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ABSTRACT

We present the results of a study of the inviscid two-dimensional spatial stability of a parallel

compressible mixing layer in a binary gas. The parameters of this study are the Mach number

of the fast stream, the ratio of the velocity of the slow stream to that of the fast stream,

the ratio of the temperatures, the composition of the gas in the slow stream and in the fast

stream, and the frequency of the disturbance wave. The ratio of the molecular weight of the

slow stream to that of the fast stream is found to be an important quantity and is used as

an independent variable in presenting the stability characteristics of the flow. It is shown that

differing molecular weights have a significant effect on the neutral-mode phase speeds, the phase

speeds of the unstable modes, the maximum growth rates and the unstable frequency range of

the disturbances. The molecular weight ratio is a reasonable predictor of the stability trends.

We have further demonstrated that the normalized growth rate as a function of the convective

Mach number is relatively insensitive (_ 25%) to changes in the composition of the mixing layer.

Thus, the normalized growth rate is a key element when considering the stability of compressible

mixing layers, since once the basic stability characteristics for a particular combination of gases

is known at zero Mach number, the decrease in growth rates due to compressibifity effects at

the larger convective Mach numbers is somewhat predictable.

This work was supported by the National Aeronautics and Space Administration under NASA Contract No..

NAS1-19480 while in residence at the Institute for Computer Applications in Science and Engineering (ICASE),

NASA Langley Research, Hampton, VA 23681-0001.





1 INTRODUCTION

Inspired by the seminal work of Brown and Roshko [1] and fueled in part by the prospects of high

supersonic flight, there since been renewed interest on the stability characteristics of compressible

mixing layers, both non-reacting and reacting. All of the analytical investigations of which we

are aware have concentrated on mixing layers of a single gas. Experimental investigations have

shown that both density ratio and compressibility have a significant effect on the spreading rate

of the mixing layer [l' 2, 3]. _,From experiments it appears that the normalized spreading rate is

relatively insensitive to the density ratio as compared to compressibility [3]. However, the density

effects have never been analytically quantified. The main thrust of this paper, therefore, is to

analyze the stability characteristics of mixing layers in binary gases and to make appropriate

comparisons to the case of a single gas.

In investigating the stability of mixing layers, it is typical to assume that there exists a

local parallel flow about which the governing equations are linearized with respect to spatially

and temporally varying disturbances. From this linearization, it is straightforward to calculate

either temporal growth rates (assuming fixed spatial Wavenumbers) or to calculate spatial growth

rates (assuming a fixed temporal frequency). If a spatial instability exists, there is usually a

band or bands of frequencies for which there are positive spatial growth rates (imaginary part

of the complex wavenumber is negative). These bands are bounded by the neutral modes,

whose existence (and phase speeds) can be determined through the Lees and Lin regularity

condition assuming that the phase speeds are subsonic, and that the local flow is smooth and

parallel. Another neutral mode can be found in the limit of the wavenumber going to zero. It

is clear that in the far downstream limit, the disturbance with the largest spatial growth rate

will dominate and thus a disturbance with a single frequency and wavelength (real part of the

complex wavenumber) will be seen. However, this scenario neglects non-linear effects which

would become significant long before the far downstream limit would be reached. Therefore,

it is the entire spectrum of growing modes that is of interest, and the width of the unstable

frequency band (and therefore the wavelength band) is significant in determining the structure

of the disturbance when nonlinear effects become important.

The results of previous analytical investigations lead to the conclusion that the temperature

profile, which is significantly affected by external heating or cooling, internal viscous heating or

even exothermic chemical reactions, can alter the regularity condition sufficiently such that an

additional pair of unstable modes exist (e.g., the review articles by Jackson [4] and Grosch [5]). In

the absence of reaction, viscous heating which is a function of Mach number, significantly raises

the temperature so that at a large enough Mach number, there are three neutral modes instead of

one. Jackson and Grosch[ 6] showed that although these additional modes lie in a region in which

the phase speeds would typically be supersonic, significant obliqueness of the disturbances alters

the sonic phase-speed curves such that all three neutral modes represent a physically realizable

subsonic mode. In the case of a reacting mixing layer, a simple Fuel -t- Oxidizer --* Product

exothermic reaction with moderate heat release easily may introduce an extra pair of neutral

modes, even at zero Mach number. A "flame sheet" analysis can be used to quickly locate these



