
F- Tong

Reformulating Constraints for Cornpilability and
Efflciency

Chris Tong, Wesley Braudaway, Sunil Mohan, and Kerstin Voigt
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

Abstract
KBSDE is a knowledge compiler that usee a
classification-based approach to map solution con-
straints in a taek specification onto particular
search algorithm components that will be respon-
sible for satisfying those constraints ‘-,y., local
constraints are incorporated in generat: 14’ global
constraints are incorporated in either .ba*ters or
hillclimbing patchen). Associated with each type
of search algorithm component is a subcompiler
that specialisea in mapping constraints into com-
ponents of that type. Each of these subcompil-
em in turn una e classification-baaed approach,
matching a constraint p d to it against one of
several schemes, .and applying a compilation tech-
nique associated with that schema.
While much progene h a occurred in our research
since we first laid out our classification-bad a p
p r o d [TonSl], we focus in this paper on our re-
formulation research. Two important reformula.
tion issuer that arise out of the choice of a schema-
based approach are:

Compilobility. Can e constraint that does not
directly match any of a particular subcompiler’s
schemaa be reformulated into one that doea?

If the efficiency of the compiled
search algorithm depends on the compiler’s per-
formance, and the compiler’r perforxnance de-
pends on the form in which the constraint waa
expressed, can we find forma for constraints
which compile better, or reformulak constraints
whose forma c m be recognized as ones that
compile poorly?

In this paper, we deecribe a set of techniques we
are developing for partially addressing these is

0 EfFciency.

sua.

Introduction
Because we have described KBSDE more extensively
elsewhere [TonSl], our introduction to the basic idem
behind KBSDE will be relatively brief.

Room lengths murt be at leaat 8invalu~i.
R o o m widths m w t be at least rinValu.2.
Rooma mart be imide the doorplan.
Rooms m a t be adjacent to the floorplan
boundar j .
R o o m muat not overlap. (NONOV)
The room murt completelj fill the i I00rp1~

(MINL)
(MINW)

(ADJ)
(INS)

(FILL)
i space.

Figure 1: Constraints on house floorplans

Task specifications. KBSDE accepts task spec-
ifications that can be expressed in the form: I Syntherte(i : I , o : 0) I P(o) I

where i is the input defining a particular problem,
o is a candidate solution, 0 (the type of the object o
to be synthesized) definea the space of candidate solu-
tions, and P(o) h a predicate on o that must be sat-
isfied. P(o) is expreaeed aa a conjunction of simpler
constraints.

Many design t m h can be specified in this r. .-.iier.
- - r example, the specification for a simple hous >or-

inning task might look like:

Syntheriae(< 1 : houaeLength, w : housewbdth,
n : NbtRooma >, f p : Floorplan)
I AcceptableFloorplan(f p)

where AcceptableFloorplan(f p) is the conjunction
of the constraints listed in Figure 1.

Algorithm descriptions. KBSDE’s top-level clas-
sification partitiom the conjoined constraints in P (o)
into (mutually exclusive) subeets Pi(.) of constraints,
where each subat in to be satisfied by a distinct al-
gorithm component (either a constrained generator, a
tester, or a hillclimbing patcher). Prototype heuristics
for assigning constraints to algorithm components are
discussed in [TonSl].

One example of a partitioning of the constraints in
Figure 1 among a set of algorithm components is:

154

https://ntrs.nasa.gov/search.jsp?R=19960047164 2020-06-16T03:24:57+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42776533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Synthesize(< 1 : H Length, w : H Width,
n : N b ~ s >, f p : Floorplan)

Generate(8 I MINL(fp) A MINW(fp)

if Test(fp I NONOV(fp) A FILL(fp)) fails

Return(fp).

AINs(fp) A ADJ(fp));

then Patch(f p 1 NONOV(fp) A F I L L (f p)) ;

The intended semantics of this syntax is: generate an
s; if the tested constraints fail, then try to patch; if
patching fails, chronologically backtrack to the gener-
ator. Later references to Tests in this paper are in-
tended to have the same semantics with respect to test
failure and backtracking to preceding generators.

