NASA Contractor Report 198315

Validation of Aircraft Noise Models at Lower Levels of Exposure

Juliet A. Page, Kenneth J. Plotkin, Jeffrey N. Carey, and Kevin A. Bradley Wyle Laboratories, Arlungton Virginia

Contract NAS1-20103

June 1996

National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001

TABLE OF CONTENTS

																		Page
1.0	INTRO	DUCTIO	N.					•	•		•	•	•	•	•	•	•	1-1
2.0	FORM	ULATIO	N OF I	NOISI	E M	ODE	LS		•	•				٠	•		•	2-1
	2.1	Line So	urces				•											2-1
	2.2	Flight S	Segmen	its .														2-3
	2.3	Turns																2-4
	2.4	Lateral	Attenu	ation														2-5
	2.5	Other I	Elemen	ts .	•			•		•			•			•	•	2-5
3.0	ACOU	STIC M	EASUR	EMEI	NT F	PROC	RAI	M								•		3-1
	3.1	Airport	Selecti	ion .		•							•			•	•	3-1
	3.2	Measu	rement	Site S	Selec	tion					•		•	•				3-1
	3.3	Noise N	Monitor	Insta	ıllatio	on ai	nd Ir	nstr	ume	enta	atior	1.		•	•	•	•	3-5
4.0	MEAS	UREME	NT PRO	OGRA	M E	EXEC	CUTI	ON				•						4-1
5.0	DATA	ANALY	SIS .				•			•							•	5-1
	5.1	Data S	ources				•											5-2
	5.2	ARTS I	IIA Dat	a Ana	alysis	s .												5-9
	5.3	Correla	ation W	ith N	oise :	Even	ıts				•						•	5-14
	5.4	Flight '	Track a	ınd Pı	rofile	Mod	lelin	g			•	•	•	•	•			5-14
		5.4.1	B-727	INM	Mod	eling	Met	hod										5-16
		5.4.2	B-747	INM	Mod	eling	Met	hod	١.								•	5-20
		5.4.3	B-757	INM	Mod	eling	Тес	hnic	que		•						•	5-20
		5.4.4	B-767	INM	Mod	eling	Met	hod	١.						•			5-20
		5.4.5	DC-9	INM N	Mode	ling '	Tech	niq	ue							•	•	5-25
		5.4.6	DC-10	INM	Mod	leling	g Teo	hni	que	: .			•		•	•		5-27
	5.5	Profile	Modeli	ng		•			•		•						•	5-27
	5.6	Statist	tical An	alysis	s of C	Corre	late	d No	ise	Eve	ents		•	•			•	5-29
6.0	SENS	ITIVITY	STUD	Υ.		•				•	٠	•						6-1
7.0	CONC	CLUSION	NS .				•	٠				•						7-1
REFE	ERENCE	S																R-1

		TABLE OF CONTENTS (Continued)	Page
APPEN	IDIX A:	Detailed Descriptions of Data Subsets Used in Sensitivity Analysis	A-1
APPEN	IDIX B:	Correlation Data, Organized by Aircraft Type, Operation Type, and Monitoring Site Location	B-1
		LIST OF FIGURES	
Fig. <u>No.</u>			Page
2-1	Geometry	of Nominal Overflight Measurement	. 2-1
3-1	Noise Mon	nitoring Locations at Dulles International Airport	. 3-4
4-1	Noise Mon	nitor Sample Summary Report, Site 12, December 12, 1994	. 4-2
4-2	Sample In	terval Report, Site 12, 5-7 December 1994	. 4-4
4-3	Sample Ex	xceedance Report, Site 12, December 12, 1994	. 4-6
4-4	Sample Ti	me-History, B-727 Departure at Site #1	. 4-8
5-1	Daily Aver	rage Weather Report for November 1994	. 5-3
5-2	Monthly A	werage Weather Report for November 1994	. 5-4
5-3	Hourly We	eather Report for 23 November 1994	. 5-5
5-4	Partial Fli	ght Track Listing, B-727 Departure	. 5-8
5-5	Sample Fl	light Track, DC-10 Departure	. 5-12
5-6	Sample Fl	light Track, B-767 Arrival	. 5-13
5-7	Sensitivity	y Analysis Flight Tracks, All Aircraft and Operation Types	. 5-15
5-8	B-727 AR	TS and INM Arrivals and Departures	. 5-17
5-9	B-727 Alti	itude Profile, Arrivals	. 5-18
5-10	B-727 Vel	ocity Profile, Arrivals	. 5-18
5-11	B-727 Alt	itude Profile, Departures	. 5-21
5-12	B-727 Vel	locity Profile, Departures	. 5-21
5-13	B-747 AR	TS and INM Arrivals and Departures	. 5-22
5-14	B-757 AR	TS and INM Arrivals and Departures	. 5-23
5-15	B-767 AR	TS and INM Arrivals and Departures	. 5-24
5-16	DC-9 ART	S and INM Arrivals and Departures	. 5-26
5-17	DC-10 AF	TS and INM Arrivals and Departures	. 5-28
6-1		ictions Compared With Field Measurements, ated Data	. 6-2

LIST OF FIGURES (Continued)

Fig. <u>No.</u>				Page
6-2	Accuracy Versus Aircraft Altitude at Point of Closest Approach, All Correlated Data		•	6-2
6-3	Accuracy Versus Slant Range at Point of Closest Approach, All Correlated Data	•		6-3
6-4	Accuracy Versus Elevation Angle at Point of Closest Approach, All Correlated Data	,	•	6-3
6-5	Accuracy Versus Aircraft Speed at Point of Closest Approach, All Correlated Data		•	6-5
6-6	Accuracy Versus Average Fleet Age for Correlated Noise Events	,		6-5
	LIST OF TABLES			
Table <u>No.</u>				Page
3-1	Noise Monitoring Locations Near Dulles International Airport		•	3-2
3-2	Distance From Runway Threshold to Monitor Site	,	•	3-3
4-1	Hourly Sound Levels Measured at Site #12, 24 October to 31 October 1994			4-5
4-2	Summary of Continuous Noise Monitoring, Dulles International Airport, 24 October to 15 December 1994	•		4-7
5-1	Dates of Available Radar Coverage and Data File Sizes		•	5-7
5-2	Final Subset Analysis Dates		•	5-10
5-3	INM Stage Length Definitions		•	5-11
5-4	Final Subsets for Sensitivity Studies	•	•	5-14
5-5	B-727 Arrival Power Profile Comparison	•	•	5-19
5-6	Modeling Technique Comparison for B-727 Departures at Site #5 .	•	•	5-19
5-7	B-767 Approach Modeling Sensitivity: Actual Versus Nominal, Site #1		•	5-25
5-8	Linear Regressions	•	•	5-29
6-1	Sample Analysis, North/South Runway	•	•	6-6
6-2	Sensitivity of INM Predictions With B-747 Airframe/Engine Combinations for Arrivals on Runway 19R			6-7

•	

1.0 INTRODUCTION

Noise levels around airports and airbases in the United States are computed via the FAA's Integrated Noise Model (INM) $^{1.2.3}$ or the Air Force's NOISEMAP (NMAP) 4 software. Many other countries use these or similar software. These models are generally used to compute day-night average sound level (L_{dn} , or alternatively DNL) in the vicinity of the airport. The "vicinity" usually means areas exposed to L_{dn} of 65 dB or greater. At medium to large airports, this corresponds to distances within 6 to 9 miles from the runway threshold. The noise models were developed and validated for use within these areas. In previous studies, the predictive capabilities of INM and NMAP have been validated within the 65 dB L_{dn} contour line at a number of airports.

There is increasing interest in aircraft noise at larger distances from airports. Community planning and environmental assessments sometimes consider L_{dn} 's as low as 60 or 55 dB. There are also issues of enroute noise, away from the vicinity of airports. These are situations beyond the original intent of these models. Accordingly, a project was undertaken to evaluate the applicability of INM and NMAP at larger distances. This study was centered on a measurement program around a major air carrier airport. Measurements included the sound exposure levels and sound time histories of individual aircraft, plus acquisition of radar tracking data for these aircraft. Measurement sites included locations out to the limits of the 55 dB L_{dn} contour. This represents distances two to three times as large as those associated with the 65 dB L_{dn} contour.

The measurement program was conducted in the context of the algorithms of the noise models. There are several potential areas where the current models might not be adequate. They are:

- 1. Modeling of the location, speed, and engine power of the aircraft.
- 2. Data base of noise emissions as a function of power, speed, and distance.
- 3. Algorithms which were originally developed for long, straight flight segments.
- 4. Atmospheric effects.
- 5. Effects of terrain and ground cover.

Not all of the factors listed above could be controlled or measured. In particular, the following factors were not controlled:

- The data base of noise emissions is based on extensive measurements collected as part of certification. It cannot be reasonably examined as part of a modest program. However, by its nature of being derived from this level of measurements, there is no reason to expect any systematic problems.
- In the absence of direct measurements of power, power was assumed to correspond to the standard values in the INM database profiles.

The following factors were controlled:

- Aircraft flight paths, speeds, and types were obtained from radar tracking, and were therefore known.
- Surface weather data were collected. Analysis concentrated on days with low wind conditions.
- Aircraft weights were estimated from stage lengths, as determined from flight itineraries.
- The selected airport, and measurement sites, were in a semi-rural area with flat (and fairly nondescript) terrain.

Section 2 of this report presents a summary of the major algorithms used in INM and NMAP. Sections 3 and 4 present the measurement plan and its execution. Section 5 presents analysis of the measurements. Section 6 presents the results of the measurements and algorithm analysis. Conclusions and recommendations are presented in Section 7.

2.0 FORMULATION OF NOISE MODELS

2.1 Line Sources

Both INM and NMAP are semi-empirical models, with the fundamental data source being measured noise levels from straight, constant power overflights. For civil aircraft, these data are usually collected by the manufacturers as part of noise For military aircraft, these data are usually collected by certification tests. personnel from military laboratories. Figure 2-1 is a sketch of the basic geometry of an overflight. It is typical that data are collected at a single distance d. preferred value of distance d (which usually corresponds to the height above ground) is 300 meters (1.000 feet). Tests of military aircraft are usually conducted at this preferred altitude. The height for civil aircraft tests range from 100 meters (330 feet) to 800 meters (2.625 feet), corresponding to requirements of certification tests for various aircraft types. It is standard practice to collect full analog recordings of overflight test sounds, and to reduce these data into one-third octave bands at 0.5-second (or finer) intervals. Recording and analysis procedures for civil aircraft are specified by regulation. Measurements are made for a variety of speeds, power settings, and aircraft configuration. The specific test matrix depends on the particular aircraft. Tests include, as a minimum, takeoff and approach power.3

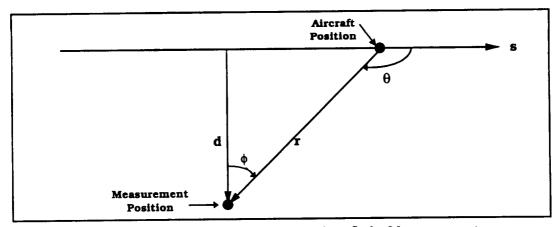


Figure 2-1. Geometry of Nominal Overflight Measurement.

Noise from an overflight at a given condition is represented by the sound exposure level:

SEL =
$$10 \log_{10} \frac{\int_{t_1}^{t_2} p_A^2(t)dt}{p_{ref}^2 t_{ref}}$$
 (2-1)

where $p_{A}^{2}(t)$ is the time-history of the A-weighted sound pressure squared, p_{ref} is the reference sound pressure level (20 μ Pa) and t_{ref} is the reference time (one second). The integration is conducted over time period t_{1} through t_{2} which encompasses the noise event; this usually corresponds to the time when the noise is within 10 dB of its maximum.

The noise models require tables of SEL at a geometric sequence of distances (for INM, 80, 100, 125, ... meters; similar sequence in feet for NMAP). These tables are contained in the INM database, generally having been prepared by the manufacturer for standard temperature and humidity conditions. NMAP's data base contains SEL and spectra at the 300-meter (1,000-foot) reference distance, and the table is prepared for user-specified temperature and humidity by one of its component programs, Omega 10.

Reference 3 specifies two general procedures for preparing SEL at distances other than the measurement condition: the "integrated procedure" and the "simplified procedure".

In the integrated procedure, spectra at each 0.5-second analysis interval are organized according to the emission angle, θ in Figure 2-1. For each required distance d, the corresponding radius r at each θ is computed. The one-third octave band spectrum for each point is then adjusted by inverse square law and air absorption, with the distances for both effects being based on the measurement-condition r vs, the r required for the table. The A-weighted sound pressure from this adjusted time history is then integrated per Equation (2-1), with the time base adjusted to account for the effective time intervals no longer being 0.5 second.

In the simplified procedure, inverse square law and air absorption changes are made only for the spectrum at the maximum sound level, with the propagation adjustment based on measured versus required d. This difference is applied to the reference-distance SEL. Additionally, a "duration factor" consisting of 7.5 times the

common logarithm of the ratio of measured versus required d is applied. The duration factor accounts for the noise emanating from a line source, versus the point source implicit in the adjust-by-d-only propagation adjustment.

With regard to the simplified procedure, it is interesting to note that a duration adjustment with a factor of 10, not 7.5, is correct for cases of no air absorption, cases of air absorption following an exponential decay law, or air absorption following a power law (whole or fractional power). Air absorption in a given frequency band follows an exponential decay law. The attenuation of the A-weighted level is somewhat more complex, because the spectral shape changes. The empirically derived factor of 7.5 apparently reflects this effect. The empirical factor may also be influenced by the analyzed data being only that within the A-weighted 10 dB down points, rather than a true complete line source time-history.

Reference 3 specifies that (assuming full spectral data are available) noise table values are to be prepared by the integrated procedure at distances up to 800 meters, and by the simplified procedure at distances greater than 800 meters. The tables are prepared using reference temperature and humidity.

NMAP's data base consists of SEL and the spectrum of the maximum level, at 300 meters (1,000 feet), adjusted to reference temperature and humidity. During a NMAP run, the Omega10 module prepares a noise table using user-specified local temperature and humidity. Omega10 uses a procedure which is effectively the same as the simplified procedure, but with a factor of 6.0 (rather than 7.5) in the duration adjustment. Again, this factor of 6 is derived empirically.

Validation testing of this algorithm can be accomplished by ensuring a range of slant distances, especially including distances beyond 800 meters.

2.2 Flight Segments

Actual flight paths are represented by sequences of straight and curved segments. Each model deals with these segments by adjusting the infinite-length SEL according to the segment length and position.

Ideally, finite segment effects would be handled by a procedure similar to the integrated procedure of Reference 3. This is not possible because neither model contains the full database needed, and it would also entail impractical computation times.

Both INM and NMAP adjust for segmentation by integrating an idealized point source along the finite segment being considered, and normalizing it by an integration of the source along the full infinite track. This proportion is referred to as the noise fraction. NMAP assumes an omnidirectional source, with $1/r^2$ spherical spreading propagation loss. By itself, this would lead to a simple noise fraction of $\Delta \phi/180^\circ$, where $\Delta \phi$ is the net angle (as defined in Figure 2-1) subtended by the segment. To approximately account for air attenuation, a 1/r loss factor is assumed, yielding an approximate $1/r^3$ law and a noise fraction related to $\Delta \sin \phi$ rather than $\Delta \phi$. This is reasonable for segments where the point of closest approach is within the segment, but becomes decreasingly realistic for segments where the bounding ϕ s are large and in the same direction. Such segments are, however, generally not the major contributor to noise at a given point.

INM develops segment adjustments by considering a source with a fourth-power 90-degree dipole model. This is considered in Reference 1 to be a source represented by $\cos^2\phi/r^2$, but is mathematically exactly equivalent to $\cos\phi/r^3$ or to $1/r^4$. INM's form leads to a noise fraction with a factor $\Delta\phi + \Delta(\sin\phi \cos\phi)$, as opposed to the $\Delta\phi$ from for inverse square law or the $\Delta\sin\phi$ NMAP form. INM 4.11 used an approximate algorithm for this noise fraction, while the current version (5.x) uses the exact relation. INM also contains a refinement of applying a directivity factor when the receiver is ahead or behind a finite segment. As with NMAP's noise fraction, INM's finite segment adjustment is reasonable for segments astride the receiver position, but is based on a power-law propagation factor which is less reliable for segments far ahead or behind.

The noise fraction is an element which must be tested. The approach to testing this is to examine measurement situations which are adjacent to segment bounds, or to model track segmentation in alternate ways.

2.3 Turns

Curved flight segments are handled in slightly different ways by the two models. NMAP uses an analytic noise fraction form which exploits the $1/r^3$ noise source model. INM models turns as sequences of straight segments, with rules as to how much the corresponding secants can deviate from the originally specified arc. Testing this part of the models is an extension of segment testing.

2.4 Lateral Attenuation

Both INM and NMAP use relations that are essentially single-parameter fits to elevation angle. There is no adjustment for specific type of ground cover. The lateral attenuation models differ considerably from each other, and the supporting data for each has wide scatter. This is a weak point of both models, which is expected to be addressed in the future by more recent ground-impedance based models. It is expected that variance of measured versus predicted levels will increase at smaller elevation angles.

2.5 Other Elements

The effect of speed is handled the same way in both models: the noise emission is assumed to be independent of speed, so that SEL is adjusted inversely proportionally (proportionally in a decibel sense) to speed. Variation of speed on a segment is treated by procedures equivalent to linear interpolation between the segment end points. These details are intimately connected to segmentation, and empirical tests of the validity of segmentation are not likely to explicitly test these.

3.0 ACOUSTIC MEASUREMENT PROGRAM

A measurement test plan was developed such that maximum yield would be obtained from the flight test measurements. Airport site selection criteria were established and potential airports were identified. Final airport selection was made considering technical feasibility, availability of FAA radar tracking data, and program costs. Execution of the measurement program ensued after obtaining NASA approval.

3.1 Airport Selection

The following airport selection criteria were used to identify potential measurement locations:

- Medium- to large-sized airport with many operations.
- Mix of short-, medium-, and long-range aircraft.
- Availability of twin-, tri-, and four-engine aircraft.
- Stage 2 and 3 aircraft.
- Surrounding community with low background noise.
- Availability of ARTS radar data.
- Completed Part 150 study or source for existing low noise contours.

Dulles International Airport (IAD) fulfilled all of the requirements listed above, and given its close proximity to Wyle Laboratories' Arlington, VA offices, travel costs would be kept to a minimum.

3.2 Measurement Site Selection

Once IAD had been identified, preliminary measurement site selection was made considering the following:

- Expected L_{dn} noise contour locations.⁹
- Flight tracks based on projected seasonal weather conditions.⁹
- Likelihood and levels of background noise.
- Equipment security.
- Location accessibility.

An on-location survey of the proposed sites lead to the final selection. This survey identified specific locations and considered local noise sources such as automobile traffic, construction, schools, as well as site accessibility and security. Permission to install equipment from the land owners was obtained wherever feasible.

All noise monitoring sites were located within 9 nautical miles of Dulles International Airport in Loudoun County, Virginia. This includes the region that normally constitutes the airport "vicinity" for noise exposure analyses. Two general monitoring areas were selected based on projected seasonal runway usage: (1) north of Runway 01L; and (2) west of Runway 30. The monitors were placed in rural areas, within residential communities and farmland property. Tables 3-1 and 3-2 provide a description of each location.

Table 3-1
Noise Monitoring Locations Near Dulles International Airport

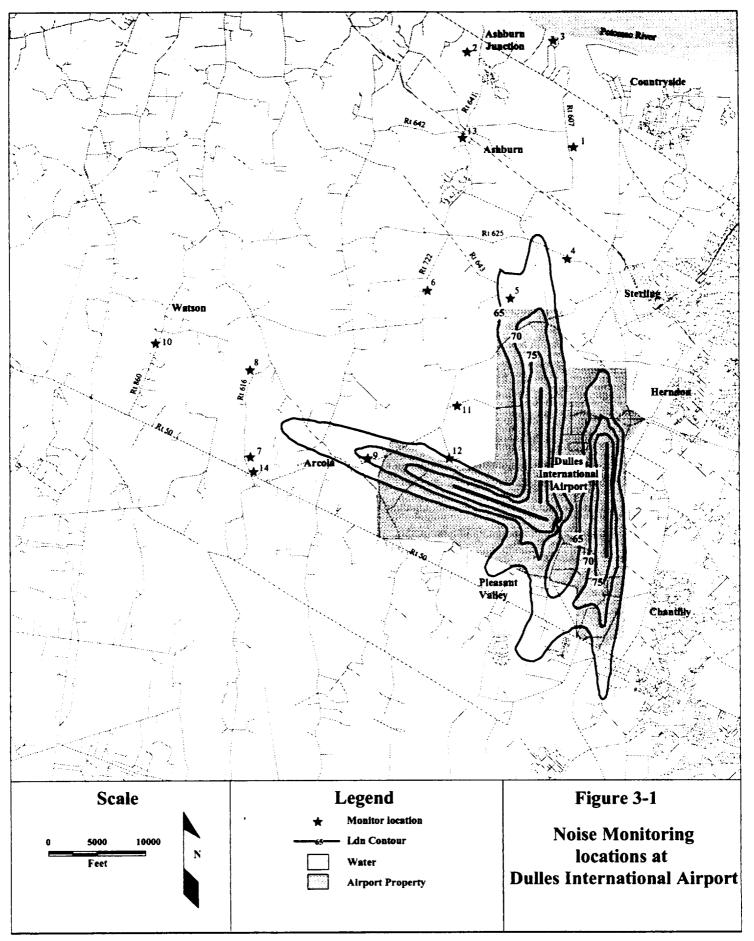

Site No.	Site Description	Location Relative to Airfield
1	Workled area at intersection of Route 607 and Beaverdam Run	North
2	St. David's Church, on Route 641 south of Ashburn junction	Northwest
3	Residential area at the end of Island Avenue in Potomac Farms	North
4	Wooded area at Intersection of Route 625 and Broad Run	North
5	Near intersection of Route 643 and gas pipeline, southeast of Ryan	North
6	Wooded area near intersection of Route 772 and gas pipeline, southwest of Ryan	Northwest
7	Horse farm on Route 616, 0.25 mile north of Route 50	West
8	Wooded area on Route 616, 1.5 miles north of Route 50	West
9	Near farm houses on Route 842, 0.5 mile east of Arcola	West
10	Farmland on Route 860, 1.5 miles north of Route 50	West
11	Residential area on Beaver Meadow Road, southwest of National Weather Service Center	West
12	Residential area at end of Beers School Rd. at airport property line	West
13	Residential area near intersection of Routes 641 and 642, in Ashburn	Northwest
14	Wooded area at intersection of Routes 50 & 616, 1 mile west of Glascock landing field	West

Table 3-2
Distance From Runway Threshold to Monitor Site (nm)

			Runway		
Site	01L	19R	1R	12	30
#01	6.02	4.13	6.95	6.03	6.31
#02	7.73	5.87	8.85	7.36	8.04
#03	7.93	6.04	8.90	7.80	8.23
#04	4.18	2.29	5.13	4.28	4.47
#05	3.56	1.71	4.72	3.37	3.87
#06	2.35	2.06	3.77	1.15	2.61
#07	5.04	5.04	6.33	3.58	5.21
#08	5.38	4.98	6.76	3.97	5.60
#09	3.14	3.11	4.50	1.71	3.34
#10	7.06	6.62	8.42	5.63	7.27
#11	2.17	1.51	3.58	1.32	2.46
#12	1.83	1.78	3.25	0.74	2.09
#13	2.08	1.42	3.49	1.29	2.37
#14	5.01	5.01	6.29	3.55	5.18

Figure 3-1 depicts a map of Dulles International Airport and vicinity with the current L_{dn} contours and the 14 noise monitoring locations. In most cases, the monitors were located outside the 65 dB L_{dn} contour footprint at varying distances from the nominal flight tracks. The geometric relationships between the monitoring locations and the nominal flight tracks ensured that noise measurements would be obtained for aircraft operating directly overhead and sideline, over a wide range of altitudes and elevation angles. Three sites were within the 65 dB L_{dn} contour.

It should be noted that use of the current L_{dn} contours in this report was for the purpose of providing a reference noise environment to aid in the selection of the noise monitoring locations. The L_{dn} contours shown in Figure 3-1 are a modified version of the current contours in that they were digitized from the original exhibit and registered in a geographic information system (GIS). These modified contours are a good representation of the originals so far as the shape and extent of the footprint; however, due to the digitization process, the contour lines are not as smooth as the originals. These contours should not be considered the official L_{dn} contours for Dulles International Airport nor should they be used for any land-use planning purposes. As Figure 3-1 indicates, most of the noise monitoring sites were located outside of the 65 dB L_{dn} contour, consistent with the main objective of the study: to examine the predictive capabilities of the INM at low-levels of exposure.

3.3 Noise Monitor Installation and Instrumentation

Noise monitoring was conducted during the period from 21 October through 15 December 1994, at the 14 locations around Dulles International Airport. Instrumentation at each site consisted of a Larson-Davis Model LD-820 sound level meter with a Bruel & Kjaer 4176 condenser microphone. This system is a battery-operated, digital storage, integrating sound level meter designed for unattended field use. For this program, the meters were programmed to measure and record the following information:

- 1. Hourly and daily mean, maximum, and minimum A-weighted sound levels, along with hourly and daily statistical summaries of A-weighted sound levels which were exceeded 1 percent, 10 percent, 50 percent, and 90 percent of the time. All measurable noise sources were documented in this fashion.
- 2. Time, maximum A-weighted sound level, sound exposure level, and duration of individual noise events which exceeded a set threshold; this varied with each monitoring station. This information was used to document the noise levels of individual aircraft operations.
- 3. Time-histories of A-weighted levels during noise events.

During the instrumentation setup, at each site, the meter threshold for measuring aircraft operations was determined according to the ambient noise levels along with the observed aircraft arrival and departure noise levels. In all cases the threshold was set approximately 10 decibels above the local ambient noise levels and below the maximum A-weighted sound levels of the observed aircraft operations. The instruments were secured in environmental cases and powered with external batteries which lasted approximately one week between charges.

4.0 MEASUREMENT PROGRAM EXECUTION

Each noise monitoring site was serviced every two to three days during the monitoring period. This schedule was sufficient due to the external battery life and the high memory capacity of the meters. A site visit consisted of checking the meters operational status, battery power, free memory, and the number of recorded exceedances. A calibration procedure was conducted to ensure the system was operating within tolerance. If the unit had acquired a large number of data records, all data were then downloaded to a portable computer for permanent retention and subsequent analysis. Records of these values, along with the time and date, were noted in a site log.

Immediately following field data collection, verification analysis examined the operational status of each noise monitoring system. The data collected at each monitoring location was printed out in several different reports including: a summary report (Figure 4-1) describing the system parameters; an interval report containing hourly integrated noise metrics and statistical levels; and an exceedance report* containing noise metrics associated with individual events, including calibration records. All data were received at each site, with few exceptions throughout the measurement period. Adverse weather conditions and final instrumentation adjustments precluded use of the measurement data before 24 October. No data were collected at Site 8 due to the instrumentation being stolen during the early part of the measurement program. At various times, local weather conditions precluded use of the acoustic data in the analysis. The conditions under which the data was screened are discussed in Section 5 along with the weather report format. All noise monitoring systems remained in calibration during the majority of the measurement period.