modes,oneof whichhasa phasespeedequalto the flow velocityat the flame-sheetlocation.
An extensivestudyof the spatiallyevolvingreactingmixing layerwith finite reactionrate (Hu,
et al.[7]) showedthat the flame-sheetresultsgaveaccuratevaluesof the phasespeedsof the
neutralmodesaslongasthe LeesandLin regularityconditionwasapplieddownstreamof the
ignition point. Further analysisshowedthat the slowmodemay undergoa transition from
convectiveto absoluteinstability asthe heatof reactionincreases.Althoughthis transition is
deemedsignificant,it wasfound that the backwardspropagationof the disturbance,which is
the hallmarkof anabsoluteinstability, is seento be (after a wave packet analysis) exceedingly
small.

The purpose of this paper is to investigate the stability characteristics of a mixing layer

in a binary gas. In section 2 the the mean flow is discussed. Also given are three models for

the viscosity, thermal conductivity, mass species diffusion coefficient and specific heat. These

thermodynamic quantities must be defined in some manner before a solution can be obtained.

The first two models stated are approximations to the exact third model, in that standard

approximations to the viscosity are made in the first two models but not in the third; namely,

Chapman's linear viscosity law and Sutherland's viscosity law are employed in the first two

models, respectively, while for the third model the thermodynamic properties are given by

reference values found in tables, or equivalently, from first-order formulas derived from kinetic

theory for a binary mixture. The first two models are provided so that comparisons can be

made to the exact, yet computationally intensive, third model. Section 3 contains the stability

formulation of a binary gas, and results are presented for both neutral and unstable modes.

Conclusions are given in section 4.

2 MEAN FLOW

As mentioned in the Introduction, all previous investigations on the stability of mixing layers,

either reacting or non-reacting, have assumed equal molecular weights for the gases above and

below the splitter plate. We present here results illustrating how a binary gas mixture affects

the stability characteristics. However, since the stability of any flow depends on the structure

of the mean flow, we first present below several models for the mean flow.

Consider a binary gas mixture in a compressible mixing layer with zero pressure gradient lying

between streams with different speeds and temperatures. The gases included in this study are

hydrogen (H2), helium (He), neon (Ne), nitrogen (N2), oxygen (02) and argon (Ar). The choice

of gases was not arbitrary. Papamoschou and Roshko[ 3] and Hall, Dimotakis and Rosemann[ 8]

used binary combinations of He, N2 and Ar in their experiments. In addition, hydrogen is the

fuel for proposed scramjet engines. As discussed in Kozusko, et al. [9] there are three parameters

governing the structure of the mean flow. These are the velocity ratio _v, defined as the ratio

of the velocity in the stream at -oc to the velocity in the stream at +oc; the temperature

ratio _T, defined in an analogous manner as the velocity ratio; and the molecular weight ratio

W dependent on the particular combination of gases chosen, also defined in a similar manner.

Here, /3T > 0 and _v E [0, 1) so that the gas in the stream at -c_ is always assumed to be
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movingslowerrelativeto the gasat +_. If/_T is lessthanone,thegasin the slowfreestream
is relativelycoldcomparedwith that in thefast freestream,andif _T is greaterthan oneit is
relativelyhot. Note that wehavethefollowingtwo casesdependingon the magnitudeof W:

• W > 1 heavier gas resides in the fast freestream at +cx_ and the lighter gas in the slow

freestream at -_; or

• 14r < 1 lighter gas resides in the fast freestream at +cx_ and the heavier gas in the slow

freestream at -c_.

For the inert gases Ar and He (typical gases used in experiments), we see that W can vary

between 0.1 for the At-He case, and 9.9 for the He-At case. Throughout this study we will use

the convention that the first gas listed resides in the slow freestream at -oc, while the second

gas listed resides in the fast freestream at +co; i.e., the case At-He implies that the gas in the

slow freestream is argon, while the gas in the fast freestream is helium. The ratio of molecular

weights W for the different gases considered in this study are given in Table 1 of Kozusko, et

al.[ 9]

The nondimensional thermodynamic quantities #, _, D12 and Cp, i, rendered nondimensional

by the respective values #_, n_, D12,_ and CP,2,oo in the freestream at +oc, must be defined

in some manner before a solution can be obtained. We state here three models, of increasing

complexity, that are used in this study. The first two models listed below are approximations to

the exact third model, in that standard approximations to the viscosity are made in the first two

models but not in the third; namely, Chapman's linear viscosity law and Sutherland's viscosity

law are employed in the first two models, respectively, while the third model employs a viscosity

law for binary gases. The first two models are provided so that comparisons can be made to the

exact, yet computationally intensive, third model.