Algorithms themselves can be partitioned across wv-
era1 levels of abstraction. For example,

Syntherbe(< 1 : Htength, w : HWidth,
n : NbrRoorns >, f p : Floorplan)

Generate(< 01 : area(Roorn), ...,
an : area(-) >);

Test(< (11, ..., an >I 1 z w = a1 + aj + ... + an);

high level

low level

For i = 1 to n.do
Generate(ri : I MINL(ri)

A M I N W (r i) A INS(ri)
AADJ(r,) A Area(pi) = ai);

. m s (f p) +< r1, ..., rn >;
if Test(fp I NONOV(fp) A FILL(fp)) fails

Return(fp).
then Patch(fp I NONOV(fp) A FILL(fp));

Constraints are thus partitioned across levels M well M
across the algorithm components within each level. In
addition, inter-level constraints (such as Are+) =
ai) are dynamically posted to ensure that a solution
generated at the next level down is a refinement of the
solution at the current level.

Reformulating constraints for
incorporation into generators

The RICK subcompiler (the subject of Wes Braud-
away’s Ph.D. work [BraSlb, Bragla]) of KBSDE s p a
cializes in incorporating local solution constraints c
into generators of all instances s of a given type T.
The result ia a constrained generator, whose computed
range of vdues is guaranteed to include only those in-
stances of T that satisfy c; this is typically accom-
plished by either changing the lower or upper bounds
of the range, or pruning out inconsistent values and
caching the remainder. Note that T can be non-
numerical, and hierarchical in structure (e.g., a rect-
angular floorplan is composed of rectangular rooms;

each room is defined in terms of 4 parameters: <

Compilabilit y
The structure mismatch problem. The generator
structure of a an algorithm is its internal organization
of generator components. Different generator struc-
tures can be constructed for the same task. Some gen-
erator structures do not allow the incorporation of all
constraints. We refer to this as the structure mismatch
problem.

The structure mismatch problem is actually a family
of problem, as illustrated in Figure 2, which indicates
all the activities involved in RICK’S process of design-
ing a constrained generator. Each such decision ((a)
through (h)) can be ‘bollixed” by its own unique struc-
ture mismatch problem. For example, decision (a) -
partitioning requirement8 - takes a set of requirement8
R(s) and decides which will be treated as local, type-
defining constraints T(s), which will be considered as
semi-local constraints C(s) on interfacing parts of s,
and which will be considered global constraints P(s);
which constraints can be treated M type-defining de-
pend on the known datatypes.

The RICK subcompiler aaoids the structure mis-
match problem associated with decision (e) (the
choice of low-level object structure), decision (g) (the
choice of composition architecture), and decision (h)
(the choice of control flow) by using a least commit-
ment approach to top-dom refinement of the genera-
tors that is constrained by the constraints to be incor-
porated [BraSlb].

Thus for thesea decisions, RICK avoids the need for
a reformulation-bd approach to the structure mi+
match problem. However, RICK doea require reformu-
lation for a particular special case of decision e) which
we now deocribe.

Reformulation to eliminate terminological mis-
match between constraint and generator. If a
constraint c refers to an object obj that is semanti-
cally a dynamically generated part of solution o (e.g.,
the poinb inside rectangle R) but that does not appear
syntactically aa a part or parameter of o (according
to the given type definition T), then c cannot be di-
rectly incorporated into the generator of all instances
of type T (since the hierarchical structure of the gen-
erator procedure is directly lifted from the syntactic
structure of T). Incorporation is enabled by using re-
formulation techniques that reexpress c solely in terms
of the defined partr and parameters of T.

For example, constraint INS, ‘Room must be inside
the floorplan”, might originally be expressed aa “If a
point is inside a room, than that point is also inside
the floorplan” :
VR, P[[Room(R) A Point(P) A z (~ w (R)) 5 z (P)

I, y, 1 , w >).

