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Introduction

Many important applications can be formalized as
constrained optimization tasks. For example, we are
studying the engineering domain of two-dimensional
(2-D) structural design. In this task, the goal is to de-
sign a structure of minimum weight that bears a set of
loads.

Figure 1 shows a solution to a design problem in
which there is a single load (L) and two stationary sup-
port points ($1 and $2). The solution consists of four
members, El, E2, E3, and E4 that connect the load
to the support points. In principle, optimal solutions
to problems of this kind can be found by numerical
optimization techniques. However, in practice [Van-
derplaats, 1984] these methods are slow and they can
produce different local solutions whose quality (ratio to
the global optimum) varies with the choice of starting
points. Hence, their applicability to real-world prob-
lems is severely restricted.

To overcome these limitations, we propose to aug-
ment numerical optimization by first performing a

symbolic compilation stage to produce (a) objective
functions that are faster to evaluate and that depend
less on the choice of the starting point and (b) selection
rules that associate problem instances to a set of rec-

ommended solutions. These goals are accomplished by
successive specializations of the problem class and of
the associated objective functions. In the end, this pro-
cess reduces the problem to a collection of independent
functions that are fast to evaluate, that can be differen-
tiated symbolically, and that represent smaller regions
of the overall search space. However, the specialization
process can produce a large number of sub-problems.
This is overcome by deriving inductively selection rules
which associate problems to small sets of specialized
independent sub-problems. Each set of candidate so-
lutions is chosen to minimize a cost function which

expresses the tradeotf between the quality of the solu-
tion that can be obtained from the sub-problem and
the time it takes to produce it. The overall solution
to the problem, is then obtained by solving in parallel
each of the sub-problems in the set and computing the
one with the minimum cost.

In addition to speeding up the optimization process,
our use of learning methods also relieves the expert
from the burden of identifying rules that exactly pin-
point optimal candidate sub-problems. In real engi-
neering tasks it is usually too costly to the engineers
to derive such rules. Therefore, this paper also con-
tributes to a further step towards the solution of the
knowledge acquisition bottleneck [Feigenbaum, 1977]
which has somewhat impaired the construction of rule-
based expert systems.

E2

P

$1 $2

Figure 1: A solution to a 2-D structural design problem
with given topology.

Our optimization schema differs from techniques
currently used in the machine learning community.
Our approach relies on the specialization of the prob-
lem via incorporation of constraints prior to optimiza-
tion. Braudaway [Braudaway, 1988] designed a sys-
tem along the same principle. However, to our knowl-
edge, very little work has been done in using learning
techniques to speedup numerical optimization tasks.

In contrast, the current trend in the machine learning
community focuses on methods, such as Explanation
Based Learning (EBL) [Ellman, 1989], capable of gen-
erating rules. In addition, EBL methods have had little
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success in the task of optimizing numerical procedures.
We conjecture that one of the reasons is the depen-
dence of EBL methods on the trace of the problem
solver. The trace of a nuraerical optimizer gives little
information on the structure of the problem. There-
fore, in mathematical domains, EBL-derived rules are
too detailed to produce any appreciable speedup.

The remainder of the paper is organized as follows.
Section presents the 2-D structural design task. This
is followed in Section by an overview of numerical Ol>-
timization methods, their limitations, and our solution
which is illustrated using a simple example. The ms,-
chine learning methods are outlined in Section. These
methods are then applied in Section which illustrates
the experiments. These show that, for a certain family
of problems, the compilation stage produces a substan-
tial improvement in the performance of the optimiza-
tion methods. Benefits and limitations of our strategy
are summarized in Section, which also outlines future
work.