^{*} The instrument inappropriately uses the term "exceedance" to denote individual noise events. The nomenclature "exceedance report" or "exceedance record" is used as necessary in this report when referring to those instrument records. It should not be confused with exceedance percentile levels.

```
File: P121212
                                                         12-13-1994 11:52:40
SUMMARY REPORT
                                                         MODEL 870 SN A0504
                                                  Firmware Version 0.156
   WYLE LABS
                                                  Detector .
                                                                    Slow
   DULLES AIRPORT
   NOV 94
                                                  Weight
   SITE12
                                                  Hysteresis
                                                  RMS EXCD Level 1 65
                Overall
                                                  RMS EXCD Level 2 95
Start Time 05Dec1994 15:30:40
                                                  Peak EXCD Level
                                                                    140
                                                  UWPk EXCD Level
                                                                    200
Run Time
               166:32:18.2
                                                  Dose Period
                                                                    24
                70.1
Leq
                127.9
SEL
                                                  Exceedance records 2241
Lmin
                 19.4
                                                  Interval records 168
Lmin Time 06Dec1994 02:33:54
                 113.7
                                                  History records
Lmax
Lmax Time 05Dec1994 15:30:40
                                                  Daily records
                                                                     8
                                                  Cal records
                                                                     0
Peak
                 124.8
Peak Time 10Dec1994 12:37:16
                                                  Background Leq
                                                                     51.1
                                                  Total Excd Leq 83.8
Total Excd Time 7:01:49.5
UWPk
                128.5
UWPk Time 10Dec1994 21:48:32
                                                  Free Memory
                                                                    73922
                7.09
Dose
                                                                     80% INT
                                                  Battery Level
Proj Dose
                1.01
                                                  Power Mode
                                                                     Normal
                 3dB
Exchange rate
                                                  EXT Cut Off
Threshold
                 90
                                                  Number of RUNS
Criterion
                                                  Pause Time 0:00:00
      74.6
                L50
                         42.5
L1
                                                  Number of PAUSES
L10
      57.4
                 L90
                         29.9
                         22.8
 33
       46.8
                 L99
                                           Excd Min Duration 3
RMS Exceedances #1 4350
                                           Excd Save A:D
RMS Exceedances #2 1
                                           Excd Exchange Rate 3dB
Peak Exceedances
                    n
UWPk Exceedances
                    0
                                           Interval period 01:00 Ln's Yes
Overloads
                                            Interval Save A:D
                                            Interval Exchange Rate 3dB
                                            Interval Threshold 0
                                           History period 1 s Peaks: Peak
         Avg
             Min *
         Max
                      Excd Level *
         Excds
         Avg *
                                           CALIBRATION Time 200ct1994 18:38:40
             Min *
        Max
                                           CAL Check Time 30Nov1994 10:15:54
                      Excd Level *
         Excds
         Avg
                                            CAL Offset
                                                            10.5
         Max Min
                                           CAL Check Level 104.6
                                           Auto Cal Mode
                      Excd Level *
                                                            No
         Excds
O t
```

Figure 4-1. Noise Monitor Sample Summary Report, Site 12, December 12, 1994.

The interval report provided a quick check that the noise monitor had functioned continuously throughout the previous measurement period. Figure 4-2 shows the main elements of this report for Site 12 during the period 5-7 December 1994. Included are the date and time of the hourly record, L_{eq} , L_{max} , Peak level, sound exposure level (SEL), and the exceedance percentile levels L_{01} , L_{10} , L_{50} , and L_{90} . The L_{eq} is the energy-average A-weighted sound level over the measurement period. The L_{90} exceedance percentile level, which is the sound level exceeded 90 percent of the time, generally represents the ambient or background sound level in the absence of identifiable noise sources. Throughout the measurement program, the L_{90} exceedance percentile levels were used to track the ambient sound levels at each site. These levels were influenced primarily by airport operations and vehicular traffic on nearby roadways. No other continuous identifiable noise sources were observed at any of the levaluous, during the monitoring period, that would significantly contribute to the ambient level.

Table 4-1 shows the hourly L_{eq} and L_{90} values for Site 12 during 24–31 October 1994, for example. The day-night average sound level and mean 90-percentile sound level are computed from the hourly values, for each day. Blank intervals over the monitoring periods in the dressed during which the instrumentation was being serviced or when data was a studed due to adverse weather conditions.

Table 4-2 shows the summary information for all 13 monitoring locations for the entire 53-day monitoring jeriod. Listed for each location are the number of hours of usable monitoring data, the mean day-night average sound level, and the mean 90-percentile sound level

Figure 4-3 shows a sample exceedance report, including the following information for individual acoustic events that exceeding the preset threshold: the date and time of the event, the duration, L_{eq} , L_{max} , Peak level, and SEL. L_{max} is the maximum A-weighted sound level during the event. The sound exposure level (SEL) represents the total acoustic energy of the event. It is the fundamental quantity for each event, and is accumulated to develop L_{dn} . These data records were correlated with radar flight track information to determine the measured sound levels of individual aircraft operations. In this study, the SEL was identified for each event.

TERVAL RI							1	12-13-		2:02:5 A0504
Date	Time	Duration	Leq dBA	Lmax dBA	Peak dBA	SEL dba	L1 dBA	L10 dBA	L50 dBA	L90 dBA
5Dec1994	15:30:40	00:22.50	113.5	113.7	117.5	127.1	113.7	113.7	113.5	113.5
5Dec1994	16:00:00	59:59.96	54.3	76.8	90.1		65.7	55.6	43.2	38.9
	17:00:00	1:00:00		88.2	104.6	102.5	80.9	64.9	44.7	40.4
	18:00:00	1:00:00	66.3	89.7	103.8	101.9	79.8	59.6	44.9	
	19:00:00		58.9	86.4	99.8	94.5	70.8	54.8	40.7	33.9
5Dec1994	20:00:00	1:00:00	47.9	66.7	81.4	83.5	59.5	51.0		
	21:00:00	1:00:00	53.3	76.9	91.6	88.9	66.0	50.0	35.6	
	22:00:00	1:00:00	47.4	65.1	79.8	83.0	60.7	49.1	35.8	
	23:00:00	1:00:00	63.6		100.1	99.2	78.3	49.7	30.9	
	00:00:00	1:00:00		65.8	79.4	79.8	58.4	42.9	26.9	
	01:00:00			91.2	105.9	99.3	63.2	37.9	25.0	
	02:00:00	1:00:00			63.9	66.3	43.0	33.0		
	03:00:00	1:00:00		59.2	88.8	62.6	32.8	28.2		
	04:00:00	1:00:00	39.2	61.8	76.2	74.8	55.2	34.0	27.9	
	05:00:00	1:00:00	47.6	69.3	80.8	83.2	61.5	42.7	35.0	30.1
	06:00:00		67.6	89.4	102.3	103.2	82.7	54.6	38.6	34.6
	07:00:00		60.4	83.0	97.0	96.0	74.1	57.6	46.5	40.2
	08:00:00		60.1	83.8	97.3	95.7	74.0	55.4	46.1	41.5
	09:00:00		66.6	92.0	106.9	102.2	78.6	58.2	45.5	
	10:00:00	1:00:00	59.5	85.2	100.2	95.0	72.9	49.6	38.1	
6Dec1994	11:00:00	1:00:00	65.9	93.2	107.2	101.4	73.0	52.1	36.3	
	12:00:00		63.7	85.8	99.7	99.3	77.0	59.6	42.6	33.7
	13:00:00	1:00:00	49.1	68.8	83.9	84.6	63.0	50.0	37.3	29.1
6Dec1994	14:00:00	1:00:00	49.9	67.9	79.6	85.5	60.6	52.9	43.4	35.9
	15:00:00		50.1	65.9	79.2	85.7	61.7	53.7	43.2	36.3
	16:00:00		54.7	75.1	87.4	90.3	66.7	56.7	44.6	38.2
	17:00:00		67.3	88.3	104.2	102.9	81.9	65.9	49.9	41.5
	18:00:00		64.4	87.2	99.9	100.0	78.4	60.9	47.2	40.3
	19:00:00		58.2	81.5	93.7	93.8	71.3	55.7	43.1	36.6
6Dec1994	20:00:00	1:00:00	54.0	72.7	85.7	89.6	66.4	56.6	43.4	37.6
	21:00:00		50.0	71.0	82.4	85.6	62.3	52.3	42.1	35.4
	22:00:00		61.7	84.4	97.2	97.3	76.4	51.6	37.6	30.6
	23:00:00				98.9	96.8	67.4	52.5	37.6	31.4
	00:00:00				92.4	88.6	62.0			26.1
	01:00:00								27.7	25.0
	02:00:00				76.6		36.7			23.5
	03:00:00				77.9					26.3
	04:00:00				89.0					
	05:00:00		_		105.6					
	06:00:00				88.0					
	07:00:00									
– – .	08:00:00				98.5		72.4		45.8	43.1
7Dec1994	09:00:00	1:00:00			92.5		72.1		45.5	42.0
	10:00:00	1:00:00			91.7		70.2			39.2
	11:00:00	1:00:00			83.7		59.9			37.5
	12:00:00	1:00:00			92.6		59.9		43.1	37.8
	12:00:00	1:00:00					59.0			31.3
					86.8		65.2			33.7
	14:00:00				94.7		65.3			34.4
)/DECTAA4	15:00:00	1:00:00	20.3	00.0	74. /	21.3	05.5	50.0	41.3	27.7

Figure 4-2. Sample Interval Report, Site 12, 5–7 December 1994.

Hourly Sound Levels Measured at Site #12, 24 October 1994 to 31 October 1994 Table 4-1

	_			Ī	_	1	Т	Т	Т	_		Т	1	Т	T	Τ	Т	7	一	T		_	7	П	Т	T	Т	Т	T	٦	T			٦	
#12	31-1994	8	9	32.4	31.3	28.4	27.3	27.2	31.6	33.4	37.0	45.0	41.0	41.9	43.5	38.5	38.0	37.5	35.4	38.3	37.4	41.3	41.7	40.3	40.5	40.8	39.3	40.2	35.1		38.9	ਨ	6	24	
Site #12	October-31-1994	Led	9	47.9	43.5	30.8	30.8	46.2	34.1	49.4	44.8	58.1	50.0	55.3	48.4	50.2	59.9	51.9	49.8	53.3	53.0	51.9	53.1	55.3	51.3	20.9	64.5	54.0	55.5	61.7	54.6	5	6	24	
#12	30-1994	P	(g	26.6	26.1	26.5	25.1	23.5	25.0	27.4	29.9	36.8	36.1	34.0	29.1	30.9	34.5	29.8	31.4	32.1	31.2	41.4	42.6	40.8	38.4	37.8	35.5	36.9	31.4		35.5	15	თ	24	
Site #12	October-30-1994	Led	9	45.0	36.3	29.9	33.3	28.4	47.9	33.7	48.6	54.5	55.3	44.8	50.5	51.7	50.1	48.4	55.0	55.2	51.7	70.1	68.2	20.0	52.3	53.0	51.9	61.0	46.9	59.9	59.1	15	6	24	
#12	29-1994	F-90	(dB)	30.1	25.7	25.6	28.0	27.8	32.0	37.2	42.6	45.7	45.6	42.6	37.6	37.3	31.2	32.3	35.0	33.6	39.0	34.6	31.6	32.5	34.4	31.4	29.3	39.9	31.3		38.2	15	6	24	
Site #12	October-29-1994	Leq	(dB)	48.6	36.7	35.9	32.3	33.8	50.8	53.6	54.0	54.7	58.0	54.1	52.0	50.4	48.2	49.4	55.3	53.5	63.3	50.1	52.7	49.6	55.4	49.7	45.9	55.5	48.0	56.6	53.9	15	6	24	
#12	28-1994	F90	(dB)	29.8	29.8	31.3	27.6	29.7	35.4	43.4	47.4	48.2	45.1	38.0	32.7	38.1	37.0	37.3	37.2	36.0	40.4	37.9	39.0	37.7	37.8	36.1	36.6	41.8	36.3		40.4	15	თ	24	
Site #12	October-28-1994	Led	(dB)	52.0	38.6	36.1	38.4	40.1	54.3	62.4	56.1	56.3	52.6	52.9	50.2	50.3	50.3	55.2	51.9	55.2	52.3	52.5	71.1	53.5	53.3	54.2	61.8	60.3	56.4	63.7	59.2	15	6	24	
#12	27-1994	65	(dB)	24.2	22.3	22.6	23.6	25.0	34.2	43.2	46.2							40.8	41.2	40.4	42.4	39.4	35.6	32.7	34.2	36.6	34.0	41.0	35.5		39.6	6	6	18	
Site #12	October-27-1994	Lea	(gp)	55.9	32.4	28.9	38.0	37.1	61.4	53.0	55.5							57.4	66.7	67.6	68.3	68.3	72.9	61.5	49.5	49.6	0.99	67.1	58.3	67.6	65.4	6	6	18	
#12	26-1994	69	(g B)	30.6	27.4	30.3	30.1	29.1	32.1	42.6	45.8	45.0	43.4	41.0	35.0	37.9	35.5	37.4	39.6	40.5	43.6	414	36.8	34.4	36.0	32.0	25.7	41.1	34.7		39.6	2	6	24	
Site #12	October-26-1994	Fed	(gB)	64.2	33.4	35.9	33.2	40.5	50.1	52.6	58.5	54.8	65.3	64.9	51.3	1.69	70.3	612	67.4	69.1	70.1	69.4	64.7	61.1	52.1	57.6	67.6	66.4	60.1	68.2	649	15	6	24	
#12	25.1994	6	(g B)	28.6	26.3	24.4	23.4	26.1	31.8	40.6	42.3		40.1	35.9			36.3	340	35.1	36.2		38.7	36.5	36.3	38.0	37.4	39.2	37.9	35.1		37.0	=	: 0	, 5	2,3
Cita #12	October-25-1994	1 8	£ 6	51.3	42.1	97.9	21.3	30.00	50.4	49.2	603		717	73.5			65.6	818	5.5	64.2	5	8 78	9	249	52.6	48.9	68.5	67.0	59.2	980	65.4	=	0	6	73
413	74.1004	1 00	8	2 2	20.4	20.8	20.0	27.5	20.7	41.8	43.4	44.1	38.4	23.7	3	26.5	35.0	2.5	37 E	37.1	40.7	45.5	40.8	40.4	40.3	38.8	35.3	40.2	25,0	3	38.0	5.05	2 0	2	77
C44 C410	October 24 1004		3 6	37.3	2 40	25.6	0.67	7.00	43.64	47.4	1. 0	54.3	24.0	30.0	200	0.70	57.5	3	0	52.3	57.0	0.00	22.3	20.	20.00	20.02	47.3	787	3 6	20.3	23.7	- ;	2 6	2 8	7.7
		1	50	000	2000	3 6	0200	0300	0400	0000	3000	333	388	3050	300	300	200	300	1400	0051	1200	3 3	0081	006	200	2200	2022	(ar) (1	(ap)	(ap) NT	ONL GD)	LMEAN	Hrs (Day)	Hrs (Night)	Hrs (Total)

Hourly Average Sound Level in decibels. Hourly 90-Percentile Sound Level in decibels. Daily Average Sound Level in decibels. Day-Night Average Sound Level in decibels.

LMEAN = DNL (dB) = Leq = 190

(0700–2200).
Nighttime Average Sound Level in decibels (0000–0700 and 2200–2400). LN (dB) =

LD (dB) = Daytime Average Sound Levels in decibels

xcd Excee	DANCE REPO Levels F	MS 1: 656	B RMS					12-13 Uwpk: Model	200dB 870 SN:	1:52:44 A0504
Excd	Date	Time	Duration	dBA	dba	dba	đВ	dba	*	
•	0EDec1004	15.30.40	00:22.50	113.5	113.7	117.5	124.8	127.1	0.0	
_	0501004	16.00.35	AA+1A 87	65.4	67.1	80.7	97.0	/3.8	39.1	
3	05Dec1994 05Dec1994	16:12:49	00:10.68	65.0	67.8	83.3	97.0	75.3	8.2	
4	05Dec1994	16:14:33	00:16.25	63.9	66.6	80.5	97.0	76.0	39.1	
5	05Dec1994 05Dec1994 05Dec1994	16:26:56	00:11.81	65.4	67.2	80.1	97.0	76.1	64.8	
6	05Dec1994	16:36:25	00:04.93	63.6	65.7	82.6	97.0	70.5	18.0	
_	ACD 1 AA 4	16.40.74	AA+A7 37	6 7 X	D/-4	6U./	9/.U	/4.5	23.7	
_	APR1004	16.50.77	00.20 DO	//.1	/D.O	90.1	101.7	0,00	20.2	
	AED1004	17.06.15	00.14.03	67.4	70.9	84.4	9/.0	10.7	40.5	
11	05Dec1994	17:07:33	00:14.40	70.5	12.0	00.1	104 4	03.0	25.8	
12	05Dec1994 05Dec1994	17:19:23	00:34.25	78.6	04.0 0F 0	מי פם	105.9	94.8	28.9	
13	05Dec1994 05Dec1994	17:20:35	00:34.31	79.4	67.4	70.2	97 7	73.2	14.4	
14	05Dec1994 05Dec1994	17:22:24	00:06.03	72.2	76 R	90.7	100.4	85.9	37.5	
15	05Dec1994 05Dec1994	17:23:12	00:18.34	75.3	70.6	91.7	102.2	89.0	53.5	
16	05Dec1994 05Dec1994	17:26:34	00:24.50	75.1	78.6	90.9	101.5	89.2	44.1	
17	05Dec1994 05Dec1994	17:29:5/	00:25.55	75.0	81.0	93.9	102.2	88.4	30.1	
18	05Dec1994 05Dec1994	17:30:24	00:21:39	82.2	88.2	104.6	111.4	97.2	43.8	
	0501004	17.47.77	00.04 40	63.7	65.3	75.9	9/.0	70.2	4.7	
	0501004	17.44.40	00.26 12	72.6	76.1	89.8	100.0	86./	40.1	
22	0ED-01004	17.40.14	00.23.40	70.3	74.9	89.8	70.2	03.7	40.0	
	AED1004	17.40.40	00.27 53	72.6	78.2	92.8	100.0	8/.0	21.2	
~ 4	0ED1004	17.57.07	00 • 14 . 15	68.6	70.7	84.5	98./	80.1	37.0	
	AED1004	17.57.57	00 · 14 68	68.1	70.9	84.4	100.0	/9.8	04.4	
~ ~	050001004	17.55.70	00.35.59	77.4	84.6	97.8	105.4	92.9	39.1	
~~	0ED1004	17.56.36	00.22 34	71.0	75.3	88.4	99.8	84.3	33.7	
20	0ED-01004	17.50.17	00.13.93	67.3	71.3	84.3	98.2	/0./	30.0	
	050-01004	10.04.46	. 00 • 21 . 12	73.0	77.2	90.3	101.5	80.3	20.3	
20	050001004	19.07.42	00:37.62	80.5	89.2	103.4	106.0	96.3	23.4	
21	050001004	18.09.50	00:17.90	67.2	69.3	83.2	90./	13.1	04.4	
22	050001994	18.14.56	00:27.96	71.6	76.3	90.8	TOTT	80.1	33.1	
22	050001994	18.21.79	00:21.93	74.4	79.4	93.3	101.1	8/.8	41.0	
24	050001994	18.30.57	00:38.06	79.8	87.4	101.8	104.9	93.0	21.3	
25	050001004	10.31.47	00.03.12	64.4	65.8	79.1	9/.0	69.3	7.0	
20	050001004	10.74.17	00.17 93	6R.6	71.7	84.3	98.2	RT • T	40.1	
27	050001994	18.37:39	00:22.87	70.5	74.6	88.6	98./	84.1	46.1	
20	050001004	10.45.16	. กก・วว R7	69.8	73.6	86.6	99.1	83.4	40.1	
39	05Dec1994	18:51:11	00:34.62	81.7	89.7	103.8	10/./	69.0	18.8	
40	05Dec1994	19:12:23	00:03.15	64.0			97.7 100.4		48.8	
41	05Dec1994	19:22:34	00:35.25	73.1			100.4		42.2	
42	05Dec1994	19:58:46	00:27.18	78.0					62.9	
43	05Dec1994	20:31:32	00:10.00	64.1					11.7	
44	05Dec1994	21:04:20	, 00:00.81	64.2 63.3					2.0	
45	05Dec1994	21:43:38	00:00.90	71.3					48.0	
46	05Dec1994	21:44:55	00:34.82	67.3					46.5	
47	05Dec1994 05Dec1994	21:4/:31	00.10.10	66.1					23.0	

Figure 4-3. Sample Exceedance Report, Site 12, December 12, 1994.

Table 4-2
Summary of Continuous Noise Monitoring,
Dulles International Airport,
24 October to 15 December 1994

Monitoring		Ldn	L90
Site No.	Hours	(dB)	(dB)
1	791	58.6	39.1
2	628	60.7	50.6
3	927	55.1	38.4
4	940	65.2	52.7
5	981	61.9	39.7
6	569	54.1	39.2
7	139	59.4	41.7
9	936	67.4	40.1
10	853	58.9	41.2
11	923	56.6	44.0
12	922	65.2	40.6
13	266	63.4	39.8
14	110	62.7	41.9

Hours = Total hours of valid data.

Ldn = Day-Night Average Sound Level in decibels.

L90 = 90-Percentile sound level in decibels
(a measure of the ambient or background noise level).

Event time-histories were also recorded by the LD-820s. Figure 4-4 shows a sample time-history for a Boeing 727 departure, recorded at site #1. Here the A-weighted sound level is plotted as a function of time, in seconds. The time-history for a given event started the moment the sound level exceeded the preset threshold. Each time-history contained a maximum of 255 data points with a sampling rate of four data points per second. This rate provided a sample of up to one minute, sufficient for defining an aircraft arrival or departure. While many of the exceedance records were easily correlated with the radar flight track information based on the time of the event only, at times it was necessary to examine the corresponding time-history data to correctly identify the acoustic data associated with the aircraft operation.

Figure 4-4. Sample-Time History, B-727 Departure at Site #1.

5.0 DATA ANALYSIS

Analyses of the empirical database kernels of the noise methodology codes were intended both to support algorithm study results and to provide physical guidelines and quantify the accuracy in regions exposed to lower levels of noise. Individual events were modeled based on the ARTS data and compared with their recorded noise event, using a combination of time, flight track information, and time-history for accurate correlation. Comparisons were made between predicted and measured values of SEL, rather than values of L_{dn} for daily, weekly, or monthly periods. This "if the individual SELs match, then the L_{dn} 's will also match" approach was used to rule out the possibility of cancellation of errors, which may occur when considering only L_{dn} values. An individual flight analysis also allows for more detailed and more independent variables in the sensitivity studies.

Given the structure and emphasis of the NMAP database on military aircraft, and the limited number of civilian aircraft and engine combinations contained within the NMAP empirical data kernel, any further direct comparisons between NMAP's database components and flight test measurements were precluded.

 ${\rm INM}~4.11^2$ was exercised using as accurate data as was available. The INM empirical database kernel contains four major components:

- Empirical Noise Source Data at Reference Location and Conditions.
- Standard Flight Profile Data for each aircraft, engine, stage length, operation type combination.
- Standard Velocity Profile Data for each aircraft, engine, stage length, operation type combination.
- Standard Power Profile Data for each aircraft, engine, stage length, operation type combination.

The first component, Empirical Noise Source Data, is based on certification flight test measurements as provided to the FAA by the airframe manufacturers. The remaining components fall into the genre of modeling techniques; as each data component was replaced by as accurate an "as-flown" representation as was feasible. The following sections describe the data processing philosophy, the available data, and the details of the analysis process.

5.1 Data Sources

Weather

Surface weather observation data was obtained from the National Oceanic and Atmospheric Administration (NOAA), National Weather Service station at Dulles International Airport. This facility recorded the local weather conditions in both an hourly and daily report format. Figures 5-1 and 5-2 show the daily and monthly averages, respectively, for November 1994. Included are the minimum, maximum, and average temperature (°F), precipitation (inches of water), the average wind speed (mph) and direction, barometer, temperature, and dewpoint. Figure 5-3 shows a sample of the hourly weather report for 23 November 1994. For each one-hour time period, the average temperature, barometric pressure, precipitation, and wind speed are included. These hourly weather records were examined to filter the corresponding acoustic data. The acoustic data were excluded from the analysis if:

- the wind speed was in excess of 10 knots (11.5 mph), or
- any precipitation occurred during the measurement period.

The acoustic measurement reports were carefully cross-correlated with the weather data, and those exceedance records which occurred during periods of unacceptable weather were flagged accordingly, and were not used in the sensitivity studies.

Radar Data

Radar tracking data was obtained for the entire field measurement period from the Metropolitan Washington Airports Authority (MWAA). Radar data was obtained from the Automated Radar Terminal System IIIA (ARTS). ARTS is a semi-automated air traffic control system using a Univac computer, linked with a beacon tracking system. The system continuously records for each aircraft, carrying an transponder beacon within radar range, the current time, position, velocity, and altitude every 4.5 seconds. Stored in parallel with the tracking beacon and transponder data is aircraft flight plan data, and other interfacility (IF) messages, linking aircraft type, destination, and flight data with the various beacons. Tracking data and IF data are correlated by the transponder beacon code, which is commonly referred to as the "squawk". All ARTS data was stored on 105mB SyDos removable cartridges, and consisted of one or more binary files for each measurement day. Table 5-1 lists the 25 dates for which radar coverage was made available to Wyle Laboratories.

