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Abst_ct

An investigation of the numerical simulation with

two-equation turbulence models of a three-dimensional

hypersonic intersecting (SWTBL) shock-wave/turbulent

boundary layer interaction flow is presented. The flows are

solved with an efficient implicit upwind flux-difference

split Reynolds-averaged Navier-Stokes code. Numerical

results are compared with experimental data for a flow at
Mach 8.28 and Reynolds number 5.3" 106 with crossing

shock-waves and expansion fans generated by two lateral

15 fins located on top of a cold-wall plate. This experiment

belongs to the hypersonic database for modeling valida-

tion. Simulations show the development of two primary

counter-rotating cross-flow vortices and secondary turbu-
lent structures under the main vortices and in each corner

singularity inside the turbulent boundary layer. A signifi-

cant loss of total pressure is produced by the complex

interaction between the main vortices and the uplifted jet

stream of the boundary layer. The overall agreement

between computational and experimental data is generally

good. The turbulence modeling corrections show improve-

ments in the predictions of surface heat transfer distribu-

tion and an increase in the strength of the cross-flow
vortices. Accurate predictions of the outflow flowfield is

found to require accurate modeling of the laminar/turbu-

lent boundary layers on the fin wails.

viscosity hypothesis; their generality is built on the use of

transport equations to define turbulent velocity- and

length-scale instead of algebraic definitions; their robust-
ness is based on recent advances on numerical methods;

and their efficiency is based on continuous improvements

of present numerical processors. There is clear evidence

showing that most widely used two-equation models tend

to under-predict flow separation and over-predict heat

transfer near flow re-attachment regions. In hypersonic
flow calculations, these model deficiencies are even more

pronounced, particularly regarding their inability to pre-

dict the extent of the flow separation.

In a recent investigation, Bardina and Coakley ] tested

two model corrections that were designed to remedy the

above mentioned difficulties for 3-D hypersonic flows.
Previously, Coakley and Huang 2 tested these model cor-

rections against experimental data in 2-D compressible

flows. The first one limits the turbulence length scale to be

no greater than the yon KArm/m length scale. This correc-

tion is equivalent to the use of a one-equation model in

regions where the length scale of the two-equation model

is larger than the von K,fmn_n length scale. The main
effect of this correction was observed to reduce the heat

transfer rate near flow-reattachment in agreement with

experimental observations. The second model correction,
designed to increase the extend of separation, causes the

length scale to decrease (or increase) when the flow under-

goes rapid compression (or expansion).

The present investigation is a continuous research

effort to develop, verify and applly two-equation turbu-

lence models for three-dimensional compressible turbulent
flows 18. Two-equation turbulence models are simple, gen-

eral, robust, and efficient for CFD applications on high

speed flows. Their simplicity is mainly due to the eddy
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The development and validation of turbulence models

for hypersonic shock-wave/turbulent boundary layer inter-

actions is based on the fundamental understanding of the

turbulence physics of the flows and the availability of an

acceptable experimental database. In a parallel research
effort to this investigation, Settles and Dodson 9-n have

completed an extensive review of the available experi-

mental data on compressible turbulent high-speed flows
suitable for turbulence model validation. This resea_h

was developed for the (NASP) National AeroSpace Plane

program in the Modeling and Experimental Validation
Branch at NASA Ames Research Center. The review of 2-

D and 3-D flows includes complex hypersonic flows with

pressure profiles, skin friction, wall heat transfer, yaw



angles, pitot pressure, and turbulence statistics data. In
this paper, we present comparisons of numerical simula-
tion results and the selected experimental data of Kussoy
and Horstman12 on intersecting shock-waves/turbulent

boundary layer (ISWTBL) interactions. This simple
geometry shows complex turbulence structures of great
interest in the design of uniform high-pressure flows at the
entrance of inlets.

Turbulence Models

The turbulence models used in this study are the two-
equation k-0_ model of Wilcox 13"14, the k-E model of

Launder and Sharma 15, the SST (k-ogk.e) model of
Menter 16and the algebraic eddy viscosity model formula-
tion of Baldwin and Lomax 17. The two-equation k-_
model is also studied with the compressibility model cor-
rections, in particular, the length-scale and the separation
corrections. A detailed description of these models is
found in the references, and a detailed description of these
models, including the model corrections is found in refer-
ences 2 and 4. The main aim of the present effort is to fur-
ther study the effects of the compressibility conections in
the simulation of complex 3-D flows. Currently, research
on improved compressibility corrections for turbulence
modeling is being performed to account for the complex
effects encountered in shock boundary layer interactions.

