
Lansk:

1 ; ;;- [I ; i

’1’)
Localization vs. Abstraction:

A Comparison of Two Search Reduction Techniques

Amy L. Lansky

Sterling Software
NASA Ames Research Center (AI Research Branch)

MS 269-2, Moffett Field, CA 94035
LANSKYOPTOLEMY.ARC.NASA.GOV

Abstract
There has been much recent work on the use of
abstraction to improve planning behavior and cost.
Another technique for dealing with the inherently
explosive cost of planning is localization. This pa-
per compares the relative strengths of localization
and abstraction in reducing planning search cost. In
particular, localization is shown to subsume abstrac-
tion. Localization techniques can model the various
methods of abstraction that have been used, but
also provide a much more flexible framework, with
a broader range of benefits.

1 Introduction
Over the years, several research results have a p
peared on the use of abstraction to guide and im-
prove planning performance [2, 3, 4, 5, 11, 121. Ab-
straction techniques restructure a problem and the
problem-solving process into a set of “abstraction
levels.” At the top level of abstraction, the prob-
lem is described and solved at the most coarse-
grained level of detail. Each successive level is made
more concrete than its predecessor by incremen-
tally adding information into the problem descrip
tion. The use of abstraction can benefit planning if
the solution found at an abstract level serves as a
good starting point for problem-solving at the next
level of detail. Thus, abstraction may be viewed as
a heuristic for ordering which pieces of the overall
planning problem are solved first, and which later.
At least two methods have been used within the
planning community for creating levels of abstrac-
tion: (1) creation of more concrete levels of detail
by incrementally decomposing abstract actions into
more concrete subactions (operator abstraction); and
(2) creation of more abstract levels by incrementally
eliminating required action preconditions (state ab-
straction).

Recent work has also appeared on the use of do-
main localization or decomposition to structure a
problem description and thereby guide and improve
planner performance. In this case, search savings
are attained via a “divide and conquer” approach
to reasoning. A domain and problem description
(its actions, definitions, goals, preconditions, and
any other constraints or properties) are divided up
into regions. Semantically, regions define the precise
“scopes of interaction” between domain properties
and actions. Each region consists of a subset of the
overall set of actions and the various properties and
goals that pertain to those actions.’ The localiza-
tion structure of a domain is then used to break the
planning space into a set of smaller reasoning spaces
(each constructing a plan for a particular region)
and to determine how these spaces are searched. In
191, a localized search algorithm is described, along
with analytical and empirical results that demon-
strate how exponential savings in search cost can be
achieved.

This paper comparea the relative strengths of lo-
calization and abstraction as heuristics for reduc-
ing planning search cost. In particular, localization
is shown to subsume abstraction; localization can
model abstraction “levels,” but also provides a more
flexible framework for domain partitioning, with a
broader range of planning benefits. Section 2 begins
with a characterization of the planning search space
and the relative search benefits achievable via local-
ization and abstraction. Section 3 then provides a
description of the localized reasoning frameworks of
two planners - GEMPLAN [6, 7, 8, 91 and COL-
LAGE, a new system that builds upon the ideas in
GEMPLAN. Analytical and empirical results that
describe the cost savings attainable by utilizing lo-

‘Problem reduction (translation of a goal into subgoals)
may also be used to decompose a planning problem [l]. How-
ever, this kind of technique may more properly be viewed
as a problem solving method rather than a search reduction
technique, though search savings may occur as a result.

1 1 2

https://ntrs.nasa.gov/search.jsp?R=19960047159 2020-06-16T03:24:49+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42776538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

calization are also summarized, as well as tradeoffs
in its use. Next, Section 4 shows how localization
can encode the various commonly used methods of
abstraction. Finally, Section 5 concludes with fur-
ther discussion of the strengths and weaknesses of
the two techniques.

2 The Planning Search Space
Consider a search space in which each node is asso-
ciated with a plan and each arc is associated with a
plan-construction operation that transforms a plan
into a new plan (typically via the addition of actions,
relations, or variable bindings). Such a tree directly
reflects plan-space search, but can also be mapped
onto state-space search. In the latter case, the plan
P associated with a node is mapped onto the “state”
reached after executing P, and each arc operation is
mapped onto the action (i.e., the reasoning the plan-
ner must perform in order to add that action) that
takes it from one state into the next state. Given this
characterization of planning search, we can see that
the cost of both state-based or plan-based search can
be improved in a t least three ways:

1. Lowering speration cost - i.e., reducing the
cost of each arc or plan-construction opera-
tion. Since most planning algorithms are NP-
complete in the size of the plan, reducing plan
size is one way of lowering operation cost.