Model h The first model assumes Chapman's viscosity law p# = constant with # = pD12 =

= l, but allows for different and constant Cp, i. Owing to the nondimensionalization,

Cp,2 = 1, and Cp,1 is the ratio of the specific heat of the gas at -oc divided by the specific

heat of the gas at +oc. Thus, the mixture specific heat is given by Cp = Cp,1F1 + F2,

where Fi is the mass fraction of species i such that in the freestream at +oo we have F1 = 0

and F2 = 1, while in the freestream at -_ we have/'1 = 1 and F2 = 0. We remark here

that the above assumptions lead to Pr = Le_ 1 = Cp for the Prandtl and Lewis numbers.

These are not constant throughout the mixing layer as is usually assumed. The reason for

allowing both the Prandtl number and the Lewis numbers to vary is to take into account

different gases and to capture more of the physics presented in Model III below. If Cp is

taken to be a constant, then the mean flow would be independent of molecular weight. In

this model, the density does not appear explicitly in the mean flow, and its influence is

only felt in the stability calculations.

• Model II: The second model assumes that the non-dimensional viscosity is given by Suther-



land'sviscositylaw

aT3� 2
a= l + b, b= llO.4/Tr_/,tl- b+T'

where TT_] is a non-dimensional reference temperature, taken here to be Tre] = 300. In

addition, we take pD12 = _ = #. As in Model I, we assume constant but different Cp,_,

with CP,2 = 1. The comments about non-constant Prandtl and Lewis numbers apply to

this model as well as to Model I.

Model III: The last model assumes that all of the thermodynamic properties are given by

experimental values found in tables, or equivalently, from first-order formulas derived from

kinetic theory for a binary mixture. A complete description is given in Kozusko, et al.[9]

We shall refer to this model as the exact model.

For Model III, a complete discussion on the structure of the mean flow for various combi-

nations of gases has recently been presented by Kozusko, et al. [9] Expressions for the viscosity,

thermal conductivity, specific heat and binary diffusion coefficients of a binary mixture were

utilized so that the Prandtl and Lewis numbers vary across the mixing layer. In the cases

considered, these two quantities can vary by factors of approximately 3 and 7, respectively, in-

dicating that it is not quantitatively correct to set these quantities to constants, as is usually

done. These variations will influence the stability characteristics, as will be shown below.

3 STABILITY

As is standard in linear stability theory, the flow field is perturbed by introducing two-dimensional

wave disturbances of the form e i(°x-_t) in the velocity, pressure, temperature, density and mass

fractions with amplitudes that are functions of the similarity variable r]. The similarity variable

has been previously defined in Jackson and Grosch [10]. Here, w is the frequency and a is the

streamwise wavenumber of the disturbance. For spatial theory, w is required to be real and

solutions are sought for which a is complex. For temporal theory, a is assumed to be real and

solutions are sought for which _ is complex. The amplification rates of the disturbances are then

-ai or wi, respectively. Substitution into the inviscid compressible equations for a binary gas

and linearizing yields the compressible Rayleigh's equation for the normal velocity perturbation

¢

where

and

[ ()]' 1 U' ¢=0, (1)
- +

_=_1 [1-M2(U-c)2p_-_ -] (2)

V- l pCpT_ %o- 1 (3)
7 7_
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Here,7 is theratio of specificheatsandc is the complex phase speed c = w/a. Primes indicate

differentiation with respect to the similarity variable 7?. If the molecular weights are taken to

be equal and the thermodynamic quantities are assumed constant (7 = %0, pT = 1), then (9)

reduces to the classical Rayleigh equation for a single component gas [11].

The boundary conditions for ¢ are obtained by considering the limiting form as 7? _ +oc.