Task description

Table 1 describes the 2-dimeusional structural design
task that we are attacking. Figure 1 shows an exam-
ple problem in which I is the load and $1 and $2 are
two supports. The so-called atopology" is given as a
graph structure containing four edges (the members)
and four vertices (the load, the two supports, and an
intermediate connection point C). The topology does
not specify the lengths of the members or the location
of C. The topology and the position shown in the figure

Given:
Table I: The 2-D Design Task.
A 2-dimensional region g
A set of stable points (supports)
A set of external loads with application
points within R

Find: The number of members, connectivity, and
positions of all intermediate connection
points such that the structure has minimum
weight and is stable with respect to all exter-
nal loads.

give the minimum-weight solution. In this solution, 4
members are used and El and 1:3 are in tension (they
are being _stretched_), while members E2 and E4 are
in compression. Tension members will be referred to as
"rods" and indicated by thin fines. Compression mere-
bers will be referred to as _columm_' and indicated by
thick lines. The type of members used in the solution
is an abstraction that we have used throughout our
work. To indicate a configuration of tensile and com-
pressive members that consititutes a solution, we have
defined the stress state. The stress state is an array
of m elements in which each element corresponds to
a member. The value of each element in the array is

+I ifthe member istensileand -1 ifthe member is

compressive.

The weight of a trusscan be decreasedin at least

two ways. First,the engineercan use lightermaterial.

Second, the "shape" can be designed in such a way
that,forinstance,ituseslessmaterialand, hence,itis

lighter.In thispaper we do not considerthe (admit-
tedly)important advances in the scienceof material

but, instead,we focuson the synthesisofshapes that

reducethe weightofa trusswith a chosen construction
material.

The task shown in Table I is actually only one step
in the larger problem of designing good structures.
In general, structural design proceeds in three steps
[Palmer and Sheppard, 1970; Vanderplaats, 1984].

First, the problem solver chooses the topology, which
specifies the locations of the loads and supports and the
connectivity of the members. Then, the second step
is to determine the locations of the connection points
(and hence the lengths, locations, internal forces, and
cross-sectional areas of the members) so as to mini-
mize the weight of the structure. This is usually ac-
complished by numerical non-linear optimization tech-
niques. The third and final step in the process opti-
mizes the shapes of the individual members. This can
often be accomplished by linear programming.

In addition to focusing only on the first two steps,
we have introduced several simplifying assumptious to
provide a tractable testbed for developing and test-
ing machine learning methods. Specifically, we as-
sume that structural members are joined by frictionless
pins, only statically determinate structures are consid-
ered, the cross section of a column is square, columns
and rods of any length and cross sectional ares are
available, and supports have no freedom of movement.
A statically determinate structure contains no redun-
dant members, and hence, t_. geometrical layout com-
pletely determines the forc_ Lcting in each member.

Given these aseumptious, .he weight of a candidate
solution is usually ca]culate,J by a three-step process.
The first step is to apply the method o.f joints [Wang
and Salmon, 1984] to determine the forces operating in
each member. Once this is known, the second step is to
classify each member as compressive or tensile. This is
important, because compressive and tensile members
are composed of different materials and have different
densities; e.g. concrete columns and high tensile steel
rods. The third step is to determine the cro_-eectional
area of each member. The load that a member can

bear is assumed to be linearly proportional to its cross-
sectional area. Finally, the weight of each member can
be computed as the product of the density of the ap-
propriate material, the length of the member, and the
croas-eectional area of the member.

The last two Stelm can be collapsed into a single
parameter k: the ratio of the density per-unit-of-force-
borne for compressive members to density per-unit-of-
force-borne for tensile members. With this simplifica-
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tion, instead of minimizing the actual weight, we can
minimize the following quantity which, with an abuse
of notation, we define as

Weight = _ IIF,II l, + _ /z IIFill ii.
tensile corn pressive
members members

Fi is the force in member i, and li is the length of
member i. This is the initial objective function for the
work described in this paper.

We conclude this section with a brief description of
the method of joints, which is one of the methods used
to calculate the Fi in statically determinate structures.
The method of joints computes these forces by solv-
ing a system of linear equations as illustrated, for the
problem in Figure 1, in Table 2. The matrix of coeffi-
cients is called [Wang and Salmon, 1984] the azial (or
static) matrix and the vector of givens is defined as the

load vector. In Figure 1, let C = (z, y), S1 = (zt,yt),
and $2 = (z2,y2), be the cartesian coordinates of the
connection point, and the two supports, respectively.
In addition, let (z:, Yt) be the coordinates, and let p
and 3' be the magnitude and direction of the load L.
The internal forces in each member are obtained by
first constructing the axial matrix and load vector and
then solving the system of equations for the unknown
internal forces. Table 2 shows the symbolic system of
equations for the example in Figure 1 with unknown
forces F1,F2, Fs, and F4 and with the coordinates of
all the points explicitly substituted.

