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APPLICATIONS OF GENETIC METHODS TO NASA
DESIGN AND OPERATIONS PROBLEMS

Philip D. Laird
NASA Ames Research Center

Mail Stop 269-2
Moffett Field, CA 94035-1000

We review four recent NASA-funded applications in which evolutionary/genetic methods are
important. In the process we survey

• the kinds of problems being solved today with these methods;
° techniques and tools used;
• problems encountered; and
• areas where research is needed.

The presentation slides are annotated briefly at the top of each page.

285



PROBLEM I - ROTORCRAFT DESIGN

This study applies a simple genetic algorithm to the choice of both the configuration and the
sizing parameters in the design of rotorcraft (helicopters and VTOL vehicles).

Source:
W. Crossley, J. Regulski, V. Wells, D. Laananen,
"Incorporating Genetic Algorithms and Sizing Codes for
Conceptual Design of Rotorcraft", American Helicopter
Society Vertical Lift Aircraft Design Conference, Jan.,
1995.

(Work performed under a grant from NASA Ames
Research Center.)

General Problem:
Combination of both configuration design and sizing

parameters in the design of rotorcraft (helicopters and
tilt-wing/rotor VTOL craft).
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ROTORCRAFT DESIGN (Cont.)

In standard aircraft design methodology, the configuration is determined heuristically based on
experience. Then the parameters (sizes, dimensions, etc.) are calculated using optimization programs
(sizing codes). In this study the configuration itself is part of the design problem, and the sizing codes
are used as part of the genetic fitness function.

The Usual Approach to A/C Design:
• Configure selection based on "experience"
• Sizing codes used to optimize parameter values
• Carpet plot to visualize influence of three key

parameters on the solution space, to adjust for non-
mathematical constraints.

Tools:
• PC platform
• HESCOMP, VASCOMP2 "sizing" codes.

Reasons for Using GAs:
• Ability to handle discrete and continuous parameters and

search a highly discontinuous landscape
• Ability to search more configuration selections than an

engineer's bias would normally allow.
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ROTORCRAFT DESIGN (Cont.)

Two design problems were attacked: a helicopter design and a VTOL design. Both entailed
discrete and continuous parameters. Fitness was the vehicle gross weight as computed by the sizing
code. Each problem was run five times to assess premature convergence and the number of optimal
designs.

Approach:
• Bit string coding for discrete variables (e.g., single

main rotor vs. tandem rotors), integer variables (e.g.,

num. blades, engines), and continuous variables (disk

loading, rotor solidity factors, ...).
• Fixed mission defined for each craft.

• Fitness:

Optimum gross weight returned by HESCOMP or
VASCOMP2.

• G-bit improvement adjustment, elitism for best-of-

generation individual.
• Five runs of each problem.

• Compare results with human designs.
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ROTORCRAFT (Cont.)

Shown below is the encoding for the helicopter design, comprising 15 bits. In most problems
such a compact encoding would mean that one could exhaustively evaluate all design possibilities, but
the cost of running the sizing programs is prohibitive here.

Encoding For Helicopter Design:

Variable (units) Min. Max. Resolution

Tip Speed (ft/sec) 700 735 5.0
Disk Loading 11.5 15.0 0.5 3
(lb/ft z)

Wing Loading 250 320 10 3
(lb/ft z)

Blade Loading .085 .120 .005 3
(Ct/_)

2 3 1 1Num. Engines
Num. Blades 63

String Length

(bits)
3

2
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ROTORCRAFT DESIGN (Cont.)

For the helicopter design problem, convergence to optimal was rapid, showing no indication of
premature convergence. The designs were not directly realizable because not all constraints were
included in the fitness evaluation. For the VTOL design, the GA converged prematurely on the second

generation; but the runs produced four different designs of weight comparable to the human designs.
Interestingly, in both cases the design configurations differed from those chosen by the human
designers of the aircraft.

Results:

(Helicopter)

• Rapid convergence (about 9 generations), no premature

convergence.
All runs gave similar designs. About 4 hours/run.

Designs tended to be unrealizable and expensive because

of missing constraints.
Recommended tandem-rotor design not used by original

(human) design team.

(VTOL)
• Converged prematurely on second generation, but runs

yielded 4 very different designs. About 10 hours/run.

• Predicted gross weight below NASA design, but within
15%.