The solutions are of the form

¢ -- exp(+f_=l=r/), (4)

where

and

f__ = a 2 [1- M2(1- c)2] , °2°2[_ = fl-_p 1-M2(flu-c) 2 tip , (5)

flpflTI'V = 1,

defines tip and fl,, respectively. The ratio x3._for the different gases considered in this study

are given in Table 1. Note that if f__ is positive, then the disturbances decay exponentially as

7/---, +oc. If, on the other hand, £__ is negative, then the disturbances oscillate, indicating that

acoustic waves are radiating away from the mixing layer. Similar statements can be made for

_2_. We therefore define c+ to be the values of the phase speed for which ft_: vanishes. Thus

1 1

c+ = 1 - 2_--i' c_ = flu + _ (6)
M ',

Note that c+ is the phase speed of a sonic disturbance in the fast stream and c_ is the phase

speed of a sonic disturbance in the slow stream. At

M=M._= 1-flu ' (7)

c+ are equal. A "convective" Mach number can now be defined for a binary gas as

M M(1 - flu) Uoo - U__

M_- M. - _- , (8)1 + a_o + a__

where M. is the Mach number at which the sonic speeds of the two streams are equal. With this

definition, all disturbances are supersonic for Mc > 1. This definition of the convective Mach

number is based on the freestream Mach number in the laboratory frame and is independent of

the speed of the large-scMe structures and the speed of the most unstable wave. It is interesting

to note that the commonly used heuristic definition of the convective Mach number (last term
in (8)) is derivable from linear stability analysis [10].

Further understanding of the role of the convective Math number can be gained by noting

_alc = 1 implies that M = M.. This is the largest value of the Mach number for which any

subsonic instability waves can exist. For larger values of the Mach number there are only
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supersonicmodeswhichradiateinto oneor theotherstream.Thelargestvalueof the convective
Machnumberfor whichonly subsonic modes can exist is given by

MCM1N = min(M+, M_)/M., (9)

where M. is given by (7) and M+ is the value of the Math number for which c+ = B_,, and M_

is the value for which c_ = 1. In the intermediate range MCM_N < ),Ic < 1 both subsonic and

supersonic instability waves can exist.

In Figure 4 we plot M. versus W for the different binary systems. In this figure, the region

0 _< W _< 2 is expanded to better show the differences at the lower values of W. Also shown in

this figure as a dashed line is the corresponding value for a single gas (i.e., W = fl_ = 1). The

trend is not monotonic due to the variations in the thermodynamic properties, even when two

molecular weight ratios are very close to each other. Note that for W > 1, M. is greater than

the corresponding value of a single gas, while for W < 1, it is smaller. This figure shows that, in

general, the value of W is the best indicator for the value of M.. The overall increase in M. as

14; increases indicates that the value of the freestream Mach number above which no subsonic

instability waves can exist also increases. Since the value of M, changes by a factor of five for

the cases with large or small weight ratios and this value is used to define the convective Mach

number which characterizes the effects of compressibility, it is seen that the proper accounting

of the value of M. for different gas combinations is important.

The nature of the disturbances and the appropriate boundary conditions can now be illus-

trated by reference to Figure 4, where we plot c+ versus M_ for the particular cases of At-He

(Figure 4a) and He-Ar (Figure 4b), with _u = 0.5 and _r = 1.5. When referring to this figure,

it should be kept in mind that the value of M. for the two cases varies by a factor of about five

so that the scales in terms of the actual Mach number are quite different. The significance of

this figure has been discussed previously by Jackson and Grosch [12, 13, 6]. Thus, the key to un-

derstanding the stability characteristics of this flow is the understanding of different parameter

regions for which various types of instability modes can exist. One can see from Figure 2 that

these curves divide the cr - Mc plane into four regions, where c_ is the real part of c. Also shown

as dashed lines are the bounds for cr; namely, Cr E [_u, 1] = [0..5, 1]. If a disturbance exists

with a M_ and cr in region 1, then f__ and f_ are both positive, the disturbance is subsonic

at both boundaries, and we classify it as a subsonic mode. In region 3, both f__ and ft 2- are

negative and hence the disturbance is supersonic at both boundaries, and we classify it as a

supersonic-supersonic mode. In region 2, ft_. is positive and f_2_ is negative, the disturbance is

subsonic at +ec and supersonic at -oc, and we classify it as a fast supersonic mode. Finally, in

region 4, gt__ is negative and f_ is positive so the disturbance is supersonic at +oc and subsonic

at -oc, and we classify it as a slow supersonic mode.

Note that the above classification scheme only depends upon the values of the mean flow

in the freestreams and is independent of the detail form of the mean flow profile. Thus, this

classification scheme is valid for all three models used in this study.

To complete the stability problem, the appropriate boundary conditions of either spatial or

temporal stability, for either damped or outgoing waves in the fast and slow freestreams are,
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respectively,

¢--" e -a+" if cr > c+, ¢ _ e -i" -_,/-2-_+++if cr < c+, (10)

_ e_-" if c_ < c_, ¢--e -i"V/Z-_7- if c_ > c_. (11)

Finally, the above formulation is also valid for a mixing layer in a channel with a zero

streamwise pressure gradient with an appropriate change in the boundary conditions.