2. Operation ordering - Le., choosing a good or-
der in which to apply plan-construction opera-
tions. Goal-ordering is one example of this, as
are other heuristics for determining how a plan-
ning space is searched. A good operation or-
dering may result in less backtracking, but may
also improve solution quality.

3 . Reducing implicit search space size, typically
by lowering the branching factor of the search
space. Of course, decreasing necessary back-
tracking via operation ordering may reduce how
much of a space is actually searched. But limit-
ing the applicable operations at each node a b
solutely reduces the total size of the space.

Both localization and abstraction may be viewed
as problem-solving heuristics for reducing planning
search cost. Alternatively, they may be viewed as
ways of reformulating or recasting a planning prob
lem so that the cost of search required to solve that
problem is reduced. Abstraction techniques explic-
itly break the problem-solving process up into “ab-
straction levels.” At each level, more information is
added into the problem definition (e.g., actions are
decomposed or preconditions are added) to create a

more complex planning problem. Since abstraction
levels inherently control the order in which pieces of
the problem are tackled, it is a heuristic for operation
ordering. In earlier stages of the reasoning process,
only “higher” level operations, which involve high-
level actions or conditions, are applied. This set is
expanded as the problem and domain definition is
expanded. Although abstraction also initially lim-
its the set of applicable operations at each search
node, an inherent reduction of applicable operations
is not a guarantee of the abstraction technique once
the domain is fully expanded. Rather, it is the job
of abstraction-derivation techniques to form abstrac-
tion hierarchies that guarantee properties like mono-
tonicity [4], which limit interaction between the ac-
tions and states of the various abstraction levels.

Rather than dividing a problem definition into ab-
straction levels, localization divides a problem ac-
cording to the inherent scope of its actions, proper-
ties, and goals. A particular localization or domain
decomposition provides a planner with a semantic
definition of the scope of all domain actions and
properties. Each region may be viewed as a “scope”
of reference, with an associated set of actions, defi-
nitions, goals, etc. As a result, a localization can be
used to determine which domain actions and prop-
erties interact, and which are independent. Local-
ization then forms a valid basis for partitioning the
planning search space into a set of smaller spaces
(one for each region), for focusing the application of
plan-construction operations to specific pieces of the
plan, and for triggering those operations at appro-
priate times.

Moreover, unlike abstraction, localization can be
used to encapsulate domain information based on
any criterion, not just “abstractness.” The r e
gion divisions are based on the particular qualities
and scopes of the domain rather than a particu-
lar “abstraction-inducing” technique such as oper-
ator or state abstraction. Thus, abstraction-based
localizations might be used, but also physically-
based, process-based, or temporally-based partition-
ings, which may be more compelling.

Finally, and perhaps most importantly, localiza-
tion allows for domain regions that overlap and in-
teract. While it is often difficult to attain a clean
partitioning into abstraction levels (often resulting
in a collapse of levels or a great deal of interac-
tion between levels), localization embraces the no-
tion that real-world decompositions cannot be neatly
decomposed and will naturally entail regional over-
lap. Thus, the localization technique explicitly pro-
vides methods for coping with regional interaction.

In terms of the potential search benefits described
above, localization can achieve all three:

113

1.

2.

3.

3

We

Plan-construction operations are applied to
much smaller regional plans. Thus, localization
reduces operation cost. While abstraction may
provide a way of initially working on smaller
plans at higher levels of abstraction, ultimately,
the scope of the planning algorithms becomes
the most detailed plan. Thus, abstraction does
little to partition the scope of reasoning and
does not inherently improve operation cost.

The localized search technique directs search
flow so that only “relevant” operations are a p
plied at each point in the reasoning process (Le.,
those operations relevant to regions whose plans
have been modified). Thus, localization con-
trols operation ordering.

Since only region operations are applicable at
each region search node, localization reduces
search space size by limiting the branching fac-
tor at each search node.