• All designs preferred tilt wing to tilt rotor (NASA chose

tilt rotor), but differed significantly in the parameter
values.
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ROTORCRAFT DESIGN (Cont.)

Note that the difficulty of representing all the constraints of a real design problem is always
present, but is especially apparent in the use of genetic methods since this is all the algorithms have to
go on. Nevertheless, this work shows that even simple GAs are effective for both configuration and
sizing, and hence can be used to test fixed biases toward certain configurations.

Lessons and Issues:

• Difficult to represent true hard and soft constraints in
one fitness function.

• Even simple GAs are a good way to explore

configuration and sizing problems, and to challenge

fixed design biases.

Related Work:

Bramlette and Bouchard, "GAs in Parametric Design of

Aircraft,"Handbook of Genetic Algorithms, Davis, 1991

Dike and Smith, R. E., X-31 Combat Utility Study of High

Alpha Air Combat Tactics, Contract Report, NASA

Dryden Flight Research Center, 1994
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PROBLEM II - GA APPLIED TO SPACE SHUTTLE
THERMAL DATA MODELS

A simple GA was evaluated as an alternative to an existing thermal modeling program that was
felt to be too slow.

Source:

J. Snyder, "Genetic Algorithm Applied to Shuttle Thermal
Data Models," unpublished manuscript, Oct. 1994.

(Work performed by Client/Server Systems Branch (PT4),
Johnson Space Flight Center, by Joe Snyder and Lui
Wang).

General Problem:

Generate thermal profiles for shuttle sensors to serve as
predictions for the next flight. Predictions are also
compared to real-time data during flight to monitor
potential problems.

Parameters in a thermal model are chosen to optimize
agreement with historical data. Existing iterative methods
were very slow and computationally expensive. GAs were
evaluated as an alternative.
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THERMAL MODELS (Cont.)

The task was to adjust the model parameters to agree with measured data from past flights. A
total of eight parameters were encoded initially with sixteen bits. After initial checkouts with a reduced
number of parameters and a subset of data, the full problem was attacked.

Approach:

Check coding/representation by using simple cases (e.g.,

one flight's data for one component).
Evaluate the GA approach on a complex case: four

components (two parameters each), four flights of data.

Experiment with population size (125, 250 and 500),

parameter ranges and resolution (16 bits per
parameter), mutation and crossover rates, and selection

methods (tournament, roulette-wheel).

Following each run, plot the temperature error vs.

generation for each parameter.

Tools:

SPLICER package for GAs (a multi-platform SGA written

at JSC and available through COSMIC).
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THERMAL MODELS (Cont.)

Initial results were discouraging: convergence to solutions was not occurring in reasonable
times. After considerable experimentation with the control parameters of the GA, it turned out that an
approach of successive refinement in the parameter values, significantly reducing the size of the
parameter search space, led to successful convergence.

Results:

• GAs did not improve the convergence time over the
iterative method.

• Adjustments to genetic "knobs" had only minor
influence on the convergence to low-error solutions.

• Critical was limiting the allowable range of values for

the parameters (e.g., from 0-3 to 0-1). This enabled
convergence to optimum solutions in two or three hours
on a Sun workstation.
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THERMAL MODELS (Cont.)

Careful design of the search space is often very important for success with GAs, and this takes
time. Also, a general technique like GAs, capable of solving a broad array of problems, is not expected
to outperform a problem-specific solution such as the one here that had been developed over a long
time.

Lessons and Issues:

• Choosing parameters and representations for numerical

parameters can be very difficult, even for

knowledgeable and skilled technicians.

Compare: 128 bits vs 15 bits for the rotorcraft

experiments.
• The GA was being asked to improve on an existing

approach designed for the problem. In such cases a
generic method will not often yield improvement.

• Authors suggest series of runs in which the value

constraints and resolutions of the parameters are
modified.

Related Work:

S. Colombano, "Goal-Directed Model Inversion," NIPS

Workshop on Neural Networks and the Solution of Inverse

Problems, Nov. 1994
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PROBLEM III - OPTIMIZING COCKPIT DISPLAYS

This study shows an innovative application of evolutionary algorithms to the design of multi-
function displays in a "glass" cockpit.

Source:
Tica Technologies, Inc., Optimizing Cockpit Display
Configurations with a Genetic Algorithm System,
Contract Report, Dec. 1994.
(Work performed by L. Davis, B. Constantine, J. Kelly,
S. Shieber and others under contract from NASA Ames

Research Center.)