Numerical Method

The cost-effective engineering design of aerospace
vehicles encountering subsonic, transonic, supersonic and
hypersonicspeedsrequires advancedand efficient compu-
tational fluid dynamics (CFD) technology s. Accmate

aerodynamic prediction of complex full 3-D flow fields
and the integration of different areas of technology and
research are presently required to account for the signifi-
cant nonlinear effects on aerodynamic coefficients, lift,
drag, and heat load. An improved 3-D Navier-Stokes code
has been further developed to efficiently validate turbu-
lence models for high speed flows. The general methodol-
ogy is found in Bardina 3, and therefore only a brief
description of the method is given below.

The model equations are the 3-D compressible Rey-
nolds-averaged Navier-Stokes equations Turbulence Mod-
els in a general curvilinear coordinate system with mass-
averaged and non-dimensional variables. All flux differ-

ences are treated implicitly in order to increase stability
and to be able to use large increments of time or CFL
numbers. The numerical scheme for the viscous fluxes is

second-order central difference, while the numerical

scheme for the inviscid fluxes is a higher-order TVD
upwind flux-difference splitting. The higher-order TVD
scheme has the capability to represent first-order upwind,
second-order upwind, third-order upwind biased, second-

order Fromm scheme, and other combinations of second-
order upwind and central differences.

The efficiency of the method is based on an implicit
symmetric Gauss-Seidel "method of planes" relaxation
scheme with alternating directional space marching
sweeps along one coordinate direction, Newton-Raphson
inner iteration procedure with an implicit block-tridiago-
nal diagonally dominant approximate factorization relax-
afion scheme along the other two directions. This method

requires less data in central memory and less total transfer
of data into central memory per iteration than implicit
upwind schemes using only time-dependent approximate
factorizations; therefore, the capability of processing
larger and/or complex data bases and computational grids
is available. The data is conveniently stored on successive
planes along the streamwise coordinate, and the system of
equations is solved twice in each successive plane first
along the forward direction and afterwards along the
backward direction. The repeated solution procedure pro-
vides an effective Newton-Raphson convergence acceler-
ation. In each plane the solution is obtained by a two level
diagonally dominant approximate factorization DDADI
procedm'e 13. The space marching alternating directional
sweeps in the streamwise coordinate are yon Neumann
unconditionally stable for zones of subsonic and stream-

wise separated and reversed flows as well as supersonic
flow. As the more restrictive PNS techniques, the present
space marching method results in improved propagation
of nonlinear effects to accelerate convergence to steady
state, generally in about one order of magnitude fewer
iterations than approximated factorization methods.

This method combines the best features of data man-

agement and computational efficiency of space marching
procedures with the generality and stability of time depen-
dent Navier-Stokes procedures to solve flows with mixed
subsonic and supersonic zones, including sueamwise sep-
arated flows. Its robust stability derives from a combina-
tion of conservative implicit upwind flux difference
splitting, inner approximation procedure in grid cells
where changes of eigenvalue sign are present, diagonally
dominant approximate factorization and relaxation
scheme, flux limiters of higher-order flux differences, and

well-posed characteristic-based implicit boundary approx-
imations. It provides the capability of predicting complex
flow structures in complex geometries with good accu-

racy.

Boundary Conditions

Mathematically well posed implicit characteristic-
based boundary procedures were imposed at every bound-
ary poinL The equilibrium turbulent boundary layer was
prescribed at the inflow boundary points. The inflow pro-
file matched the experimental displacement thickness,
_i***=0.0126 m, located at 1.62 m from the leading edge of



the flat plate. On the fin and flat plate boundary points,

constant wall temperature (Tw=300 °K) and no slip condi-

tions were imposed; the turbulent kinetic energy k and its

dissipation rate e were set equal to zero; co was set equal to
10 times greater than the corresponding theoretical value

at the first point off the wall. On the symmetry plane, no

flow through and zero-gradient extrapolation of density,
pressure, streamwise velocity, and turbulence variables

were imposed. On the upper free-flow plane and other

inflow/outflow boundary points, finite difference was

imposed both along and toward the boundaries. The pro-

cedure automatically determined whether the fluid was
flowing locally toward or fromm the boundary, and it

imposed appropriate conditions accordingly. If the inflow

was subsonic, no changes in ena'opy, tangential velocity

components, enthalpy, and turbulence variables were

imposed. If the outflow was subsonic, no pressure gradi-

ent was imposed since only one characteristic-based

boundary approximation was required in the differences

toward the boundary. If the outflow was supersonic, the

solution was naturally extrapolated with the upwind
scheme with no external boundary approximations. These

boundary approximations have been proven to be effec-

tive in previous simulations and free stream has been
effectively maintained 3.