Localized Representation
and Reasoning

now exdain the localization techniaue by de-
scribin its ‘instantiation in two localized plariners,
GEM8LAN and COLLAGE. In both systems, a
region R is defined by a region description:
< actiona(R),definitionr(R), conrtraintr(R),rrbngionr(R)>

Each region R is associated with a search tree,
t r e e (R) , whose role is to construct a plan, p l a n (R) ,
that satisfies all regional constraints, given available
actions and definitions. Each plan is a partially or-
dered set of actions. The set a d i o n s (R) defines
a set of action types which are considered to be-
long directly to R and instances of which may occur
within p l a n (R) . (Note that p lan(R) may also in-
clude actions belonging to subregions of R .) The
set defini t ions(R) includes any definitions pertain-
ing to activity in p l a n (R) . The set cons t ra in t s (R)
includes “constraints” that must be satisfied by
plan(R) . Finally, subregions(R) consists of regions
belonging to R.2

The regions comprising a domain may take on any
structural configuration - they may be disjoint, form
hierarchies, or even overlap. Semantically, a particu-
lar decomposition defines the scope of domain prop
erties; the scope of each definition and constraint
associated with R is p l a n (R) - which may be com-
posed only of actions in R and its subregions. It
is the role of the domain describer to ensure that

Section 3.1 describes the relationship between “MtiOM,
definitions, and constraints” and more traditional p l d n g
representations.

these scoping semantics are correct; the planner as-
sumes that they are. The only required criterion for
domain decomposition is that each constraint and
definition belong to a region that includes at least
the entire “scope of applicability” of that definition
or constraint (but possibly more).

As an example, consider the small construction
domain depicted in Figure 1. It has been partitioned
into regions that include the activities of an electri-
cian and plumber. These regions include subregions
that contain activities at specific walls. Each wall
region would be associated with definitions and con-
straints that are relevant only to the actions that can
take place at that wall. In contrast, electrician (or
plumber\ definitions pertain to all activity directly
within e . f r ic ian (plumber) , as well as all activ-
ity a t i t - %-all subregions. Since wallA is shared
by the rrician and plumber, both the electri-
cal and rnbing constraints apply to the activity
within I ..:A. The constraints directly associated
with wai. + itself would probably include those re-
lating to coordination of the plumber and electrician
activities a t that wall. The figure also shows search
trees for these regions. Each tree is concerned with
building a plan for its region that satisfies all re-
gional constraints. The planning process may thus
be viewed as a set of “mini-planners,” tied together
by the structural relationships between regions.

electrician 1

elecbician plumber

A A

Figure 1: A Localized Construction Domain

3.1 Localizing Traditional Planning

One important distinction between the planning r e p
resentation of GEMPLAN and COLLAGE and
that of traditional planners is the encoding of do-
main information in terms of “actions,” “defini-
tions,” and “constraints” rather than STRIPS-like

Represent at ions

1 1 4

operator descriptions. One reason for this is that it
allows domain information to be more easily local-
ized. In a traditional planning representation lan-
guage, an “action description” is bound up with ac-
tion preconditions and effects. The “definition” of a
particular state predicate is essentially a side-effect
of the set of action descriptions within the domain
and is thus “distributed” throughout the domain
description. Whether or not a literal P is true at
some point in the plan is determinable by examining
the actions within the plan, along with their defined
preconditions and effects, and seeing whether they
“combine” to achieve P. The goals that a traditional
planner attempts to achieve are a combination of
user-provided top-level goals and subgoals that are
posted to fulfill action preconditions.

In contrast, the GEMPLAN/COLLAGE frame-
work separates the definition of actions from their
preconditions and effects. Action-type definifions are
simply descriptions of the action types themselves -
an action “name” with a set of parameters. For in-
stance, in a blocks world domain, pick(block) would
define an action type, an instance of which is pick(a) .
A state predicate is defined separately by an explicit
predicate definition. In the GEMPLAN implemen-
tation of the blocks world, the following definition
of c lear(B) is used:3

s t r ips-der i n i t ion(clear(B1 ,
Caddrr(pick(Y) ,oa(Y,B)),
adder(put(B,-).trur),
deleter(put(,,B) ,true)
deleter(pick(B),trur)l).

A predicate definition includes a list of conditional
adder and deleter descriptions. The first parameter
of “adder” or “deleter” is an action type which adds
or deletes the predicate, under the condition in the
second parameter. For example, an action of type
p i c k (Y) adds c lear(E) if on(Y, B) is necessarily true
just before it, p u t (E , -) always adds clear(B), and
put(-, B) or pick(B) always delete clear(B). Sepa-
rating predicate definitions from actions descriptions
allows actions and predicates to be individually lo-
calized (see Section 4). It also makes conditional
effects easy to describe; for example, that an action
adds a particular literal P in some contexts and an-
other literal Q in others.

In the GEMPLAN/COLLAGE framework, ac-
tion preconditions and top-level goals are also de-
scribed as separate entities - they are explicitly de-
fined as constraints. For example, in the blocks
world domain description, we have:

3Capitalized tokens (or the character “-‘I) represent vari-
ables. Lowercase is used for constants. Thus, notation of the
form p i c k (X) or pick(-) is used to denoteany pick action with
a single parameter.

constraint (precondition(pick(B) , clear(B))
constraint (precondition(put (X , B) , clear(B))

Such constraints can be easily localized. Also, note
how the separation of precondition constraints from
predicate definitions clearly distinguishes between
necessary action preconditions and those conditions
utilized only for describing conditional effects.

Given a framework of actions, definitions, and
constraints, planning may be viewed as “constraint
satisfaction” rather than backwards and/or forwards
chaining on state-based goals and conditions. In
GEMPLAN and COLLAGE, a “constraint” is
simply any property that the planner knows how
to test and make true. The standard STRIPS-based
algorithms form only a subset of the possible meth-
ods of plan construction in GEMPLAN and COL-
LAGE - many other kinds of constraint forms and
satisfaction algorithms are provided by the two sys-
tems. Any of these constraint forms may be used
to encode domain properties, and all constraints are
appropriately scoped by the localization structure of
a domain. Thus, in many ways, both systems may be
viewed aa general constraint-based reasoners rather
than strictly as planners.

3.2 Localized Search
Once a domain has been localized, its regional struc-
ture guides how localized search is performed. As
described earlier, each t r ee (R) is concerned with
constructing a plan(R) that satisfies constraints(R)
given actions(R), de f i n i t i ons (R) , and the actions
and definitions of all subregions (and subsubregions,
etc.) of R. Each tree node is associated with the re-
gion plan constructed up to that point in the search,
and each tree arc is associated with a plan modifi-
cation that transforms a region plan into a new re-
gion plan. Upon reaching a node, the planner must
choose which region constraint to check next. (Thus,
an implicit branching factor in the search space is
the set of all region constraints at each node.) If the
chosen constraint is not satisfied by the plan at that
node, constraint satisfaction algorithms must be a p
plied, resulting in a set of new region plans at the
next level down in the tree. A constraint satisfac-
tion algorithm typically adds new actions, relations,
and variable bindings to a region plan, and may also
generate new subregions. For example, in order to
satisfy a precondition constraint, one option is to
add an action and appropriate relations that estab-
lish that action as an “adder” of the precondition.

Because it is partitioned into regional search trees,
localized search is more complicated than the tradi-
tional global search utilized by most planners. The
localized search algorithm described in [9] has two
basic functions: (1) global correctness: making sure

115

that all constraints that need to be checked are
checked and that appropriate shifts occur between
between regional search spaces; and (2) global con-
sistency: making sure that all of the plan fragments
being constructed (especially those shared by more
than one super-region plan) are consistent with each
other. This second function is much like that of a
distributed database and is ensured by updating all
relevant plans for ancestor regions of R, each time
search exits from t r e e (R) . Global correctness is
ensured, first, by making sure that all regions are
searched at least once, and second, by making sure
that search eventually occurs for a region R when-
ever R’s plan has been affected by some previous
plan modification. GEMPLAN uses a fixed strat-
egy for controlling search flow and consistency main-
tenance, but COLLAGE allows for more flexible
approaches.

calized search control may be
viewed as a TMS e strategy for maintaining con-
straint satisfaction - only “affected” constraints
need to be rechecked. Unlike a true TMS, however
(which also tries to capture “what affects what”),
domain localization is a broad-brush heuristic strat-
egy that need not be accompanied by perpetual
and expensive reasoning to update those dependen-
cies. The domain decomposition provides a “cut” at
defining scope and interactions; the planner uses it,
but never needs to verify it or update it. In this re-
spect, localization provides the same level of heuris-
tic information as abstraction, providing a “useful”
partitioning of domain information. However, local-
ization can encapsulate information based on many,
perhaps mixed, criteria. Some regions may c a p
ture physical structures, others may reoresent pro-
cesses, and others may represent absrrxtion hier-
archies within these or overlaid with :sese. For in-
stance, the construction domain of Figure 1 includes
regions that are physically-based (the walls) as well
as those that represent contractor “processes.” One
might view localization aa having the ability to cap
ture both “horizontal” &s well aa “vertical” decom-
position.

In some sense.

3.3 Localized Search Benefits and
Tradeoffs

In [9] a detailed complexity analysis is provided that
highlights the potential benefits and tradeoffs of lo-
calized search. That paper also provides some ini-
tial empirical results that support this theoretical
analysis. This section summarizes these benefits and
tradeoffs.

Since the cost of localized search for a partic-
ular domain is very dependent on the particular
constraints, structure, and problem specification for

that domain, the ‘general” complexity analysis de-
scribed in [9] was performed on a somewhat ideal-
ized domain scenario. The search cost of a global.
non-localized domain was compared with that of the
same domain, partitioned into a set of m subregions
each of which overlaps by some factor L with an-
other region g. An original set of n, constraints was
partitioned among these m+ 1 regions. Table 1 sum-
marizes provides the results of this analysis. Com-
plexity results were calculated assuming that all con-
straints were either constant, linear, quadratic, or
exponential in cost relative to the size of the plan.
The table also compares the cost of best-case or
worst-case search. Best-case measures the cost of
one path through the search space (no backtrack-
ing), and worst-case mea-f:res the cost of the entire
potential space. The terr.: 3 is the size of the final
plan. The term nf is the number of potential fixes
for each constraint. Finally, C is the cost of main-
taining consistency, which is assumed to be O(mzk).

These results show that localized search is nearly
always better than non-localized search - in most
cases much better. The only exceptions are
constant-complexity best-case search (when there is
no reduction in the amount of the space searched
nor in constraint algorithm cost) or when the cost
of consistency maintenance overshadows the cost of
the search. The amount by which localized search
wins over non-localized search is proportional to m
(the amount of decomposition), but inversely pro-
portional to mk (the amount of overlap). Thus, in-
creased decomposition is always worthwhile, except
for the cost of increased overlap. The gains of local-
ized search become exponential as the complexity of
the constraint algorithms increases and the amour
of the space actually searched increases. These gar
come from three sources, which correspond direc:~,.
to the three factors described in Section 2:

1. The cost of each arc - Le., operation cost. Even
if the absolute size of the non-localized and
localized search spaces are the same, expen-
sive constraint algorithms are applied to much
smaller plans in the localized case.

2. The seamh heuristics provided by localization -
Le., operation ordering. Because of the seman-
tic information provided by a localized domain
description, the most relevant constraints tend
to be applied at the right time, enabling a re-
duction in the amount of the search space that
actually needs to be searched.

3. The size of the search space - i.e., branching
factor reduction. This is- because only regional
constraints are relevant at each node.

116

~~ ~

Table 1: Complexity Results

Empirical tests were also carried out which bol-
ster these results. In [9], several decompositions
of a building-construction domain were compared,
as well as the effects of varying the size of the ac-
tual building plan constructed. In this domain, con-
straint cost was fairly low (close to linear for most
constraints) and there was no backtracking. Even
so, the search cost of the best localization was less
than 50% of the non-localized domain configuration.
The results also show that increased localization pro-
vides increased benefit, except for the added expense
due to increased regional overlap. However, as also
predicted by the complexity results, the detrimental
effects of increased overlap become overshadowed as
plan size and search space size increases.

One of the focuses of the COLLAGE project is
to flesh out our understanding of localized search by
performing many more controlled experiments. The
new COLLAGE search control architecture features
a constraint-activation and consistency-activation
agenda mechanism that allows for various aspects
of the search strategy to be easily modified and re-
configured. Using this architecture, we plan to test
a suite of search strategies over a suite of prob-
lem types that vary in the amount of backtrack-
ing required, constraint algorithm difficulty, as well
as domain localization structure and problem size.
Finally, we also hope to come up with a localiza-
tion learning approach that automatically discov-
ers domain-dependent and domain-independent 10-
calization heuristics.

4 Modeling Abstraction With
Localization

In order to model traditional planning-based ab-
straction methods in a localized framework, we must
create “levels” of reasoning, representing incremen-
tally more detailed descriptions of the domain. Re-
ferring to the characterization of a region description
in Section 3, we can see that this can be achieved by
incrementally adding regions and/or subregion links,
constraints, action types, and definitions. The ad-
dition of this information can be done by a special
search step that introduces the next “level” of rea-
soning. Both GEMPLAN and COLLAGE already

incrementally add regions during planning, and both
systems access relevant domain information in such a
way that makes incremental addition of other types
of information trivial to acc~mmodate .~ In addition,
the incremental addition of subregion containment
relationships adds an interesting “twist” to the types
of abstraction levels attainable; a region may be ini-
tially visible to some super-regions and then incre-
mentally become a subregion of additional regions,
resulting in “mix-and-match” levels of abstraction.

4.1 Operator Abstraction
+- lntwnultlon r d d d to tom I now Iwd of rbmtncllon

plumb.r-lntmtlona

wn#pr*W

Figure 2: Operator Abstraction
One of the constraint forms available in GEM-

PLAN and COLLAGE is the decompose con-
straint, which requires that actions of a specified
type be [conditionally] decomposed into one of a
set of possible patterns of interrelated subactions.
Operator abstraction can be modeled in a localized
framework by incrementally adding such action de-

‘All domain informationaccessed by the plan-construction
operations is represented and accessed in plan-relative fash-
ion. As a result, new constraints, actions, regions, and def-
initions can be “added” to a plan and thus become newly
accessible to the reasoning mechanism.

117

composition constraints and, optionally, incremen-
tally adding regions which contain the subactions at
the “next level down.” Different degrees of interac-
tion between “levels” may be achieved, depending
on the localization configuration used.

Figure 2 provides three sample configurations
for modeling operator abstraction in the construc-
tion domain of Figure l.5 In all three cases, an
install action of the plumber is decomposed into
two subactions at a lower level of detail, prep
and inser t . In configurationi, no wall sub-
region exists. Instead, operator abstraction is
achieved by simply adding a decompose constraint
to plumber. In configuration?, the subaction
types prep and insert and a subregion wallC con-
taining them are also added, thus creating a new
level that includes new action types and a new
subregion. In coni iguration3, region wallC con-
tains the decomposition constraint and subactions,
but overlaps with plumber only at the point of
the higher level action instal l . Note how, in
configuration?, the lower-level actions in wallC
become subject to plumber’s constraints, introduc-
ing potential interaction between “abstraction lev-
els.* In coni iguration3, this interaction does not
exist except at region plumber-inlentions. If only
region plumber adds install actions, no planning
interaction will occur once region wal lC is added
(i.e., there will be no need to recheck the constraints
in plumber) , thereby guaranteeing monotonicity in
the reasoning process. For more discussion of mane
tonicity and related properties, see Section 5. Also
note how, in general, constraints may refer to actions
at mixed levels of detail. Unlike many hierarchical
planners, GEMPLAN and COLLAGE allow both
actions and their subactions to be present within a
plan simultaneously.

4.2 State Abstraction
A localized framework can also model state ab-

straction in several ways, depending on the desired
effect. In Figure 3, three possible configurations are
given in which various preconditions and definitions
affecting the install action and its subactions are
incrementally added. Coni igurat ion1 illustrates
how action preconditions (or top-level goals) can be
added on a per-action basis, by simply incremen-
tally adding precondition (or goal) constraints. If we
wished a specific predicate to be completely unavail-
able until a certain “abstraction level” (achieving a
“partitioned hierarchy” [4]), is predicate definition
and all precondition or goal constraints that utilize
that predicate would not be added until that “level”

5The constraint syntax used in Figures 2 and 3 har been
simplified for illustrative purposes.

Figure 3: State Abstraction

in the reasoning process is reached. Another option
is to incrementally add available “lower level” action
types that have been defined to be adders or deleters
of a predicate. In this way, action effects (rather
than just -reconditions) may be incrementally added
to the :.- :.a of reasoning. In coni iguration2, a lit-
eral cis . l :e cannot be “deleted” until the lower-
level act . - -, type prep is added to the domain. This
next level also includes a new precondition for visual-
ok (unused-sile), as well as a new definition for
unused-site based on the lower level actions prep and
inser t .

One can achieve a strict, noninteracting par-
tition of predicates and actions into levels (i.e.
monotonicity), by utilizing the strategy depicted
in configuration3. Here, the new region wallC
is added which contains a new precondition con-
straint, actions, and definitions a t the next level
down. In this case, region wal lC overlaps with re-
gion plumber rather than being strictly contained
within it. Thus, if we adhere to a regimen in which
only region plumber adds actions of type install
(and only region wal lC can add actions of type prep
and inser t) , a strict separation of effect would be
achieved - changes within region wallC would nor,
trigger search within plumber, thereby guaranteeing
monotonicity.

118

5 Discussion dered monotonicity, or those used by Christensen [2],
could also be used within a localization framework.

But an advantage of using a localized framework
is that it can be used to capture much more than ab-
straction. Depending on the domain, physically- or
process-based localizations might reap even greater
search benefits than abstraction-based localizations.
Even though “levels” of reasoning can be modelled,
they form only a small portion of the structuring
capabilities of localization. While properties such
as ordered monotonicity may be useful, they come
at a price. Since monotonicity requires noninterac-
tion between levels, it may result in a collapse of
the hierarchy. Indeed, this might be fairly common,
since real-world problems rarely lend themselves to
pure refinement strategies. In a localized framework,
there is no need to collapse levels or regions into each
other if they are not strictly independent. A local-
ization need not be organized hierarchically and does
not necessarily have to engender separate planning
“phases.” Interactions are handled as a basic mech-
anism of the search process which directs the flow of
reasoning, without necessarily invoking backtracking
into a “previous level” of reasoning. Finally, in a lo-
calized framework, actions, definitions, constraints,
and regions may be incrementally added in flexible
ways. “Levels of detail” may be mixed among con-
straints. The addition of subregion relationships can
incrementally and selectively increase the scope of
constraints.

Of course, just as for abstraction, the trick is to
find a good localization that reaps as many search
benefits as possible. As discussed earlier, a research
focus in COLLAGE is automatically learning such
localizations. The key is to find a decomposition
that balances decomposition and interaction. In-
creased decomposition results in finer-tuned local-
ization of constraints, but also results in increased
regional overlap and accompanying increases in con-
sistency maintenance costs and potential “thrash-
ing” between regional search spaces. The tradeoff
between locality and overlap mirrors the abstraction
tradeoff between increasing the number of abstrac-
tion levels and increasing the amount of interaction
between levels.

Admittedly, the cost of dealing with regional over-
lap and the complexity of localized search is a limita-
tion of the localization technique. Because abstrac-
tion simply partitions the search into ever-growing
levels of detail, it can still use global search meth-
ods. The management of regional search in a local-
ized framework requires more work. Other problem
reformulation techniques may also be more feasible
in an abstraction-based framework, where the prob
lem may be “reformulated” before search proceeds at
each level. However, this might also be accomplished

The primary point of this paper has been to show
that localization is more general than abstraction -
it can capture the same kind of heuristic informa-
tion, but can also express other forms of encapsula-
tion, with potentially greater benefits. This section
discusses the impact of localization on such prop
erties as monotonicity and tries to shed some light
on other plusses and minuses of localization and ab-
straction.

In [4], several properties are described that pro-
vide a useful basis for the formation of abstrac-
tion hierarchies. These include the upward solu-
tion property, monotonicity, and ordered monotonic-
aty. By constructing abstraction hierarchies in a
way that ensures these properties, guarantees can
be made about the completeness of an abstracted
search space and the amount of backtracking that
will be necessary. In particular, the upward solution
property guarantees that decomposing the problem
into abstraction levels will not remove completeness
from the search space. Monotonicity properties ad-
ditionally remove the need to backtrack into higher
levels of the reasoning space.

If localization is used to represent abstraction,
what effect does this have on these properties? Does
strictly controlling the ordering of constraint appli-
cation remove possible solutions? Once actions, con-
straints, and regions are added into the domain spec-
ification, will backtracking to a point in the reason-
ing space before this addition be required? These
are precisely the kinds of questions that localization
addresses. A localization structure captures the de-
fined semantics of interaction between actions and
constraints. If two constraints do not apply to the
same pieces of the growing plan, they do not inter-
act and their relative constraint ordering does not
make a difference. Likewise, if actions, constraints,
or regions incrementally added to the planning prob
lem do not cause triggering of previously defined
constraints, a pure .refinement strategy is possible
- no backtracking will be necessary. And even if
the regional configuration of a localization does not
by itself guarantee independence, search heuristics
(that encode knowledge about such guarantees) can
be used to block unnecessary backtracking or con-
straint rechecking.