General Problem:

To organize in an optimal way the arrangement of
information onto pages of an MFD (Multi-Function
Display) in an advanced aviation cockpit.
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OPTIMIZING COCKPIT DISPLAYS (Cont.)

MFDs are an alternative to cockpits where all dials, gauges, etc., are visible at all times.
However, it creates difficult human factors problems in making sure that critical information is available
when needed. Here genetic methods were studied as one alternative for designing pages of an MFD.

Multi-Function Displays:

• Alternative to traditional cockpit displays consisting of

fixed gauges, dials and other displays. No room in
"glass cockpit."

• Not all information immediately visible. Human factors

problem to determine the "best" arrangement of data on
pages, and the access to those pages.

Specific Problem:

• Using a challenging mission for a Comanche attack

helicopter, determine an optimal allocation of

information to MFD pages as measured by number of

page changes weighted by the importance of the
information.

Tools: MIDAS platform, proprietary GA software.

Reason for Using GAs:

To evaluate GAs as one alternative for solving the
problem.
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OPTIMIZING COCKPIT DISPLAYS (Cont.)

Using a fixed mission as a criterion, fitness of a given assignment of information to pages was
measured by the number of button presses, weighted by a factor measuring the importance of the
information. The trick in solving the problem with GAs was to reduce it to a problem of partitioning a

weighted directed graph, and to refine an initial solution found with the genetic method into a locally
optimal solution by applying the Kerhighan-Lin algorithm.

Approach:
• Fitness = expected number of button presses on mission,

weighted by criticality factor. (Random allocation
requires about 35 button presses on a mission.)

• Transform the page layout problem to a weighted,
directed-graph partitioning problem; total weight of

edges crossing partitions measures (raw) fitness.
• Use GA (evolutionary algorithm) to construct an initial

solution to the graph partitioning problem (NP hard).
Then use Kernighan-Lin (local improvement) algorithm
to improve the solution.

• Compare results to those of humans and of a program
using the pure Kernighan-Lin algorithm.
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OPTIMIZING COCKPIT DISPLAYS (Cont.)

Investigators compared the human solution for the same problem with that produced by the K-L
algorithm alone and that produced by the GA plus K-L.

Results:

• GA result was best: 22% better than human solution,

10 to 18% better than the pure KL algorithm.

• Run-time performance and resource requirements were

not reported.

• Crossover was not used because it yielded no

improvement on the results.
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OPTIMIZING COCKPIT DISPLAYS (Cont.)

Success in this case rested on several combined factors: clever representations, expertise in
combinatorial techniques, and the lack of a known effective algorithm for an NP-hard problem.

Lessons and Issues:
• GA is especially useful when no known existing

algorithm exists to solve a "hard" problem.
• Key to success here was the clever reduction to a

combinatorial optimization problem, plus the expertise
of the team in genetic and graph-theoretic methods.

• Other applications to automated layout and network
wiring.

Related Work:
D. Orvosh and L. Davis, "Shall We Repair? Genetic

Algorithms, Combinatorial Optimization, and Feasibility
Constraints," Proceedings of the Fifth International

Conference on Genetic Algorithms, 1993.
C. Kosak, J. Marks, and S. Shieber, "Automating the Layout

of Network Diagrams with Specified Visual Organization,"
IEEE Transactions on Systems, Man and Cybernetics,
1993.
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PROBLEM IV - GENETIC CONFIGURATION DESIGN

Instead of attacking an individual problem, Roston develops a design methodology applicable to
a broad family of design problems. Besides the problem presented below he has applied his genetic
design methodology to a diverse array of other problems.

Source:

Gerald P. Roston, A Genetic Methodology for

Configuration Design, Ph.D Thesis, Department of
Mechanical Engineering and the Robotics Institute,
Carnegie Mellon University, Dec. 1994.

(Work supported by NASA contracts with CMU.)

General Problem:

To develop a genetic design (GD) methodology applicable
to a broad range of application areas.

Specific problem illustrated here: to design a frame-walker

rover and its controller capable of negotiating a variety of
terrains.

Other applications described: stepping-stone roller vehicles,

planar linkage mechanisms, truss bridges.
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GENETIC DESIGN (Cont.)

The main tool in this approach is genetic programming (Koza). A design space is defined by

context-free grammar. GP is used to search for an optimal design, taking advantage of the structural

flexibility of its rules. Because GP runs take so long, a preliminary evaluation of the run parameters is
conducted using a "meta"-GA.