Now that we have defined the 2-dimensional design
task and formulated it as a non-linear optimization
problem, let us turn, in the next section, to a brief
review of existing techniques for optimization and to
the proposed methods.

Knowledge-based Optimization

Classical optimization textbooks [Vanderplaats, 1984;
Papalamhros and Wilde, 1988] present a comprehen-
sive survey of optimization methods and of various
techniques for conducting the search for an optimal
solution. The schema illustrated in Figure 2 is typical
of many domain independent non-linear optimization
methods. The process is iterative. Starting at some
initial point, the objective function is evaluated and
the termination criteria are tested. If the test fails,
a new point is generated by taking a step, of some
chosen length in some chosen direction, away from the
current point. Each point defines a set of values for
the independent variables in the objective function.

Most optimization algorithms differ primarily in the
criteria used to choose the direction along which to
optimize. Some optimization methods (e.g., Powell's
method [Vanderplaats, 1984]) choose the direction and
step size using only evaluations of the objective func-
tion. Other methods, such as gradient descent and
its variations [Papalamhros and Wilde, 1988], require
computation of the partial derivatives of the objective

Table 2: Method of Joints for the example in Figure 1.
The product of the axial matrix and of the unknown
forces Fi equals the load vector.

si.(_,) .i.(_2) o o
0 cos(a2 + 180) cos(a3) cos(a,) x
o sin(_2 + lso) sin(as) sin(a,)

= Lsio('r)

F, 0

cos(a,) = (_,-_,)/t,, co_(_2) = (_-_,)/l_
_o_(_) = (_, -_)/h, _o.(_,) = (_2 - _)/t,
sin(_,) = (v,-y,)lt,, _i_(_2) = (_-y,)lh
• in(_3) = (_, - _)/h, .i.(_,) = (y2 - y)/_

and li's are Euclidean distances:

h ffi
h :

h =

_/(=, _ =,)2 + (y__ _,)2
_/(: - _1)3+ (y - 0z)_
_/(: - _lP+(y - y,)2
_/(: - _2)2 + (_ - _p.

function to choose the new direction of optimization.
Still other methods approximate the partial deriva-
tives numerically by evaluating the objective function
at many points.

The primary computational expense of numerical
optimization methods is the repeated evaluation of
the objective function. An advantage of gradient de-
scent methods is that they need to evaluate the objec-
tive function le_ often, because they are able to take
larger, and more effective steps. Of course, they incur
the additional cost of repeatedly evaluating the par-
tial derivatives of the objective function. Hence, they
produce substantial savings only when the reduction
in the number of function evaluations offsets the cost

of evaluating the derivatives.

In engineering design, the objective function is typ-
ically very expensive to evaluate. This slows the nu-
merical optimization procem because the speed of nu-
merical optimization is determined by the cost and
frequency of evaluating the objective function. For
the structural design domain to compute the objective
function (volume of each structure) a system of lin-
ear equations must be solved. This is typically carried
out by algorithms which are cubic in the number of
unknowns. This number is usually large in real appli-
cations like bridge design. Furthermore, the fact that
the constant k is applied only to compressive members
makes it impossible to obtain a differentiahle closed-
form. The signs of the internal forces must be corn-
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Figure 2: Traditional optimization schema.
y-axis

puted before it is possible to determine which members
are compressive. This prevents the use of gradient-
based optimization methods that require fewer evalu-
ations of the objective function - only slower function-
based methods are applicable. One measure of the
performance of a numerical optimizer is the time it
takes to produce a solution. This quantity, however,
depends on the choice of the starting point. Therefore,
to obtain an accurate measurement, it is necessary to

average the values obtained running the optimizer from
different starting point_.