5 z(ne(R)) A ?/(3w(R)) I Y(P) I ?/(ne(R))I +

[x(sw(fborplan)) 5 z (P) 5 z(ne(fhrp1an))A

1 5 5

Knowledge Level
Decisiona

I
(a) Partitioning Requirement.

0 (k) Terminology

1 .
(d) Generator Order

(e) Low-level Structure

0 (g) Composition
Architecture

Function Level
0 (h) Control Flow Decisions

Component (I
Test Artifact

Components Candidate

Figure 2: Design decisioxu defining a family of atructure mismatch problem

I

156

y (s w (f l m p l (4) I Y(P) 5 y(ne(fl-plan))Jl
The problem is that T, the part decomposition for

objects of type Floorplan, does not include points P
in the interior of a room. The RICK system uses the
transitivity of the '5" relation to hypothesize a plau-
sible reformulation of the above constraint that does
not refer to points P, and instead, simply constrains
the extreme points of room R:
VR[Room(R) +

[z(sw(floorplan)) 5 z (s w (R)) I z(ne(floorplon))A

z(sw(fIoorplan)) 5 z (ne(R)) 5 c(ne(flmp1an))A

RICK then uses a standard theorem-proving technique
to verih that this hypothesized reformulation is a nec-
eaaary condition for the original constraint.

Reformulation by eliciting simplifying assump-
tions. Because RICK usee the simplex method to
check the consistency of a set of constraints (a neces
sary step along the way to constructing a constrained
generator satisfying those constraints), all such con-
straints must ultimately be expressible in a linear alge-
braic form in order for compilation to proceed. Some-
times, however, constraints that could be reformulated
ae linear Constraints depend for their reformulation
upon knowledge not available in RICK's knowledge
base.
For example, in our house floorplanning example,

floorplane and room are defined to be rectangular.
Rectangles in general need not be aligned horizontally
or vertically in the Cartesian plane; thus, the type def-
inition for a general rectangle will have aeeociated the
nonlinear constraint:

y (s4 f l -p lon)) I y(sw(R)) I y(ne(fl-pJan))A

y (a w (f l m p l a 4) I y(ne(R)) I y(ne(flootplan))ll

[z (nw(R)) - z(sw(R))I * [z(se(R)) - 4 4 R)) J =
[y (nw(R)) - Y (M R)) I * [y (=(R)) - Y (M R)) I
However, were RICK to know that:
z(nw(R)) = c (sw(R))
i.e., we can consider the rectangle to be vertically
aligned with the y axis, then because (non-degenerate)
rectangles also have the associated constraint:

the constraint could be reduced to the linear con-
straint:

Le., "the rectangle is horizontally aligned with the x
axis."

If at any point, compilation eomea to a halt b e
cause the only constraints left to compile are nonlin-
ear, RICK consults the user, by presenting a list of
plausible simplifying assumptiom. These simplifying
assumptions are generated by heuristics that examine
a nonlinear constraint and consider what would have
to be true in order for it to be reducible to a linear con-
straint. Thus if (z - y) appears in a product, 'e = y"

Y (4 R)) < y (n N R))

y(se(R)) = Y(SW(R))

would simplify the constraint if it were true; if z y ap.
pears in a sum, c = l / y would simplify the constraint.

The generation (and selection/verification by the
user) of such simplifying assumptions is intended to
mimic the form of mathematical reasoning, "Without
loss of generality, let us aseume ...". The user is in-
volved in this process because, in general, actual verifi-
cation of such simplifying assumptions requires knowl-
edge that is not available in the system's knowledge
base.