3.1 NEUTRAL MODES

To illustrate how a binary gas alters the stability characteristics, we first present below the

neutral phase speeds for various combinations of gases.

If a neutral mode exists in region 1 of Figure 4, then the neutral phase speed cN is given by

CN = U(r/c) provided _ ¢ 0. Here, r/c is the zero of the Lees-Lin regularity condition

: (p2v')' (12)

The extra factor of p is a result of working in the similarity variable instead of the physical

variable. The corresponding neutral wavenumber and frequency must be determined numerically.

These modes are called regular subsonic neutral modes. If, on the other hand, a neutral mode

exists in regions 2, 3 or 4, the Lees-Lin regularity condition can not be used and thus the phase

speed of the neutral modes must, in general, be found numerically. These modes are called

singular neutral modes.

Typical plots of S(r/) are shown in Figure 4 for the binary system of argon and helium using

Model III with M = 0, _u = 0.5 and _T = 1.5. In each case there is only one zero of S,

although the location differs depending upon which gas lies in the fast freestream. In addition,

the zeros are not symmetric about the r#axis when changing from the Ar - He system to the

He - Ar system. This asymmetry is due to the asymmetries in the velocity and temperature

profiles. The difference in location implies that the neutral phase speed CN in each case will also

be different. The location r/c of the zero of S for the different binary systems are given in Table

2. and the corresponding neutral phase speeds given in Table 3.

To better visualize the overall trends, we plot in Figures 4 and 4 the location of the root of

S(r D and the neutral phase speeds as a function of the molecular weight ratio W, respectively, for

Model III (circles). Also shown in these figures are the results for Model I (asterisks) and Model

II (triangles). In each figure, the region 0 _< W _< 2 is expanded to better show the differences at

the lower values of W. These figures indicate that in general both quantities increase with W,

or, equivalently, decrease with increasing _p. The trends are not monotonic due to the variations

in the thermodynamic properties, even when two molecular weight ratios are very close to each

other. As an example, the case of H2 - Ne with W = 10.011 has a neutral phase speed of

CN = 0.896, while the case of He - Ar with W = 9.979 has a neutral phase speed of CN = 0.919,

which represents an increase in phase speed of 2.5% even though the molecular weight ratio is

decreased by only 0.3%. Another example is that of Ar - Ne with W = 0.505 and phase speed



of CN ---- 0.735, and He - H2 with W = 0.504 and phase speed of CN ": 0.780, which represents

an increase of almost 6% in the neutral phase speed even though the molecular weight ratio

is decreased by only 0.2%. Qualitatively; the results for all the models are similar, however,

there are quantitative differences. For example, neither Models I nor II faithfully reproduce the

neutral phase speeds of Model III for the entire range of W considered, although the location

Yc for Models II and III are close for W > 4. These results indicate that although Models I and

II may be simpler to solve numerically than Model III, they do not yield satisfactory agreement

over the whole range of W.

In addition to the neutral modes with _Y _ 0, there may exist neutral modes having zero

wavenumber. The phase speed of such modes do not satisfy the Lees-Lin regularity condition

but are found by an asymptotic analysis of (1) in the limit o _ 0 (Grosch, et al. [14] ). In this

case an expansion of the solution in powers of o, alohg the lines previously used by Drazin and

Howard [15] and Blumen, Drazin and BiUings {16] in related studies, yields an eigenvalue relation

which is analytically tractable. Below, we shall describe the extension of these results for binary

gases.

The leading order term in an c_-expansion is independent of the detailed form of the mean

profile, and only depends on the basic flow characteristics at infinity. This is to be expected

from physical arguments because the wavelength of the instability in the limit a ---, 0 is much

larger than the length scale over which the undisturbed flow is non-uniform. For the supersonic-

supersonic case, setting the leading-order term in the expansion to zero yields an equation for

CN:

[J_f2(_ U -- CN)2_p_ 1 -- 1](1 - CN) 4 = /_p2[M2(1 - CN) 2 -- 1](_U - CN) 4. (13)

If the molecular weights are taken to be equal and the thermodynamic quantities are assumed

constant (7 = %¢, pT = 1), then equation (13) reduces to equation (5.3a) of Miles [17] expressed

in the notation used here. In general, this sixth-order polynomial must be solved numerically to

determine cN as a function of M. For the special case of _ = 1, we see that:

[1] A single positive real root of (13) exists for

M _> M. -- (1+ _71/2)/(1 -_u), (14)

with phase speed

CN = (_3U + t37'I_)/(1 + _71/2). (15)

This is classified as a constant speed supersonic-supersonic neutral mode lying in region 3 of the

c_ - M plane. It is independent of Mach number and corresponds to the phase speed at which

the sonic speeds in the two streams are equal. In this regime there is also a pair of complex

conjugate eigenvalues correspond to one unstable and one stable eigenmode. The associated

instability disappears as the Mach number increases.

[2] A double root first appears at

Mc1:¢ : (1 + _71/3)3/2/(1 -/_u), (16)



with phasespeed
CN = (/_U "['-/3;1/3)/( 1 + _;I/3). (1_')

There are three distinct real roots for M > McR. One of these is the phase speed of the constant

speed supersonic-supersonic neutral mode while the other two roots must be found numerically

from (13). We note that all three of these neutral modes lie in region 3.

3.2 GROWTH RATES

The Rayleigh equation must be solved numerically in order to compute the growth rates. Our

experience has shown that it is computationally easier to solve a Riccati type equation, which

is a first order, nonlinear, nonhomogenous equation with nonzero boundary conditions, rather

then solving a second order, linear, homogeneous equation with zero boundary conditions. To

this end, we first begin with the equivalent perturbation equation for the pressure amplitude H,

given by
2U'

II" II'- _II = 0, (18)
U - c

which is transformed to an equivalent Riccati equation

by use of the transformation

[
GI +aTG2- LU-c

IIt

G = -y--if, (20)

Appropriate boundary conditions can be derived in a straightforward manner. Further details

can be found in Jackson and Grosch [10]. The stability problem is thus to solve the Riccati

equation, together with appropriate boundary conditions, for a given real frequency w and

Mach number M, with the mean profile defined for a particular binary gas. The eigenvalue is

the wavenumber a. We integrate the Riccati equation along the contour q = -L to z/= 0 and

7/= L to 7/= 0 using a fourth-order Runge-Kutta scheme. The value of L varied from mixture

to mixture, and was chosen large enough so that in each case the boundary conditions were

satisfied. We choose an initial a and then iterate using Muller's method [18], until the boundary

conditions were satisfied and the differences in all calculated quantities at r/= 0 was less than

10 -6. All calculations were done in 64 bit precision. Because this equation has a singularity at

U = cg, the neutral modes could not be determined.

The spatial growth rates for selected binary mixtures as a function of frequency are shown

in Figures 4-4 for Models I, II and III, respectively. In all cases, M = 0, J3v = 0.5 and _3T = 1.5.

In each figure, the labeled curves correspond to binary gases with increasing molecular weight

ratio W. /.From these figures several remarks can be made. For a given model, there is a general

decrease in the maximum growth rate as the molecular weight ratio increases. This is consistent

with the limited experimental evidence that the growth rate is smaller when the heavier gas is on

the high-speed side and greater when the heavier gas is on the the low-speed side[3]; as we shall

see below, this statement is not strictly true for all of the gas combinations studied here. The



largestgrowth ratefor ModelI (whichcorrespondsto thesmallestvalueof W shown in Figure

4) is more than twice the largest growth rate shown for the other two models. As the value of W

increases, the maximum growth rate decreases to the point where the numerical error, due to the

presence of the critical layer, is of the same order as the growth rates, and thus the procedure

can not be continued for the largest values of W (e.g., see the curve labeled 7 in Figure 4).

Note also that the largest range of frequency shown in Model I is more than three times larger

than the frequency ranges shown for the other two models. This is particularly significant since

Model I would imply a much larger range of unstable wavelengths than is actually present. The

range of unstable wavelengths could ultimately determine the turbulent structures that might

develop. Of further note, is the differences in the neutral phase speeds as seen in Figure 4 which

are predictive of the real phase speeds of the unstable wave packet.

A more direct comparison of the maximum growth rates between the three models for a

given binary system can be found in Table 4. Here, the maximum growth rates for twenty-four

combinations are listed. The maximum growth rate for a single species gas using Sutherland's

viscosity law with Pr = 0.7 is ai,ma_ = -0.047541. Note that the maximum growth rates for

any of the three models is not a strictly decreasing function of W. There is some variation

of the general rule when specific combinations of gases are used owing to the difference in the

actual physical parameters. Also shown in the table are the relative errors between Models I

and II with Model III. From this table one can see that Model I over predicts the maximum

growth rates of Model III considerably for small values of W (the first nine binary gases listed)

and under predicts for large values of W (the last four or six binary gases listed). This trend is

observed for Model II, but is less severe than for Model I.