										Mo	ation nth: ar: 1	NOV	CMO,	WASH-	-DOL	LES, V	vesn.	, DI
+38	Latitude Longitude +3857 +7727								Gnd Elev. 290 ft. Std Time: EST									
					Precip	(in.):	Snow : Wind :		Fastest 1-Min:		Sunshine: Sky			: Peak Wind				
-1- Day	-2- Hax	-3- Nin	-4- Avg	-5- Bep.	-62- HDD	-6b- CDD	-7- Water	-8- Snow	-9- Depth	-10- Avg.	-11- Speed	-12- Dir	-13- Mins.	-14- 1PSBL	-15- SR-SS	-16- Weather	-17- Speed	-18 Dir
1	69	46	58	8	7	8	8.38	8.8	9	9.6	21	29			9	1,3	32	N
2	61	39	58	8	15		0.99	1.8 9.9	8	18.9 5.4	18 18	29 21			3 10		31 15	N¥ S
4	71 78	31 39	51 59	2 10	14 6	9	8.60 6.66	V. 8	i	5.3	12	1B			1		14	5
5	77	48	63	14	2	i	8.88	8.0	•	6.7	89	18			10		12	S
6	78	59	69	21	9	4	0.82	0.0	8	12.5	17	21			7		32	MW
7	62	36	49	1	16	8	0.09	9.9	•	8.5	17	31			2		38	MW
8	71	32	52	4	13	•	0.80	8.0		9.4	14	23			2		17	S¥
9	78	49	64	16	1	8	0.00	0.8	1	7.2 8.3	13 17	22 02			16 5	1	18 38	SH
19 11	6 9 53	33 28	47 41	-6	18 24		8.21 8.80	8.8 8.8		4.9	89	32			ı	•	14	N
12	56	25 25	41	-6	24		8.60	8.8	è	3.9	89	18			į		13	Š
13	72	23	53	7	12	ā	6.00	1.9	9	2.3	87	16			7		19	S
14	72	36	54	. 6	11	Ī	8.88	8.1	0	5.1	14	18			6		16	S
15	71	43	57	11	В	8	8.89	8.0	9	4.9	16	33			18		13	NE
16	69	45	5 3	8	12		8.01	1.1	1	8.5	19	63			18	1	28	K
17	52	42	47	2	18	8	8.47	1.1	0	9.2	14	83				1	18	NE
18	56	49	53	В	12	•	8.14	1.1	ı	8.1	12	34				1	16	N
19	62	36	49	5	16		8.08	8.8		6.8 4.5	15 07	32 12			8		23 19	N Se
2 8 21	62 61	33 43	48 52	4 8	17 13		8.60 6.51	9.9 9.9		4.2	17	16			18	1	21	NN
22	57	38	4B	5	17	i	0.90	8.0	i	12.9	18	31			ï	•	33	NW
23	58	33	42	-1	23	ě	8.89	8.8	Ī	12.7	21	28			1		32	NW
24	46	21	34	-9	31	8	0.68	8.0		8.4	13	28					18	SW
25	55	32	44	2	21	8	8.88	8.0	e	7.3	. 12	28			9		16	S¥
26	52	28	48	-2	25	9	8.68	8.8	8	5.7	12	31			. 6		17	MW
27	39	29	34	-8	31	0	8.52	Ī	9	6.7	69	22			18	- ,	15	NE
28	58	36	47	6	18	9	7	1.0		9.9	16	20 20			18 9	1	28 15	SW 5
29 30	56 52	28 26	42 39	i -1	23 26	8	8.68 6.66	0.0 0.1	8	6.2 6.3	10 15	2 u 31			1		22	NU
				•		-			•						======	********		••••
	1847	1896	====	======	474		1.86	[::::::::		223.2			3232222		183	::::::::	:::::::	
Avg	61.6	36.5							Misc	7.4 >	Fast 218	Dir. 28	Psb1 18124	1	6.1		Max 833	(aph) NW
"~† es 15	i: it of si		occur	rences		=====		::::::::	********	*******	*******	******	=========		*=**=	=========	22222	::::::

Figure 5-1. Daily Average Weather Report for November 1994.

```
Preliminary Local Climatological Data (WS Form: F-6), Page 2
                                                        Station: WSCMO, WASH-DULLES, WASH, DC
                                                        Month: NOV
                                                        Year: 1994
[Temperature Data]
                                 [Precipitation Data]
                                                                          SYMBOLS USED IN COLUMN 16
Average Monthly:
                     49.1
                                Total for Month:
Departure from Moreal: +3.7
                                Departure from Normal: -1.44
                                                                          1 = F06
Highest: 78 on 4, 6, 9
                                Greatest in 24 hrs. 8.52 on 27
                                                                         2 = FOG REDUCING VISIBILITY
Lowest: 21 on 24
                                                                             TO 1/4 HILE OR LESS
                                SMONFALL, ICE PELLETS, HAIL
                                                                         3 = THUNDER
                                Total for wonth: I inches
                                                                         4 = ICE PELLETS
                                Greatest snowfall in 24 hrs: I on 27
                                                                         5 = HAIL
                                Greatest snow depth: on
                                                                          6 = GLAZE OR RIME
                                                                         7 = BLOWING DUST OR BLOWING SAND REDUCING
                                                                            VISIBILITY TO 1/2 MILE OR LESS
                                [ WEATHER - No. of Days with]
[No. of Davs with]
                                                                         8 = SMOKE OR HAZE
                                                                         9 = BLOWING SHOW
Max 32 or below: 8
                                8.81 inch or more Precip: 8
                                                                         X = TORNADO
Max 98 or above: 8
                                8.18 inch or sore Precip: 5
Hin 32 or below: 18
                                8.58 inch or more Precip: 2
Min 8 or below: 0
                                1.88 inch or more Precip: 8
[Heating Degree Days (Base 65) ]
                                Clear (scale 8-3)
                                                         18
Total this Month:
                                Partly Cloudy (scale 4-7)
Departure from Mormal: -114
                                Cloudy (scale 8-18)
                                                         14
Seasonal Total:
Departure from Normal: -187
[Cooling Degree Days (Base &5) ]
Total this Month:
                    4
Departure from Mormal:
                     +4
                                [ Pressure Data ]
Seasonal Total:
                    1266
                                Highest Sea-Level 38.50 in. on 27
Departure from Normal: +293
                                Lowest Sea-Level 29.32 in. on 1
Maximum Precipitation
(Delta T) (Minutes)
Precipitation (Inches)
Ended Date
RECORDS// HI OF 77 ON 5TH TIED 77/1975//NEW HI OF 7B ON 6TH
BEAT OLD 73/1975//HI OF 78 ON 9TH BROKE OLD 75/1975//LO OF
59 ON 6TH TIED OLD 59/1977
```

Figure 5-2. Monthly Average Weather Report for November 1994.

```
Surface Weather Observations - - HDR72403IAD 9411
11/23/94
                        MF1-10B
                     7 2AC 128 6C1 258 7
8050 29.870 38.0
                    2 1AC 128 1CI 258 2
8151 , 29.880 36.0
                    8 8CI 259
                                                                                           8258 29.898 34.8
                                                                                           . .
B351 29.889 34.8
8451 29.878 34.8
                     •
                     8 BAC 128
9558 29.860 33.0
                    8 8AC 128
8658 29.868 35.0
                     8 SAC 128
8756 29.868 37.8
                     6 BAC 126
8851 29.856 48.8
0951 29.830 43.0
                                                                                           8 8
                     8 SAC 128
1858 29.798 46.8
                     6 8AC 128
                     B BAC
1151 29.748 48.8
                             120
                    4 BAC 128 BC1 258 6
1258 29.728 49.8
                     B BAC
                             120
1351 29.484 58.8
1451 29.668 49.9
                     E GAC
                             128
1551 29.665 48.8
                     B BAC
                             128
                     2 2AC
1652 29.698 44.8
                             70
                    3 2AC
                            79 1AC 100 3
1756 29.730 41.8
                                                                                           9 1
                    8 SAC 188
1858 29.758 41.8
                                                                                           5
                    5 5AC 188
1951 29.785 48.8
                                                                                          18
                  10 150
                            45 5AC 78 6 4AC 128 18
2958 29.888 48.8
                                                                                          18 2
                   18 2SC 45 6AC 78 8 2AC 116 18
2151 29.835 36.8
                                                                                           3
2258 29.855 34.8
                    3 3AC 80
                                                                                          18
2358 29.888 33.8 18 18AC 78
Synoptic Observations
MID1 8.68 .6 39 38
6848 B.88 .8 B 43 38
                             29.889 -.810
8648 8.86 .8 8 38 33
                            29.878 -.618
                            29.725 -.005
1248 8.88 .8 8 58 35
1849 8.00 .0 8 50 41
                            29.768 -.018
MID2 0.00 .0 0 41 33
Summary of Day (midnight to midnight)
Max Min Precip Snow Snow ( Peak Wind ) Sky Cover Water Fastest
Teap Temp (Ins.) Fall Depth Speed/Dir Time s/s m/m Equiv. Mind
50 33 00.00 .0 0 28NW 2051 0 2 21 28 1351
Sunrise: 8701 Sunset: 1651 Total Sunshine: 7 Psbl: Character of Sunrise/Sunset:
Weather & Obstructions to Vision
Remarks, Notes and Miscellaneous Phenomena
TIME CHECK== 0039 // SP=80 RS=80//
```

Figure 5-3. Hourly Weather Report for 23 November 1994.

```
Surface Weather Observations - - HDR72403IAD 9411
11/23/94
                            MF1-10A
SA 8858 128 SCT E258 BKN 28 235/38/14/3114/822/ 618 1871-57 (JTS 85:562)
SY 72483 32988 63114 18833 21188 38115 48235 56818 82871 333 18139 28833 555 92386= (JTS85:572)
SA 8151 128 SCT 258 -SCT 28 239/36/14/3188/823 (JTS 86:547)
SA 8258 CLR 28 242/34/13/3887/824/FEW CI (JTS 87:527)
SA 6351 CLR 28 239/34/13/2868/623/ 883 (JTS 88:53Z)
SA 8451 CLR 28 236/34/12/2889/822 (JTS 89:532)
SA 8558 CLR 28 233/33/18/2809/821/FEW AC E (JTS 18:522)
SA 8658 CLR 25 233/35/5/2818/821/ 687 1878 33 (JTS 11:542)
SY 72483 32982 12810 10017 21150 38112 40233 56007 81070 333 10139 20005 555 92312= (JTS11:55Z)
SA 8758 CLR 38 233/37/3/2789/821/FEW AC S (JTS 12:552)
SA 6851 CLR 38 238/48/2/2389/820/AC SE-SW (RJR 13:53Z)
SA 8951 CLR 30.223/43/3/2911/018/ 819 1870 (RJR 14:532)
SA 1858 CLR 38 289/46/3/2613/814/AC SE-S (RJR 15:522)
SA 1151 CLR 30 191/48/2/2712/009/AC SE-S (RJR 16:527)
SA 1258 CLR 38 184/49/-3/2916626/867/ 637 1871 33 (RJR 17:53Z)
SY 72483 32983 12916 18694 21194 38864 48184 56837 81871 333 18188 28886 555 92318= (RJR17:54Z)
SA 1351 CLR 38 171/58/-1/2818624/883/FEW AC 5 (RJR 18:532)
SA 1451 CLR 38 164/49/-1/2615625/881/FEW AC N (RJR 19:521)
SA 1551 CLR 30 166/48/1/2913625/802/FEN AC N/ 519 1070 (EN 20:54Z)
SA 1652 78 SCT 38 175/44/6/3212624/884 (EW 21:552)
SA 1758 79 SCT 188 SCT 25 189/41/9/3118/888 (EW 22:522)
SA 1850 CLR 25 196/41/13/3112/810/FEW AC/ 129 1878 58 (EW 23:52Z)
SY 72483 32982 13112 18858 21186 38875 48196 51829 81878 333 18189 28886 555 92488= (EH23:55Z)
SA 1951 189 SCT 25 288/48/18/3118/814 (EN 88:53Z)
SA 2856 45 SCT M78 BKN 128 OVC 28 213/48/18/3112/615 (EW 61:53Z)
SA 2151 45 SCT M78 BKN 118 OVC 28 225/36/26/3311/819/VIRGA OVHD/ 229 157/ (EW 82:56Z)
SA 2250 80 SCT 20 231/34/24/3506/821 (EW 83:527)
SA 2358 M78 DVC 28 249/33/17/3318/823/BINDVC (JTS 84:567)
```

Figure 5-3. Hourly Weather Report for 23 November 1994 (Concluded).

Table 5-1

Dates of Available Radar Coverage and Data File Sizes

Date	Size (MB)	Date	Size (MB)	Date	Size (MB)
20 Oct 94	9.7	1 Nov 94	8.0	1 Dec 94	6.7
23 Oct	8.2	5 Nov	9.6	4 Dec	7.3
24 Oct	10.6	9 Nov	9.0	5 Dec	7.9
25 Oct	10.3	10 Nov	10.5	6 Dec	3.0
26 Oct	10.3	26 Nov	10.0	7 Dec	9.5
27 Oct	11.3			8 Dec	9.9
28 Oct	11.2	•		11 Dec	7.0
29 Oct	9.7			12 Dec	9.3
30 Oct	6.2			13 Dec	9.6
31 Oct	2.7			14 Dec	8.3

Radar tracking data was pre-screened by the FAA at the Dulles Tower, and only "approved" flight tracks and interfacility messages were provided to Wyle Laboratories. A sample ASCII tabular listing of a flight track, processed and linked with its interfacility messages, is given in Figure 5-4. ARTS data processing is described in Section 5.2.

Flight Schedule Data

The Official Airline Guide (OAG) for the measurement period was used in conjunction with the filed flight plans in the ARTS system to determine the aircraft destination and stage length. This additional equipment type and scheduling information was necessary for the creation of INM input decks.

Fleet Summaries

Statistical data regarding the fleet mixes and specific airframe and engine models aided the selection of the most appropriate INM noise curve for a specific flight track.¹¹ The airframe descriptors contained in the ARTS IF feed often did not contain specific enough model designators. When necessary, the FedEx Fleet Summary reports were consulted to guide the selection of a "likely" airframe/engine combination. This airframe/engine uncertainty may perhaps be responsible for a portion of the predicted versus measured SEL discrepancies, and its possible impact is quantified in Section 6.

* UAL1554 B	727 7060) Depar	ture 1L	1750 (sched	l)			
*17:40:28.313			IADT/B727	7060 SWA P2	250 270	\$0		
*18:09:51.938		686 2310						
*18:14:20.648	IAD2314042 TB	686 07						
* Time	Trk ACID	Beac	X (nm)	Y (nm)	Z (fl)	S (num)	V (kts)	A (
18:09:34.203	143	7060	.2500	.3750	6	1.464	161.257	.031
18:09:38.828	143 7060	7060	.2500	.5625	8	1.652	164.015	.031
18:09:43.266	143 7060	7060	.3125	.7500	10	1.849	166.662	.031
18:09:47.945	143 7060	7060	.3750	1.1250	12	2.230	169.456	.031
18:09:52.516	143 VAL1554		.3750	1.2500	13	2.355	172.178	.031
18:09:57.133	143 UAL155		.4375	1.3750	14	2.494	174.936	.031
18:10:01.695	143 UAL155		.4375	1.6250	15	2.744	179.358	. 054
18:10:06.320	143 UAL155		.5000	1.8750	15	3.002	185.118	.102
18:10:10.953	143 UAL1554		.5000	2.0625	16	3.190	189.509	.142
18:10:15.570	143 UAL1554		.5000	2.3125	17	3.440	199.301	.085
18:10:20.148	143 UAL1554		. 5625	2.6250	19	3.758	204.729	.034
18:10:24.758	143 UAL1554		. 5625	2.8750	21	4.008	207.999	.031
18:10:29.227	143 UAL1554		. 562 5	3.1875	24	4.321	210.244	.009
18:10:33.828	143 UAL1554		. 5625	3.4375	26	4.571	214.250	004
18:10:38.453	143 UAL1554	7060	. 5625	3.6875	29	4.821	214.076	003
18:10:43.109	143 UAL155	7060	. 5625	3.9375	32	5.071	214.191	.024
18:10:47.688	143 UAL1554	7060	. 5625	4.2500	34	5.383	214,940	.019
18:10:52.320	143 UAL155	7060	. 5625	4.5000	37	5.633	216.166	.036
18:10:56.945	143 UAL1554	7060	.6250	4.8125	39	5.952	220.207	. 033
18:11:01.539	143 UAL155	7060	.6250	5.0625	41	6.202	224.259	.032
18:11:06.141	143 UAL1554	7060	. 6250	5.3750	43	6.514	227.838	.036
18:11:10.766	143 UAL1554	7060	.6250	5.6250	45	6.764	230.288	.048
18:11:15.336	143 UAL155		.6250	5.9375	47	7.077	231.795	.022
18:11:19.977	143 UAL1554	7060	. 6250	6.2500	49	7.389	232.514	.017
18:11:24.578	143 UAL1554	7060	. 6250	6.5625	52	7.702	234.668	.000
18:11:29.172	143 UAL1554	7060	.6250	6.8750	55	8.014	233.200	019
18:11:33.828	143 UAL1554	7060	.6250	7.1875	58	8.327	233.183	034
18:11:38.453	143 UAL1554	7060	.6250	7.4375	62	8.577	231.853	018
18:11:43.008	143 UAL155	7060	. 6250	7.7500	65	8.889	231.761	.002

Figure 5-4. Partial Flight Track Listing, B727 Departure.

Measurements

Larson-Davis Model 870 unmanned noise monitoring stations recorded noise events around the clock (see Section 3). Available data include event time-histories, hourly intervals, and a variety of noise metrics.

INM's Empirical Database

Although the ability to change aircraft source-noise data exists in INM, no measurements were made at or near the FAR Part 36⁷ measurement locations, due to site access limitations. The standard SEL tables as given in the INM database were used as is.

5.2 ARTS IIIA Data Analysis

Fifteen days of AKTS radar data, for which acceptable weather conditions and complete tracking data were available, were converted into NDADS¹¹ binary file format. The NDADS program, developed by Wyle Laboratories for the United States Air Force, allows user-enhanced automated generation of flight tracks and profiles and outputs them in INM-compatible format. NDADS was used to separate tracks by aircraft, runway usage, and operation type.

Criteria were established to select ten final data subsets, with a subset defined as a group of operations containing the same aircraft type, stage length, operation type, and runway utilization with similar flight tracks. A description of the selection criteria and the final subset data (which included operations from 12 of the 15 good days) is given later in this chapter. Once the ten subsets were finalized, each flight track was correlated with the noise events at the applicable monitoring sites and modeled in NDADS. The resultant flight tracks, flight profiles, and velocity profiles were exported, and the noise impact was calculated using INM 4.11. Flight track dispersion for each data subset determined the exact track and profile modeling technique used, and the modeling technique did vary from subset to subset.

Raw ARTS data was processed into NDADS format, by separating the raw radar sweep time-ordered data into individual tracks, and linking them with the beacon code indexed track information from the separate IF data files. These IF files include flight plans, departure, arrival and overflight messages, first fix heading, schedule data, equipment codes, and beacon and track identifiers. The sample data

shown in Figure 5-4 is an intermediate file format, between the (unprintable) raw binary ARTS data, and the final NDADS direct access format. It has already been assembled into a continuous flight track and cross-referenced with the IF data. Given the close proximity of Dulles with Washington National Airport, and the overlapping radar coverage, aircraft departing from or heading towards National were frequently picked up by the IAD radar system. The interfacility messages were indispensable for separating these overflights from IAD traffic.

Once the available ARTS data was assembled, NDADS was used to categorize and separate it into various subsets of the operations occurring on the 12 days listed in Table 5-2. Each subset consisted of operations (radar tracks) containing: one airframe type, one stage length, same operation type utilizing the same runway and similar flight tracks. At this point, weather data and stage length was taken into consideration. Subsets of data were further screened and operations during time periods for which winds exceed 10 knots, or measurable precipitation occurred, were deleted. Subsets containing departures were separated by trip length, as categorized by the INM stage lengths.

Table 5-2
Final Subset Analysis Dates

Date					
24 October 1994	9 November 1994	1 December			
25 October	10 November	13 December			
	11 November	14 December			
	12 November				
	13 November				
	14 November				
	26 November				

The following criteria were used for identifying the final 10 subsets:

- Minimum of four different aircraft types
- Twin, Tri, and Four-Engine aircraft types
- Stage 2 and 3 aircraft
- · Short, medium, and long range
- Similar flight tracks within a dataset
- Curved and Straight flight tracks
- Both departing and arriving operations
- All operations within a subset utilizing the same runway
- Statistically significant number of correlated noise events

The OAG was used to identify by flight number the aircraft destinations. Based on Table 5-3, taken from the INM manual Users Guide, 13 stage or trip length was then determined. Aircraft type was also contained in the ARTS IF Messages; however, specific models and engine configurations were often not identified. Based on the air carrier's feet mix, as described in the Fleet Summary manuals, 11 the most likely airframe/engine combination was selected. Appendix A characterizes each of the ten subsets. Included is carrier and fleet ownership information, airframe/engine combinations, flight track description, fleet age, and other pertinent data used in the INM modeling. There is some uncertainty in the equipment selection because actual equipment usage is unknown, and all combinations of airframe/engine types are not contained within the INM noise and profile database. Section 6 quantifies the impact of these approximations.

Table 5-3
INM Stage Length Definitions

Distance	Stage Length
0–500	1
500-1,000	2
1,000-1,500	3
1,500-2,500	4
2,500-3,500	5
3,500-4,500	6
4,500 and Greater	7

Within each subset, flight tracks were plotted (Figures 5-5 and 5-6), and track proximity to measurement site factors were calculated. These track proximity factors included, time, altitude, slant range, velocity, and elevation angle. Based on these and field observations, the exceedance reports were screened, and individual exceedances due to the actual flights were identified.

Table 5-4 summarizes the final ten subsets upon which INM accuracy sensitivity studies were performed. The final tracking data identifiers, proximity factors, and exceedance data were entered into a database, organized by subset and by measurement site (see Appendix B).

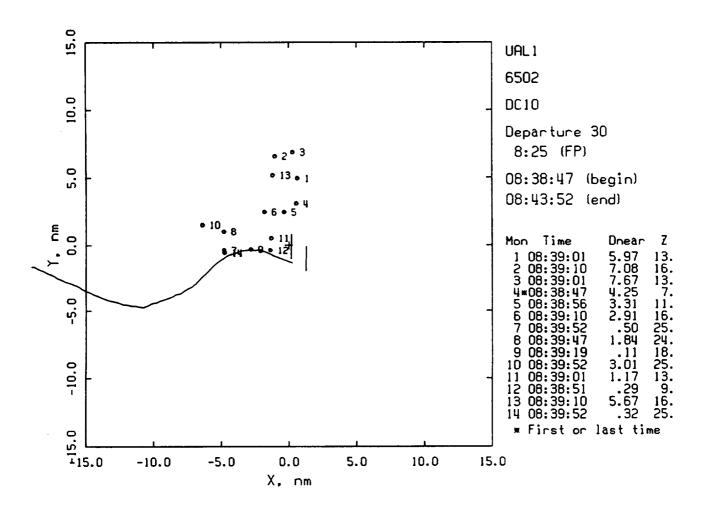


Figure 5-5. Sample Flight Track, DC-10 Departure.

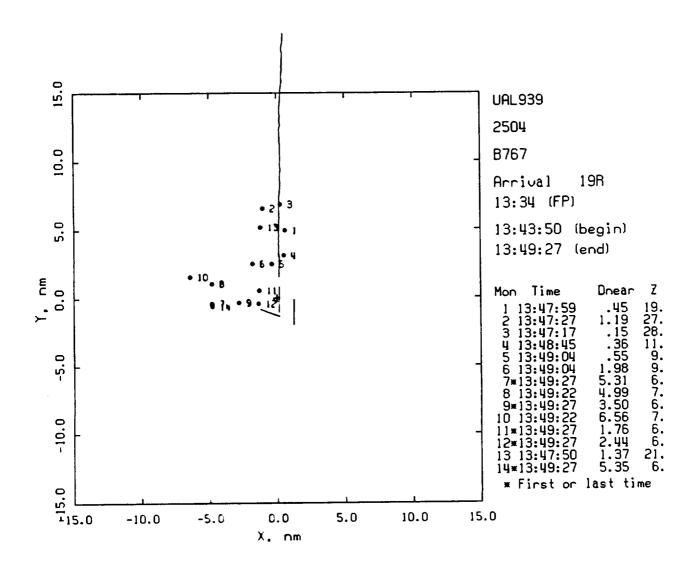
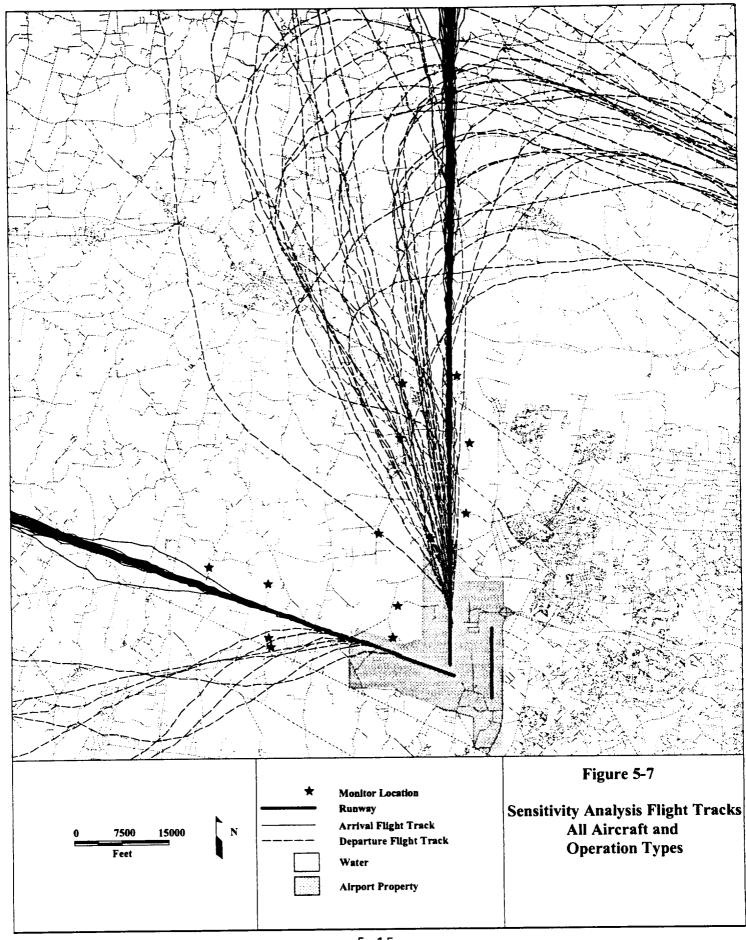


Figure 5-6. Sample Flight Track, B-767 Arrival.

Table 5-4
Final Subsets for Sensitivity Studies


Subset No.	Aircraft Type	No. Engines	Stage Length	Operation	No. Events
1	B727	3	n/a	Arrival	30
2	B727	3	1	Departure	39
3	B747	4	n/a	Arrival	31
4	B757	2	n/a	Arrival	25
5	B767	2	n/a	Arrival	44
6	B767	2	5	Departure	35
7	DC9	2	n/a	Arrival	44
8	DC9	2	1	Departure	43
9	DC10	3	n/a	Arrival	33
10	DC10	3	4	Departure	18

5.3 Correlation With Noise Events

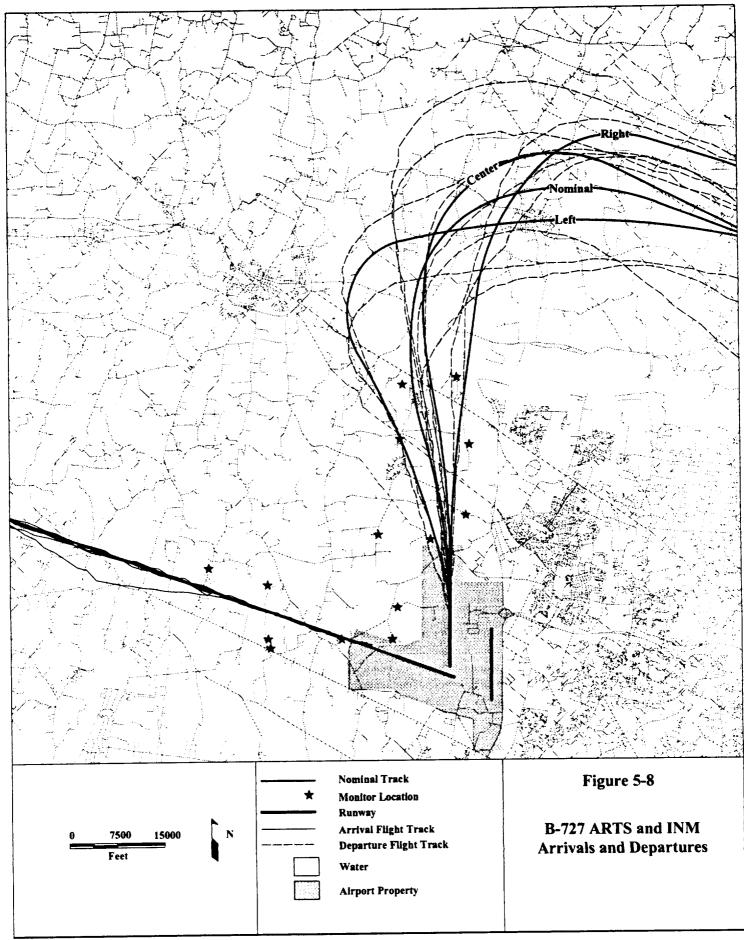
Each individual flight track was correlated with exceedance records at applicable noise monitoring sites. Comparing the internal LD-820 meter clock with the ARTS IIIA radar time, potential correlations were identified. Further analysis of the event levels, duration, and time-history at each site confirmed positive correlations. As noted earlier, periods of adverse weather were omitted from the analysis.

5.4 Flight Track and Profile Modeling

Flight tracks were viewed within the DISARTS¹¹ module of NDADS. A plot of all data contained in the final correlation analysis is given in Figure 5-7. Within NDADS nominal flight tracks for each operation were "drawn" on the screen using the mouse. Segments consisted of a series of straight and curved segments as required by INM. Special care was taken to ensure accurate spatial proximity in areas close to the noise monitors. Based on segmentation and algorithm segmentation modeling limits within INM, as few segments as possible were used to model the tracks. A discussion of segmentation modeling effects on noise predictions as they pertain to INM and NMAP is contained in Section 2. Nominal flight tracks and profiles were created based on the actual "as-flown" ARTS IIIA radar tracking data. A comparison of these nominal profiles with the INM database kernel standard profiles is given in this section, organized by aircraft type.

5-15

The specific airframe engine combination chosen from the INM database was determined by comparing the available equipment by individual operator. Detailed fleet information was obtained from Federal Express. The IF data was used to obtain flight schedule data, including scheduled arrival or departure time, flight number, and operator identification. Typically the IF data also contained equipment usage; however, engine types and airframe series were not distinguished. The scheduled equipment, in more detailed form, was then obtained from the Official Airline Guide. 14,15,16


The modeling of operation type was treated on a case-by-case basis. A description by aircraft type follows.

5.4.1 B727 INM Modeling Method

Figure 5-8 contains B-727 arrival and departure flight tracks for which correlated noise monitoring station measurements were obtained.

Arrivals on Runway 12 were modeled with one nominal flight track, velocity profile, and power profile. A single nominal arrival track technique was used. As shown in Figures 5-9 and 5-10, the altitude and velocity profiles were chosen to as closely match the actual radar flight tracks as possible. Table 5-5 contains a comparison of the INM standard with the as-modeled nominal power profile. Powers are applied across the entire segment, with discrete, discontinuous power changes at the segment end points. Radar coverage was available above approximately 700 feet AGL. Below this altitude a transition was applied, and profiles were matched to the INM standard.