Moreover, most engineering models are not uni-
modal. This directly affects the reliability of the solu-
tions because numerical optimizers settle for local min-
ima since they are unable to leap from one region to
another to determine the global minimum. As shown
in Figure 3, the objective function for the structural
design domain is non unimodal. For instance, for the
function in Figure I gradient methods started with
z = 1500 and y - 2000 reach a local minimum in
region R2 while the global rninumum is in region Itl.
A measurement of the reliability can be obtained by
taking the ratio (quality) of the local minimum and of
the global minimum in controlled experiments in which
the absolute minimum can be easily computed. Time
and quality induce a tradeoff that can be exploited by
defining the function:

utility(solution) = CPUt_=e(eoZution_

CPUcoa_ -I-qua_.i_y(solu_£on)

where CPUcost is a positive constant that accounts for
the cost of running the optimizer. We have used this
definition in the learning stages of our approach to
focus the attention of the optimization process on a
few candidates that will produce solutions of maximum
utility.

As shown in Figure 4, the increased reliability and
speed are accomplished by augmenting the traditional
run time optimization with a "compilation" stage prior
to numerical optimization. The inputs to the compiler
are (a) an high level description of the problem, (b)

Figure 3: Volume of the structure in Figure I.

domain knowledge about stress states, and (c) a pro-
cedure to generate training examples. Symbolic and
inductive techniques are then used to (I) produce sire-
plified versions of the objective function per each stress
state, and (2) learn stress state selection rules which
map problem instances into sets of candidate stress
states of minimum cost.

First, the compiler produces one objective function
for each topology and stress state. Each of these func-
tions is a specialized version of the expression of the
weight and it is faster to evaluate than the original,
less specific, objective function. As an example, the
function produced for the topology and stress state in
Figure I is illustrated in Table 3. This expression is a
closed form of the weight of a structure as a function
of the two cartesian coordinates of connection point C

restricted to region I_I in Figure 3. Moreover, these
simplified expressions are differentiable and this per-
mits the use of faster gradient-based optimization al-
gorithrns.

Another obstacle to practical applications of numer-
ical optimization methods is the high dimensionality
(number of independent variables) of the problems.
Our compilation strategy decreases the dimensionality
of optimization problems by searching a set of train-
ing examples for relations (regularities) among inde-
pendent variables. These relations are then used as
constraints among variables and are incorporated into
the specialized versions of the objective function. This
procedure eliminates independent variables with the
result of greatly simplifying the optimization process,
of enlarging its scope of applicability, and of speed-
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Figure 4: Proposed numerical optimization framework.

lug up run time optimization. For the region it1 in
Figure 3, the compiler will determine that if the con-
nection is expressed in polar coordinates p and _ only
the distance p from support $1 need be determined (see
Figure 1.) This is because, in' the analysis of the exam-
pies, it will discover that the angle a can be computed
as one half of the angle/_ which is one of the givens
of the problem. The final objective function is shown
in Table 4 which contains only a single variable p vs.
the two (z and y) in the expression in Table 3. This
final expression indicates a reduction in dimensional-
ity because, at run time, the numerical optimizer will
only need to determine the value of p to compute the
position of the connection point.

Finally, the compiler learns search control knowledge
in the form of
IF-TEEN-ELSE rules. This is then used at run time to

select stress states that lead quickly to quasi-optimal

Table 3: Partially evaluated objective function for the

problem of Fi_;ure 1.

Weight =

(1.14 1013z - 5.66 109z 2 + 8.16 lOSz3+

3.28 1013y - 3.26 109zy + 2.44 105z2y-
6.70 109y 2 + 8.16 lOSzy _ + 2.44 105y z-

4.08 10 '_) /

(1.28 101zy - 2.56 104z -t- 2.56 104y -

6.40 y2 _ 2.56 107)

solutions. The set of stress states is chosen so that the
utility of the stress states is maximized. The utility
is a function that combines the time it takes to pro-
duce a solution with its expected quality (ratio to the
global minimum.) This function introduces a trade-
off between quality and time that is exploited by the
learning algorithm [Cerbone and Dietterich, 1992]. As
an example, for the design problem in Figure 1 whose
objective function in shown in Figure 3, the compiler
derives search control knowledge that allows the prob-
lem solver to focus the attention of the numerical op-
timizer on regions R1 and R2 when the load is directed
toward support $2 and away from support Sl.