The above results indicate that the stability results for Models I and II are a poor approxi-

mation to the stability results for Model III.

The spatial growth rates for various values of the convective Mach number Me, as defined by

(8), are shown in Figure 4 for Model III for the gases nitrogen and argon. In all cases,/3u = 0.5

and _:r = 1.5. In each case, the maximum growth rate, the corresponding frequency at which the

maximum is attained, and the range of frequencies over the entire unstable spectrum decreases

as the convective Math number increases. Once the growth-rate vs frequency curve is found for

Mc = 0, the Mc > 0 curves appear to be nested in a predictable manner. To further explore

this, consider the normalized growth rate, defined as

R = -¢ti,max(Mc)
- i,mox(o) " (21)

The normalized growth rates for the gas combinations At-N2 (circle), N2-Ar (plus), N2-He

(diamond) and 02-H2 (bullet) are shown in Figure 4. Also shown (solid curve) in this figure

is the corresponding results for a single gas using Sutherland's viscosity law with Pr = 0.7.

We note here that for the cases of At-N2 and N2-Ar, both the Lewis number and the Prandtl

number are nearly constant across the shear layer (see figures 1 and 4 of Kozusko, et al.[9]). For

the case of N2-He the Lewis number varies by a factor of 8 across the mixing layer (see figure 3

of Kozusko, et al. [9]) while the Prandtl number varies considerably (see figure 6 of Kozusko, et

10



al.[9]).Finally,for thecaseof 02-H2 the Lewis number varies by a factor of 6 across the mixing

layer (see figure 2 of Kozusko, et al. [9]) while the Prandtl number again varies considerably (see

figure 5 of Kozusko, et al.[9]). At Mc = 1.0, there is a spread in the normalized growth rates

between the various gas combinations of about 25%. The consistent shape of the curves in Figure

4 indicate that there is almost a similarity-like behavior when determining the decrease in the

growth rate owing to an increase in convective Mach number. Indeed, other gas combinations

produce similar results. This is consistent with the results of Jackson and Grosch [10] where it

was determined that for a single gas (/3.y = 1) with Mc < 1, the actual mean flow velocity and

temperature profiles did not matter when determining the normalized growth rate as a function

of the convective Mach number. Thus, as previously suspected, this analysis shows that the

decrease in growth rates with increasing Mach number is due to compressibility effects and is

only somewhat modified by considering specific combinations of gases (and thus varying the

density ratios). Knowing the maximum growth rate at Mc = 0, one could easily estimate an

approximate value of the growth rate when Me _ 0 using a single gas and any of the various

models for the mean flow {i.e., Chapman's Law, Sutherland's Law, or even a hyperbolic tangent

profile). However, we have shown that the maximum growth rates (and corresponding frequency

ranges and wavelength ranges) differ substantially at Mc = 0 and that the simpLified models

{Model I and Model II) are poor predictors of these values.

4 CONCLUSION

The two-dimensional inviscid spatial stability characteristics of a compressible mixing layer with

a binary combination of gases is presented. /,From the analysis above, we conclude that differing

molecular weights has a significant effect on the neutral-mode phase speeds, the phase speeds

of the unstable modes, the maximum growth rates and the unstable frequency range of the

disturbances. The molecular weight ratio is a reasonable (if not perfect) predictor of the trends.

It was also determined that the various models that have been previously used are valid in

predicting the general trends, but a.re poor choices if quantitative information is needed. We

have further demonstrated that the relative insensitivity (_ 25%) of the normalized growth rate

as a function of the convective Mach number is a key element when considering compressible

mixing layers. Once the basic stability characteristics for a particular combination of gases is

known at zero Mach number, the decrease in growth rates due to compressibility effects at the

larger convective Mach numbers is predictable.
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Table 1: The ratio/3z, defined as the ratio of specific heats at r] = -oc divided by the ratio

of specific heats at 7/ = +oc, for the different gases considered in this study. The top row

corresponds to the gases in the freestream at 77= +oc, while the first column corresponds to

the gases in the freestream at 7/= -oc.