B-727 departures from Runway 01L were grouped into three sets of tracks, entitled left, center, and right. Figure 5-8 shows the actual tracks and the three INM modeled tracks. Modeling the B-727 departures as three separate nominal tracks provided a more accurate INM modeled flight track position, relative to the monitor locations, than would using just the one overall INM nominal flight track. Appendix B contains the nominal INM SEL predictions at the appropriate sites for both the "left", "right", and "center" nominal tracks as well as the single nominal track. Table 5-6, a subset of Appendix B, contains these results for B-727 departures at site #5. As can be seen, the mean SEL of 96.3 dB using the three-nominal-track approach is much closer to the actual measurement mean SEL of

Altitude Profile Comparison B727, Arrivals, Runway 12, Straight In -12 -10 -8 -6 -2 -18 -16

Figure 5-9. B-727 Altitude Profile, Arrivals.

Distance from Threshold, nm

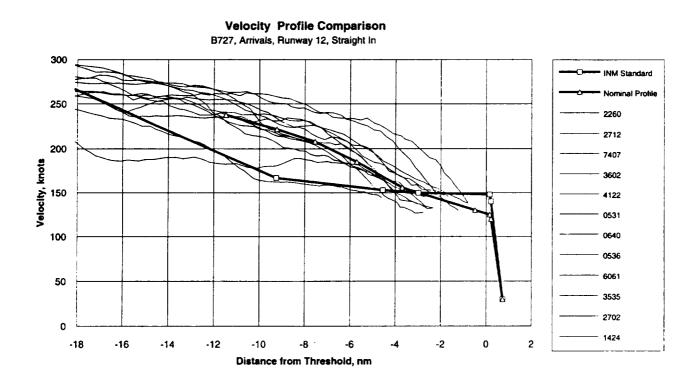


Figure 5-10. B-727 Velocity Profile, Arrivals.

96.7 dB than the single-nominal-track SEL prediction of 95.8 dB. The same holds true for the acoustical means, 97.0 dB three-track prediction versus 99.1 dB actual measurements versus 95.8 dB, single-track prediction.

Table 5-5
B-727 Arrival Power Profile Comparison

	Nomin	al	INM Stan	dard
Segment No.	Distance From Threshold	Thrust	Distance From Threshold	Thrust
	69,764		56,289	
1		2,495		2,495
	56,118		27,668	
2		2,495		
	45,885			
3		2,495		
	34,676	0.144		3,144
4	00.440	3,144	18.127	3,144
5	22,449	4,682	10,127	4,855
Э	3,000	4,002		1,000
6	3,000	4,682		4,855
J	-954		-954	
7		4,682	•	4,682
-	-1,302		-1,302	
8		9,300		9,300
	-4,430	<u> </u>	-4,430	<u> </u>

Table 5-6

Modeling Technique Comparison for B727 Departures at Site #5

Site #5 Squawk	INM Three-Track Nominal SEL, dB	Measured SEL, dB	INM Single-Track Nominal SEL, dB
2467	96.0	99.6	95.8
6541	96.0	97.4	95.8
5560	96.0	97.0	95.8
2116	96.0	97.3	95.8
7060	96.0	92.3	95.8
6501	96.0	91.9	95.8
6516	100.3	101.5	95.8
0612	100.3	105.5	95.8
0571	93.4	92.2	95.8
7074	93.4	91.9	95.8
Mean	96.3	96.7	95.8
Std. Dev.	2.3	4.7	0.0
Acoust. Mean	97.0	99.1	95.8

Flight velocity and power profiles were treated similarly, using three separate INM models. Figure 5-11 shows the profiles for the ARTS IIIA flight profiles, the three INM nominal profiles, the single nominal INM profile, and the INM standard departure profile. The velocity and power profiles were treated similarly using the three separate INM analyses. Velocity profiles are shown in Figure 5-12.

5.4.2 B-747 INM Modeling Method

B-747 arrival flight tracks on Runway 19R are shown in Figure 5-13. Based on the fleet subset distribution given in Appendix A, INM aircraft #2 (727-200) was used in the INM analysis. A single nominal flight track, flight profile, velocity profile, and power profile was used. Appendix B tabulates the individual results, means, and standard deviations. Insufficient correlated noise events precluded analyzing 747 departures.

5.4.3 B-757 INM Modeling Technique

B-757 arrival flight tracks on Runway 12 were also modeled using one nominal track and profile set. These are shown in Figure 5-14, superimposed on the ARTS actual radar data for those flights with correlated noise measurements. Flight, velocity, and power profiles were treated as for the B-747, using INM aircraft #52 (B757-200 with Pratt & Whitney 2037 engines). Insufficient B-757 departures with matching stage lengths and correlated noise events existed for further sensitivity analyses.

5.4.4 B-767 INM Modeling Method

All Boeing 767s (Figure 5-15) were modeled in INM as B767-200 with JT9D-7R4D engines. This airframe/engine combination was determined by analyzing the fleet mix, 11 OAG, 14,15,16 and ARTS IIIA 10 IF messages. For both arrivals and departures, each individual flight track and profile was modeled separately, yielding no fewer than 10 arrival arrival and 14 departure INM input decks.

An initial nine arrival flight tracks were created in order to evaluate the sensitivity of SEL predictions at a given site with the SEL measurement. Table 5-7 describes the variation at site with arrival track and profile modeling.

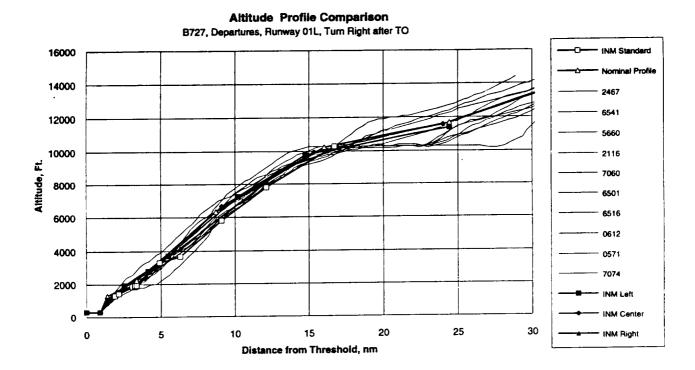


Figure 5-11. B-727 Altitude Profile, Departures.

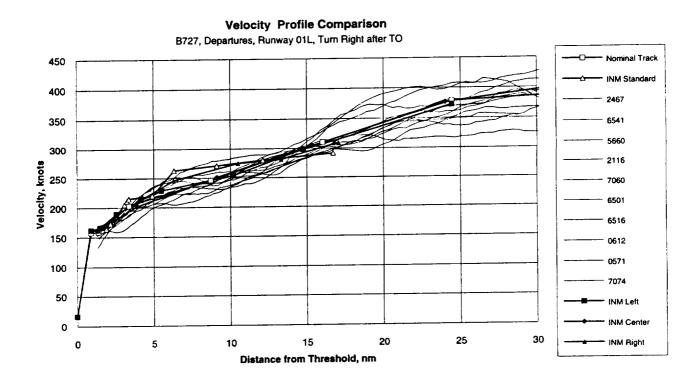
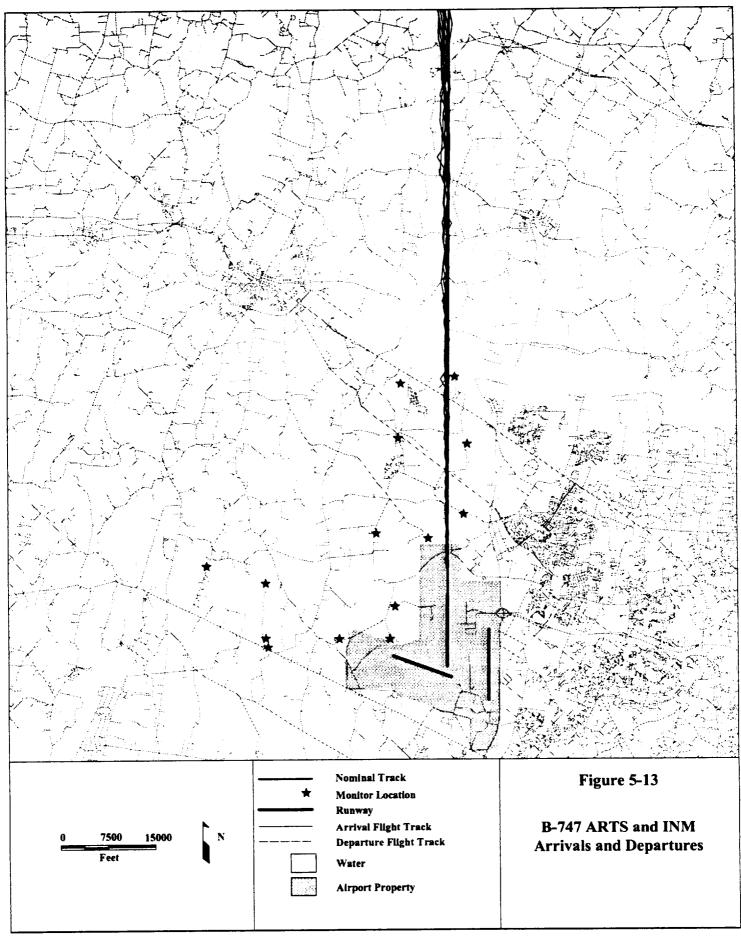
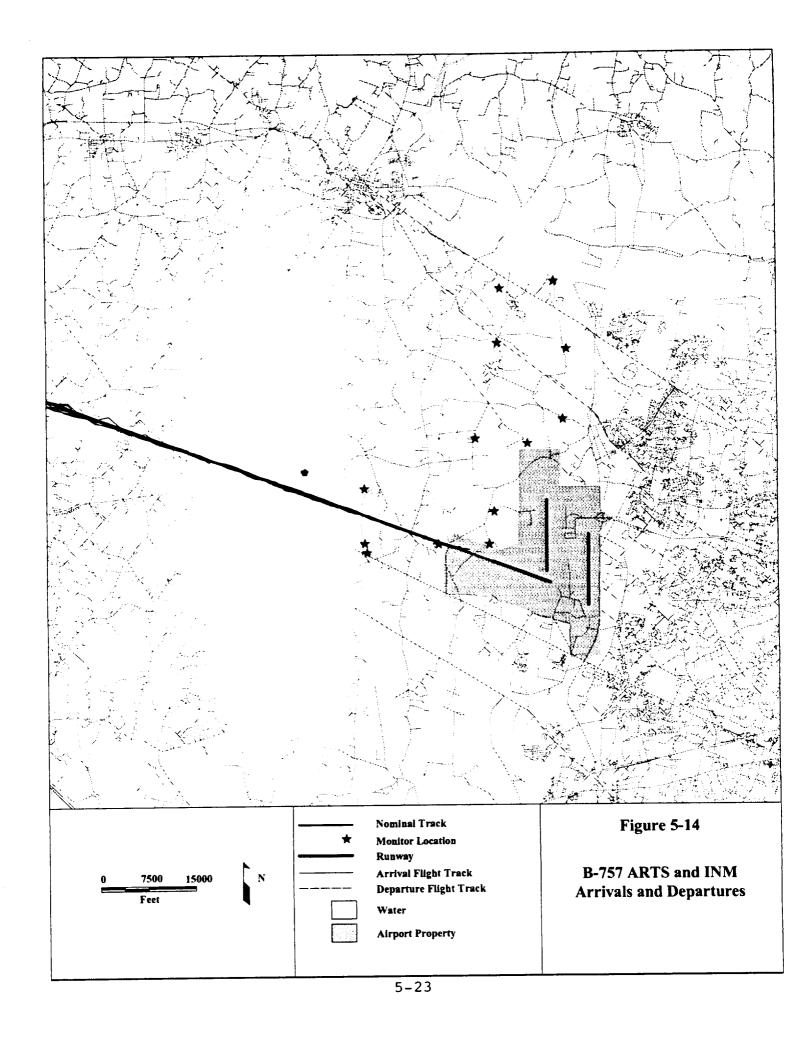




Figure 5-12. B-727 Velocity Profile, Departures.

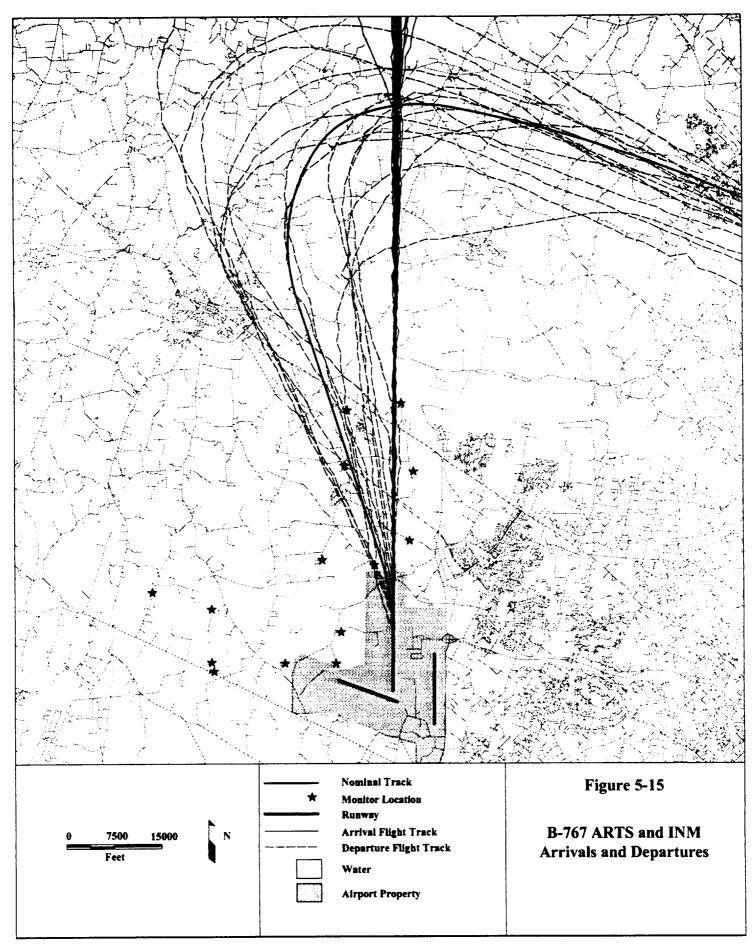
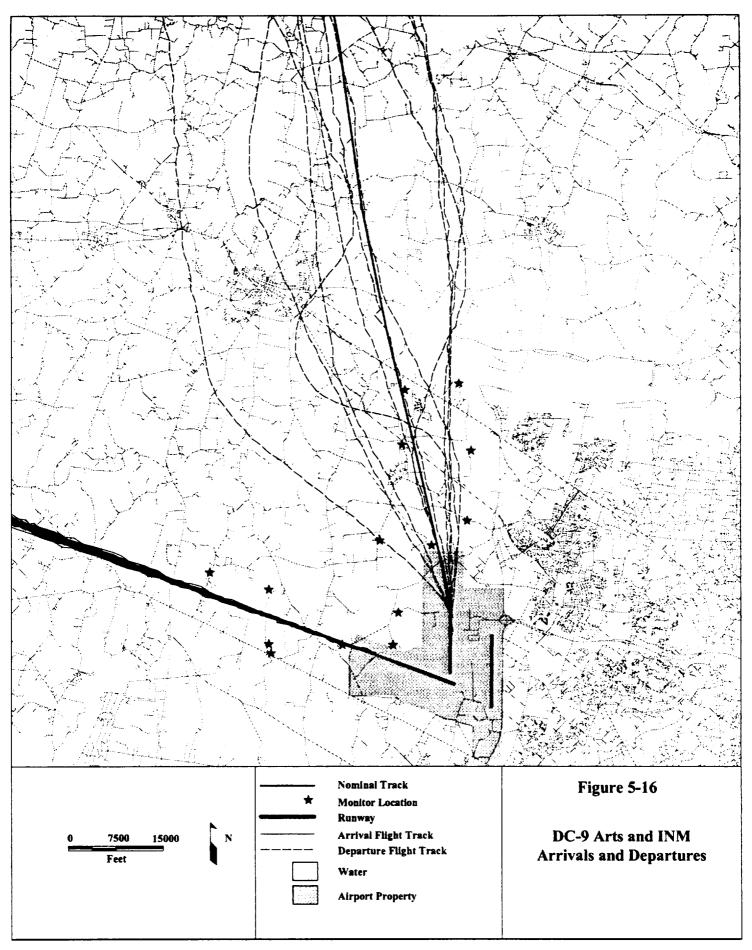


Table 5-7
B-767 Approach Modeling Sensitivity:
Actual Versus Nominal, Site #1


Squawk	INM Actual SEL, dB	INM Nominal SEL, dB
7336	76.6	76.0
2416	76.1	76.0
7204	74.9	76.0
2556	76.1	76.0
6735	75 .1	76.0
6761	75.3	76.0
0743	76.1	76.0
2367	74.4	76.0
0750	75.8	76.0
Mean	75.7	76.0
Acoust. Mean	75.7	76.0
Std. Dev.	0.7	0

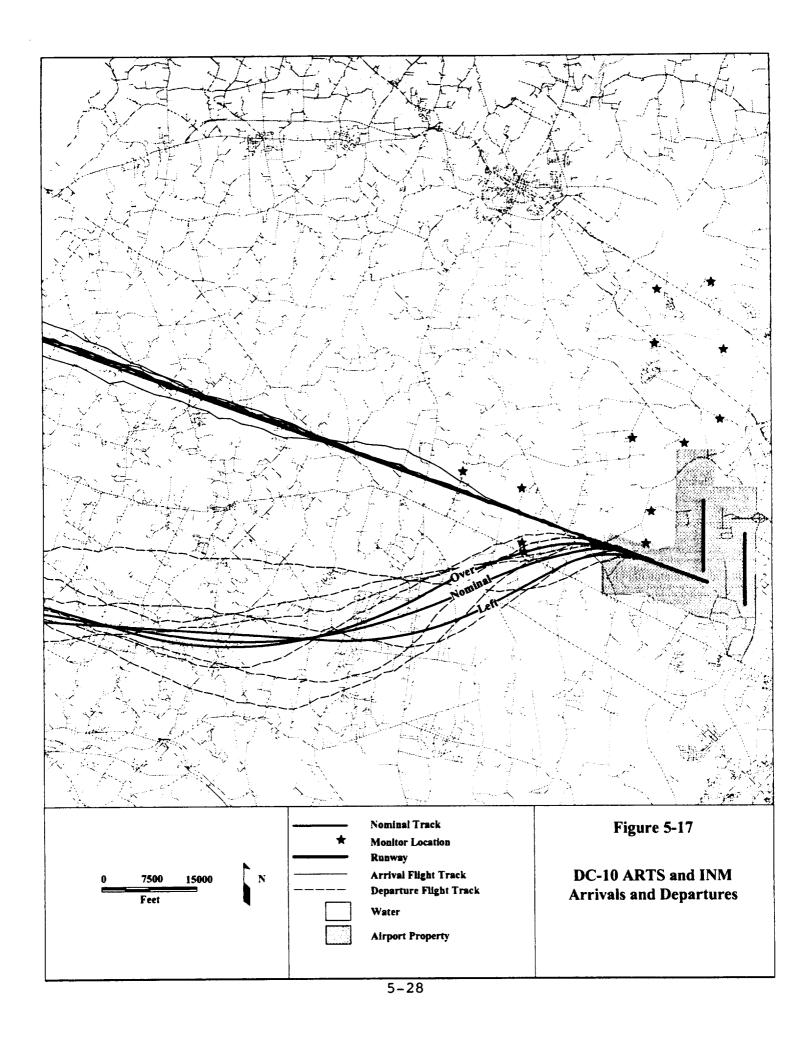
Based on these first nine tracks, a standard deviation of less than 1 dB and a difference between the mean of the actual and the nominal track/profile of less than 0.5 dB, the nominal track and profile were used for the remaining 19 aircraft. The results of this modeling technique can be seen in Appendix B. Similar procedures were used in the development of altitude, velocity, and power profiles, both individual and nominal.

B-767 departures were also modeled both separately and as one nominal track/profile. Appendix B gives the results of both modeling approaches. The nominal track was created within the DISARTS¹² portion of NDADS by creating gates at various distances downtrack and calculating the mean gate penetration. The nominal track was then drawn by visually aligning the various straight and curved segments within one standard deviation of the mean penetration location. Mean track penetrations were considered both in the creation of the nominal tracks as well as the flight profile.

5.4.5 DC-9 INM Modeling Technique

Given the fleet mix of DC-9s with correlated noise measurements, aircraft #40 (DC9-30 with JT8D-9 engines) was used in INM. Appendix A describes the fleet mix used to arrive at this conclusion in more detail. DC-9 departures were modeled independently, whereas DC-9 arrivals were treated as one nominal case. Figure 5-16 shows the ARTS IIIA radar tracks, with the INM nominal tracks superimposed. The standard deviation of the individually modeled SEL prediction at

site #5 was 2.8 dB. This small deviation indicated that the amount of track dispersion was perhaps small enough that departures could have been modeled as the single nominal track. It is interesting to note that although the acoustical mean value of the individual tracks, 91.5 dB SEL, was closer to the acoustical mean value of the measured exceedances, 90.2 dB SEL, than was that of the nominal track at 93.8 dB SEL, given a difference less than 3 dB the nominal track model would be justified in this case.


5.4.6 DC-10 INM Modeling Technique

Appendix A contains the individual fleet mix which yielded the decision to model correlated DC-10 tracks as INM aircraft #19 (DC10-10 with CF660 engines). Arrivals, with minimal track dispersion, were handled as one nominal track, shown in Figure 5-17.

Departures were grouped into two subsets entitled "over" and "left". These two tracks as well as the overall nominal track can also be seen in Figure 5-17. Appendix B quantifies the statistical differences between the two modeling approaches. In summary, considering site #9 as an example, the difference in the acoustical mean between the two-track and the nominal track versus the measurement was 0.5 dB SEL versus 2.0 dB SEL, respectively. Given the difference of only 0.5 dB SEL between the two-track method predicted and measured data, no further detailed track modeling was justified.

5.5 Profile Modeling

Based on ARTS IIIA radar data, altitude profiles were viewed within NDADS. Both actual and nominal profiles were developed for each data subset (Table 5-4). Standard power profiles, as provided by INM, were used to guide development of power profiles for each data subset. A table of power versus distance was obtained by comparing the nominal flight altitude with the standard altitude and applying the standard power setting for that attitude, at the nominal distance. This had the physical effect of applying a power setting which yields a similar climb rate with differences in weight affecting the level acceleration altitude, rather than the power setting. This approach was justified because altitude data was available, whereas performance maps and actual power settings were not. Recent studies indicate that errors in power of up to 20 percent (which is substantial) result in only a 2 to 3 dB error in noise level. ¹⁷

5.6 Statistical Analysis of Correlated Noise Events

A statistical analysis of the correlated noise events was carried out in order to determine if the difference between the SELs that were computed from the INM and those that were measured was a function of the position of the aircraft's flight path. To accomplish this, linear regressions of the form

$$y = a + bx$$

were calculated for the entire 342-element data set, where y, the dependent variable, is $SEL_{INM} - SEL_{meas}$ and x, the independent variable, is a measure of the position of the closest point of approach of the aircraft's flight track to the measurement position. In particular, analyses were done for the following independent variables:

- Altitude of the point of closest approach in kilofeet,
- Slant range of the point of closest approach in kilofeet, and
- Elevation angle of the point of closest approach in degrees.

In addition, two additional linear regressions were computed in which the independent variables were:

- Aircraft speed in miles per hour and
- Site distance from start of takeoff roll in kilofeet.

The results of these regression calculations are shown in Table 5-8.

Independent	Parameter a					Parameter b				
Variable	Value	Std.Error	t-value*	95% Cor	of. Limits	Value	Std.Error	t-value*	95% Cor	f. Limits
Altitude	1.257	0.424	2.964	0.423	2.091	-0.468	-0.176	-2.656	-0.815	-0.121
Slant Range	0.826	0.399	2.071	0.042	1.610	-0.142	0.089	-1.594	-0.318	0.033
Elevation Angle	1.046	0.500	2.093	0.063	2.030	-0.017	0.010	-1.668	-0.038	0.003
Aircraft Speed	3.226	1.132	2.849	0.999	5.453	-0.016	0.006	-2.633	-0.028	-0.004
Site Distance	1.762	0.461	3.819	0.855	2.669	-0.062	0.017	-3.615	-0.096	-0.028

^{*} $t_{critical} = 1.970$

In all cases the dependence on the independent variable is small. In fact, a comparison of the calculated t-value with the critical t-value for 340 degrees of freedom shows that the difference in SELs is independent of slant range and elevation angle at the 95 percent level of confidence. Further, the regression does not vary by more than ± 2 dB over the entire measurement range of each independent variable.

6.0 SENSITIVITY STUDY

INM analysis was conducted for 342 individual aircraft operations where ARTS IIIA radar data were correlated with noise measurements. A database (Appendix B) was created which contains predictions versus measurements for these correlated noise events. Sensitivity studies were performed in order to evaluate the effect of INM prediction accuracy on physical parameters. Figure 6-1 compares field measurements with INM predictions. The amount of data scatter, while unnerving at first sight, is consistent with that seen in earlier studies. Deviations of $\pm 10~\mathrm{dB}$ are not uncommon.

A comparison of the Predicted—Measured SEL levels with the altitude of the closest point of approach to the noise monitor shows a slight sensitivity with altitude (Figure 6-2). Considering first a linear fit, INM underpredicts the individual event SEL for aircraft above 2,500 feet. Looking at the energy-average fit, however, INM appears to underpredict individual SEL levels across the entire range. The energy fit was obtained by performing a linear fit to the sound exposures (SE), where:

$$SE = 10^{\frac{SEL}{10}} x (20 \mu Pa)^2 - sec$$

SE fits were converted to decibels for comparison with SEL data and linear fits. Based on the energy fit, a trend of INM underprediction with increasing altitude is apparent when considering data scatter; however, these trends are only very slight.

INM prediction accuracy, based on a linear fit in the SEL domain, also seems to decrease with increasing slant range (Figure 6-3). Slant range is defined as the minimum straight-line distance between the monitoring site and the aircraft's position. However, based on fitting the data in the energy domain, this conclusion cannot be drawn.

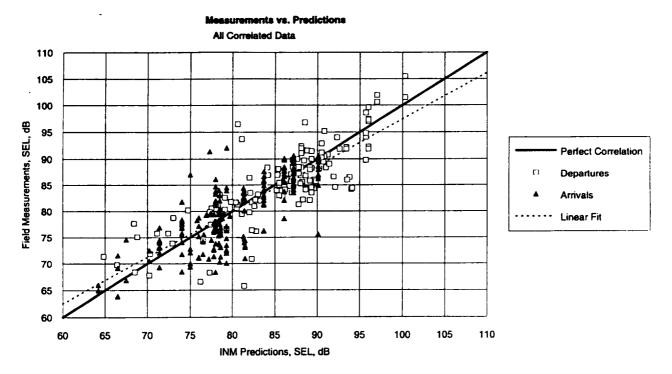


Figure 6-1. INM Predictions Compared With Field Measurements, All Correlated Data.

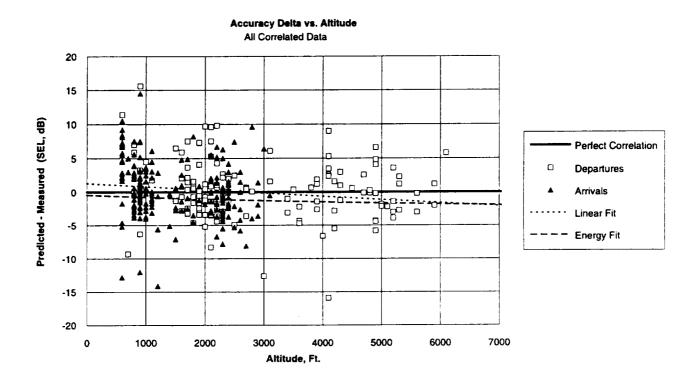


Figure 6-2. Accuracy Versus Aircraft Altitude at Point of Closest Approach, All Correlated Data.