Machine Learning Methods

This section describes in greater detail the symbolic
and inductive learning techniques. Inductive learning
techniques are used to (a) simplify the optimization
process by reducing the number of independent vari-
ables and (b) derive the stress state selection rules.
The inductive methods rely upon knowledge about the
partitioning of the design space and upon a set of train-
ing examples that, for many engineering tasks, can be
generated by the compiler. A complete discussion of
the compilaton stages can be found in [Cerbone, 1992].
Symbolic Methods. Symbolic techniques are used
to incorporate into the objective function knowledge
about stress states and knowledge discovered during
inductive analysis. The goal is to produce an highly
simplified and specialized objective function. This is
accomplished by partial evaluation [Futamura, 1971],
and loop unrolling [Burstall and Darlington, 1977] -
two techniques widely used in high-end optimizing
compilers. Partial evaluation incorporates constant
values for variables into functions (or programs) and
simplifies them. Loop unrolling unfolds iterative con-

Table 4: Objective function for the structure in Fig-
ure 1 with reduced dimensionality.

W ei g ht .impli l iGd

(1.16xo 'p- 5.xolo'p +8.19lo'p - 4.0810 3)/
3.95p 2
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structs (e.g., for loops) and transforms them into se-
quential programs. These techniques have been im-

plemented using the Mathematica programming lan-
guage [Wolfram, 1988| and [Maeder, 1989] which is
suitable to numerical problems.

As an example of specialization, we illustrate how
domain knowledge is used to specialize the objective
function. First the problem solver chooses the topoi-
ogy. This can be simply done by enumerating a few
possible configurations. Once the topology is chosen,
it can he incorporated into the objective function. This
allows us to compute symbolically the axial matrix and
the load vector (see Section ). We then apply sym-
bolic algorithms to solve and simplify the system of
equations and to obtain a closed-form expression for
the forces. In principle, an infinite number of topolo-
gies should he explored; however, Friedland [Friedland,
1971] experimentally demonstrated that only a f_, of
them need be considered to achieve satisfactory _._iu-
tions.

The second specialization step is to plug in the givens
of the problem and partially evaluate the resulting
mixed symbolic/numeric expression. For our exam-
pies, the givens of the problems are the lo_k and sup-
ports; however, one may wish to analyse a structure
subject to different inputs such as various loading con-
ditious or support locations. In such cases it is possible
to leave those values in symbolic form and substitute
their numerical values at run time.

The third compilation step is to split the objective
function V into cases according to stress state. When
the objective function is specialized according to stress
state, the result is a collection of special-case objective
functions {V1,..., Yn). Because each P_ corresponds
to one stress state, it is possible to tell, at compile
time, which forces should he multiplied by k. Hence,

each P_ is differentiable, and this enables us to employ
gradient-based optimization techniques that, typically,
are faster than methods based only on evaluating the
objective function alone.

Reduction of independent variables. A further
speedup and increase in reliability of the numerical
optimizers is obtained using inductive methods to de-
crease the number of independent variables (dimen.
sionality) in the numerical optin_&tion problem. The
compiler is given a series of examples and uses them
to inductively determine which independent variables
can be computed as functions of known quantities. For
instance, in the design domain, when searching within
a region it might turn out to be superfluous to search
along all dimensions because there might exist a sim-
ple relationship between one of the coordinates and
known quantities like the location of loads and sup-
ports. These relations are then used as constraints
and are incorporated into the objective functions. The
result is the reduction of the number of independent
variables. This, in turn, produces an even simpler and
faster optimization problem. For instance, the func-

tionshown in Table 3 has two independent variables

whilethe correspondinginductivelysimplifiedversion

has only one independent variableand itisshown in
Table 4. Hence, the finaloptimizationproblem entails

a simple linearoptimizationwhilethe originalone has
two dimensions.

The variablesto be eliminatedare determined using
an EBL-like approach which employs:

s training examples

• a library of given geometry entities (points, angles,
etc.)

s a geometrical domain theory

• known relationships among geometric entities

• regularities - a mixture of heuristics and statistical
regression techniques.

Each unknown connection point is subject to a compile
time heuristic search process that attempts to compute
(reformulate) the location as a function of loads and
supports.