Code Performance

The numerical simulations in the Cray Y-MP C90

supcrcomputer located at NASA Ames Research Center

performed at a rate of 51 MIPS and 288 MFLOPS. Simu-
lations studies were done with 101x61x41 and 231x81x81

grid points. Small differences between the solutions were

observed in the surface pressure and heat transfer distribu-

tions, more differences were observed in the flow struc-

tures. The fine mesh solutions provided the best resolution
of the turbulence structures, while the less refine mesh

solutions are considered accurate for engineering pur-
poses. Most results presented here were obtained with the

101x61x41 grid and required less than 6 hours of CPU

time and less than 600 sweeps (or global iterations) to

achieve convergence to steady state. The performance of

this diagonal-dominant implicit upwind code shows at

least one order of magnitude better efficiency than other
Navier-Stokes codes based on well-known central-differ-

ence numerical methods.

Intersecting Shock-Waves/Turbulent Boundary Layer
Interaction (ISWBLD

The Ames experiment of Kussoy and Horstman 12 on

3-D shock-wave boundary-layer interactions was used

here to test the compressible turbulence models and the

model corrections. This experiment studies the interac-

tions of two intersecting hypersonic shock waves with a

thick turbulent boundary layer. The experimental configu-

rations reflect several key elements of generic hypersonic

inlets, thick turbulent boundary-layer approaching two

vertical fins of varying wedge angles, crossing shock-

waves, boundary-layer cross-flow vortices, and large pres-

sure gradients. The test body for this series of experiments

is shown in fig.1. Two 15° fins mounted on top of a 2.2 m

long flat plate generated two planar oblique crossing

shock waves on a thick turbulent boundary layer. The
free-stream Mach number was M** = 8.3, the free-stream

temperature was T** = 80 °K, the Reynolds number was

Re** = 5.3"106 per meter, and the wall temperature was
fixed at 300 °K.

The physics of this flow shows a pattern of intersect-

ing shock-waves above the boundary layer and a complex
set of cross-flow vortices and structures inside of the tur-

bulent boundary layer. Previous experimental and compu-

tational analyses have provided a general description of

the flow fields generated through the interaction of a sin-

gle shock-wave and a turbulent boundary layer. Settles
and Dolling 18 reviewed the early work on this class of tur-

bulent flow interaction, while Kubota and Stollery 19

described the main vortical structure developed inside the
boundary layer and under an oblique shock-wave. The

interaction of each shock wave with the boundary layer

generated a cross-flow vortex separation with a "'quasi

conical" shape 1'2021. Although the "quasi-conical" struc-
ture has been used in different studies of turbulence mod-

els and conical simulations 2122, this approximation has

been disputed previously 1. The comparison of Bardina et
1 21

al and Knight et al shows that this approximation intro-
duces large errors and make comparisons of turbulence

models meaningless. In this particular experiment, the
influence of the lateral fins in the flow structures and sur-

face quantities imply the necessity of a full 3-D numerical

simulation. This flow is further complicated by the inter-

section of both counter-rotating cross-flow vortices, which

uplifted the flow, producing large losses of total pressure,

and generating a very complex flow structure with sec-

ondary structures developed under the cross-flow vortices
and on the lateral fins. The fins developed their own

hypersonic laminar boundary layer with expansion fans

and lateral separation. In recent numerical investigations,

Narayaswami et al23 used the algebraic mixing-length
model of Baldwin and Lomax, and the modified k-c model

of Rodi 22 for the turbulent eddy viscosity. Their results

showed qualitative agreement with experimental data,

peak surface pressures and heat transfer data are overpre-
dieted. Gaitonde and Shang 24 have used the Baldwin and

Lomax turbulence model and Roe's flux-difference split

upwind numerical scheme. Their results show agreement

with surface pressure data, and overprediction of surface
heat transfer data.