Tools/Technology:
• Genetic programming (with strong typing)
• Formal grammar representation of design
• "Meta"-GA to help select eight of thirteen numerical

parameters for GP algorithm.

Reason for Using GP:
• Ability to search a space of variable structures and

simultaneously co-evolve a controller program
• More domain-independent than other GA methods.
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GENETIC DESIGN (Cont.)

The design of a frame-walker rover requires selecting the number of frames, the number of legs
per frame, the size and spacing of those frames, and a control program for driving the vehicle.

Frame Walker:

A simple, statically-stable rover able to negotiate rugged
terrain.

• Two or more frames, each with two or more legs.

• Leg positions fixed relative to the frame but differing
in width and separation.

• Moves by lifting frame 1, moving forward by some

amount, lowering, and repeating this for frames 2, ...

• Unable to proceed if frame fails to find terrain support
beneath at least two legs.

vehicle .> frames C controller

frames-> frames frame I frame

frame -> F number legs

legs -> leg legs Ileg

leg -> L number number [gap distance, pad width]
controller -> sensor I number I func

func -> conditional.func I math-func
etc.
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GENETIC DESIGN (Cont.)

Fitness of a given design is measured by a vector of four performance quantities. A distance
measure in Pareto space serves as the scalar measure of fitness. In a series of increasingly challenging
terrains, the qualities of the solutions were carefully evaluated and compared to expectations.

Approach:
• Context-free grammar representing the configuration

and the controller program.
• Multi-objective fitness function with a distance measure

in Pareto space. Fitness features:
- distance traveled before unable to proceed (larger is

better)
- number of frames (smaller is better)

- average number of legs per frame (smaller is better)
- average pad width (smaller is better)
- number of steps required to traverse terrain (smaller

is better).
• Crossover and mutation, population of 350, elitism,

about three runs per experiment.
• Series of carefully graduated experiments in which

expected results are compared with actual results over
various terrain families (from simple periodic to

fractal).
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GENETIC DESIGN (Cont.)

Among the interesting results: optimal controllers were found for simple problems where the
optimal was known. On complex terrains the solutions were robust for random variations in the terrain
specifics; and vehicles evolved against a fixed control program were outperformed by vehicles that co-
evolved with their own controllers.

Results:

• Run on a Sparc 10, probably using a Lisp

implementation. Performance statistics not given, but
executions measured in _.

• On simple terrains, found an optimal controller.

• On complex terrains, the optimal controller was not

known, but solutions were robust for a range of terrain
variations.

• A vehicle co-evolved with controller usually
outperformed a vehicle evolved with a fixed controller

program.

• Controller programs tended to be large and

incomprehensible (common with GP).
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GENETIC DESIGN (Cont.)

Les_ons/Issues:
Configuration design with co-evolving controller is
feasible and a fertile area for design research.

Related Work:

J. Koza, Genetic Programming, MIT Press, 1992.

T. Nyugen and T. Huang, "Evolvable 3D Modeling for

Model-Based Object Recognition Systems," Advances in

Genetic Programming, MIT Press, 1994.
"Electronic Homunculus Project," (work in progress

evolving robotic controllers for Space Station Freedom),

Johnson Space Center. Contact: Dennis Lawler (ER 221).
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SUMMARY

The main uses of evolutionary/genetic methods in these and other NASA-related domains are:

• as a universal weak method;

• for automatic programming; and
• for designing and modifying structures.

We noted scant application of newer genetic techniques such as niching, steady-state breeding,
sharing/crowding to control convergence, parallel-GAs, messy GAs, etc.

The difficulties most often encountered were:

• controlling the program (too many knobs);
• weakness of the theory for designing and guiding the process;
• tradeoffs between expressiveness and efficiency in the representation; and
• representing the true constraints of the problem with one global fitness function.

Further research is needed to develop tools that allow the user to visualize the evolution of the
population and how effectively the search space is being explored. The bewildering set of tricks and
tweaks that have decorated the research literature for years makes it difficult to decide on a good

approach for a given problem; principled guidelines are needed; and a theory able to predict the
computational resources required to solve a given problem would be a major boost to the engineering

applications of genetic methods. Finally, careful studies of hybrid methods using genetic,
neural, and fuzzy techniques are underway, but much remains to be done.
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