To see how this works, let us consider again the ex-
ample problem in Figure I which we shall refer to as
the _bisectof' example. In this example, the connec-
tion point C is the unknown and the givens are the
load L and the supports Sl and S2. Moreover, let us
assume that a set of training examples has been either
provided or derived by the system. The reformulation
starts by identifying all geometric objects using the
given domain theory. For the bisector example, the
system identifies, among others, the following geomet-
ric objects:

polar(S1), point(S2), point(C), point(L),
anglo(/_, L, Sl, S2), s_Slo(a, c, Sl, S2),
segaent(SO1, S1, S2) ....
Predicatessuch as point and angle are basic el-

ements of the given geometric domain theory. This
means that,given a set of cartesiancoordinates,the

system ,,capable of computing each predicate.Dur-

ing the ,reputationofeach predicate,the system tags

it as _,,_n or unknown. A predicate is given if all
the en_Itles used to compute it are either givens Of
the problem (loads or supports) or can be expressed
a combination of given predicates. Otherwise, the
predicate is tagged as unknown. For the bisector ex-
ample, point(C) and all predicates that involve it in
their derivation (e.g. mq0.e(a, C, SI, S2)) are un-
knowns, all others ace givens.

With this knowledge, the system then tries to relate
the unknown geometric entity point(C) to as many
other entities as possible with the ultimate goal of ex-
pressing it only using given geometric entities. This
is accomplished by using a blend of EBL and dis-
covery techniques. In the EBL jargon, the geomet-
ric knowledge base is the domain theory, point(C) is
the target concept, and the operationality criterion is
the fact that a concept must be expressed in terms of
known geometric objects. To visualize this reformula-
tion step, let us refer to the derivation tree in Figure 5.
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Figure 5: Decision tree to derive the concept point (C).

The rightmost branch indicates that C is a connection
point and, therefore, it is no longer explored. The left-
most branch, instead, uses a domain rule that refor-

mulates a point in polar coordinates. Intuitively, the
domain rule states that a point can be identified by
its distance p from 51 and by the angle _ between
points C, S1, and $2. With this in mind, the system
recursively tries to determine angle(u, C, 51, 52)
and distance(p, C, St). After having exploited all
proofs, the system concludes that it is not possible to
re-express the angle and the distance in terms of
known entities. If we were to follow EBL strictly, we
should conclude that the domain theory is incomplete;
that is, it is not powerful enough to bridge the gap be-
tween unknowns and givens. This, in turn, implies that
the search would terminate concluding that point(C)
cannot be re-expressed in terms of known geometric
objects.

To overcome this problem we have used a discov-
ery approach that fills these knowledge gaps with eu-
reka [BurstaU and Darlington, 1977Jsteps. Despite
the name, however, in our strategy these steps are

not arbitrary but inductive For the example in Fig-
ure 1, we determine that the angle a between points
C, S1, and S2 is exactly one-half the angle//between
points L, el, and S2. Once this regtdarit_/ i_ deter-
mined, in contrast with Burstail and Darlington's ap-
proach, we test the eureka step against all user pro-
vided examples to determine if it is a random occu-

rance or a widespread phenomenon. In the former case,
any use of this regularity is abandoned and others (if
any) are tried. In the latter case, the regularity is as-
sumed as a transformation of the unknown geometric
entity. This is shown by the node in Figure 5 con-
nected by the dashed lines. The system then subgoals
on the geometric entities that were used to recognize
the angle/_. These are recognized as givens because
they were derived from the position of the load and of
the supports and the search terminates. The discus-
sion of the branch identified by the dotted is similar to
the one above and it is omitted for the sake of brevity.

The actual domain rules used in the geometric the-
ory carry along also information that bridge the gap
between the cartesian representation of a point and
the polar one. This implies that the z and y coordi-
nates of C can he expressed in terms of the angle c_ and
of the distance p. In turn, the angle a is substituted

by _ which can be computed from the given position
of the load and supports. These transformations are
considered as constraints and are incorporated into the
objective function which is further simplified using the
symbolic techniques. The result of the incorporation
is shown in Table 4.

Rule derivation. The specialization steps discussed
above greatly improve the running time of the optimiz-
ers on each objective function but they might introduce
a large number of candidate solutions. These, in princi-
ple, can be exponential. To overcome this problem, we
have devised a new inductive learning method to prune
candidates that do not lead to optimal solutions. This
method learns search control knowledge in the form of
decision trees which can then be quickly transformed
into ZF-TIIgI-ELSB rules. These design rules associate
features of the problem to a few regions in which the
global minimum is believed to lie according to the ex-
amples given to the learning algorithms. The global
solution is then obtained by running the optimizer on
each of these regions and by taking the minimum so-
lution.