I IIH_IHelN_IN_IO_IA_I
H2 0.995 0.839 0.839 0.999 1.002 0.839

He 1.186 1.000 1.000 1.191 1.195 1.000

Ne 1.186 1.000 1.000 1.191 1.195 1.000

N2 0.992 0.836 0.836 0.996 1.000 0.836

02 0.977 0.824 0.824 0.981 0.985 0.824

Ar 1.186 1.000 1.000 1.191 1.195 1.000

Table 2: The location S(r/c) = 0, as determined from Model III, at M = 0, _u = 0.5 and

_T = 1.5 for the different gases considered in this study. The top row corresponds to the gases

in the freestream at q = +oc, while the first column corresponds to the gases in the freestream

at 77= -¢c. The notation NA means not applicable for a binary gas.

I II H_ I H_ [ N_ I N= 102 I A,, I
H2 NA 0.096 0.124 0.228 0.208 0.186

He 0.219 NA 0.246 0.373 0.346 0.317

Ne -0.313 -0.255 NA 0.379 0.364 0.368

N2 -0.795 -0.583 -0.057 NA 0.168 0.178

02 -0.814 -0.617 -0.052 0.200 NA 0.200

Ar -1.013 -0.769 -0.110 0.153 0.145 NA
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Table3: The correspondingneutralphasespeedsCN, as determined from Model III, at M = 0,

_u = 0.5 and/_T = 1.5 for the different gases considered in this study. The top row corresponds

to the gases in the freestream at _/= +oc, while the first column corresponds to the gases in the

freestream at r/= -_c. The notation NA means not applicable for a binary gas.

H2 NA 0.829 0.896 0.922 0.924 0.926

He 0.780 NA 0.892 0.914 0.916 0.919

Ne 0.668 0.690 NA 0.851 0.856 0.868

?v'_ 0.628 0.649 0.757 NA 0.817 0.829

02 0.627 0.646 0.753 0.808 NA 0.826

Ar 0.614 0.631 0.735 0.789 0.794 NA
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Table4: Themaximumspatialgrowthratesfor variousbinarysystemsandfor the threemodels
usedin the study. The gasesare listed in increasingW. Also shown are the relative errors

between Models I and II with Model III. The relative error is defined as the maximum growth

rate of Model III minus the maximum growth rate of Model I or II, divided by the maximum

growth rate of Model III. NA implies not available. Here, M = 0, _v = 0.5 and fiT = 1.5.

r, la
Ar H2

02 H2

N2 H2
Ar He

Ne H2

02 He

N2 He

Ne He

He H2

Ar Ne

02 Ne

Ar N2

N2 Ne

Ar 02

02 N2

N2 02

02 Ar

Ne N2

N2 Ar

Ne 02

Ne Ar

H2 He

He Ne

He N:

Model I Model II

NA

Model III

-0.0140 -0.0178

ERR(I,III)% H ERR(II,III)%

-0.2672 -0.0558 -0.0652 -309 14

-0.2332 -0.0562 -0.0670 -248 16

-0.2317 -0.0587 -0.0704 -229 16

-0.2225 -0.0697 -0.0818 -172 14

-0.1448 -0.0593 -0.0619 -133 4

-0.1876 -0.0687 -0.0809 -131 15

-0.1799 -0.0697 -0.0846 -112 17

-0.1229 -0.0676 -0.0700 -75 3

-0.0744 -0.0612 -0.0550 -35 -11

-0.0754 -0.0599 -0.0709 -6 15

-0.0626 -0.0540 -0.0647 3 16

-0.0626 -0.0561 -0.0557 -12 0

-0.0578 -0.0519 -0.0652 11 20

-0.0521 -0.0538 -0.0550 5 2

-0.0521 -0.0498 -0.0500 -4 0

-0.0437 -0.0448 -0.0486 10 7

-0.0390 -0.0409 -0.0437 10 6

-0.0396 -0.0430 -0.0395 0 -8

-0.0355 -0.0385 -0.0430 17 10

-0.0357 -0.0403 -0.0381 6 -5

-0.0279 -0.0337 -0.0333 16 -1

-0.0274 -0.0321 -0.0434 36 26

-0.0100 -0.0173 -0.0238 57 27

NA 21
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Figure 1: Plot of M. versus W for the different binary systems. Also shown in this figure as a

dashed line is the corresponding value for a single gas (i.e., W = fl-y = 1). Here, #u = 0.5 and
3T = 1.5.
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