A selected comparison between experimental data
and numerical simulation results is described below. In

general, symbols in the figures shown below represent the

experimental data points, the solid lines show solutions



obtained with two-equation turbulence models, and the dash
lines show solutions obtained with two-equation turbulence
models and model corrections (length-scale and rapid com-
pression corrections).

Velocity vectors

A set of velocity vector plots are shown in Figure 2. These

results were obtained with the k-o) model including the length-
scale and rapid compression corrections. The fin boundary lay-
ers were treated as turbulent below and laminar above the edge
of the tim-plate boundary layer. Fig. 2a shows the velocity vec-
tors next to the tim plate surface. It shows the vortex interac-
tion zone, the flow turning and reflections, and the wake-like

structure in the downstream zone. Fig. 2b shows the velocity
vectors in the symmetry plane between the lateral fins. The
main results show the uplifting of the boundary layer flow due
to the vortex "collision", and the secondary uplifting and reat-
tachment below the main vortices. Fig. 2c, 2d,2e, and 2f show
velocity vectors in different crossed sections, x_. = 3, 6, 9,
and 12, respectively. They show the formation of two cross-
flow vortices as main structures, a center bubble under the

main vortices, comer vortices in the fin/plate junctions, and
strong flow turnings at the edge of the fiat plate boundary layer.
The strength of the main vortices is model dependent. Figures
2f, 2g, and 2h compared the standard k-w model with and with-
out model corrections and modeling the fin boundary layer as
turbulent/laminar, turbulent, and laminar, respectively. The
main feature is the increase of vordcity generated by the model
corrections (Fig. 2f and 2h) and the almost disappearance of
the main vortices with the standard k-ca model (Fig. 2g).

Pressure contours

Figures 3a and 3b show the normalized pressure contours
in two cross-section planes. It'shows the well known slrucmre
of the "quasi-conical" shape, the vortex, the uiple point, the
slip line. In the center zone, a secondary structure on the plate
surface and a pressure wave between the plate surface and the
free sUeam are present. These features show the complexity
generated by the double fin interaction, beyond the single fin
case.

Flow-field yaw an_le

Figures 4a through 4e show the comparison of yaw-angle
contours between simulation and experiment on different
cross-sectional planes. The main emphasis is to differentiate
between the simulations with and without model corrections,

and to verify if the treatment of the fin boundary layers affect
the results. The flow turning as represented by the yaw-angle is
well modeled with the model corrections in Fig. 4b and 4e,
especially if we consider the few measmements available in
each plane. On the other hand, the absence of the model correc-
tions in Fig. 4d shows almost no turning above the main vorti-
ces as shown in the experimental data.

Flow-field nitot nressure

Figures 5a through 45 show the comparison of Pitot pres-
sure contours between simulation and experiment on different

4

cross-sectional planes. The main emphasis is also to differenti-
ate between the simulations with and without model correc-

tions The low Pitot pressme zone in the main vortices zone
shows agreement with the experimental data, especially if we
consider the few experimental measurement points in each
plane. The model corrections show larger gradients in Fig. 5b
than the simulations without the model corrections in Fig. 5d.
The laminar ueatment of the fin boundary layers shown in Fig.
5e shows large differences with the turbulent/laminar treaunent
shown in Fig. 5b.

Figure 6 shows the comparisons between prediction and
experimental data of surface pressure distributions on the fiat
plate. Fig. 6a shows the centerline profiles between the two lab
eral fins. Figures 6b, 6c, and 6d show transverse surface pres-
sure distributions at x/_.. = 5.6, 6.92, and 8.31 boundary layer
thicknesses downstream of the fin leading edges, respectively.
A wave structure with high and low peaks of static pressure are
observed. The pressure rises induced by the shock waves gen-
erated by the fin leading edges, and decreases induced by the
expansion fans generated by the interior fin comers. The peak
pressure value is located at the reaRachment zone of the sec-
ondary structure formed under the two principal counter-rotat-
ing vortices. The first transverse distribution is located in the
shock-wave "collision" zone, the second one is located near

the peak surface pressure zone generated by the secondary flow
re-attachment, and the third one is located near the lower
expansion pressure zone. The turbulence models shown here
are the k-co model, the SST model and the Baldwin-Lomax

model. The k-co model includes the (1) length-scale, (r) separa-
tion bubble, and/or (w) rotation corrections. All simulations

show good agreemem with the experimental data, and the peak
values are well predicted within the experimental uncertainty
of 10%. Overprediction near the outflow zone is observed

when the fin boundary layer are computed as Our) turbulent
boundary layers. If the fin boundary layers are computed as
(lam) laminar boundary layers, no overprediction is obtained.