We have found that most existing learning algo-
rithms are not suitable for learning rules for optimiza-
tion problems. The main obstacle is the absence of
features that allow discrimination among classes. Al-
gorithms like ID3 implicitely require independence of
classes. Features with such discriminatory power are
difficult to derive for many real application and espe-
cially for optimization tasks. On the other hand, it is
relatively easy to provide shallo_v features which can
circumscribe a set of possible solutions. Therefore, in
devising our learning method we have assumed that all
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features are shallow and proposed trrILITYID3, a novel
learning algorithms. The algorithm resembles the well-
known ID3 algorithm [Quinlan, 1987] in that it builds a
decision trees and uses an information-theoretic heuris-

tic to choose the feature on which to split at each re-
cursive call. However, it is new in that the heuristic
takes into consideration that the output is a set of rec-
ommended actions rather than a single discriminating
class.This algorithm isfullydescribedin [Cerbone,
1992]and [Cerbone and Dietterich,1992].

In addition to the learningalgorithm,we have in-
troducedmazimum utility learning set, a new learning
framework. In this framework, a utility is associated to
each candidate solution. The problem is to learn a set
of actions of maximum utility that covers all given ex-
amples. For instance, in the design problem, the utility
is a function of the time it takes the numerical opti-
mizer to find a solution. The quality is measured with
respect to the globally optimal design. It turns out
that this learning problem is .&f_P- complete [Garey
and Johnson, 1979J. Hence, UTILITYID3 uses an ap-
proximation algorithm to determine a solution.

Experiments

To test the efficacy of this approach, we [Cerbone and
Dietterich, 1991] have solved a series of design prob-
lems using an implementation based on Mathemat-
ics [Wolfram, 1988], and we have mesmL,_ the impact

of the compilation stages on the evaluation of the ob-
jective function, on the optimization task, and on the
reliability of the optimization method. The measure-
ments presented are averages over five randomly gen-
erated designs and, for each design, over 25 randomly
generated starting points.
Objective function. The objective function of each
design problem was evaluated in four different ways
and, for each of them, we averaged the CPU 1 time
over the different designs and starting points. The vol-
ume was first computed using the traditional, naive,
numerical procedure with the method of joints. We
then compiled the designs incorporating, in three suc-
cessive stages, topological information, the givens of
the problems, and the stress state. Figure 6 shows the
time (per I00 runs) to evaluate the objective function
at the various compilation stages. The bilfl_est speedup
was obtained with the numerical substitution of values

into the symbolic closed form expression obtained and
with the specialization to stress states. This suMests
that the gain is related to the elimination of arithmetic
operations from the original numerical problem.

Optimization. As indicated in Section , the running
time of the optimizers is influenced by the number of
function calls and by the time for each function evalu-
ation. To present the benefits of our approach on the
optimization task, we have experimented with two op-

XThe examples were run on a NeXT Cube with • 68030
board.

CPU _¢.

Figure 6: Influence of the compilation stage on the
CPU time per function evaluation.

timization aJqorithms (a) an optimizer based on Pow-
eli's method Ir'lae, t9861 that does not require gradient
information and (b) the version of conjugate gradient
descent [Press and others, 1988] provided by Mathe-
matica. The graphs in Figures 7 and 8 report, respec-
tively, the number of objective-function calls and the
overall CPU time for each optimizer. The values con-
nected by solid lines correspond to cases where the op-
timizer had no gradient information, while the values
connected by dashed lines indicate averages utilizing
the conjugate gradient descent method with alterna-
tive approximations for the gradient vector.

As expected, the number of evaluations remains con-
stant throughout the compilation stages when the non-
gradient is used, while it decreases drastically when we
switch to the gradient-based optimization method.

Figure 7: Influence of the compilation stage on the
number of function calls.

The overall CPU time (Figure 8) steadily decreases
as well. For the non-gradient method, the decrease is
due to the progressive simplification of the objective
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function itself, so that it is cheaper to evaluate. When
we switch to the gradient method, there is initially no
speedup at all, because the cost of evaluating the full
gradient offsets the decrease in the number of times the

objective function must be evaluated. However, addi-

tional speedups are obtained by approximating the ob-
jective function as a quadratic and as a linear function
(by truncating its Taylor series).