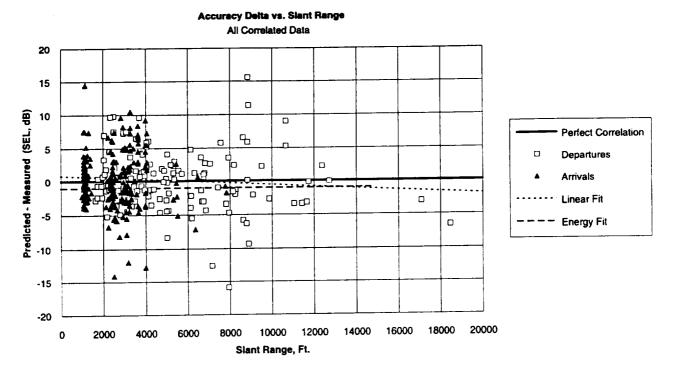


Figure 6-3. Accuracy Versus Slant Range at Point of Closest Approach, All Correlated Data.

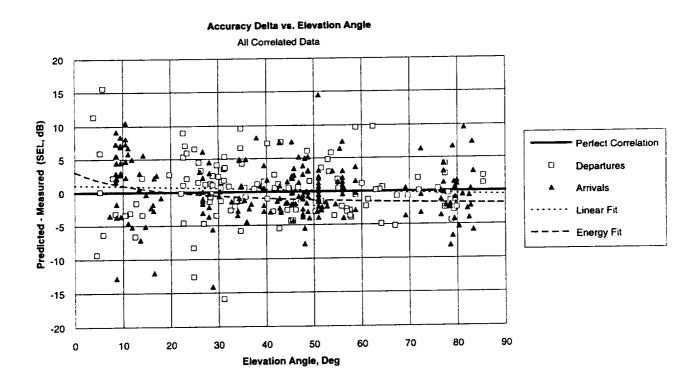


Figure 6-4. Accuracy Versus Elevation Angle at Point of Closest Approach, All Correlated Data.

Elevation angle – the angle between the horizon, the monitoring site, and the aircraft's point of closest approach to the monitor – does not seem to influence the prediction accuracy (Figure 6-4). Both linear fits in the SEL and SE domain indicate only slight dependence on elevation angle. Measurement scatter increases somewhat for elevation angles below about 30 degrees, most likely due to ground impedance and micrometeorological effects at grazing angles.

A consideration of aircraft speed was also undertaken. Figure 6-5 shows the sensitivity of INM prediction accuracy with aircraft speed. Although both the linear fit in the SEL as well as the SE domain show a slight sensitivity with aircraft speed, given the amount of data scatter, no concrete conclusions can be made.

Several factors entering into this analysis which required assusmptions to be made in the predictions include the following:

- Exact identification of the airframe/engine type.
- Availability of INM noise curves for all airframe/engine combinations.
- Resolution limits within the radar tracking data.
- No as-flown power setting data was available.

The first two points can primarily be thought of as a function of fleet age. As aircraft get re-engined, upgraded, and sold between aircraft carriers, equipment changes take place, specifically engine modifications. For the older aircraft, such as DC-9s and B-727s, an incomplete matrix of airframe/engine noise is available within INM. Identification of the equipment tracked by the radar data is also difficult. The $OAG^{14,15,16}$ and $FedEx^{11}$ were consulted to obtain "likely" candidates; however, given the absence of detailed equipment usage in the IF messages, uncertainty occurs. A comparison of the INM accuracy as a function of the average fleet age is given in Figure 6-6. The fleet ages were determined by averaging the delivery dates for these equipment/carrier combinations contained within each of the data subsets. Appendix A contains more detailed information on the data subsets.

In order to understand the sensitivity of INM with modeling technique, a brief comparison between a straight segment and a curved segment with an "infinite" radius (actually 999,999 feet) was made. The effect of using the large radius is to divide the track into multiple segments, thus providing a test of the noise fraction algorithm.

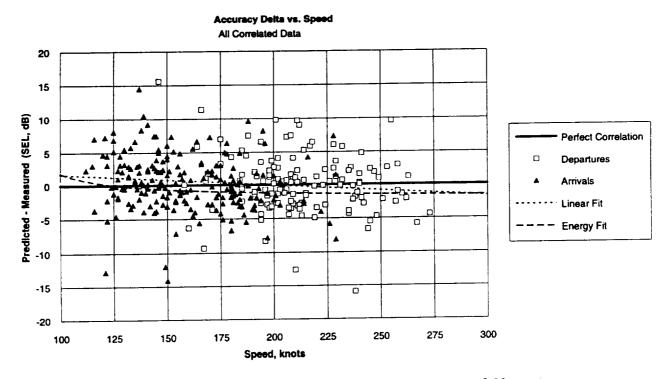


Figure 6-5. Accuracy Versus Aircraft Speed at Point of Closest Approach, All Correlated Data.

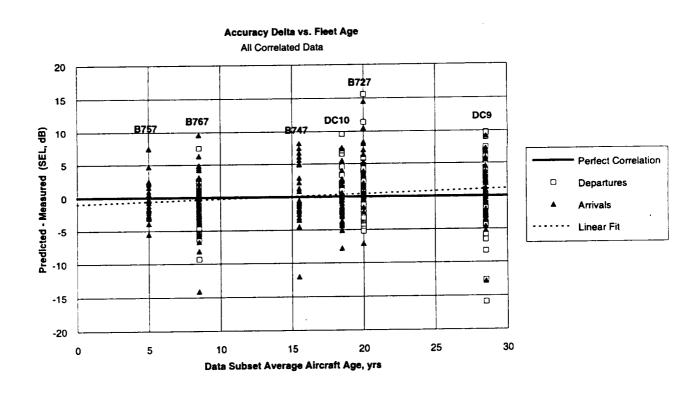


Figure 6-6. Accuracy Versus Average Fleet Age For Correlated Noise Events.

A DC9-10, stage length 1, departure was used. A lateral array of grid points at -15,000 ft, -5,000 ft, 0 ft, +5,000 ft, and +15,000 ft was set up at 10,000 ft, 20,000 ft, 50,000 ft, and 100,000 ft downtrack. Up to 50,000 feet, both forms agree. At a track distance of 100,000 feet, differences of up to 2.8 dB occur, indicating inadequacy of the current noise fraction algorithm at larger distances.

Table 6-1
Sample Analysis, North/South Runway
(Grid Aligned on Runway (0,0))

У	X	x	x	X	x
10,000 Ft	-15,000 Ft	-5,000 Ft	0 Ft	+5,000 Ft	+15,000 Ft
Straight	16.5	34.6	51.3	34.6	16.8
Curved	16.9	34.6	51.3	34.6	16.8
Difference	0.4	0	0	0	0
20,000 Ft					
Straight	17.9	34.0	43.5	34.0	17.9
Curved	18.0	34.1	43.5	33.9	17.8
Difference	0.1	0.1	0	-0.1	-0.1
50,000 Ft					
Straight	18.8	30.3	33.4	30.3	18.8
Curved	19.5	31.1	33.4	29.7	18.2
Difference	0.7	0.8	0	-0.6	-0.6
100,000 Ft					
Straight	17.2	24.6	26.0	24.6	17.2
Curved	19.8	25.7	25.2	22.3	14.4
Difference	2.6	1.1	-0.8	-2.3	-2.8

Another analysis was made using B-747s in order to quantify the sensitivity of INM predictions with airframe/engine combination. Four combinations, B747-100 with JT9D-7QN engines, B747-200 with JT9D-7 engines, B747-400 with PW 4056 engines, and B747-200 with JT9D-7A engines were considered. Table 6-2 shows the rsults of these predictions using the nominal track, as used in the sensitivity studies with the "as-flown" altitude, velocity, and power profiles.

Table 6-2

Sensitivity of INM Predictions With B-747

Airframe/Engine Combinations for Arrivals on Runway 19R

Monitoring Site No.	B-747-100 JT9D-7QN	B747-200 JT9D-7	B-747-400 PW 4056	B-747-200 JT9D-7A	Spread
1	78.5	78.5	81.1	82.5	4.0
2	64.3	64.2	67.9	68.9	4.7
3	81.5	81.4	84.4	85.9	4.5
4	81.3	81.3	83.7	85.2	3.9
5	75.0	75.0	77.5	79.0	4.0
6	54.3	54.3	58.8	59.0	4.3
7	32.9	32.6	43.0	39.0	10.1
8	34.8	34.8	44.6	40.9	9.8
9	41.1	41.1	48.0	46.2	6.9
10	29.9	29.9	41.6	36.7	11.7
11	54 6	54.6	57.8	38.5	19.3
12	49.0	49.0	53.1	53.1	4.1
13	62 4	62.4	65.9	66.9	4.5
14	32.7	32.7	42.8	38.8	10.1

7.0 CONCLUSIONS

INM and similar semi-empirical airport noise modeling tools were originally developed for use in areas in the vicinity of airports, at distances which encompass an L_{dn} of 65 dB or higher. There is increasing interest in noise at larger distances, including en-route noise.

A measurement program was conducted to examine the accuracy of noise models at distances encompassing areas exposed to an L_{dn} of 55 dB. This represents distances two to three times as large as those associated with 65 dB. Measurements were conducted at 14 sites around a major air carrier airport over a two-month period. ARTS radar tracking data, which provides actual flight paths and positive identification of aircraft, were obtained for 25 days in that period. Fifteen of the ARTS-available days corresponded to days with good weather and low wind. Three hundred and forty-two (342) specific aircraft operations were selected for detailed analysis. This selection was sampled by aircraft type, stage length, straight versus curved flight tracks, runway, and arrival versus departure. Single-event noise, quantified by sound exposure level (SEL), was computed via INM and compared with measured SEL. The INM modeling used flight paths derived from ARTS data.

Once this significant volume of field data and corresponding INM calculations was collected, a comprehensive statistical analysis was performed. Differences between measured and predicted SEL were correlated with altitude, slant range, elevation angle, aircraft speed, and distance of the measurement site from the airport. Linear regressions of the average differences were bounded by ±2 dB over the range of each independent variable. For practical noise modeling purposes this is not significant, so the validity of INM for average noise predictions is within acceptable tolerance. Further, the average SEL difference was found to be statistically independent (at the 95 percent level of confidence) of slant range and elevation angle, so this finding is supported in a statistical as well as practical sense. It is concluded that (within the bounds of the current study) INM predictions do not deteriorate with increasing distance from the airport.

In addition to the linear analysis, regressions were also performed on an energy-averaging basis. Noise impact calculated from INM is most often represented by the day-night average sound level, L_{dn} , which represents a summation of

acoustical energy. The energy averaging analysis is appropriate for assessing the validity of the model for prediction of L_{dn} . These correlations showed similar characteristics to the linear analysis. It is therefore concluded that INM and similar models can be applied to regions exposed to an L_{dn} of 55 dB, with reliability comparable to that associated with application to an L_{dn} of 65 dB and higher.

While the average results were very consistent, and therefore support L_{dn} analysis, there was large variation in individual events. The individual overflight SEL data was characterized by spreads of 10 dB or more. This spread was found to be independent of most of the independent variables considered, including distance. There was a correlation between spread and aircraft fleet age, and between spread and elevation angle. Spread increased with increasing age, and with decreasing elevation angle. The correlation with fleet age is reasonable because of the increasing variety of configuration as aircraft types age. The correlation with elevation angle is also consistent with the approximate nature of the lateral attenuation algorithms employed in current noise models.

The event-to-event variation is larger than can be explained by any single mechanism. Differences due to choices in modeling of tracks, nominal power settings, etc., can only account for differences of 2 to 3 dB. Aircraft position, type, weight (as predicted from stage or trip length and associated fuel load), and nominal meteorological conditions (analysis limited to good-weather days) were controlled in the analysis. There were unknowns of actual power settings and variations, actual engine types (rather than fleet nominal), turbulence, and surface micrometeorology.

Aircraft operations at larger distances from airports are characterized by geographical dispersion, with the result that a given distant location is exposed to fewer aircraft noise events than a near location. Statistically reliable predictions of average levels in such situations requires a better understanding of the variability observed in the current study.

It is therefore logical to continue the current research in two directions:

1. Similar measurements at increasingly larger distances. ARTS tracking data, key to monitoring aircraft location, is available at distances several times larger than utilized here. Lower noise levels at farther distances may pose signal-to-noise difficulties, but this can be overcome by use of manned sites rather than (or supplementing) automatic sites.

2. More detailed measurements at distances studied here. This would include obtaining actual configuration and power profiles for some measured aircraft, tape recordings to examine spectra as well as levels, and more detailed analysis of meteorological conditions. Surface layer conditions should be measured at the noise measurement sites, and estimates of turbulent conditions (practical from surface layer and standard weather data) should be made.

These two directions should be conducted simultaneously, so that the within-55 dB detailed measurements can serve as a reference for the measurements at larger distances, just as the within-65 dB measurements in the current study served as a reference for the near-55 dB measurements.

REFERENCES

- 1. "Integrated Noise Model (INM) Version 5.0 User's Guide", FAA-AEE-95-01, August 1995.
- 2. "Integrated Noise Model (INM) Version 4.11 User's Guide Supplement", DOT/FAA/EE/93-03, December 1993.
- 3. "Procedure for the Calculation of Airplane Noise in the Vicinity of Airports", SAE AIR 1845, March 1986.
- 4. Moulton, C.L., "Air Force Procedure for Predicting Aircraft Noise Around Airbases: Noise Exposure Model (NOISEMAP) User's Manual", Wyle Research Report WR 89-20, also AAMRL-TR-90-011, February 1990.
- 5. Burn, M., Stusnick, E., and Ehrlich, G., "A Comparison of Different Aircraft Noise Metrics for Large, Medium, and Small Airports", Paper 2pNS8, 129th Meeting of the Acoustical Society of America, 30 May-3 June 1995.
- 6. Wesler, J.E., "Effects of the Expanded East Coast Air Traffic Plan on Noise Over Northern New Jersey", Wyle Research Report WR 89-2, March 1989.
- 7. "Noise Standards: Aircraft Type and Airworthiness Certification", Part 36 of the Federal Aviation Regulations.
- 8. Mohlman, H.T., "Computer Programs for Producing Single-Event Aircraft Noise Data for Specific Engine Power and Meteorological Conditions for Use With USAF Community Noise Model (NOISEMAP)", AFAMRL-TR-83-020, April 1983.
- 9 FAR Part 150 Noise Compatibility Program, Washington Dulles International Airport, KMPG Peat Marwick, 1993.
- 10. "National Airspace System Automated Radar Terminal System III (ARTS III)", Department of Transportation, FAA Aeronautical Center, N-9, March 1973.
- 11. "Commercial Jet Fleets", Federal Express Aviation Services, Inc., Vol. II, July 1994.
- 12. "Preliminary DISARTS (NDADS) User's Guide", Wyle Research Report WR 95-15, October 1995.
- 13. "INM Integrated Noise Model, Version 3, User's Guide Revision 1", DOT/FAA/EE-92/02, June 1992.

REFERENCES (Continued)

- 14. Official Airline Guide, October 1994.
- 15. Official Airline Guide, November 1994.
- 16. Official Airline Guide, December 1994.
- 17. Gulding, J. Private communication, February 1996.
- 18. Lucas, M.J., "Noise Calculation Procedures Contained in the MOA Range NOISEMAP (MRNMAP) Computer Program", Wyle Research Report WR 95-18, March 1995.

APPENDIX A

Detailed Descriptions of Data Subsets Used in Sensitivity Analysis

Aircraft Type:	727			
Operation Description:	Straight-In	n arrival (on 12	
Airlines:	United Air	rlines, Am	nerican Airlines	
Fleet mix:	UAL	18	B-727-222	JT8D-7
		74	B-727-222	JT8D-15
	AAL	69	B-727-223	JT8D-9
		15	B-727-227	JT8D-9A
		22	B-727-223	JT8D-15A
Year of delivery:	1968-198	10		
Average Age:	20 yrs			
INM Info:	727D15			
Aircraft No.:	2 6			
Stage:	Arrival			
Weight:	152100			
OAG:	727	Boeing '	727 Passenger (Al	l Series)

Aircraft Type:	727			
Operation Description:	01L Depar	ture North	then East	
Airlines:	American A	Airlines, Ur	nited Airlines	
Fleet mix:	UAL	18	B-727-222	JT8D-7
		74	B-727-222	JT8D-15
	AAL	69	B-727-223	JT8D-9
		15	B-727-227	JT8D-9A
		22	B-727-223	JT8D-15A
Year of delivery:	1968-1980	C		
Average Age:	20 yrs			
INM Info:	727D15			
Aircraft No.:	26			
Stage:	1			
Weight:	156000			
OAG:	727	Boeing 72	7 Passenger (All Se	eries)

#2

#1

	Aircraft Type: Operation Description:	_	ln arrival			
	Airlines:	United A	irlines, B	ritish Airways, SWF	₹	
l	Fleet Mix:	UAL	9	B-747SP	JT	9D-7A
			18	B-747-123	JT	9D-7A
			9	B-747-200	JT	9D-7R4G2
					JT	9D-7F
			23	B-747-400	PW	V2040
#3		BAW	13	B-747-200B	RE	3211-524D4
1			3	B-747-200B Com	ıbi	RB211-524D4
			28	B-747-400		RB211-524G
	Year of Delivery:	1969-19	93			
	Average Age:	15.5 yrs				
	INM Info:	747200/	JT9D-7			
	Aircraft No.:	2				
	Stage:	Arrival				
	Weight:	507600				
	weight.	307000				
	OAG:	747	Boeing '	747 Passenger (All	Serie	es)

Aircraft Type:	/5/			
Operation Description:	Arrival on	12	Straight-In	
Airlines:				
Fleet mix:	UAL	7 5	757-200	PW2040
		13	757-2 00	PW2037
Year of delivery:	1989-199	3		
Average Age:	5 yrs			
INM Info:	757PW			
Aircraft No.:	52			
Stage:	arrival			
Weight:	178200			
OAG:	757	Boeing 75	7-200 Passenger	
	Operation Description: Airlines: Fleet mix: Year of delivery: Average Age: INM Info: Aircraft No.: Stage: Weight:	Operation Description: Arrival on Airlines: United Air UAL Year of delivery: 1989–199 Average Age: 5 yrs INM Info: 757PW Aircraft No.: 52 Stage: arrival Weight: 178200	Operation Description: Arrival on 12 Airlines: United Airlines Fleet mix: UAL 75 13 Year of delivery: 1989–1993 Average Age: 5 yrs INM Info: 757PW Aircraft No.: 52 Stage: arrival Weight: 178200	Operation Description: Arrival on 12 Straight-In Airlines: United Airlines Fleet mix: UAL 75 757-200 Year of delivery: 1989–1993 Average Age: 5 yrs INM Info: 757PW Aircraft No.: 52 Stage: arrival Weight: 178200

	Aircraft Type: Operation Description: Airlines:	767 Straight-In United Air		on 19R	
- 1	Fleet mix:	UAL	19	767-200	JT9D-7R4D
			23	767-300	PW4060
	Year of Delivery:	1981-199	3		
#5	Average Age:	8.5 yrs			
1	INM Info:	767JT9			
	Aircraft No.:	33			
	Stage:	arrival			
	Weight:	243000			
	OAG:	767	Boeing	767 (All Series)	

Aircraft Type:

767

Operation Description:

Departure 01L North then east

Airlines:

United Airlines

Fleet mix:

UAL 19 23

767-200 767-300 JT9D-7R4D PW4060

Year of Delivery: #6

1981-1993

Average Age:

8.5 yrs

INM Info: Aircraft No.: 767JT9

Stage:

33 5

Weight:

284600

OAG:

767

Boeing 767 (All Series)

Aircraft Type:

DC9

Operation Description:

Straight-In arrival on 12

Airlines:

NorthWest Airlines, Transworld Airlines, USAir, ABX

Fleet mix:

NWA 22 DC9-10/15

JT8D-7B

Year of Delivery:

1965-1975

Average Age:

28.5 yrs

INM Info:

DC910

Aircraft No.:

40

Stage:

arrival

Weight:

91800

OAG:

DC9

McDonnell Douglas DC-9 (All 10&20 Series)

Aircraft Type:

DC9

Operation Description:

Straight-Out Departure on 01L

Airlines:

NorthWest Airlines, Transworld Airlines, USAir

Fleet mix:

22 NWA

DC9-10/15

JT8D-7B

#8

#7

Year of Delivery:

1965-1975

Average Age:

28.5 yrs DC910

INM Info:

40

Aircraft No.:

1

Stage: Weight:

OAG:

DC9

McDonnell Douglas DC-9 (All 10&20 Series)

	Aircraft Type: Operation Description: Airlines: Fleet mix:	DC10 Straight- United Ai UAL	44	DC1010 DC1030	CF6-6D CF6-50C2B CF6-50C1
#9	Year of Delivery: Average Age: INM Info: Aircraft No.: Stage: Weight:	1975–198 18.5 yrs DC1010 19 arrival 390000	4 80	DC1030CF/F	Cr6-50C1
	OAG:	D10	McDonn	ell Douglas DC10	(All Series)

	Aircraft Type: Operation Description Airlines: Fleet mix:	DC 10 Departu United a UAL		with bank left then DC1010 DC1030 DC1030CF/F	right CF6-6D CF6-50C2B CF6-50C1
#10	Year of Delivery: Average Age: INM Info: Aircraft No.: Stage: Weight:	1975–19 18 5 yrs DC1010 19 4 390000	980 5)	2010001,1	
	OAG:	D10	McDo	nnell Douglas (All Se	eries)

APPENDIX B

Correlation Data, Organized by Aircraft Type, Operation Type, and Monitoring Site Location

Acc. Ratio Dnearest Altitude Slant Range Elevation Speed P/M nm Ft Ft Ft Deg knots P/M nm Ft Ft Ft P/M knots P/M nm Ft Ft Ft P/M knots P/M nm Ft Ft P/M knots Routs P/M nm Ft Ft P/M knots Routs P/M nm Ft P/M A1.7 211 0.70 3600 6553 35.4 206 1.013 0.82 3900 6321 38.1 220 1.013 0.82 3300 9852 19.5 243 1.03 3300 3955 65.5 248 1.0 0.16 3500 6437.3 36.7 213.0 1.0 0.9 3850.0 6437.3 36.7 15.1 0.0	Į	ure, 01L	B-727, Departure, 01L, Right Turn after Take-off	after Take-o	146						
Measured Delta Acc. Ratio Dnearest Attitude Slant Range Elevation Speed SEL,dB SEL,dB P/M nm Ft Ft Ft Dog knots n/a n/a 0.83 4500 6753 41.7 211 n/a n/a 0.70 3600 5567 40.2 219 90.0 0.7 1.008 0.88 3800 6553 35.4 206 n/a n/a 0.28 3800 6523 24.2 249 n/a n/a 0.70 3400 6540 38.6 243 n/a n/a 1.63 3300 9852 19.5 248 n/a n/a 1.63 3800 1054 21.0 221 n/a n/a 0.16 3500 3652 14.5 27.0 sg.8 1.0 0.0 1.6 3850 6437.3 36.7 213.0 n/a<						No	minal Traci	Measurement:	87.6		
SEL, dB SEL, dB P/M nm Ft Ft Deg knots n/a n/a 0.83 4500 6753 41.7 211 n/a n/a 0.70 3600 6567 40.2 219 90.0 0.7 1.008 0.88 3800 6553 35.4 206 n/a 0.7 1.008 0.82 3900 6553 24.2 249 n/a 0.7 1.013 0.82 3900 6321 38.1 220 n/a 1.2 1.013 0.82 3900 6321 38.1 220 n/a 1.6 3300 9852 19.5 233 n/a 1.6 3800 10594 21.0 221 n/a 1.6 3500 3655 65.5 248 n/a 1.0 0.16 3500 6439 39.9 227.7 89.8 1.0 1.0 0.0 0.0	Z	5	Measured	Delta	Acc. Ratio	Dnearest	Altitude	Slant Range	Elevation	Speed	
n/a n/a 0.83 4500 6753 41.7 211 n/a 0.70 3600 5567 40.2 219 90.0 0.7 1.008 0.88 3800 6553 35.4 206 90.0 0.7 1.008 0.85 2600 6323 24.2 249 89.5 1.2 1.013 0.82 3900 6321 38.1 220 n/a n/a 0.70 3400 5440 38.6 243 n/a 1.63 3800 10594 21.0 221 n/a 1.6 3800 10594 21.0 221 n/a 1.6 3600 3655 65.5 248 n/a 1.0 0.16 3500 6439 39.9 227.7 89.8 1.0 0.0 0.0 3650 6437.3 36.7 213.0 9.4 0.4 0.0 0.0 70.7 163.9 1.9	بي	, dB	SEL, dB	SEL, dB	P/M	Шu	Ft	Ft	Deg	knots	
n/a n/a 0.70 3600 5567 40.2 219 90.0 0.7 1.008 0.88 3800 6553 35.4 206 n/a n/a 0.95 2600 6323 24.2 249 n/a 1.2 1.013 0.82 3900 6321 38.1 220 n/a n/a 0.70 3400 5440 38.6 243 n/a n/a 1.63 3800 10594 21.0 221 n/a n/a 0.27 3600 3955 65.5 248 n/a n/a 0.16 3500 3632 74.5 277 89.8 1.0 1.0 0.9 3850.0 6439 39.9 227.7 89.8 1.0 0.0 0.0 70.7 163.9 1.9 9.9 89.8 1.0 0.0 0.0 70.7 163.9 1.9 9.9 89.8 1.0	18	7.0	n/a			0.83	4500	6753	41.7	211	
90.0 0.7 1.008 0.88 3800 6553 35.4 206 n/a n/a 0.95 2600 6323 24.2 249 89.5 1.2 1.013 0.82 3900 6321 38.1 220 n/a n/a 0.70 3400 5440 38.6 243 n/a n/a 1.63 3300 9852 19.5 233 n/a n/a 0.27 3600 3955 65.5 248 n/a n/a 0.16 3500 3632 74.5 227 n/a 1.0 1.0 0.16 3500 6439 39.9 227.7 89.8 1.0 1.0 0.9 3850.0 6437.3 36.7 213.0 0.4 0.0 0.0 70.7 163.9 1.9 9.9 89.8 1.0 1.0 0.9 3850.0 6437.3 36.7 17.9 15.1 89.8 <td><u>ا</u></td> <td>7.0</td> <td>n/a</td> <td></td> <td></td> <td>0.70</td> <td>3600</td> <td>5567</td> <td>40.2</td> <td>219</td> <td></td>	<u>ا</u>	7.0	n/a			0.70	3600	5567	40.2	219	
n/a n/a 0.95 2600 6323 24.2 249 89.5 1.2 1.013 0.82 3900 6321 38.1 220 n/a 1.63 3300 5440 38.6 243 n/a 1.63 3300 9852 19.5 233 n/a 1.63 3800 10594 21.0 221 n/a 0.27 3600 3955 65.5 248 n/a 0.16 3500 3632 74.5 227 89.8 1.0 1.0 0.9 3850.0 6439 39.9 227.7 89.8 1.0 1.0 0.9 3850.0 6437.3 36.7 213.0 0.4 0.4 0.0 0.0 70.7 163.9 1.9 9.9 89.8 1.0 1.0 1.0 1.0 1.0 1.9 9.9	Ō	0.7	90.0	0.7	1.008	0.88	3800	6553	35.4	206	
89.5 1.2 1.013 0.82 3900 6321 38.1 220 n/a 0.70 3400 5440 38.6 243 n/a 1.53 3300 9852 19.5 233 n/a 1.63 3800 10594 21.0 221 n/a 0.27 3600 3955 65.5 248 n/a 0.16 3500 3632 74.5 227 89.8 1.0 1.0 0.9 3850.0 6499 39.9 227.7 0.4 0.4 0.0 0.0 70.7 163.9 17.9 15.1 89.8 1.0 0.0 0.0 70.7 163.9 1.9 9.9 89.8 1.0 0.0 0.0 70.7 163.9 1.9 9.9	ന	0.7	n/a			0.95	2600	6323	24.2	249	
n/a n/a 0.70 3400 5440 38.6 243 n/a 1.53 3300 9852 19.5 233 n/a 1.63 3800 10594 21.0 221 n/a 0.27 3600 3955 65.5 248 n/a 0.16 3500 3632 74.5 227 89.8 1.0 1.0 0.85 3600 6499 39.9 227.7 89.8 1.0 1.0 0.9 3850.0 6437.3 36.7 213.0 0.4 0.0 0.0 0.0 70.7 163.9 1.9 9.9 89.8 1.0 0.0 0.0 70.7 163.9 1.9 9.9	ത	0.7	89.5	1.2	1.013	0.82	3900	6321	38.1	220	
n/a n/a 1.53 3300 9852 19.5 233 n/a 1.63 3800 10594 21.0 221 n/a 0.27 3600 3955 65.5 248 n/a 0.16 3500 3632 74.5 227 89.8 1.0 1.0 0.85 3600 6499 39.9 227.7 89.8 1.0 1.0 0.9 3850.0 6437.3 36.7 213.0 0.4 0.0 0.0 70.7 163.9 1.5 15.1 89.8 1.0 0.0 0.0 70.7 163.9 1.9 9.9	00	0.7	n/a			0.70	3400	5440	38.6	243	100
n/a 1.63 3800 10594 21.0 221 n/a 0.27 3600 3955 65.5 248 n/a 0.16 3500 3632 74.5 227 89.8 1.0 1.0 0.85 3600 6499 39.9 227.7 89.8 1.0 1.0 0.9 3850.0 6437.3 36.7 213.0 0.4 0.0 0.0 70.7 163.9 1.9 9.9 89.8 1.0 0.0 70.7 163.9 1.9 9.9	တ	0.7	n/a			1.53	3300	9852	19.5	233	
n/a 0.27 3600 3955 65.5 248 n/a 0.16 3500 3632 74.5 227 89.8 1.0 1.0 0.85 3600 6499 39.9 227.7 89.8 1.0 1.0 0.9 3850.0 6437.3 36.7 213.0 0.4 0.4 0.0 0.0 70.7 163.9 1.9 9.9 89.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	l w	30.7	n/a			1.63	3800	10594	21.0	221	
n/a 0.16 3500 3632 74.5 227 89.8 1.0 0.85 3600 6499 39.9 227.7 89.8 1.0 1.0 0.9 3850.0 6437.3 36.7 213.0 0.4 0.4 0.0 0.0 70.7 163.9 15.1 89.8 1.0 1.0 1.0 1.9 9.9	, ,,	94.5	n/a			0.27	3600	3955	65.5	248	
89.8 1.0 1.0 0.9 3850.0 6499 39.9 227.7 0.4 0.9 3850.0 6437.3 36.7 213.0 0.4 0.4 0.0 70.7 163.9 15.1 89.8 1.0 70.7 163.9 1.9 9.9	ינטן	94.5	n/a			0.16	3500	3632	74.5	227	
89.8 1.0 1.0 0.9 3850.0 6437.3 36.7 213.0 0.4 0.46 485 2232 17.9 15.1 0.4 0.0 0.0 70.7 163.9 1.9 9.9 89.8 1.0	1 44	39.5				0.85	3600	6499	39.9	7.722	Mean
0.4 0.46 485 2232 17.9 15.1 0.4 0.0 0.0 70.7 163.9 1.9 9.9 89.8 1.0		90.7	89.8	1.0	1.0	0.9	3850.0	6437.3	36.7	213.0	Mean w/o n/a
0.4 0.0 0.0 70.7 163.9 1.9 9.9 89.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0		4.9		and the second s		0.46	485	2232	17.9	15.1	Std. Dev.
89.8 1.0		0.0	0.4	0.4	0.0	0.0	70.7	163.9	1.9	9.6	Std. Dev w/o n/a
89.8 1.0	(0)	1.1									Acou. Mean
	102	7.06	8.68	1.0							Ac. Mean w/o n/a
	1										

