoning
about representations.

Summary

We have described a research program

pursuing an algebraic approach to reasoning

about representation change. There are three
advantages to this approach. First, it ties in to

an existing theory of semigroups that is

general and intuitive. We hope that this paper
has demonstrated the intuitive advantages of
this approach, particularly in the use of

coordinate systems to characterize
reformulation.

Second, we can use this theory for

classification. We classify representations by
the structure of their transformation monoids,

and classify tasks according to the

representations they admit. We can also

classify representation changes. For example,
we have classified reformulations as

coordinate transformations if they transform
the presentation of the transformation monoid,

and as deformations, if they transform the
structure of the monoid.

Third, we can use this theory to construct

algorithms for representation change. For
example, we showed how to use group

representation theory to automatically abs_- ;
a group representat_-a, and we showed ho
move constraints :ore the tester to

generator for inver> semigroups.

26

This paper has dealt with the semantics of

representation change, as embodied in the
structure of semigroups of actions. Part 2 will

deal with the agent-dependent features used to
encode states and actions, which are embodied

in strings of symbols over alphabets.

Acknowledgments

This work has benefited greatly from

discussions with Ranan Banerji, Leo Dorst,
Jonathan Hodgson, Indur Mandhyan, and
Madeleine Rosar. Leo and Madeleine did much

of the work on Rubik's Cube.

References

Amarel, Saul, (1968). On Representations of
Problems of Reasoning about Actions, in

Michie (ed.) Machine Intelligence, chapter

10, pp. 131-171, Edinburgh University
Press.

Arbib, Michael A., and Manes, Ernest G.,

(1974). Machines in a Category: An
Expository Introduction, SIAM Review,

Vol.16, No.2, pp.163-192, April, 1974.

Banerji, Ranan B. and Ernst, George W.,
(1977). A Theory for the Complete

Mechanization of a GPS-type Problem

Solver, IJCAI-77, pp.450-456.
Benjamin, D. Paul, Dorst, Leo, Mandhyan,

Indur, and Rosar, Madeleine, (1990). An

Introduction to the Decomposition of Task

Representations in Autonomous Systems,
in "Change of Representation and

Inductive Bias", D. Paul Benjamin (ed.),
Kluwer Academic Publishers.

Bobrow, Leonard S., and Arbib, Michael A.,

(1974). Discrete Mathematics, Saunders.

Chomsky, N., (1957). Syntactic Structures,
Mouton, The Hague.

Dorst, Leo, (1989). Representations and
Algorithms for the 2x2x2 Rubik's Cube,

Philips Technical Report TR.89-041.

Doyle, Jon, and Patil, Ramesh S., (1991). Two
theses of knowledge representation:

language restrictions, taxonomic
classification, and the utility of

representation services, Artificial

Intelligence 48, pp. 261-297.

Eilenberg, Samuel, (1974). Automata,

Languages, and Machines, Volumes A&B,
Academic Press.

Howie, J. M., (1976). An Introduction to

Semigroup Theory, Academic Press.

Knoblock, Craig A., Tenenberg, Josh D., and

Bng, Qiang, (1991). Characterizing
Abstraction Hierarchies for Planning,
AAAI-91.

Korf, Richard E., (1983). Learning to Solve
Problems by Searching for
Macro-Operators, Ph.D. Thesis,

Carnegie-Mellon University.

Lallement, Gerard (1979). Semigroups and
Combinatorial Applications, Wiley &
Sons.

Lowry, Michael, (1990). Homomorphic
Reformulation, Proceedings of the Second

International Workshop on Problem
Reformulation, Price Waterhouse, Palo
Alto, California.

Lowry, Michael, (1987). Algorithm Synthesis
Through Problem Reformulation,
AAAI-87.

Niizuma, S. and Kitahashi, T., (1985). A

Problem-Decomposition Method Using
Differences or Equivalence Relations

between States, Artificial Intelligence 25,

pp.117-151.
Riddle, Patricia J., (1986). Exploring Shifts of

Representation, in Mitchell, Carbonell, and
Michalski (eds.), Machine Learning: A

Guide to Current Research, Kluwer.

Sacerdoti, E., (1974). Planning in a Hierarchy
of Abstraction Spaces, Artificial

Intelligence 5(2), pp.115-135.
Simon, H.A., (1969). The Sciences of the

Artificial, MIT Press, Cambridge, Mass.
Subramanian, Devika, and Genesereth, M.R.,

(1987). The Relevance of Irrelevance,

IJCAI-87, pp.416-422.

Unruh, Amy, and Rosenbloom, Paul S., (1989).

Abstraction in problem solving and
learning, IJCAI-89, pp.681-687.

Zimmer, Robert M., (1990). Representation
Engineering and Category Theory, in
Change o/ Representation and Inductive

Bias, D. Paul Benjamin (ed.), Kluwer
Academic Publishers.

- 27