The best treatment is obtained when the fin boundary layer is
treated as (tur/lam) turbulent below and laminar above the tur-
bulent boundary layer on the fiat plate. Different from the
results observed with a single fin1, the modeling of the fin
boundary layers affect the centerline pressure distribution.
Since the pressure ratio in this 3-D simulations is smaller than
the ones presented in the 2-D hypersonic database
experiments 911, the model corrections show only small differ-
ences in the numerical predictions.

Surface heat transfer rate

Figure 7 shows the comparisonsbetween prediction and
experimental data of surface heat transfer distributions on the

flat plate. Similar to the pressure disu'ibutions shown in the
previous figures 6, Fig. 7a shows the centerline distributions
and Figures 7b, 7c, and 7d show the transverse distributions at
x/8.. = 5.08, 6.4, and 7.78, respectively. A similar wave struc-
ture with high and low peaks along the centerline is also
observed. The experimental data in the transverse profiles
show a flatter distribution in the cross-sectional planes. Recent



simulations of Narayanswami et al23 and Gaitonde et a124

showed overprediction of heat transfer rate and "are thought to
be associated with deficiencies in turbulence modeling."

Therefore, the testing of the turbulence model corrections is of

great interest here.

All models showed excellent agreement with the experi-

mental data along the centerline distribution. The small plateau

at the beginning of the interaction is not shown in this

101x61x41 grid simulations, however, they are present in the
231x81x81 simulations not shown here. In the transverse dis-

Uibutions, the k-w, SST, and Baldwin-Lomax models show an

overprediction which seems to be associated with the cross-

flow reattachment. The model corrections improve the predic-

tions and show good agreement with the experimental data in

the first two stations shown in Fig 7b and 7c. This agreement is

only present when the fin boundary layers are treated as turbu-

lent ones below the edge of the boundary layer on the flat plate.

These results support the model corrections and the proper

treatment of each boundary layer. Once again, best treatment is

obtained when the fin boundary layer is treated as (tur/lam) tur-

bulent below and laminar above the turbulent boundary layer

of the flat plate. In the last transverse station shown in Fig. 7d,

overprediction in the lateral cross-flow reattachment zone is

still observed with all models, and it shows the complexity of
this flow.

Figure 8 shows the normalized total pressure distribution

along the streamwise direction. The numerical results 21

obtained by Horstman with Rodi's modified k-e model and

Knigth with the Baldwin-Lomax model are also included in

this figure. The results show a significant loss of about 85% in

total pressure due to the boundary layer interaction with the

shock-waves forming the two cross-flow vortices as a low total

pressure outflow jet. The need to eliminate these efficiencies in

this kind of interaction is a subject of continuous research,

including boundary layer bleeding and geometry modifica-
tions.

Concludiw, Remarks

In this section we summarize the research work, give our

principal results and recommendations, and discuss plans for

future work.The more promising turbulence model corrections

for compressible flows were tested. The agreement with the

experimental data is very good in surface pressure, heat trans-

fer r rates, yaw angles, and Pitot pressure. The model correc-

tions give improved heat wansfer predictions. Different than

the single fin simulations, The treatment of the fin boundary

layer affects the surface plate predictions. The best results are
obtained with the proper turbulent/laminar boundary layer on

the fin walls. Accurate and efficient aerodynamic predictions of

the intersecting SWTBL interaction have been presented. The

present results show that numerical solutions can be efficiently

obtained in order to provide a data set for engineering design.

The flow su'uctures are well captured within a few grid points

and free of oscillations. The predictions in these zones are

superior and show detailed primary and secondary turbulence

structures. The physical understanding of these structures is

fundamental to improve inlet designs and to improve the com-
pressibility model corrections. This methodology provides a

promising computational capability for aerospace vehicles.
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Fig. 1. Geometry of fiat-plate with two 15° lateral
fins.
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model and model corrections.
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Fig. 5d. Pitot pressurecontourson crossflowplane
located at x/5. = 6.92 and turbulent fin with k-(o
model and no model corrections.
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