Emciency improvement
RICK's task is to construct, for a given constraint c(o),
where o is of type T, a constrained generator of objects
of type T that are guaranteed to satisfy c. Thus, no
matter how it chooeee to represent solutions or incor-
porate the constraint, if RICK fully incorporates c into
the generator, the set of solutions generated will always
be the same. Since RICK does not reason about 'low-
level" imuea such as choice of data structure for solu-
tions, the primary iaaue regarding efficiency is whether
the constructed constrained generator - which sequen-
tially produces all the members of the set {o 1 c(o)} -
is producing duplicate candidate solutions in that se-
quence.
One reformulation technique used by RICK to help

reduce the construction of redundant solutions is based
on knowing that if RICK is p d a constraint of the
form:

it will "operationalize" this by constructing generators
for object8 x and y, generate one object first (say, x),
and then construct y to be an exact copy of x. RICK
avoids this undesirable behavior by looking for such
constraints, forming their logical contrapositive (ex-
cept for the type-defining terms), and then reexprese-
ing the constraint in a canonical form.
For example, the NONOV constraint, 'Rooma must

not overlap", might originally be expressed 88:

VR1, R2, P[room(Rl) A r m (R 2) A point(P)
AstrictlyInside(P, R l)h
strictlyInside(P, R2) 4 R1 = R2]

vz, y[P 4 2 = 91

The contrapositive is:
VR1, R2, P(room(R1) A r m (R 2) A R1 A point(P)

AR1# R2 -+ - strictlyInside(P, R1)V - strictlyInside(P, R2)]
which is then put in canonical form:
VR1, R2, P[room(R1) A room(R2) A R1 A point(P)

Ast+ictlyInsi&(P, R1)
ARl # R2 +- strictlyZnsi&(P, R2)]

Reformulating constraints for more
efficient function evaluation

The MENDER subcompiler (the subject of Kerstin
Voigt's Ph.D. work [VTSS]) of KBSDE specializes

157

in incorporating global constraints c into hillclimb.
ing patchere; these patchers take a candidate solu-
tion s that faib test c, and iteratively modifies 9. one
parameter value at a time, in such a way that im-
provement occurs with respect to an evaluation func-
tion f. f is constructed by MENDER so that there
is some value k such that when hillclimbing reaches
f(s) >_ k, c(s) is simultaneously satisfied. For exam-
ple, the FILL constraint, “The room must completely
fill the floorplan space” is completely satisfied when
f(s) = HLength * HWidth, where f(s) is the number
of 1x1 ‘unit tiles” in the floorplan that are covered by
room.

MENDER handles those global constraints that can
be viewed as resoume assignment problems (RAPS)
involving assigning a fixed set of resource units to a
dynamically generated set of consumer8 in a specified
way. For example, the FILL constraint can be viewed
ad a RAP wherein the the resources are unit tilea in
the rectangular floorplan, the consumers are rectangu-
lar room and the required assignment is that each re-
source unit be assigned (at least) one consumer. (Note
that other constraints such aa NONOV and INS en-
sure that each resource unit is assigned ezactly one
comumer.)

Compilation ia baaed on a taxonomy of resource
wignment problem schemtw, where what is varying
acr- the achemu i. the nature of the assignment
(onateone, onto, etc.) h c i a t e d with each d e m a
is a method for constructing an evaluation function a p
propriate for that kind of RAP. Thua the schema for
an “onto” assignment (such as FILL) haa an associated
evaluation function which counts the total number of
resource units “covered” by consumers in a particular
state.

Efficiency improvement
The RAP schemae can be organized into a specializcr.
tion lattice. More specialized achemas have more con-
straints on the mignment; becauee, therefore, more in
known about such RAPS, they ale0 often have more ef-
ficiently evaluatable functions. For example, the moet
specialized RAP, where the relation between resource
units and consumers is “onat+one” and “onto” (e.g.,
as between unit tiles in the floorplan and unit tiles in
the room rectangles), can take advantage of the fact
that all the consumen mu& have tuwociated resource
units assigned to them. (The nature of the overall
search algorithm architecture in which the hillclimbing
patcher is embedded guaranteea that the patcher wil l
be p d a candidate solution that satbfk the “on&
to-one” constraint, though not neceassrily the ‘onto”
constraint.) It further relies on the common occurrence
of a strictly hierarchical structure in the consumer or-
ganization (e.g., the consumer unit tiles are grouped
into rectangular room). On the basis of these facts,
the associated evaluation function can count the t 6
tal number of “covered” resource units by counting

the total number of assigned consumer units, which
is the same aa summing the s u e s of the (mutually
exclusive) consumer group into which the consumer
units are partitioned. Thus, if the FILL constraint
were viewed as an instance of this RAP schema, the
associated evaluation function would add the amas of
the placed room (which are architecturally gauranteed
to be inside the house and non-overlapping).

Such specialized schema match a conjunction of
constraints (e.g., the most specialized RAP matches
FILL A INS A NONOV). Initially, a global constraint is
completely successfully matched against one of the less
specialized RAP schemas. Each of the specializations
of the RAP &ems constitutes 8 potential reformu-
lation opportunity. Such an opportunity is processed
in a goal-directed fashion, in the sense that domain-
specific instances of the additional constraints which
must also be true to match the more specialized RAP
schema are then sought mong the conjunct8 of P(o)
(or -raven to be antecedents for P(o)).

Reformulating constraints for designing
abstraction levels

The HiT subcompiler (the subjeet of Sunil Mohan’e
Ph.D. work [MohSl]) of KBSDE specializer, in divid-
ing the s w c h algorithm architecture into two or more
leveb (if two, they are called the “base level” and the
“abstract level”). Each of these leveb has an asso.
ciated reaKh algorithm, configured from (comtrained)
generatom, testem, and hillclimbing patchera (see, e.g.,
the earlier twdevel example).

A (generally global) constraint P(s) can serve as the
baa& for constructing an abstraction level in the follow-
ing em: An abtraction function mapping solutions
s into abstractions f(s) is constructed (e.g., f might ab
stract a ”room” into a “room area”). An abstract gen-
erator Generate(i input,a:range(f)) can ther. be con-
struct+‘ which a-r:*rates dl elements a in ‘.le range
of f(8) - nbstracted into test P’ LI, which
is appi. able to wscract candidate solutions. Thus
one o56bble searcn d orithm for the abstract level is:

Generate(i : anput, o : tonge(f)); z Teat(o I P’(o))

HiT currently ia organized around two echemas r e p
resenting constraint types whose very form maker, it
easy to construct an abatraction function:

.‘(a) can

1.

2.

A n c t i o n a l constmink: P(F(8)). B d on such a
constraint, the abstract level generates { z 1 z =
F(u)} and the base level is then responsible for en-
suring that P(refinement(2)) holds.
Disjunctive con-
stmink: Vs, t[sdution(s) A prtZ”ype(t, 3) -I Vp :
T[port(p, u) -* P l (p) V P2(p) V ... V Pn(p).]] The ab-
stract level generator selects one of these disjuncts
to be true by fiat (Le., it poets the disjunct as a con-
straint). The base level must then construct an s

that satisfies that disjunct.

C ompilab ility
Reformulating a constraint into disjunctive
form. Several general rules are used to carry out this
reformulation (some of which are similar to those used
to transform a predicate logic assertion into conjunc-
tive normal form). These include: “Move negations in-
ward”, “Reformulate the expression as a disjunction”,
and ‘Remove variables that refer to non-solution ob-
jects.=

Using these transformations, a constraint such ad
NONOV:

For all pairs of room R1 and R2, it is not that
the caae there exists a point p that is both inside
room R1 and inside some other room R2.

or:
VR1, RZ[Room(Rl) A Room(R2) A R 1 # R2 +

is eventually re-expressed as:
VR1, R2[Room(R1) A Room(R2) A R1# R2 -+

[- L(R1, R2)V - B(R1, R2)
V - R(R1, R2)V - A(R1, RZ)]]

- (3p[InsZde(p, R1) A Inside(p, R2)])

where the predicates are defined aa follows:
L(R1,RS): The x coordinate of the right side of R1
is lees than or equal to the x coordinate of the left
side of R2.
B(Rl,R2): The y coordinate of the top side of R1 is
l m than or equal to the y coordinate of the bottom
side of R2.
R(Rl,R2): The x coordinate of the left side of R1
is greater than or equal to the x coordinate of the
right side of R2.
A(Rl,R2): The y coordinate of the bottom side of
R1 is greater than the y coordinate of the top side
of R2.
At this point, the constraint matches the ‘disiunc-

tive constraint schema” and HIT can now proceed to
construct an abstract level where, for every pair of
room < Rl , R2 >, one of the four above relationship
is generated as a constraint to be satisfied.

Emciency improvement
Deriving composition laws for the disjunctive
case. As is readily noticed, picking topological rela-
tione at random between pairs of room is not likely
to very rapidly converge on an abstract solution that
is actually concretely realizable.

Fortunately, because the predicates of disjuncts can
be viewed as defining relations, we can sometimes ex-
ploit known or provable properties of relations such
as transitivity, reflexivity, or symmetry. Such proper-
ties can be viewed more constructively aa composition
rules. Thus for the L(R1,RZ) relation, the following
two composition rules can be shown to hold:

hns i t iva ty .
L(R1, R3).
No reflen’vaty. L(R1, Rl).
These composition laws can then be made opera-

tional in several ways, including: incorporating them
into the abstract generators using RICK; using them
to dynamically prune the ranges of the abstract gener-
ators; using them as abstract tests (supplementing the
original test).

If L(R1, R2) and L(R2, R3), then

Discussion and conclusions
summary
In this paper, we have briefly described a number of re-
formulation techniquen for use during knowledge com-
pilation, either to make constraints compilable in the
first place, or to put them in a form that compiles into
a more efficient search algorithm. The reformulation
techniquen described here are schema-specific; match-
ing of a constraint to a given subcompiler’s schema can
be aided by a reformulation technique, or a constraint
that (already) matches a particular schema can be put
in a form (possibly one that matches another schema)
that will allow it to be more efficiently satisfied.

Implementation a tatur
At thio point, the reformulation techniques discuseed
for use in the RICK subcompiler have been impla
mented; the onea associated with the MENDER and
HIT subcompilers are the subject of ongoing research.

Related work
Antecedent derivation. A schema-specific approach
to schema-matching is usefully contraated with a
general-purpose approach, such aa Smith’s antecedent
derivation method [Smi82]. One difference (we believe)
is that the ‘antecedent derivation” process for a given
schema can be restricted to using a specified (small)
set of inference rules associated with that schema. A
second difference is that in some eaeee, our schema-
specific reformulation technique is a “normalization”
proem that worb in the forward direction (e.g., to
put a constraint in a disjunctive form).

DRAT. Like KBSDE, another schema-oriented ap-
proach that is more specialized than Smith’s an-
tecedent derivation method is Van Baden’s DRAT sys-
tem [BD88]. KBSDE’e target is an efficient generate-
test-patch architecture: in contraat, DRAT’S target
is an efficient (object-oriented) forward-chaining the-
orem prover. Both system take e classification-
baeed approach to assigning specified constraints to
schemas. However, KBSDE’s schemaa correspond to
generic search algorithm components such as gen-
erator or patcher types, whereas DRAT’S schema
correspond to (efficient implementations for) generic
forward-chaining rules.