Correlation Data B-727, Departures

																	n/a		n/a	
									19					Mean	Mean w/o n/a	Std. Dev.	Std. Dev w/o n/a	Acou. Mean	Ac. Mean w/o n/a	
		Speed	knots	229	235	212	249	235	241	255	224	271	237	238.8	227.0	16.6	9.6			
	91.1	Elevation	Deg	0 09	456	56.9	55.9	57.7	47.8	50.0	50.3	29.1	24.4	47.8	54.1	12.1	6.0			
-	Nominal Track Measurement:	Slant Range	=	E. C. C.	4.85.	6679	5193	6146	6605	6135	6752	9447	11127	7175	6648.0	1759	288.2			
_	minal Track	Altitude	=	•	(2600	4300	5200	4900	4700	5200	4600	4600	4990	5360.0	491	391.2			
_	Š	Onemost	Ę	•		9 6	0 48	0.54	0.73	0.65	0.71	1.36	1.67	0.81	9.0	0.39	0.1			
*		Acc Ratio	\$			0 91.7	•	0.958			0.967				1.0		0.0			
ifter Take-o		Delta	SEL, dB	1.2	.4 3	-3.0		9.6-			-3.0				.2.6		2.2		-2.1	
B-727. Departure, 01L, Right Turn after Take-off		Measured	SEL, dB	86.9	92.4	91.1	n/a	92.0	n/a	n/a	91.1	n/a	n/a		7 06		2.2		91.1	
arture, 01L		Z	SEL. dB	88.1	88.1	88.1	88.1	88.1	88.1	88.1	88.1	80.2	80.2	86.5	1 88		0.0	87.3	88.1	
8-727. Dep		Site #2	Sauawk	2467	6541	5660	2116	7060	6501	6516	0612	0571	7074							

Correlation Data B-727, Departures

																		n/a		n/a	
															Mean	Mean w/o n/a	Std. Dev.	Std. Dev w/o n/a	Acou. Mean	Ac. Mean w/o n/a	
		Speed	knots	232	237	218	249	233	241	254	223	273	240	;	240.0	242.1	15.9	15.8			
	86.5	Elevation	Deg	53.6	55.8	57.0	39.5	48.2	52.9	20.7	22.2	78.8	63.7		49.2	52.3	17.8	17.9			
	Nominal Track Measurement:	Slant Range	Ft	7574	6162	7030	6761	7376	6141	12714	12711	4995	5352		7682	7099.4	2776	2617.6			
	ominal Track	Altitude	F	6100	5100	2900	4300	5500	4900	4500	4800	4900	4800		5080	4985.7	583	549.0			
	N	Dnearest	mu	0.74	0.57	0.63	0.86	0.81	0.61	1.96	1.94	0.16	0.39		0.87	0.8	0.61	9.0			
ıff		Acc. Ratio	P/M	1.069	0.976		1.011		1.057		0.999	0.954	1.003			1.0		0.0			
after Take-o		Delta	SEL, dB	5.8	-2.2		1.0		4.8		-0.1	-4.4	0.3			0.7		3.6		2.0	
B-727, Departure, 01L, Right Turn after Take-off		Measured	SEL, dB	83.5	91.5	n/a	88.3	n/a	84.5	n/a	77.5	95.2	90.5			87.3		5.9		90.1	
arture, 01L		Z	SEL, dB	89.3	89.3	89.3	89.3	89.3	89.3	77.4	77.4	8.06	8.06		87.2	88.0	5.2	4.7	88.8	89.2	
B-727, Dep		Site #3	Squawk	2467	6541	2660	2116	2060	6501	6516	0612	0571	7074								

Correlation Data B-727, Departures

		Speed	knots	185	197	202	217	208	222	210	200	219	212	207.2 Mean	205.3 Mean w/o n/a	11.4 Std. Dev.	11.4 Std. Dev w/o n/a	Acou. Mean	Ac. Mean w/o n/a
	94.0	Elevation	Deg	39.5	41.4	32.1	23.3	34.7	44.4	22.6	19.7	64.1	57.6	37.9	37.5	14.7	16.5		
	Nominal Track Measurement:	Slant Range	Ft	4874	3478	3943	4032	3689	3143	5718	6830	2779	2605	4109	4282.4	1340	1454.1		
	minal Track	Altitude	Ħ	3100	2300	2100	1600	2100	2200	2200	2300	2500	2200	2260	2287.5	375	419.0		
	2	Dnearest	mu	0.62	0.43	0.55	0.61	0.50	0.37	0.87	1.06	0.20	0.23	0.54	0.6	0.27	0.3	i	
3		Acc. Ratio	P/M	1.017	0.971	1.009	1.066			1.013	1.032	0.952	0.964		10		0.0		
fter Take-o		Delta	SEL. dB	1.6	-2.9	0.9	5.9			1.1	2.7	4.9	-3.6		1	5	3.6		
8-727 Departure, 01L. Bight Turn after Take-off		Measured	SEL dB	94.1	98.6	94.8	89.8	n/a	n/a	86.9	85.3	101.9	100.6		0 70	2	6.2		
arture 01L		22	SEI JB	95.7	95.7	95.7	95.7	95.7	95.7	88.0	0 88	97.0	97.0		4.4	2.4.	, «	95.3	
R-727 Den	2	Site #4	Somewh	2467	6541	5660	2116	7060	6501	6516	0612	0571	7074						

																	6		/a	
														Mean	Mean w/o n/a	Std. Dev.	Std. Dev w/o n/a	Acou. Mean	Ac. Mean w/o n/a	
		Speed	knots	171	191	191	202	199	209	205	194	198	198	195.8	195.8	10.4	10.4			
	95.8	Elevation	Deg	54.2	33.9	40.2	33.7	31.3	29.6	61.3	67.0	27.2	25.8	40.4	40.4	14.9	14.9			
	Nominal Track Measurement:	Slant Range	F	3326	3583	2941	2700	3268	3840	2279	2173	4368	3908	3238	3238.4	719	718.6			
	minal Track	Altitude	ፗ	2700	2000	1900	1500	1700	1900	2000	2000	2000	1700	1940	1940.0	317	316.9			
	N	Dnearest	mu	0.32	0.49	0.37	0.37	0.46	0.55	0.18	0.14	0.64	0.58	0.41	0.41	0.17	0.17			
14		Acc. Ratio	P/M	0.964	0.986	0.990	0.987	1.040	1.045	0.988	0.951	1.013	1.016		1.0		0.0			
ifter Take-o		Delta	SEL, dB	-3.6	-1.4	-1.0	-1.3	3.7	4.1	-1.2	-5.2	1.2	1.5		-0.3		3.0		9.0	
B-727, Departure, 01L, Right Turn after Take-of		Measured	SEL, dB	9.66	97.4	97.0	97.3	92.3	91.9	101.5	105.5	92.2	91.9		96.7		4.7		99.1	
arture, 01L		Z	SEL, dB	96.0	96.0	96.0	96.0	96.0	0.96	100.3	100.3	93.4	93.4	96.3	96.3	2.3	2.3	97.0	97.0	
B-727, Dep		Site #5	Squawk	2467	6541	2660	2116	7060	6501	6516	0612	0571	7074							

Correlation Data B-727, Departures

															B/u c		w/o n/a	ne.	w/o n/a	
														Mean	Mean w/o n/a	Std. Dev.	Std. Dev w/o n/a	Acou. Mean	Ac. Mean w/o n/a	
		Speed	knots	171	195	198	211	199	216	211	202	198	198	199.9	201.5	12.4	6.4			
	78.6	Elevation	Deg	14.1	10.3	10.4	7.9	8.4	9.4	14.0	17.1	0.6	7.9	10.8	10.2	3.1	2.8			
	Nominal Track Measurement:	Slant Range	Ŧ	11073	11777	11043	10963	11652	12178	9504	8505	12777	12373	11184	11142.9	1316	1220.2			
	minal Track	Altitude	Ŧ	2700	2100	2000	1500	1700	2000	2300	2500	2000	1700	2050	1925.0	372	287.2			
	Š	Dnearest	шu	1.77	1.91	1.79	1.79	1.90	1.98	1.52	1.34	2.08	2.02	1.81	1.8	0.23	0.21			
ff.		Acc. Ratio	P/M			0.958		0.961		1.028			1.030		1.0		0.0			
fter Take-o		Delta	SEL, dB			-3.4		-3.2		2.2			2.2		-0.6		3.2		0.3	
B-727, Departure, 01L, Right Turn after Take-off		Measured	SEL, dB	n/a	n/a	81.5	n/a	81.3	n/a	79.8	n/a	n/a	74.3		79.2		3.4		80.0	
arture, 01L		Z	SEL, dB	78.1	78.1	78.1	78.1	78.1	78.1	82.0	82.0	76.5	76.5	78.6	78.7	1.9	2.3	79.0	79.2	
B-727, Dep		Site #6	Sauawk	2467	6541	5660	2116	7060	6501	6516	0612	0571	7074							

Correlation Data B-727, Departures

_		_		_	7			1		1	- 1	т	1	 	_		1		1	
														Mean	Mean w/o n/a	Std. Dev.	Std. Dev w/o n/a	Acou. Mean	Ac. Mean w/o n/a	
		Speed	knots	162	158	166	154	164	159	166	172	172	146	161.9	158.7	8.0	11.0			
	83.0	Elevation	Deg	8.8	5.2	3.9	4.5	5.2	7.5	5.0	8.0	3.9	5.8	5.8	5.0	1.7	1.0			
	Nominal Track Measurement:	Slant Range	F	8473	8833	8878	8885	8833	9179	9136	8578	8878	8843	8852	8851.5	213	23.5			
	minal Track	Altitude	F	1300	800	900	700	800	1200	800	1200	009	006	890	7.997	256	152.8			
	S.	Dnearest	mu	1.38	1.45	1.46	1.46	1.45	1.50	1.50	1.40	1.46	1.45	1.45	1.45	0.04	0.01			
14		Acc. Ratio	P/M			1.161		1.077					1.237		1.2		0.1			
ifter Take-o		Delta	SEL, dB			11.4		5.9					15.6		11.0		4.9		12.6	
B-727, Departure, 01L, Right Turn after Take-o		Measured	SEL, dB	n/a	n/a	70.9	n/a	76.4	n/a	n/a	n/a	n/a	65.8		71.0		5.3		73.0	
arture, 01L		Z.	SEL, dB	82.3	82.3	82.3	82.3	82.3	82.3	97.6	82.6	81.4	81.4	83.2	82.0	3.3	0.5	85.2	82.0	
B-727, Dep		Site #11	Squawk	2467	6541	2660	2116	7060	6501	6516	0612	0571	7074							

																		ion			w/o n/a	
																Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	194	166	151	149	135	129	163	154	141	170	208	144	158.7	171.5	23.4	31.8			
	70.2	Elevation	Deg	15.8	14.7	19.4	14.8	16.0	14.8	15.7	15.8	18.4	14.7	17.8	15.0	16.1	15.3	1.6	0.7			
	Nominal Track Measurement:	Slant Range	Ŧ	5487	5519	5405	5461	5429	5461	5546	5487	5692	5519	5545	5402	5496	5474	79	19			
	minal Track	Altitude	Ŧ	1500	1400	1800	1400	1500	1400	1500	1500	1800	1400	1700	1400	1525	1450	154	71			
	No	Dnearest	mu	0.87	0.88	0.84	0.87	0.86	0.87	0.88	0.87	0.89	0.88	0.87	0.86	0.87	0.87	0.01	0.00			
		Acc. Ratio	P/M	0.968			966.0										0.982		0.019			
it In		Delta	SEL, dB	-2.3			-0.3										-1.3		1.4		-1.2	
8-727 Runway 12. Arrivals, Straight In		Measured	SEL. dB	72.5	n/a	n/a	70.5	n/a	n/a	n/a	n/a	п/а	n/a	n/a	n/a		71.5		14		71.6	
way 12. A		2	SFLAB	70.2	70.2	70.2	70.2	70.7	70.7	70.7	70.2	70.2	70.7	70.2	70.2	70.2	70.2	200		20.5	70.7	1:5
R-727. Run	, , , , , , , , , , , , , , , , , , ,	Site #7	Same	2702	25.25	2000	000	0640	0531	4122	3602	7407	2260	1424	2712							

			•																		n/a	
																Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	136	141	130	145	141	122	146	137	125	147	166	132	139.0	139.0	11.7	11.7			
	90.1	Elevation	Deg	47.7	560	48.7	47.7	51.0	48.7	56.0	51.0	48.7	39.5	45.8	56.0	49.7	49.7	4.8	4.8			
	Nominal Track Measurement:	Slant Range	ĭ	1082	1085	1197	1082	1158	1197	1085	1158	1197	1258	1394	1085	1165	1165	94	94			
	minal Track	Altitude	Ĩ	800	006	006	800	006	900	900	006	900	800	1000	006	883	883	28	58			
	Ž	Dnearest	Ę	0 12	010	0.13	0 12	0.12	0.13	0.10	0.12	0.13	0.16	0.16	0.10	0.12	0.12	0.02	0.02			
		Acc. Ratio	P/M	0 994	1 002	1 037	1.045	0.996	1.036	1.024	1.192	1.061	1.007	1.040	1.017		1.038		0.053			
ht In		Delta	SEL, dB	-0.5	0.2	3.2	3.9	-0.4	3.1	2.1	14.5	5.2	9.0	3.5	1.5		3.1		4.0		0.9	
B-727, Runway 12, Arrivals, Straight In		Measured	SEL, dB	9.06	89.9	86.9	86.2	90.5	87.0	88.0	75.6	84.9	89.5	86.6	88.6		87.0		4.0		88.1	
1 A 12, A		Z	SEL, dB	90.1	90.1	90.1	90.1	90.1	90.1	90.1	90.1	90.1	90.1	90.1	90.1	90.1	90.1	0.0	0.0	90.1	90.1	
B-727, Run		Site #9	Squawk	2702	3535	6061	0536	0640	0531	4122	3602	7407	2260	1424	2712							

																		riation	n/a	ean	ean w/o n/a	
							all of the second secon									Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	229	198	178	192	153	177	204	181	195	208	232	180	194	187.7	23	21.1			
	77.8	Elevation	Deg	44.4	45.5	55.4	40.1	46.8	48.1	48.4	52.5	55.0	44.9	40.0	46.8	47	48.6	5	5.0			
	Nominal Track Measurement:	Slant Range	표	3143	2944	3641	3255	3016	3090	3475	2896	3174	3257	4356	3016	3272	3189.4	404	236.8			
	minal Track	Altitude	Ŧ	2200	2100	3000	2100	2200	2300	2600	2300	2600	2300	2800	2200	2392	2388.9	291	289.2			
	N	Dnearest	mu	0.37	0.34	0.34	0.41	0.34	0.34	0.38	0.29	0.30	0.38	0.55	0.34	0.37	0.3	0.07	0.0			
		Acc. Ratio	P/M	1.020		1.090	1.024	1.072	1.069	1.000	0.980	1.020			1.018		1.0		0.0			
ıt İn		Delta	SEL, dB	7.5		6.4	1.8	5.2	5.0	0.0	-1.6	1.5		i	1.4		2.4		2.6		3.1	
B-727, Runway 12, Arrivals, Straight In		Measured	SEL, dB	76.3	n/a	71.4	76.0	72.6	72.8	77.8	79.4	76.3	n/a	n/a	76.4		75.4		2.6		76.1	
way 12, Ar		NN.	SEL, dB	77.8	77.8	77.8	77.8	77.8	77.8	77.8	77.8	77.8	77.8	77.8	77.8	77.8	77.8	0 0	0.0	77.8	77.8	
B-727, Run		Site #10	Sauawk	2702	3535	6061	0536	0640	0531	4122	3602		2260	Ĺ	2712							

																Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	121	138	125	139	152	116	133	127	126	138	138	137	132.50	131.0	9.82	10.1			
	81.5	Elevation	Deg	9.5	9.5	10.6	10.6	10.6	9.5	10.1	7.9	11.0	8.5	10.1	8.6	9.70	9.8	0.95	0.8			
	Nominal Track Measurement:	Slant Range	Ŧ	3629	3629	3271	3271	3271	3629	4005	3614	3647	4049	4005	3989	3667.61	3558.0	294.81	300.3			
	minal Track	Altitude	Ft	009	009	009	009	009	009	700	200	700	900	700	900	616.67	0.009	57.74	0.0			
	Š	Dnearest	mn	0.59	0.59	0.53	0.53	0.53	0.59	0.65	0.59	0.59	0.66	0.65	0.65	09.0	9.0	0.05	0.1			
		Acc. Ratio	P/M		1.115	1.110	1.148		1.095						0.952		1.1		0.1			
nt in		Delta	SEL, dB		8.4	8.1	10.5		7.1						-4.1		6.0		5.8		7.8	
B-727, Runway 12, Arrivals, Straight In		Measured	SEL, dB	n/a	73.1	73.4	71.0	n/a	74.4	n/a	n/a	n/a	n/a	n/a	85.6		75.5		5.8		79.5	
IWBY 12, A		Z	SEL, dB	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	81.5	0.0	0.0	81.5	81.5	
B-727, Run		Site #12	Squawk	2702	3535	6061	0536	0640	0531	4122	3602	7407	2260	1424	2712							

727, Ru	nway 12, A	B-727, Runway 12, Arrivals, Straight In	nt In							
					N _o	minal Track	Nominal Track Measurement:	67.5		
Site #14	2	Measured	Delta	Acc. Ratio	Dnearest	Altitude	Slant Range	Elevation	Speed	
Sauawk	SEL. dB	SEL, dB	SEL, dB	P/M	E	Ft	Ŧ	Deg	knots	
2702	67.5	n/a			1.04	1400	6463	12.5	188	
3535	67.5	n/a			1.04	1400	6463	12.5	166	
6061	67.5	n/a			1.01	1800	6387	16.3	151	
0536	67.5	n/a			1.02	1400	6345	12.7	149	
0640	67.5	6.99	9.0	1.009	1.04	1500	6486	13.4	135	
0531	67.5	n/a			1.02	1400	6345	12.7	129	
4122	67.5	n/a			1.04	1500	6486	13.4	163	
3602	67.5	74.6	-7.1	0.905	1.02	1500	6368	13.6	154	
7407	67.5	n/a			1.06	1500	6604	13.1	140	
2260	67.5	n/a			1.04	1400	6463	12.5	170	
1424	67.5	n/a			1.02	1700	6418	15.3	208	
2712	67.5	n/a			1.04	1400	6463	12.5	142	
									20	
	67.5				1.03	1491.67	6440.70	13.38	15/.92	Mean
	67.5	70.8	-3.3	1.0	1.0	1500.0	6426.5	13.5	144.5	Mean w/o n/a
	0.0				0.01	131.14	73.74	1.23	22.82	Standard Deviation
	0.0	5.4	5.4	0.1	0.0	0.0	83.4	0.2	13.4	Std. Dev w/o n/a
	67.5									Acoustical Mean
	67.5	72.3	-1.7							Acoustical Mean w/o n/a
	67.0	7.53	7:1-							

						Will consider the second control of the seco										Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	150	150	144	157	161	154	145	165	152	166	140	156	153.3	154.7	8.2	4.3			
	81.3	Elevation	Deg	26.7	26.7	30.2	26.7	30.2	28.0	26.7	28.0	30.2	28.0	25.8	26.7	27.8	27.5	1.6	1.4			
	Nominal Track Measurement:	Slant Range	Ŧ	2445	2445	2386	2445	2386	2338	2445	2338	2386	2338	2292	2445	2391	2417.7	55	45.7			
	minal Track	Altitude	Ŧ	1100	1100	1200	1100	1200	1100	1100	1100	1200	1100	1000	1100	1117	1116.7	28	40.8			
	No	Dnearest	mu	0.36	0.36	0.34	0.36	0.34	0.34	0.36	0.34	0.34	0.34	0.34	0.36	0.35	0.4	0.01	0.0			
rivals		Acc. Ratio	P/M	1.081	0.963		0.988	0.993	0.974						0.984		1.0		0.0			
raight In Ar		Delta	SEL, dB	6.1	-3.1		-1.0	9.0-	-2.2						-1.3		-0.4		3.3		1.0	
B747, Arrivals on Runway 19R, Straight In Arrivals		Measured	SEL, dB	75.2	84.4	n/a	82.3	81.9	83.5	81.9	83.3	1.08	74.0	84.0	82.6		81.7		3.3		82.4	
als on Run		ΝN	SEL, dB	81.3	81.3	81.3	81.3	81.3	81.3	81.3	81.3	81.3	81.3	81.3	81.3	81.3	81.3	0.0	0.0	81.3	81.3	
B747, Arriv		Site #4	Squawk	3111	2545	2563	0740	0562	3062	3131	6711	3112	7332	1753	0705							

																	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
																Mean	Mean	Stanc	Std. I	Acou	Acon	
		Speed	knots	210	160	164	180	180	184	193	189	173	228	159	197	184.8	184.7	20.5	19.4			
	81.4	Elevation	Deg	79.3	78.6	79.1	79.5	72.4	7.77	81.1	78.6	77.2	83.1	82.1	76.6	78.8	78.7	2.8	3.1			
	Nominal Track Measurement:	Slant Range	F	2951	2755	2241	2339	2412	2559	3138	2449	2461	2518	2221	2364	2534	2470.2	281	258.9			
	ninal Track	Altitude	ŭ	2900	2700	2200	2300	2300	2500	3100	2400	2400	2500	2200	2300	2483	2420.0	282	261.6			
	Nor	Dnearest	æ	60.0	60.0	0.07	0.07	0.12	0.09	0.08	90.0	60.0	0.05	0.05	0.09	0.08	0.1	0.02	0.0			
ivals		Acc. Ratio	P/M			1.090	0.989	0.994	0.975	0.994	0.977	1.016	1.100	0.969	0.985		1.0		0.0			
Straight In Arrivals		Delta	SEL, dB			6.7	6.0-	-0.5	-2.1	-0.5	-1.9	1.3	7.4	-2.6	-1.2		9.0		3.6		2.2	
		Measured	SEL, dB	n/a	n/a	74.7	82.3	81.9	83.5	81.9	83.3	80.1	74.0	84.0	82.6		80.8		3.6		81.8	
B747, Arrivals on Runway 19R,		Z	SEL, dB	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4	0.0	0.0	81.4	81.4	
B747, Arriv		Site #3	Squawk	3111	2545	2563	0740	0562	3062	3131	6711	3112	7332	1753	0705							

																Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	182	145	150	161	175	159	173	172	162	195	156	184	167.8	170.6	14.9	13.7			
	78.5	Elevation	Deg	38.1	34.3	34.3	34.0	38.7	34.3	36.8	36.4	35.9	37.9	32.7	35.7	35.8	35.7	1.9	2.0			
	Nominal Track Measurement:	Slant Range	F	3396	3013	3013	3220	3035	3013	3336	2864	3070	2925	2958	2914	3063	3058.6	168	148.6			
	minal Track	Altitude	Ŧ	2100	1700	1700	1800	1900	1700	2000	1700	1800	1800	1600	1700	1792	1787.5	144	124.6			
	Š	Dnearest	mu	0.44	0.41	0.41	0.44	0.39	0.41	0.44	0.38	0.41	0.38	0.41	0.39	0.41	0.4	0.02	0.0			
rivals		Acc. Ratio	P/M				0.957	1.012	0.989	0.978		0.946	1.117	0.982	1.067		1.0		0.1			
raight In Ar		Delta	SEL, dB				-3.5	6.0	-0.9	-1.8		-4.5	8.2	-1.4	4.9		0.2		4.3		2.4	
B747, Arrivals on Runway 19R, Straight In Arrivals		Measured	SEL, dB	n/a	n/a	n/a	82.0	77.6	79.4	80.3	n/a	83.0	70.3	79.9	73.6		78.3		4.3		79.7	
als on Run		Z N	SEL, dB	78.5	78.5	78.5	78.5	78.5	78.5	78.5	78.5	78.5	78.5	78.5	78.5	78.5	78.5	0.0	0.0	78.5	78.5	
B747, Arriv		Site #1	Squawk	3111	2545	2563	0740	0562	3062	3131	6711	3112	7332	1753	0705							