We have found experimentally that there is no ap-
preciable difference between the minima reached using
the full gradient vector and the minima computed us-
ing quadratic approximations of the partial derivatives.
However, the precision of the results obtained with the
linear approximation is significantly reduced. Depend-
ing on the application, this trade of accuracy for speed
may be acceptable. If not, the quadratic approxima-
tion should be employed.

Another possibility is to employ the linear approx-
imation for the first half of the optimization search,
and then switch to the quadratic approximation once
the minimum is approached. In other words, the linear
approximation can be applied to find a good starting
point for performing a more exact search.
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Figure 8: Influence of the compilation stage on the
CPU time.

Reliability. An optimization method is reliable if
it always finds the global minimum regardless of the
starting point of the search. Unfortunately, as shown
in Figure 3, the objective function in this task is not
unimodai, which means that simple gradient-descent
methods will be unreliable unless they are started in
the right "basin." It is the user's responsibility to pro-
vide such a starting point, and this makes numerical
optimization methods difficult to use in practice.

From inspecting graphs like Figure 3, it appears
that, over each region corresponding to a single stress
state, the objective function is unimodal. We conjec-
ture that this is true for most of 2-D structural de-

sign problems. This means that optimization can be
started from any point within a stress state, and it will
always find the same minimum. If this is true, then

our "divide-and-conquer"approach of searchingeach
stressstatein parallelwillbe guaranteed to produce
the globaloptimum.

We have testedthese hypothesisby performing 20
trialsofthe followingprocedure.First,a random start-
ing locationwas chosen from one of the basinsof the

objectivefunctionthatdid not containthe globalmin-

imum. Next, two optimizationmethods were applied:

the non-gradientmethod and the conjugate gradient
method. Finally,our divide-and-conquermethod was

appliedusing,foreachofthe specializedobjectivefunc-

tionsVj, a random starting location that exhibited the
corresponding stress state. In all cases, our method
found the global minimum while the other two meth-
ods converged to some other, local minimum.

Concluding Remarks

In this paper we have illustrated how machine learning
techniques can be applied to optimal engineering de-
sign. This has been accomplished by tackling problems
in two different areas:

• speeding up existing numerical methods

• learning a set of candidate optimal solutions.

Table 5 illustrates the correspondence between these
problems and the machine learning techniques used
in their solution. Our main contribution is to have

shown that ML techniques can be effectively used to
overcome some of the drawbacks of numerical optimiz-
ers and to increase their efficiency. Another contribu-
tion of this paper is to have shown that inductive tech-
niques can complement traditional software engineer-
ing approaches in mathematical domains. This greatly
reduces the need for knowledge transfer from experts
to computer systems. In our approach, these results

Table 5: Rows enumerate problems inoptimal design.

Columns listMachine Learning paradigms. X's indi-
cate the ML paradigm used tosolvethe problem.

S_mbolic Inductive

Selection
Rules

Speedup o/
Numerical

Optimizers

Methods Learning

X

X X

required the use of a blend of novel and traditional op-
timization techniques. First, we have defined a new
learning framework which is more appropriate to op-
timization tasks. This framework involves (a) the re-
quirement that the output of the learning algorithm be
a set of alternatives and (b) measures of the cost of ob-
taining solutions. The learning methods produce sets
of minimum ccet. Within this framework we have de-

veloped algorithms which output IF-THEN-ELSE rules
that associate problem characteristics (features) to sets
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of optimal solutions. This is a contribution to basic
research in machine learning. Second, we have demon-
strated that inductive methods can also be used to

simplify numerical problems. In fact we employed a
discovery approach to reduce the number of indepen-
dent variables. Finally, we have used more traditional

compiler optimization techniques in a learning frame-
work and merged them with inductive methods. We
have shown that the overall result is a drastic speedup
of the numerical optimization techniques.

Our approach opens new research directions into the
so far unexplored area of applications of machine learn-
ing to numerical optimization. It is our hope that, in
the medium-to long-term, our techniques will allow the
use of specialized numerical optimizers in real-time ap-
plications like intelligent CAD systems.
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