159

In KBSDE, ‘incorporating a constraint” in a con-
strained generator me= that the constraint need no
longer be represented explicitly in the problem solver:
the generator is guaranteed to only produce accepr-
able solutions. Similarly, in DRAT, ‘capturing a con-
straint” in a rule implementation ale0 means that that
constraint need not be explicitly mentioned in the
problem solver. KBSDE’s ideal is to incorporate all
constraints in a single (hierarchically organized) con-
strained generator, which produces completely correct
solutions in polynomial time. Since thia ideal ia sel-
dom achieved (it would require finding a solution r e p
resentation in which all constraints are localizable to
solution parts), KBSDE haa a set of fallback strata
gies: incorporate the ‘leftover” global constraints in a
patcher, in new abstraction levels, or (least preferred)
in a tester.

DRAT’S analogue to our reformulation techniques
for enabling compilability is called concept introduc-
tion; by considering alternative formulacions for one
of the taak’s concepts, DRAT can mmetimea find a
representation that allowe more constraints to be c a p
turable. A process called operationalization then tries
to capture the ‘leftover”, uncaptured constraints by
writing procedures and using these to further special-
ize the already selected repreaentatiom.

Code optimkation..Our reformulatiom aesociated
with efficiency improvement are similar in spirit to
intermediate code optimization in standard compiler
technology, in the wnee that such optimirationa are
done: (a) a t a level of abstraction higher than the tar-
get level (in our case, reformulating constraints into
other constrainta); and (b) baaed on a thorough knowl-
edge of how the compiler to the target level works.

Research directiona
The wt of reformulation techniquea presented here is
under development. Some of the a r e a still in need
of further development are: techniques for reformu-
lating constraints to match RAP de- ; techniques
for matching the functional constraint achema; tech-
niques for improving the efficient proceasing of funo
tional constraints; and an elaboration of how to best
exploit derived composition laws for newly constructed
abstraction levels.

Admo.*ledgcmentr
I am grateful to Mark Shirley and Rob Holte for

reviewing an earlier draft of this paper. I am esw
cially grateful to my Spiritual Teacher, Sri De Avab-
hasa. The research reported here waa supported in
part by the National Science Foundation (NSF) un-
der Grant Numbem IRI-9017121 and DMG8610507,
in part by the Defense Advanced Rescarch Projecta
Agency (DARPA) under DARPA-funded NASA Grant
NAG2-645, in part by the DARPA under Contract
Number N00014-85-K-0116, and in part by the Center
for Computer Aids to Industrial Productivity (CAIP),

Rutgers University, with funds provided by the New
Jersey Commission on Science and Technology and by
CAIP’e industrial members. The opinions expressed
in this paper are thoee of the authors and do not re-
flect any policies, either expressed or implied, of any
granting agency.

References
J. Van Baalen and R. Davis. Overview of an approach
to representation design. In Pmceedangr of the AAAI,
pages 392-397, St. Paul, MN, August 1988.
W. Braudaway. Automated synthesis of constrained
generators. In M. Lowry and R. McCartney, editore,
Automating Software Deragn. AAAI Press, 1991.
W. Braudaway. Knowledge compilation for incorpo-
rating constrainb. PhD thesis, Rutgers University,
New Brunswick, NJ, December 1991.
S. Mohan. Constructing Hierarchical Solvers for
Functional Constraint Satisfaction Problem. In
Proceedings of the AAAI Spring Symposium, New
Brunswick, NJ, Spring 1991. Also available aa
AI/Design Project Working Paper #172.
D. R. Smith. Derived preconditions and their use in
program synthesis. In D. W. Loveland, editor, Pro-
ceedingr of the Skth Conference on Automated De-
duction, pages 172-193. Springer-Verlag, New York,
1982. Lecturea Notes in Computer Science 138.
C. Tong. A dividaand-conquu approach to knowl-
edge compilation. In M. Lomy and R. McCartney,
editors, Automating Softwarn Derigm AAAI Press,
1991. Also available aa Rutgem AI/Design Project
Working Paper #174.
K. Voigt and C. Tong. Automating the construction
of patchers that =tidy global constraints. In Proeeed-
ingr of the Eleventh International Joint Conference
on Artificial Intelligence, pages 1446-1452, Detroit,
MI, August 1989.

160