																	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a		
														-				Stano	Std.	Acon	Acon		
		Speed	knots	146	141	144	146	151	153	146	162	149	158	146	155	149.8	152.6	6.2	6.2				
	75.0	Elevation	Deg	16.4	15.1	16.5	15.1	16.5	14.8	15.9	14.2	16.5	15.1	11.8	13.5	15.1	14.5	1.4	2.0				
	Nominal Track Measurement:	Slant Range	ű.	3542	3456	3164	3456	3164	3515	3281	3255	3164	3456	3409	3431	3358	3284.8	143	129.5				
	minal Track	Altitude		1000	006	006	006	006	006	006	800	006	900	700	800	875	820.0	75	83.7				
	2	Dnearest	Ę	0 56	0.55	0 20	0.55	0.50	0.56	0.52	0.52	0.50	0.55	0.55	0.55	0.53	0.5	0.02	0.0				
ivals		Acc. Ratio	P/M				. ,	1.030			1.081	0.862		1.071	1.040		1.0		0.1				
Straight In Arrivals		Delta	SEL, dB					2.2			5.6	-12.0		5.0	2.9		0.7		7.3		3.2		
		Measured	SEL. dB	n/a	n/a	n/a	n/a	72.8	n/a	n/a	69.4	87.0	n/a	70.0	72.1		74.3		7.3		20 25	2:33	
als on Run		2	SEL dB	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	0.0	00	75.0	75.0	?;	
B747, Arrivals on Runway 19R,		Site #5	Sanawk	3111	2545	2563	0740	0562	3062	3131	6711	3112	7332	1753	0705								

																Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	207	158	161	176	178	181	188	175	190	226	159	199	183.2	178.5	20.4	3.5			
	64.2	Elevation	Deg	20.4	193	15.7	16.3	16.2	17.9	20.2	16.2	17.2	20.5	15.7	15.9	17.6	17.1	2.0	1.2			
	Nominal Track Massurants	Slant Range	ī	8027	7845	1752	7838	7896	7781	8084	7896	7751	7127	7752	8013	7814	7809.6	245	40.3			
	Track	Altitude	Ξ	2800	2600	2100	2200	2200	2400	2800	2200	2300	2500	2100	2200	2367	2300.0	253	141.4			
	ON CONTRACT	Dnearest	Æ	1 24	1 22	1.23	1 24	1.25	1.22	1.25	1.25	1.22	1.10	1.23	1.27	1.23	1.2	0.04	0.0			
ivals		Acc. Ratio	P/M	•	•	•	0 973	•	0.988								1.0		0.0			
raight In An		Delta	SEL, dB				-1.8		-0.8								-1.3		0.7		-1.3	
8747, Arrivals on Runway 19R, Straight In Arrivals		Measured	SEL, dB	n/a	n/a	n/a	0.99	n/a	65.0	n/a	n/a	n/a	n/a	n/a	n/a		65.5		0.7		65.5	
rals on Run		ΣZ	SEL, dB	64.2	64.2	64.2	64.2	64.2	64.2	64.2	64.2	64.2	64.2	64.2	64.2	64.2	64.2	0.0	0.0	64.2	64.2	
8747, Arriv		Site #2	Squawk	3111	2545	2563	0740	0562	3062	3131	6711	3112	7332	1753	0705							

																							.	
																		Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	125	127	122	134	139	144	150	127	141	138	146	152	141	129	136.8	136.8	9.6	9.6			
	83.7	Elevation	Deg	51.0	45.4	51.0	39.5	51.0	56.0	58.7	56.0	51.0	56.0	45.4	42.8	45.8	26.0	50.4	50.4	5.8	5.8			
	Nominal Track Measurement:	Slant Range	Ŧ	1158	1123	1158	1258	1158	1085	1170	1085	1158	1085	1123	1324	1394	1085	1169	1169	94	94			
	ninal Track	Altitude	Ŧ	900	800	006	800	900	900	1000	900	006	900	800	900	1000	900	893	893	62	62			
	Nor	Dnearest	mu	0.12	0.13	0.12	0.16	0.12	0.10	0.10	0.10	0.12	0.10	0.13	0.16	0.16	0.10	0.12	0.12	0.02	0.02			
		Acc. Ratio	P/M	0.986	0.978	0.974	0.967	0.955	1.098	1.019	1.012	1.028	1.007	0.998	1.097	1.031	0.995		1.010		0.043			
		Delta	SEL, dB	-1.2	-1.9	-2.2	-2.9	-3.9	7.5	1.6	1.0	2.3	9.0	-0.2	7.4	2.5	-0.4		0.7		3.4		3.6	
rivals		Measured	SEL, dB	84.9	85.6	85.9	86.6	87.6	76.2	82.1	82.7	81.4	83.1	83.9	76.3	81.2	84.1		83.0		3.4		83.7	
way 12, Ai		Z	SEL, dB	83.7	83.7	83.7	83.7	83.7	83.7	83.7	83.7	83.7	83.7	83.7	83.7	83.7	83.7	83.7	83.7		0.0	83.7	83.7	
B-757, Runway 12, Arrivals		Site #9	Sauawk	6644	7204	1417	2773	9009	6640	1464	2766	1442	7475	0504	1401	7363	0631							

-
Delta Acc. Rai
SEL, dB P/M
-3.1 0.958
-2.8 0.962
-1.7 0.977
-1.6 0.978
0.990
2.1 1.030
-2.6 0.965
-1.9 0.974
-5.5 0.928
-2.0 1.0
2.0 0.0
-1.5

		!																					/o n/a	
																		Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	112	104	120	124	136	142	128	123	133	129	152	141	128	131	128.8	116.0	12.3	5.7			
	76.5	Elevation	Deg	98	7.8	106	9 22	9.5	8.6	8.6	8.8	9.5	8.6	8.6	9.5	12.3	8.5	9.2	9.6	1.1	1.4			
	Nominal Track Measurement:	Slant Range	<u>.</u>	3989	4409	3271	3629	3629	3989	3989	3254	3629	3989	3989	3629	3291	4049	3766.9	3630.0	345.3	507.6			
	minal Track	Altitude	Œ.	009	909	600	900	009	900	009	200	009	909	009	009	700	909	0.009	600.0	39.2	0.0			
	Z	Dnearest	E	0 65	0 72	0.53	69.0	65 0	0.65	0.65	0.53	0.59	0.65	0.65	0.59	0.53	99.0	9.0	9.0	0.1	0.1			
		Acc. Ratio	P/M	1.031		1 065	•	•											1.0		0.0			
		Delta	SEL, dB	2.3		4.7													K.	5	1.7		3.7	
rivals		Measured	SEL, dB	74.2	n/a	71.8	n/a	ה/ם	n/a		73.0	2:27	17		73.2	!								
B-757, Runway 12, Arrivals		UM-JT9	SEL. dB	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5	2 0	2 0	200	76.5	2.5
3-757, Run		Site #12	Sauawk	6644	7204	1417	2773	6006	6640	1464	2766	1442	7475	0504	1401	7363	0631							

																			n/a	eviation	//o n/a	Mean	Acoustical Mean w/o n/a	
																		Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical	
		Speed	knots	184	185	192	206	199	202	509	509	208	211	197	208	204	208	201.6	201.6	9.2	9.0			
	85.1	Elevation	Deg	55.4	78.1	28.3	28.3	30.4	44.4	78.6	79.2	79.9	76.0	46.2	30.6	37.4	43.0	52.6	52.6	22.0	21.3			
	Nominal Track Measurement:	Slant Range	Ft	2672	2351	3791	3791	3942	3143	2143	1629	1727	1752	2631	3527	3287	2491	7772	2777.0	839	810.7			
	minal Tracl	Altitude	Ft	2200	2300	1800	1800	2000	2200	2100	1600	1700	1700	1900	1800	2000	1700	1914	1914.3	221	221.4			
	No	Dnearest	nm	0.25	0.08	0.55	0.55	0.56	0.37	0.07	0.05	0.05	0.07	0:30	0.50	0.43	0.30	0.30	0.3	0.21	0.2			
p Right Turn		Acc. Ratio	P/M	1.008	0.997	1.016	0.991	0.984	0.970	0.984	0.969	0.973	1.004	0.982	1.020	1.006	1.089		1.0		0.0			
then Shar		Delta	SEL, dB	0.7	-0.3	1.3	-0.7	-1.3	-2.7	-1.4	-2.8	-2.4	0.4	-1.6	1.6	0.5	7.5		-0.1		2.6		0.1	
B-767, Runway 1L, Takeoffs, North then Sharp Right		Measured	SEL, dB	86.8	88.4	82.0	81.3	81.7	8.68	88.5	91.6	90.0	90.8	86.9	81.0	82.2	84.6		86.1		3.9		85.9	
way 1L, Ta		INM-JT9	SEL, dB	87.5	88.1	83.3	9.08	80.4	87.1	87.1	88.8	87.6	91.2	85.3	82.6	82.7	92.1	86.0	86.0	3.7	3.7	87.4	87.4	
B-767, Rur		Site #5	Squawk	2111	0636	2462	7011	2145	2436	0655	2423	2452	2425	2140	6573	2445	2413							

																				2			w/o n/a	
																		Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	236	231	248	248	245	240	263	245	258	246	242	257	239	256	246.7	244.1	9.1	8.6			
	9.08	Elevation	Deg	41.6	76.2	50.1	26.9	42.7	49.0	77.5	30.0	27.2	29.9	57.5	56.8	9.62	68.5	51.0	48.7	19.2	18.9			
	Nominal Track Measurement:	Slant Range	F	7068	4839	5865	7959	6192	5558	4200	8197	7436	8613	4977	4659	4372	3653	5970	6125.6	1548	1444.8			
	minal Track	Altitude	æ	4700	4700	4500	3600	4200	4200	4100	4100	3400	4300	4200	3900	4300	3400	4114	4130.0	377	416.5			
	N _o	Dnearest	шu	0.87	0.19	0.62	1.17	0.75	0.60	0.15	1.17	1.09	1.23	0.44	0.42	0.13	0.22	0.65	0.7	0.40	0.4			
Right Turn		Acc. Ratio	P/M	1.034	0.999		0.938	0.931	1.020		1.035	0.986		0.965	0.967	0.985			0.1		0.0			
then Sharp		Delta	SEL, dB	2.6	0.1		-4.7	-5.5	1.6		2.4	-1.0		-2.8	-2.6	-1.2			-1.1		2.8		-0.3	
B-767, Runway 1L, Takeoffs, North then Sharp Right To		Measured	SEL, dB	76.7	80.6	n/a	75.8	80.2	79.5	n/a	67.8	73.9	n/a	81.1	79.9	80.3	n/a		77.6		4.2		78.8	
way 1L, Ta	•	eTL-MNI	SEL, dB	79.3	80.5	77.9	71.1	74.7	81.1	1.18	70.2	72.9	70.4	78.3	77.3	79.1	89.1	77.4	76.5	2.2	4.0	8 08	77.8	2
B-767, Run		Site #2	Sauawk	2111	0636	2462	7011	2145	2436	0655	2423	2452	2425	2140	6573	2445	2413							

																		L.	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	190	185	192	206	193	202	215	215	225	220	197	212	207	217	 205.4 Mean	214.0 Me	12.5 Sta	6.6 Std	Acc	Acc	
	66.5	Elevation	Deg	12.8	14.1	8.5	8.5	8.9	11.3	14.4	12.7	13.3	14.0	10.2	9.3	10.6	10.5	11.4	12.5	2.2	1.7			
	Nominal Track Measurement:	Slant Range	Ŧ	10331	9445	12147	12207	12222	11199	8455	8149	8231	7818	10726	11803	11419	10428	10327	9128.6	1694	1990.2			
	minal Track	Altitude	ĭ	2300	2300	1800	1800	1900	2200	2100	1800	1900	1900	1900	1900	2100	1900	1986	1933.3	185	152.8			
	No	Dnearest	E	1 66	151	1 98	1 99	1 99	1.81	1.35	1.31	1.32	1.25	1.74	1.92	1.85	1.69	1.67	1.5	0.29	0.3			
P Right Turn		Acc. Ratio	P/M		•	•	•	•			0.978		0.955			0.951			1.0		0.0			
then Shar		Delta	SEL, dB								-1.6		-3.4			-3.4			-2.8		1.0		-2.7	
B-767, Runway 1L, Takeoffs, North then Sharp Right T		Measured	SEL, dB	n/a	n/a	n/a	n/a	n/a	n/a	n/a	71.9	n/a	75.8	n/a	n/a	69.8	n/a		72.5		3.0		73.2	
way 1L, Te		9TC-MNI	SEL, dB	69.2	70.3	66.5	63.8	64.6	0.69	0.69	70.3	0.07	72.4	66.4	0.39	66.4	9.89	0.89	69.7	2.5	3.0	9.89	70.3	
B-767, Rui		Site #6	Squawk	2111	0636	2462	7011	2145	2436	0655	2423	2452	2425	2140	6573	2445	2413							

																		Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	160	158	148	171	165	180	169	179	177	178	158	167	157	174	167.2	161.7	10.1	4.7			
	68.6	Elevation	Deg	5.9	8.5	5.8	5.2	4.5	4.5	9.4	4.5	3.9	4.5	5.2	4.5	5.8	6.3	5.6	5.2	1.6	0.7			
	Nominal Track Measurement:	Slant Range	Ŧ	8783	8833	8843	8833	8946	8885	8549	8825	8818	8825	8833	8885	8903	9155	8851	8833.9	94	51.4			
	minal Track	Altitude	F	900	1300	006	800	700	700	1400	700	009	700	800	700	900	1000	864	800.0	240	100.0			
	N _o	Dnearest	mu	1.44	1.44	1.45	1.45	1.47	1.46	1.39	1.45	1.45	1.45	1.45	1.46	1.46	1.50	1.45	1.5	0.02	0.0			
Right Turn		Acc. Ratio	P/M	0.916										1.001	0.880				6.0		0.1			
then Sharp		Delta	SEL, dB	-6.3										0.1	-9.3				-5.2		8.4		-3.4	
B-767, Runway 1L, Takeoffs, North then Sharp Right Tu		Measured	SEL, dB	75.1	n/a	68.4	7.77	n/a	n/a		73.7		4.8		75.1									
way 1L, Ta		ETC-MNI	SEL, dB	68.8	70.9	8.69	68.3	69.0	70.0	70.0	68.4	68.4	69.6	68.5	68.4	68.3	69.1	69.1	68.6	80	0.2	69.2	68.6	
B-767, Run		Site #11	Sauawk	2111	0636	2462	7011	2145	2436	0655	2423	2452	2425	2140	6573	2445	2413							

																				ation	n/a	an	an w/o n/a
			-															Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a
		Speed	knots	197	197	209	213	207	207	221	211	219	216	208	217	211	213	210.4	210.0	7.2	2.8		
	76.5	Elevation	Deg	28.1	25.6	42.4	46.2	45.2	35.2	19.9	14.7	16.6	14.6	29.5	33.9	32.9	22.6	29.1	37.2	10.8	10.5		
	Nominal Track Measurement:	Slant Range	Ŧ	5091	5786	2961	2631	3100	4160	6454	6711	6648	7147	4255	3583	4048	4669	4803.0	3523.3	1521.8	885.7		
	minal Track	Altitude	Ŧ	2400	2500	2000	1900	2200	2400	2200	1700	1900	1800	2100	2000	2200	1800	2078.6	2000.0	248.6	158.1		
	No	Dnearest	mu .	0.74	98.0	0.36	0.30	0.36	0.56	1.00	1.07	1.05	1.14	0.61	0.49	0.56	0.71	0.7	0.5	0.3	0.2		
o Right Turn		Acc. Ratio	P/M			1.014	0.969	0.949						0.958			0.945		1.0		0.0		
then Sharp		Delta	SEL, dB			1.2	-2.7	-4.4						-3.5			-4.6		-2.8		2.4		-2.2
B-767, Runway 1L, Takeoffs, North then Sharp Right		Measured	SEL, dB	n/a	n/a	85.7	86.9	86.4	n/a	n/a	n/a	n/a	n/a	82.6	n/a	n/a	83.1		84.9		2.0		85.3
way 1L, Ta		INM-JT9	SEL, dB	75.9	76.5	86.9	84.2	82.0	73.4	73.4	71.9	72.5	74.1	79.1	81.2	78.6	78.5	7.77	82.1	4.6	3.5	80.2	83.3
B-767, Run		Site #4	Squawk	2111	9690	2462	7011	2145	2436	0655	2423	2452	2425	2140	6573	2445	2413						

																																Mean					
		Speed	Knots	157	166	167	155	161	163	164	193	181	178	187	169	202	163	130	167	164	173	156	178	194	184	161	169	197	160	167	191	1713	167.0	15.7	111	-	
0	76.0	Elevation	Deg	34.7	36.4	39.5	32.7	35.7	36.4	35.7	36.4	36.4	34.3	38.1	34.8	33.4	32.5	32.7	32.7	31.9	35.7	34.3	41.5	34.0	35.4	34.7	34.0	38.8	34.0	35.7	37.5	25.2	0.00	24.0	1.1	-	
	Nominal Track Measurement:	Slant Range	ĭ	2806	2864	2987	2958	2914	2864	2914	2864	2864	3013	3396	3326	3270	3165	2958	2958	3216	2914	3013	3164	3220	3277	2806	2856	3192	3220	2914	3444	A 0400	3040.4	190.0	190.9	0./61	
	ninal Track	9	ĭ	1600	1700	1900	1600	1700	1700	1700	1700	1700	1700	2100	1900	1800	1700	1600	1600	1700	1700	1700	2100	1800	1900	1600	1600	2000	1800	1700	2100	0 400	2.40/	4.1.0	1113	5.[1]	
7	Non	Dnearest	E	0.38	0.38	0.38	0.41	0.39	0.38	0.39	0.38	0.38	0.41	0.44	0.45	0.45	0.44	0.41	0.41	0.45	0.39	0.41	0.39	0.44	0.44	0.38	0.39	0.41	0.44	0.39	0.45		4.0	4.0	9.0	0.0	
		Acc. Ratio	₽/ ₩	1.013								0.968							1.067			1.069			0.984	1.011	0.964							0.0		0.0	
		Delta	SEL, dB	1.0								-2.5							4.8			6.4			-1.2	8.0	-2.8							0.7		3.2	
Arrivals		Measured	SEL, dB	75.6	n/a	78.3	n/a	n/a	n/a	n/a	n/a	n/a	71.2	n/a	n/a	71.1	n/a	n/a	77.2	75.2	78.8	n/a	n/a	n/a	n/a			75.3		3.1							
B-767, Runway 19R, Arrivals		Z	SEL, dB	9.92	76.1	74.9	76.1	75.1	75.8	76.1	74.4	75.8	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0		75.9	76.1	4.0	0.3	
B-767, Run		Site #1	Squawk	7336	2416	7204	2556	6735	6761	0743	2367	0750	2574	2526	2504	6713	7246	2551	2574	6750	2361	2652	6726	6760	0710	7213	2554	2307	2303	1010	2401						

																																	Mean	Mean w/o n/e	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	184	178	175	183	196	171	173	214	200	203	210	181	226	163	152	181	177	180	167	188	216	191	180	190	229	180	185	200	П	7	T	14.5 St	17.6 St	Ac	Ac	
	78.0	Elevation	Deg	79.5	82.5	83.3	76.6	72.4	0 08	77.2	78.6	. 8 7 8	2 69 -	84.2	720	83.3	82.5	79.1	79.5	82.8	77.2	80.0	81.4	77.2	69.2	19.1	9.9/	78.6	80.3	72.4	79.3		78.4	78.5	3.5	4.0			
	Nominal Track Measurement:	Slant Range	Ft	2339	2320	2618	2364	2412	2437	7461	7449	2419	7887	3015	2944	2618	2320	2241	2339	2419	2461	2437	2832	2461	2567	2241	2364	2755	2536	2412	2951		2510.7	2483.9	88	167.6			
	ominal Track	Altitude	Ft	2300	2300	2600	2300	2300	2400	2400	24(10)	3400	24/10	3000	2800	2600	2300	2200	2300	2400	2400	2400	2800	2400	2400	2200	2300	2700	2500	2300	2900		2453.6	2428.0	97	169.6			
	2	Dnearest	mu	0.07	0.05	0.05	60.0	0 12	007	6 00	*	٠. د	· · ·	• • 00	0.15	0 0	0.05	0.07	0.07	0.05	60.0	0.07	0.07	60.0	0.15	0.07	60.0	60.0	0.07	0.12	60.0		0.1	0.1	0.02	0.0			
		Acc. Ratio	P/M	1.008	0.992	1.040	1.00.1	1.089	1021	1 040	0.470	0.472	- 0.9		•	0.931	0.951		1.009	1.005	0.999	1.014	1.140	1.057	0.955	0.921	0.956	906.0	0.936	0.961	1.018			1.0		0.1			
		Delta	SEL, dB	9.0	9.0-	3.0	0.1	6.3	1.6	3.0	-2.4	. 22	 9 0	•		8.0	0.4-		0.7	0.4	-0.1	1.1	9.6	4.2	-3.7	-6.7	-3.6	-8.1	-5.3	-3.2	1.4			-0.5		4.1		1.6	
rrivals		Measured	SEL, dB	79.1	9.62	74.5	78.7	6.07	76.3	75.6	79.3	79.6	77.5	n/a	e/u	83.8	82.0	B/U	77.3	77.6	78.1	76.9	68.4	73.8	81.7	84.7	81.6	86.1	83.3	81.2	76.6			78.6		4.1		80.0	
way 19R, A		Z	SEL, dB	79.7	0.62	77.5	78.8	77.2	77.9	78.6	6.97	77.4	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0	78.0		78.0	78.0	0.5	9.0	78.2	77.9	
B-767, Runway 19R, Arrivals		Site #3	Squawk	7336	2416	7204	2556	6735	6761	0743	2367	0220	2574	2526	2504	6713	7246	2551	2574	6750	2361	2652	6726	09/9	0710	7213	2554	2307	2303	1010	2401								

																						n/a	
																	Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	215	214	228	209	251	247	194	221	239	231	236	210	208	223.3	221.9	17.0	21.1			
	78.2	Elevation	Deg	28.1	21.8	48.6	11.5	6.09	55.0	45.1	12.0	27.6	27.8	39.1	24.8	44.8	34.4	43.9	15.8	13.2			
	Nominal Track Measurement:	Slant Range	Ft	8259	9149	4131	15045	4119	4761	5077	13460	9927	8782	6965	7151	4963	7830	5494.4	3474	1588.2			
	minal Trac	Altitude	Ft	3900	3400	3100	3000	3600	3900	3600	2800	4600	4100	4400	3000	3500	3608	3514.3	557	353.2			
	No	Dnearest	mu	1.20	1.40	0.45	2.43	0.33	0.45	0.59	2.17	1.45	1.28	0.89	1.07	0.58	1.10	0.7	99.0	0.3			
		Acc. Ratio	P/M	0.982		1.074		0.975	1.022	0.951					0.866	1.005		1.0		0.1			
t North		Delta	SEL, dB	-1.4		6.1		-2.2	1.9	-4.3					-12.6	0.4		-1.7		5.8		8.0	
DC-9, Runway 1L, Takeoffs Straight North		Measured	SEL, dB	79.5	n/a	82.2	n/a	87.6	84.8	88.4	n/a	n/a	e/u	n/a	93.7	86.0		0.98		4.6		88.1	
vay 1L, Tal		ZN.	SEL, dB	78.1	78.5	88.3	68.1	85.4	86.7	84.1	9.69	76.3	75.8	81.3	81.1	86.4	80.0	84.3	6.4	3.6	83.1	85.3	
DC-9, Run		Site #1	Squawk	2163	2463	7010	7012	7032	5604	7072	2442	2475	2145	2460	5651	0634							

Secrit Range Elevation Speed 1
Annual Track Measurement 93 8 Annual Stant Range Flevation Speed Fr Deg knots Fr CP-0 knots 7 1 1 74 7 191 7 1 1 74 7 196 1 1 1 74 7 196 1 1 1 1 74 7 196 2 500 5 192 28 7 208 2 2 2 2 339 2 8 7 214 2 2 2 339 5 8 7 214 2 2 4 00 2 5 2 6 6 4 .3 23 2 2 2 4 00 2 5 2 6 6 4 .3 2 3 2 2 4 00 2 5 2 6 6 4 .3 2 15 2 2 4 00 2 5 2 6 6 4 .3 2 15 2 2 0 0 3 3 7 4 4 3 .0 188 2 2 10 3 4 3 .3 3 5 .6 196 2 10 2 3 4 3 .3 3 5 .6 196 2 19 2 .3 3 4 3 .7 2 0 3 .8 2 19 2 .3 3 4 3 .7 2 0 3 .8 2 19 2 .3 3 4 3 .7
Annual Track Measurement 93 8 Annual Stant Range Flevation Speed Fr Deg knots Fr CP-0 knots 7 1 1 74 7 191 7 200 5192 28 7 208 2 500 5192 28 7 228 2 200 5192 28 7 214 2 200 5339 58 7 214 2 200 2 3339 58 7 211 2 400 2 526 64 3 232 2 400 2 526 64 3 232 2 400 2 526 64 3 215 2 400 3 3074 43.0 188 2 200 3 433 3 5.6 196 2 102 3 44.7 203.8 2 192.3 3 44.7 203.8 2 192.3 3 44.7 203.8 2 192.3 3 55 15.7
Nominal Track Measurement 93 8 Annied Stant Range Flevation Speed ft Deg knots ft Deg knots ft Ft 191 ft ft 196 ft ft 180 ft ft 34.8 180 ft ft 34.8 180 ft ft 34.8 180 ft ft 34.3 231 ft ft ft 191 ft ft ft 191 ft ft ft 196
Annual Track Measurement 93 B Annual Start Range Flevation Speed Fr Deg knots Fr Deg knots Fr Fr 191 Fr Fr 196 Fr Fr 197 Fr Fr 191 Fr Fr 191 Fr Fr 196
Nominal Track Measurement 93 B
Seri Range Flavation Fig. Poep
Annual Track Measurement 93 8 Annual Sunt Range Elevation F. Deg . 1.1.
Annual Track Measurement 93 8 Annual Sunt Range Elevation F. Deg 6.11 74 7 1.1171 2941 40.2 2500 5192 28.7 2200 3846 31.2 2200 3846 34.8 2200 2526 64.3
Montrial Track Measurement 93 8 Antitude Start Range Flavation Fig. Deg Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Co
Montrial Track Measurement 93 8 Antitude Start Range Flavation Fig. Deg Control of the Contro
Montral Track Measurement 93 8 Antitude Start Range Elevation Fr. Deg Control of the Control
Manufact Measurement 93 8 Antitude Start Range Elevation F
Nominal Track Measurement 93 8 Annual Sunt Range Elevation Fr. Fr. Co. 14 110.11 2941 40.2 2500 5192 287
Monimal Track Measurement 93 8 Annual Stant Range Elevation Fr. Fr. Co.) 4 Stant R.) 1 Stant R.) 1
Nominal Track Measurement 93 8 Abritide Start Range Elevation Fr. Fr. Deg Start Avil 4 Start Avil 4 Start Avil 4
Nominal Track Measurement 93 8 Abritude Stant Range Elevation for the Deg (2014) 4 Control of the Control of th
Nominal Track Measurement 93 8 Annual Stant Range Elevation for the Control of th
Nominal Track Measurement 93.8 Annual Stant Range Elevation ft Deg
Nominal Track Measurement 938 Annual Start Range Elevation

DC-9, Run	way 1L, Ta	DC-9, Runway 1L, Takeoffs Straight North	it North							
					Z	forninal Trac	Nominal Track Measurement:	76.7		
Site #3	Z	Measured	Delta	Acc. Ratio	Dnearest	Altitude	Slant Range	Elevation	Speed	
Squawk	SEL, dB	SEL, dB	SEL, dB	P/M	mu	Ħ	Ft	Deg	knots	
2163	77.3	n/a			1.37	0089	9828	32.5	238	
2463	85.9	82.9	3.0	1.036	0.53	4300	5369	53.2	258	
7010	88.2	85.6	2.6	1.030	0.15	4100	4200	77.5	253	
7012	64.8	71.4	9.9-	806.0	2.97	4000	18458	12.5	244	
7032	82.1	83.5	-1.4	0.983	0.68	5200	6638	51.5	260	And the second s
5604	85.2	84.0	1.2	1.014	0.07	2300	5317	85.4	263	
7072	77.3	68.3	9.0	1.132	1.62	4100	10649	22.6	212	
2442	66.7	n/a			2.76	3400	17087	11.5	223	
2475	73.8	n/a			1.70	0099	11736	28.5	257	
2145	73.0	78.8	-5.8	0.926	1.17	4900	8625	34.6	267	
2460	79.8	81.8	-2.0	0.976	0.95	2900	8248	45.6	241	
5651	80.6	96.5	-15.9	0.835	1.12	4100	7936	31.1	238	
0634	6.98	87.1	-0.2	0.998	0.18	4900	5020	77.4	219	
	78.6				1.2	4700.0	9164.7	43.4	244.1	Mean
	80.4	82.0	-1.6	1.0	6.0	4680.0	8046.1	49.1	245.5	Mean w/o n/a
	7.4				0.92	748	4458	24.5	17.7	Standard Deviation
	7.2	7.9	6.7	0.1	6.0	654.6	4164.8	24.8	18.5	Std. Dev w/o n/a
	82.7									Acoustical Mean
	83.7	88.0	2.0							Acoustical Mean w/o n/a
									, "	