In sum, if localization is used to capture exactly
and only the forms of abstraction available in the
various systems outlined in [4], then localization
will manifest the same properties as those systems.
Guarantees about such things as monotonicity are
a function of the abstractions or localizations cho-
sen for a specific domain. The techniques used by
Knoblock [3] to learn abstractions that guarantee or-

1 1 9

in a localized framework via incremental modafica-
tion of domain constraints, actions, and definitions.

Finally, localization is also applicable to other
kinds of tasks. Localization can be used to encap
sulate any kind of domain information - not just
STRIPS preconditions, goals, and action decompo-
sition. The technique can be used by any kind of
reasoning that can be cast in terms of constraints a p
plied to a partitionable frame of reasoning. Methods
based on localized search have already been incorpo-
rated into a scheduler [13], another planner that uses
abduction as the primary plan-construction mecha-
nism [lo], and an image understanding framework
[14]. Localization can also aid replanning and plan
reuse. If certain pieces of a plan become faulty
during run-time, !ocalization provides a good first-
cut at which pieces of the plan can be reused and
which consrraints must be rechecked. Localization-
based replanning and reuse is another focus of COL-
LAGE.

Acknowledgments
Thanks to Steve Minton, Rich Keller, Andrew
Philpot, Peter Riedland, John Allen, Smadar
Kedar, Mark Drummond, and the referees who have
reviewed this paper for their useful comments and
encouragement.

References
Bresina, J., Marsella, S. and C. Schmidt. “Pre-
dicting Subproblem Interactions,” Technical
Report LCSR-TR-92, LCSR, Rutgers Univer-
sity (February 1987).

Christensen, J. “A Hierarchical Planner that
Generates Its Own Hierarchies,” in Proceedings
of the Eighth National Confennce on Artificial
Intelligence (AAAISO), Boston, Massachusetts,

Knoblock, C.A: “Learning Abstraction Hierar-
chies for Problem Solving,” in Seventh Inter-
national Workshop on Machine Learning, pp.

pp. 1004-1009 (1990).

923-928 (1990).

Knoblock, C.A., Tenenberg, J.D., and Q.
Yang. “A Spectrum of Abstraction Hierarchies
for Planning,” Proceedings of the 1990 Work-
shop on Automatic Genemtion of Approzima-
tions and Abstractions, Boston, Massachusetts,
pp.24-35 (1990).

Korf, R.E. “Planning as Search: A Quantita-
tive Approach,” Artificial Intelligence (33,1),
pp. 65-88 (1987).

Lansky, A.L. “A Representation of Parallel Ac-
tivity Based on Events, Structure, and Causal-
ity,” in Reasoning About Actions and Plans,
M. Georgeff and A. Lansky (editors), Morgan
Kaufmann, pp. 123-160 (1987).

Lansky, A.L. “Localized Event-Based Reason-
ing for Multiagent Domains,” Computational
Intelligence Journal, Special Issue on Planning
(494) (1988).

Lansky, A.L. “Localized Representation and
Planning,” in Readings in Planning, J. Allen, J.
Hendler, and A. Tate (editors), Morgan Kauf-
mann (1990).

Lansky, A.L. “Localized Search for Multiagent
Domains,” Proceedings of the Twelfth Inter-
national Joint Conference on Artificial Intelli-
gence (IJCAI-91), Sydney, Australia, pp. 252-
258 (1991).

Missiaen, L. “Localized Abductive Planning for
Robot Assembly,” in Proceedings of the 1991
IEEE Confennce on Robotics and Automation,
pp. 605-610 (April 1991).

Sacerdoti, E. “Planning in a Hieararchy of Ab-
straction Spaces,” Artificial Intelligence, 5, pp.
115-135 (1974).

Wilkins, D.E. Practical Planning, Morgan
Kaufmann Publishers (1988).

Personal communication with M. Zweben about
the YXSA Ames AI Research Branch schedul-
ing y ~ w . t .

Persc-.:i1 communication with Framentec A p
plied .Lrtificial Intelligence Group, Cedex 16,
92084 Paris La Defense, France.

120