Nominal Track
Ratio Dnearest Altitude Slant Range
5300
0.53 4300
4100
042 0.68 5200 6638
026 0.07 5300 5317
061 1.62 4100 10649
0.962 2.76 3400 17087
998 1.70 5600 11736
.087 1.17 4900 8625
0.95 5900 8248
.042 1.12 4100 7936
.048 0.18 4900 5020
1.17 4700 9165
1.0 1.1 4690.0 8706.6
0.92 748 4458
0.0 0.8 717.2 3869.7

DC-9, Run	way 1L, Ta	DC-9, Runway 1L, Takeoffs Straight North	it North							
					Z	lominal Trac	Nominal Track Measurement:	9.98		
Site #2	NN.	Measured	Delta	Acc. Ratio	Dnearest	Altitude	Slant Range	Elevation	Speed	
Squawk	SEL, dB	SEL, dB	SEL, dB	P/M	mu .	Ft	Ft	Deg	knots	
2163	82.8	87.6	-1.8	0.979	0.16	5000	5093	0.62	238	
2463	82.5	n/a			0.64	3900	5503	45.1	249	
7010	77.6	n/a			1.22	3900	8366	27.7	250	
7012	74.4	n/a			1.64	4000	10724	21.9	244	
7032	84.5	n/a			09.0	5500	6596	56.5	261	
5604	77.3	79.4	-2.1	0.974	1.25	2000	9084	33.4	262	
7072	82.3	81.7	9.0	1.007	0.83	4500	6753	41.7	231	
2442	77.0	n/a			1.46	3700	9600	22.6	227	
2475	83.8	n/a			0.41	2600	6128	0.99	257	
2145	82.3	п/а			0.16	4900	4995	78.8	267	
2460	83.5	n/a			0.38	6200	6615	9.69	242	
5651	87.7	n/a			0.27	4100	4415	68.2	238	
0634	79.1	n/a			1.11	4700	8212	34.9	218	
	81.4				8.0	4692.3	7083.4	0.54	244.3	
	8.18	82.9	-1.1	1.0	0.7	4833.3	8.9/69	51.4	243.7	Mean W/o n/a
	3.9				0.5	768.6	1956.2	21.0	14.6	Standard Deviation
	4.3	4.2	1.5	0.0	0.5	288.7	2004.5	24.3	16.3	Std. Dev w/o n/a
	82.8									Acoustical Mean
	83.0	84.3	6.0-							Acoustical Mean w/o n/a

Correlation Data DC-9 Arrivals

DC・3、 Hun	way 12, Arr	DC-9, Runway 12, Arrivals, Straight in	<u> </u>							
					2	Jominal Track	Nominal Track Measurement:	87.2		
Site #9	ΣZ	Measured	Delta	Acc. Ratio	Dnearest	Altitude	Slant Range	Elevation	Speed	
Squawk	SEL, dB	SEL, dB	SEL, dB	P/M	mu	7	F	Deg	knots	
4054	87.2	87.4	-0.2	0.998	0.10	1000	1170	58.7	124	
1775	87.2	84.0	3.2	1.038	0.12	900	1158	51.0	166	
7021	87.2	87.3	-0.1	0.999	0.13	006	1197	48.7	126	
2173	87.2	87.3	-0.1	0.999	0.13	800	1123	45.4	130	
6026	87.2	83.5	3.7	1.044	0.10	1000	1170	58.7	148	
4162	87.2	9.06	-3.4	0.962	0.12	800	1082	47.7	133	
2534	87.2	85.2	2.0	1.023	0.13	800	1123	45.4	158	
4152	87.2	84.6	2.6	1.031	0.12	800	1082	47.7	133	
4162	87.2	87.1	0.1	1.001	0.12	006	1158	51.0	148	
5736	87.2	85.9	1.3	1.015	0.12	900	1158	51.0	132	
7460	87.2	86.4	0.8	1.009	0.12	006	1158	51.0	135	
0742	87.2	84.1	3.1	1.037	0.12	1000	1237	53.9	137	
3612	87.2	n/a			0.13	800	1123	45.4	152	
2645	87.2	89.8	-2.6	0.971	0.12	800	1082	47.7	132	
2516	87.2	n/a			0.13	800	1123	45.4	156	
3042	87.2	85.2	2.0	1.023	0.12	006	1158	51.0	137	
6023	87.2	89.5	-2.3	0.974	0.13	1000	1274	51.7	145	
7445	87.2	87.9	-0.7	0.992	0.13	006	1197	48.7	144	
7054	87.2	84.1	3.1	1.037	0.10	900	1085	56.0	143	
7423	87.2	85.1	2.1	1.025	0.13	800	1123	45.4	129	
4130	87.2	88.3	-1.1	0.988	0.12	800	1082	47.7	140	
3066	87.2	84.9	2.3	1.027	0.12	006	1158	51.0	145	
2523	87.2	86.3	6.0	1.010	0.16	900	1324	42.8	143	
7416	87.2	88.2	1.0	0.989	0.12	900	1158	51.0	138	
9902	87.2	90.2	-3.0	0.967	0.13	900	1197	48.7	142	
7053	87.2	89.2	-2.0	0.978	0.16	800	1258	39.5	137	
7426	87.2	n/a			0.10	900	1085	56.0	152	
3636	87.2	0.06	-2.8	0.969	0.10	1000	1170	58.7	148	
	87.2				0.1	882.1	1157.5	49.9	141.2	Mean
	85.0	84.6	1.7	2.2	1.4	849.3	1117.8	48.9	135.1	Mean w/o n/a
	0.0				0.01	72	61	8.4	10.1	Standard Deviation
	0.0	2.2	2.2	0.0	0.0	71.1	63.0	8.4	9.8	Std. Dev w/o n/a
	87.2									Acoustical Mean
	86.9	86.9	0.3							Acoustical Mean w/o n/a

																																		lon		
																																Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean
				122	132	125	115	135	128	147	121	141	121	133	126	161	130	153	116	141	125	130	120	134	120	138	121	139	124	127	122	130.3	125.8	1.1	8.4	
	70.2	79.3	Ded	9.5	8.5	9.5	9.5	11.0	8.6	8.6	8.5	8.6	8.6	11.0	11.0	7.2	9.8	9.5	8.6	8.6	10.6	8.6	7.9	10.6	9.5	9.6	9.5	8.5	7.8	8.6	11.9	9.2	9.4	1.1	1.1	
		North at I rack Measurement:	Signit nange	3629	4049	3629	3629	3647	3989	3989	4049	3989	3989	3647	3647	3975	3989	3629	3989	3989	3271	3989	3614	3271	3629	3989	3629	4049	4409	3989	2914	3793.2	3751.1	308.3	381.8	
	- I	Nominal Ira	Fr	009	009	009	009	700	900	009	009	009	009	700	700	500	009	009	009	009	009	009	200	009	009	009	900	900	009	009	009	603.6	607.7	42.9	27.7	
			Chedrest	0.59	99.0	0.59	0.59	0.59	0.65	0.65	99.0	0.65	0.65	0.59	0.59	0.65	0.65	0.59	0.65	0.65	0.53	0.65	0.59	0.53	0.59	0.65	0.59	99.0	0.72	0.65	0.47	9.0	9.0	0.1	0.1	
			P/M	1.060		1.038	1.095	1.039			1.092	1.060	1.027						1.101					1.131		0.861	1.079		0.945		0.938		1.0		0.1	
E			SEL dB	1 10		2.9	6.9	3.0			6.7	4.5	2.1						7.3					9.5		-12.8	5.8		-4.6		-5.2		2.3		6.2	
DC-9, Runway 12, Arrivals, Straight In			SEL dB	74.8	e/u	76.4	72.4	76.3	n/a	B/U	72.6	74.8	77.2	n/a	B/U	B/U	n/a	n/a	72.0	n/a	e/u	n/a	e/u	1.07	n/a	92.1	73.5	n/a	83.9	B/U	84.5		77.0		6.2	
ay 12, Arri			SFLAB	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	79.3	0.0	0.0	79.3
DC-9, Runw			Samewk	4054	1775	7021	2173	6026	4162	2534	4152	4162	5736	7460	0742	3612	2645	2516	3042	6023	7445	7054	7423	4130	3066	2523	7416	9902	7053	7426	3636					

																																Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a
				194	229	194	506	182	183	233	201	243	227	222	229	188	187	220	172	179	221	178	168	225	186	200	210	178	218	232	7007	268.1	502.7	340.5	734.9	and the state of t	
	74.0	Elevation	Deg	48.5	50.0	49.4	46.8	44.9	48.1	41.5	58.7	44.1	45.5	44.6	50.0	42.2	48.5	46.9	45.8	52.6	50.4	49.3	46.8	49.0	44.4	44.6	42.7	46.1	44.4	42.2	49.3	47.0	46.1	3.7	3.5		
	Nominal Track Measurement:	Slant Range	Œ	3205	2740	2894	3016	3257	2819	3164	2690	3300	2944	3413	3781	3276	3205	3557	3484	3398	3241	3165	3016	2779	3143	2986	3388	3328	3143	3276	3165	3170	3262.1	255	308.5		
	Nominal Trac	Altitude	Ŧ	2400	2100	2200	2200	2300	2100	2100	2300	2300	2100	2400	2900	2200	2400	2600	2500	2700	2500	2400	2200	2100	2200	2100	2300	2400	2200	2200	2400	2314	2350.0	198	288.1		
		Dnearest	EL	0.35	0.29	0.31	0.34	0.38	0.31	0.39	0.23	0.39	0.34	0.40	0.40	0.40	0.35	0.40	0.40	0.34	0.34	0.34	0.34	0.30	0.37	0.35	0.41	0.38	0.37	0.40	0.34	0.36	0.4	0.04	0.0		
		Acc. Ratio	P/M					0.955	1.080						0.954	0.952														1.031	0.932		1.0		0.1		
		Delta	SEL, dB					-3.5	5.5						-3.6	-3.7														2.2	-5.4		-1.4		4.3		•
		Measured	SEL, dB	n/a	B/u	n/a	n/a	77.5	68.5	n/a	n/a	n/a	B/U	n/a	77.6	7.77	n/a	B/U	n/a	e/u	۵/۵	n/a	n/a	n/a	n/a	e/u	n/a	n/a	n/a	71.8	79.4		75.4		4.3		0
, in ()		Z	SEL, dB	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	0.0	0.0	74.0	
		Site #10	Squawk	4054	1775	7021	2173	6026	4162	2534	4152	4162	5736	7460	0742	3612	2645	2516	3042	6023	7445	7054	7423	4130	3066	2523	7416	7066	7053	7426	3636						

																		Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	156	172	152	195	156	181	157	154	176	148	176	158	172	131	163.1	177.7	16.3	2.9			
	66.5	Elevation	Deg	14.7	150	17.4	19.0	14.8	17.0	15.0	17.2	16.4	14.8	14.7	17.2	14.8	15.7	16.0	16.0	1.4	1.2			
	Nominal Track Measurement:	Slant Range	£	5519	5402	5342	5519	5461	5457	5402	5399	5312	5461	5519	5399	5461	5546	5442.9	5429.8	70.0	106.2			
	minal Track	Altitude	Œ	1400	1400	1600	1800	1400	1600	1400	1600	1500	1400	1400	1600	1400	1500	1500.0	1500.0	124.0	100.0			
	S	Dnearest	٤	0 88	0 86	0 84	0 86	0 87	98.0	0.86	0.85	0.84	0.87	0.88	0.85	0.87	0.88	6.0	0.9	0.0	0.0			
		Acc. Ratio	P/M				٠	•	1.041			0.961		0.929					1.0		0.1			
ht In		Delta	SEL, dB						2.6			-2.7		-5.1					-1.7		3.9		-0.5	
DC-10, Runway 12, Arrivals, Straight In		Measured	SEL, dB	n/a	n/a	n/a	n/a	n/a	63.9	n/a	n/a	69.2	n/a	71.6	n/a	n/a	n/a		68.2		3.9		69.2	
12, A		N.	SEL, dB	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	66.5	0.0	0.0	66.5	66.5	
DC-10, Rur		Site #7	Squawk	3751	3215	3275	7046	7050	7037	7004	6705	3366	6555	2762	1476	4157	3231							

Correlation Data DC-10 Arrivals

								2										an	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	145	158	144	164	145	151	154	154	173	148	148	130	150	138	150.1 Mean	150.1 Me	10.6 Sta	10.6 Sto	Ac	Aç	_
			Ŕ			+	-	-							,		+		`		-			_
	86.1	Elevation	Deg	45.4	52.8	56.2	44.1	47.7	42.8	42.8	51.0	28.0	51.0	45.4	51.0	39.5	56.2	46.7	46.7	7.4	7.4			
	Nominal Track Measurement:	Slant Range	F	1123	1004	1202	1437	1082	1324	1324	1158	2130	1158	1123	1158	1258	1202	1263.0	1263.0	273.0	273.0			
	ninal Track	Altitude	ች	800	800	1000	1000	800	006	900	900	1000	900	800	900	800	1000	892.9	892.9	82.9	82.9			
	No	Dnearest	mu	0.13	0.10	0.11	0.17	0.12	0.16	0.16	0.12	0.31	0.12	0.13	0.12	0.16	0.11	0.1	0.1	0.1	0.1			
		Acc. Ratio	P/M	1.095	0.975	0.956	0.981	0.958	0.989	0.973	1.005	0.959	0.983	1.029	0.994	1.049	1.007		1.0		0.0			
ht In		Delta	SEL, dB	7.5	-2.2	-4.0	-1.7	-3.8	-1.0	-2.4	0.4	-3.7	-1.5	2.4	-0.5	4.0	9.0		-0.4		3.2		1.0	
DC-10, Runway 12, Arrivals, Straight In		Measured	SEL, dB	78.6	88.3	90.1	87.8	89.9	87.1	88.5	85.7	89.8	87.6	83.7	9.98	82.1	85.5		86.5		3.2		87.4	
way 12, A		NZ.	SEL, dB	86.1	1.98	86.1	86.1	86.1	86.1	86.1	86.1	86.1	86.1	86.1	86.1	86.1	86.1	86.1	86.1	0.0	0.0	86.1	86.1	
DC-10, Rur		Site #9	Squawk	3751	3215	3275	7046	7050	7037	7004	6705	3366	6555	2762	1476	4157	3231							

																			Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
																		Mean	Mear	Stan	Std.	Acor	Acou	
		Speed	knots	185	213	188	222	203	214	175	186	191	180	188	197	182	140	190.3	193.8	20.2	15.2			
	74.0	Elevation	Deg	50.7	50.4	44.9	49.0	40.8	51.6	79.4	45.7	50.7	46.1	45.5	48.1	42.3	49.3	49.6	49.9	9.5	10.9			
	Nominal Track Measurement:	Slant Range	Ft	2971	2855	3257	3705	3209	2933	2645	3214	2971	3328	2944	3090	3119	3165	3100.3	3115.7	251.9	282.3			
	minal Track	Altitude	Ħ	2300	2200	2300	2800	2100	2300	2600	2300	2300	2400	2100	2300	2100	2400	2321.4	2330.0	192.9	226.3			
	No	Dnearest	uu	0.31	0.30	0.38	0.40	0.40	0.30	0.08	0.37	0.31	0.38	0.34	0.34	0.38	0.34	0.3	0.3	0.1	0.1			
		Acc. Ratio	P/M				0.949	0.961	0.964	0.946	0.944	0.961	0.976	0.999	0.905	0.981			1.0		0.0			
ıht In		Delta	SEL, dB				-4.0	-3.0	-2.8	-4.2	4.4	-3.0	-1.8	-0.1	-7.8	-1.4			-3.3		2.1		-2.8	
DC-10, Runway 12, Arrivals, Straight In		Measured	SEL, dB	n/a	n/a	n/a	78.0	77.0	76.8	78.2	78.4	77.0	75.8	74.1	81.8	75.4	n/a		77.3		2.1		77.8	
1way 12, A		Z	SEL, dB	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	74.0	0.0	0.0	74.0	74.0	
DC-10, Rur		Site #10	Squawk	3751	3215	3275	7046	7050	7607	7004	6705	3366	6555	2762	1476	4157	3231							

																		Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Speed	knots	150	156	151	144	146	127	144	141	170	141	142	130	125	135	143.0	148.8	11.9	14.2			
	78.6	Elevation	Deg	8.6	8.5	10.1	9.1	8.5	10.6	9.5	10.6	10.6	9.6	8.6	9.5	8.5	9.9	9.5	9.4	8.0	1.0			
	Nominal Track Measurement:	Slant Range	Ŧ	3989	4049	4005	4424	4049	3271	3629	3271	3271	4065	3989	3629	4049	4065	3839.7	3709.7	362.1	374.0			
	minal Track	Altitude	Ŧ	909	009	700	700	009	009	009	009	009	200	009	009	009	002	 628.6	0.009	46.9	0.0			
	Š	Dnearest	nm	0.65	99.0	0.65	0.72	0.66	0.53	0.59	0.53	0.53	99.0	0.65	0.59	99.0	0.66	9.0	9.0	0.1	1.0			
		Acc. Ratio	P/M	0.979	1.022			1.075	1.030	1.036		1.102							1.0		0.0			
ht In		Delta	SEL, dB	-1.7	1.7			5.5	2.3	2.7		7.3							3.0		3.1		3.9	
DC-10, Runway 12, Arrivals, Straight In		Measured	SEL, dB	80.3	76.9	n/a	n/a	73.1	76.3	75.9	n/a	71.3	n/a	n/a	n/a	n/a	n/a		75.6		3.1		76.6	
way 12, A		ΣN	SEL, dB	78.6	78.6	78.6	78.6	78.6	78.6	78.6	78.6	78.6	78.6	78.6	78.6	78.6	78.6	78.6	78.6	0.0	0.0	78.6	78.6	
DC-10, Rur		Site #12	Squawk	3751	3215	3275	7046	7050	7037	7004	6705	3366	6555	2762	1476	4157	3231							

DC10, Dep	arture, 30, L	DC10, Departure, 30, Left turn after take-off	take-off							The state of the s
						Vominal Tra	Nominal Track Measurement:	82.3		
Site #7	Z.	Measured	Delta	Acc. Ratio	Dnearest	Altitude	Slant Range	Elevation	Velocity	
Squawk	SEL, dB	SEL, dB	SEL, dB	P/M	mu	Ft	Ft	Deg	knots	
0626	85.5	84.8	0.7	1.008	0.42	2700	3713	46.6	214	
5664	85.5	85.0	0.5	1.006	0.31	2700	3290	55.1	226	
2461	85.5	85.4	0.1	1.00.1	0.15	2800	2944	72.0	240	
2112	85.5	n/a			0.21	2100	2456	58.7	235	
0561	73.7	n/a			1.16	2700	7538	21.0	256	
6503	73.7	n/a			1.14	2600	7389	20.6	212	
6502	73.7	n/a			0.50	2500	3931	39.5	229	
	80.4				0.56	2586	4466	44.8	230.3	Mean
	85.5	85.1	0.4	1.0	0.3	2733.3	3315.7	57.9	226.7	Mean w/o n/a
	6.3				0.42	234	2104	19.3	15.3	Standard Deviation
	0.0	0.3	0.3	0.0	0.1	57.7	384.8	12.9	13.0	Std. Dev w/o n/a
	83.3									Acoustical Mean
	85.5	85.1	0.4							Acoustical Mean w/o n/a

														/8	/a viation	/a vviation o n/a	/a viation o n/a /ean	/a viation o n/a /ean
													Mean					
		Velocity	knots	185	185	200	203	218	195	100	0001	06-	197.4	197.4	197.4	197.4 197.4 11.4	197.4 197.4 11.4	197.4 197.4 11.4
	92.0	Elevation	Deg	58.7	77.4	62.9	67.3	25.0	44.6	9 0 9	03.0	03.0	57.9	57.9 57.9	57.9 57.9 17.8	57.9 57.9 17.8	57.9 57.9 17.8	57.9 57.9 17.8
	Nominal Track Measurement:	Slant Range	Ŧ	2222	1947	2134	1734	3548	2560	1020	1350	1350	2295	2295 2295	2295 2295 2295 612	2295 2295 612 612	2295 2295 2295 612	2295 2295 2295 612 612
	Nominal Trac	Altitude	Ft	1900	1900	1900	1600	1500	1800	000	200	8	1771	1771	1771	1771 160	1771 1771 160 160	1771 1771 160 160
		Dnearest	wu	0.19	0.07	0.16	0.11	0.53	0.30	11	-	5	0.21	0.21	0.21	0.21	0.21 0.21 0.16 0.16	0.21 0.21 0.16 0.16
		Acc. Ratio	P/M	0.995	0.974	1.002	0.992	1.080	1.007	0.992				1.0	1.0	1.0	1.0	1.0
ake-off		Delta	SEL, dB	-0.5	-2.4	0.2	-0.7	6.5	9.0	-0.7				0.4	0.4	0.4	0.4	2.8
DC10, Departure, 30, Left turn after take-off		Measured	SEL, dB	91.0	92.9	90.3	91.2	81.3	87.2	88.5	()()			88.9	88.9	88.9	88.9	3.8
arture, 30, L		2	SEL, dB	90.5	90.5	90.5	90.5	87.8	87.8	878	֡	2	89.3	89.3	89.3	89.3 89.3 1.4	89.3 89.3 1.4 1.4	89.3 89.3 1.4 1.4 89.5 89.5
DC10, Dep.		Site #9	Squawk	0626	5664	2461	2112	0561	6503	6502								

П						Ė	-										_
											Mean	Mean w/o n/a	Standard Deviation	Std. Dev w/o n/a	Acoustical Mean	Acoustical Mean w/o n/a	
		Velocity	knots	175	175	168	168	187	169	168	172.9	173.7	7.0	7.3			İ
	89.1	Elevation	Deg	26.3	23.0	30.4	28.7	25.8	31.1	27.1	27.5	27.6	2.8	3.1			
	Nominal Track Measurement:	Slant Range	F	2030	2044	1971	2077	2292	2127	1976	2074	2090.2	111	111.6			
	Nominal Trac	Altitude	Ft	006	800	1000	1000	1000	1100	006	957	966.7	86	103.3			
		Dnearest	E C	0.30	0.31	0.28	0:30	0.34	0.30	0.29	0.30	0.3	0.02	0.0			
		Acc. Ratio	P/M	1.038	1.085	1.008	1.013	1.054	1.021			1.0		0.0			
ake-off		Delta	SEL, dB	3.3	7.0	2.0	1.1	4.5	1.8			3.1		2.4		3.7	
DC10, Departure, 30, Left turn after take-off		Measured	SEL, dB	85.8	82.1	88.4	88.0	84.1	86.8	n/a		85.9		2.4		86.4	
arture, 30, L		Z	SEL, dB	1.68	89.1	89.1	1.68	88.6	88.6	88.6	88.9	88.9	0.3	0.3	88.9	88.9	
DC10, Depa		Site #12	Squawk	0626	5664	2461	2112	0561	6503	6502							

	200	DO 10, Departme, 30, 151, 151, 151, 151, 151, 151, 151, 15		•	-	Nominal Trac	Nominal Track Measurement	85.5		
Site #14	Z	Measured	Delta	Acc Ratio	Dnearest	Attitude	Slant Range	Elevation	Velocity	
Carsark	AF.	SEL dB	SEL. dB	₽ / d	Ę	٤	ī	Deg	knots	
9090	86.2	e/C			0 62	3100	4874	39.5	214	
2000	86.2	e/C			0.43	2300	3478	41.4	226	
2461	86.2	D/a			0.55	2100	3943	32.1	246	
2112	86.2	84.1	2.1	1.025	0.61	1600	4032	23.3	235	
2112	76.2	66.6	96	1.144	0.50	2100	3689	34.7	255	
0201	76.2	2/2			0.37	2200	3143	44.4	216	
0202	76.2	a/c			0.87	2200	5718	22.6	229	
2000	7.07	3								
					0	2229	4125	34.0	231.6	Mean
	81.9				00.0	2000	1 0000	0.00	245.0	Mean w/o n/a
	81.2	75.4	5.9		9.0	1850.0	3800.7	63.0	742.0	
	2				0.16	446	886	8.6	15.0	Standard Deviation
	0.5	12.4	T.	0.1	0.1	353.6	242.2	8.0	14.1	Std. Dev w/o n/a
	1.70	1:5								Acoustical Mean
										Acoustical Mean w/o n/a

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

seted to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, of reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

Devis Highway, Suite 1204, Arlington, VA 22202=	1302, and to the Office of Management a	and Budget, Paperwork Reduction Project	ct (0704-0188), Washington, DC 20503.	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND		
	June 1996	Contractor Rep	port	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS	
Validation of Aircraft Noise Mo	dels at Lower Levels of E	Exposure	CNAS1-20103	
			TA 9	
			WU 538-03-15-01	
6. AUTHORS Juliet A. Page, Kenneth J. Plot	ikin Jeffrey N. Carey at	nd		
Kevin A. Bradley	Mil, Ocincy IV. Ourcy, a			
Tievaria Diametey				
7. PERFORMING ORGANIZATION NAME(S)	AND ADDRESS(ES)		8. PERFORMING ORGANIZATION	
McDonnell Douglas Aerospace			REPORT NUMBER	
2401 Wardlow Road	Wyle Laboratories	s	Wyle Research Report WR 96-11	
Long Beach, CA 90807-4418	2001 Jefferson D		MDA Report CRAD-9310-TR-1757	
	Arlington, VA 22	202		
			40 CROMEODING / MONITORING	
9. SPONSORING / MONITORING AGENCY N	AME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
National Aeronautics and Space	ce Administration			
Langley Research Center			NASA CR-198315	
Hampton, VA 23681-0001				
11. SUPPLEMENTARY NOTES				
This report was prepared by W	yle Laboratories under S	Subcontract RD-27031-0	C, Task 9, for	
McDonnell Douglas Aerospace Langley Technical Monitor: Ke		tract No. NAS1-20105, 1	ask 5.	
			I am and a second	
12a. DISTRIBUTION / AVAILABILITY STATE	MENT		12b. DISTRIBUTION CODE	
Unclassified—Unlimited				
Subject Category 71				
13. ABSTRACT (Maximum 200 words)				
,	and airbases in the Uni	ited States are compute	ed via the FAA's Integrated Noise	
Model (INM) or the Air Force's	NOISEMAP (NMAP) pro	gram. These models we	ere originally developed for use in	
the vicinity of airports, at dista	ances which encompass	an Ldn of 65 dB or high	er. There is increasing interest in	
aircraft noise at larger distance	es from the airport, incli	uding en-route noise. To	evaluate the applicability of INM	
and NMAP at larger distance	s, a measurement prog	of 55 dB and higher	a major air carrier airport with ARTS radar tracking data were	
abtained to provide actual fl	icas capuscu to all Ldn ight norometers and no	neitive identification of	aircraft Flight operations were	

obtained to provide actual flight parameters and positive identification of aircraft. Flight operation grouped according to aircraft type, stage length, straight versus curved flight tracks, and arrival versus departure. Sound exposure levels were computed at monitoring locations, using the INM, and compared with measured values. While individual overflight SEL data was characterized by a high variance, analysis performed on an energy-averaging basis indicates that INM and similar models can be applied to regions exposed to an L_{dn} of 55 dB with no loss of reliability.

14. SUBJECT TERMS Aircraft Noise	INM		15. NUMBER OF PAGES 114
Measurement Program	NOISEMAP		16. PRICE CODE AO6
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT