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Abstract. This paper discusses the application of evolutionary random-
search algorithms (Simulated Annealing and Genetic Algorithms) to the problem
of spacecraft design under performance uncerramt'y. Traditionally. _pacecraft
performance uncertainty ha.¢ been measured by raliabilitv Published algorithms
for retiability optimization are seldom used in practice because they
oversJmphfy reahty. The all_onthm developed here u._es random-..tearch
opt,mizatinn t¢_allow u_ to model the problem more realistically. Monte Carlo
simulations are used to evaluate the objective function for each trial design
.qohltlon. These methods have been applied to the Gravity Prnbe-B (GP-FI)
spacecraft bein_ developed at Stanford Universit3' for launch in 1999• Results
of the algorithm devetoped here for GP-B are shown, and their implications for
design optimization by evolutionary algorithms are discussed.

1 Introduction

Design for reliability has always been a critical concern for spacecraft developers
because spacecraft, once launched, cannot be repaired a/'ter a serious failure without
incurring extreme expense. As a result, all spacecraft are analyzed for reliability, or
the probability of meeting the mission success criteria over time. Because spacecraft
reliability calculations must be based on inaccurate failure rate data and questionable
,assumptions. these numbers are gener,"dly tlsed only to show that they meet arbitrary
specifications set by the customer.

This paper uses the flexibility of evolutionary optimization methods to overcome
these obstacles. Traditional reliability optimization can make only simplified trade-

offs between reliability and cost or weighl, but glob,"d-se_ch methods can handle any
optimization function. Furthermore, since simulation can generate arbitrary function
evaluations and since gradients are not required, we can adopt a more realistic model of

component and subsystem reliability.
-Variants of two well-known evolutionary methods are developed here for a

general reliability design problem. The simulated annealing approach uses one trial
solution which "evolves" in the search process, while the .e_enetlc algorithm maintains a

population of solutions that evolve according to the concept of natural selection.
Results for the former method for two different objective functions are discussed in
detail, while a framework for genetic algorithm evolution is presented along with

some preliminary conclusions. The results presented here already show significant
improvements over traditional reliability optimization methods and suggest new
paradigms for spacecraft reliability analysis.
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2 Traditional Reliability Analysis

AS mentioned above, retiability analysis is an established field, and it can form the
basis for design optimization under uncertainty. Since the U.S. Government is a major
cu,_tomer, the handbooks it has published or influenced contain the generally accepted
methods of reliabiiity analysis [1,2,3]. These methods are based on the exponemial
failure distribution in which reliability is given by

R(t) _- exp[-_.t] (1)

where k is a constant failure rate found in lables [1.2]. This distribution is

memoryless: the probability of failure over a given interval of time is independent of
the length of time that has ah'eady passed. This assumption is often questionable, but
the exponential distribution continues to be used because of its simplicity.

Most spacecraft contracts use (1) and the data in [1] to compute reliability
predictions for the components of their design. Redundancy is usually built in to
avoid sO__le-pohtt.faihtre modes, which are events that by themselves cause mission
failure. Using (1) to compute component reliability, series and parallel network
reliability can be computed using the standard equations in [3] which ,_sume that all
failure modes are independent. The result is a system reliability prediction over the
mission time line r/tat must meet user specifications.

Since spacecraft are to a large degree unrepairable after launch, reliability is a key
concern, but most systems engineers distrust handbook data and the assumptions
present in the traditional model despite being obligated to do the computations. As a
result, spacecraft tend to bc overdesigned to "ensure" adequate retiability. This
guarantees that the reliability specifications are met. but it does not help engineers
make informed risk-based trade-off decisions.

3 New Spacecraft Reliability Model

The first step toward improving the traditional reliability model is to use a Weibull
failure distribution that allows failure rates to vary with time. It is a generalization
of the exponential distribution, and its success probabiliW is given by

R_t) = exp[-t_/a] (2)

Here. c_ is the scale factor that expresses mean time-to-failure, and [_ is the shape
factor that varies the effective failure rate over time (13 = 1 gives the exponenti,',d

distribution). In [4], actual spacecraft failure data is fitted to this failure model, and

estimates tbr a and _ for various spacecraft mission types _e given. For spacecraft, [3
is around 0.12 (< 1). which indicates that spacecraft are more likely to fail early in a
mission as design or manufacturing flaws become apparent. Failure rates decrease over
time, a.s units that pass through this "burn in" period are more likely to last.

The uncertainty inherent in the handbook failure' rates is another concern.
Previously. we have created a model that assigns variances to failure rates for various
components [5]. Using the d_/ta from [4]. an algorithm for simulation-based
reliability predictions has been developed. For each trial, an exponential failure rate is



sampledfroma Normaldistributionwith themeanpublishedfailurerateandthe
assignedvarianco.It istransformedto the Weibull distribution, and the component
reliability is computed using (2) for that trial only. A significant number of samples
are titus needed to obtain the resulting uncertainty distributions.

4 Optimization by Simulated Annealing (SA)

Simulated annealing (SA) is one of the simpler evolutionary-type algorithms used for
global optimization. SA generates a random variant of the cun'ent trim solution and
evaluates its objective function value. If the new value is superior, the new solution is
accepted in place of the old one, If not, the new solution will still be accepted with a
probability given by

r...+, = [- Av/r] (3)

where AV is the difference in objective values and T is an "annealing temperature" that

slowly decreases. Higher temperature increases the acceptance probability, so the
algorithm is less likely to accept "backward" steps as time goes on [6,7,8].

The SA algorithm used in this study has a unique method of generating a new
solution. Trial solutions ,are specified by a collection of "genes" that give the number
of units of each component type to be included. In the spacecraft case. the solution (a
string of integers) is broken down into functional subsystems (as shown in Table 3).
Each time a new solution is generated, at least one of the changeable subsystems fall
but the first two) is randomly selected for modification. Those not selected retain the
same v',dues as in the last sotution,

For each component in a subsystem to be changed, a pair of staircase functions is
computed based on the current number of units if/c) and the minimum and m,_ximum
number allowed for that component (m and M respectively). The minimum number is
the number needed for mission success, and the maximum for a given case is the lesser

of two quantities: 2 nc or the absolute maximum number allowed. The probability
function for the number of units in the new solution is

P[new = nx Iold = nc]= 2.5/{2(M- m)} for nx= nc

1-2.5/(2(M-m)}nx forM>nx>nc
= M +I

2.5/{2 - ,°/}= - nx fornc>nx_m
nc - 1'1"1

C4)

Equation (4) creates a "stairstep" distribution that peaks when nx = nc. Retaining the
current number of units is thus quite probable. The more different a new number is,
the less likely it is to be selected. Note that there is an equal probability of the new
number being either higher or lower than nc. This probability function clearly makes
large changes unlikely; so new solutions take on an "evolutionary" character.



Asnotedabove,theuseof aJ_arbitraryprobabilitymodelrequiresMonte Carlo
simulations to evaluate the objective function for each new design solution. Each
simulation step consists of a time simulation of a mission given the system reliability
model. Since the unit reliabilities are unknown random variables with the
distributions discussed in Section 3.0. these must be re-sampled from a r,'mdom number

generator and the mission reliability recomputed.
Using the canonical SA algorithm in [7], Table 1 gives the parameters used for this

research. Note that adaptation as discussed in [6] for continuous objective fun¢6ons is
not used. The convergence tolerance in Table 1 represents a comparison between
"evolving" evaluations of a solution that has not been replaced in at least one constant-
temperature period (300 new solutions). If this occurs, a new simulation evaluation
of the current solution is conducted, and its new evaluation is the weighted average of
new and old evaluations. For example, if the solution has not changed in the last 3
temperature iterations (900 new solutions), the new evaluation will be:

new evaluation = [ 3 (old evaluation) + new simulation result } / 4 (5)

When the new evaluaUon differs from the old by tess than the convergence tolerance.
the _dgorithm prints the best solution found thus far and exits. The algorithm also
exits when the current temperature falls to a point (10 times the tolerance) at which
acceptance of an), lower-evaluation solution becomes exceedingly unlikely.

SA Parameter "Value ,, N_¢;'te,s, GA parameter Value Notes

Imtlal tomp. 2 x 106 V.m.._.x = 15 x 106 Population size 25 duplic, poss.
Num temp. 300 # iter, for _iven T Crossover rate 0.6 after reprod.

Temp. mult. 0.90 :tee. after 300 iter. Mutation rate 0.01 use eq./4.1
No. stmula:iont_ 500 per, function oval. No. simulations 500 per rune. oval.
Converge tol. 0.003 Converge tol. 0.01

Table 1: Simulated Annealing Parameter_ Table 2: Genetic Atgorithm Parameters

5 Optimization by Genetic Algorithms (GA)

In the canonical genetic algorithm (GA) format [9], chromosomes, or members of a
population of trial solutions, are expressed a_s binary numbers (0-1). and the standard
genetic evolution operators _e designed for this type of population. For the system
design application, however, the format used for the SA algorithm in the previous
section is much more natural. Thus, variants of the GA operators for this genetic

forfimt must be developed. The current versions of these operators are discussed here,

Testing of these operators is progressing, and results along with updated operators
will be given in a future paper.

Previous research on using Monte Carlo simulntlon to evaluate the objective

function (orfimess) of population members has provided insight into the GA design
parameters used here [10]. These are given in Table 2, The revi.ee_Aoperators are:

Reproduction: Roulette wheel selection is used to choose solutions for the next
generation (before crossover). Since the evaluations tend to be similar, the fitnesses
are linearly normalized from best to worst by multiplying the difference between the



bestfitnessandagivenfitnessbyI0. Thebestsolutionisalwaysreproducedintothe
next generation (elitism), and the weighted-average equation (5) is used when
applicable to update (rather than replace) the fitness of the best solution [9].

Crossover: Subject to the crossover rate in Table 2. after reproduction, two solutions
are "mated" together to produce one offspring, The two parents simply average their
unit numbers for each component type within a randomly selected (using the
procedure for selecting subsystems in SA) crossover window to give the mtmber of
units in the offspring (randomly rounded up or down if n.5). The crossover rate
determines the ratio of offspring to reproduced strings in the next generation, as Ncr
(-- 0.6 N) solutions are crossed over in Nor combinations to produce Ncr offspring.

Mutation: Each gene (number of units for a given component) is subject to random
mutation with a probability given in Table 2, If a gene is mutated, the current number
of units is replaced according to the SA probability equation (4), This function has a
high probability of retaining the same number of units: so the mutation rate is
inflated to compensate.

Population Convergence: The convergence test is conducted after fitness evaluation
but before the next generation is reproduced. If the average fitness of the population
differs from that of the best solution in the population by less than the tolerance

given in Table 2. the algorithm stops and outputs the final solution population.

Given these operators, the similarity of SA and GA for this application is clear.
The two key differences are "evolving" one solution as opposed to many solutions, and
using the SA random-perturbation search with acceptance function (3) as opposed to
using the genetic-based operators, which search the objective function by hyperplanes.

6 The Gravity Probe-B Spacecraft and Objective Functions

While the algorithms detailed above are generally applicable to design optimization

problems, the results published here focus on the Gravity Probe-B (GP-B) spacecraft
being developed by Stanford University under a NASA contract. By orbiting a
spacecr_fft in polar low-earth orbit and using &'ag-free control to remove disturbances
caused by particle impacts, gravity gradients, and the like, it is possible to monitor
two relativistic effects on bodies in orbit ,around a massive object [11]. Since these

effects are tiny compared to Newtonian disturbances, extremely precise gyros and
readout sensors, a science telescope for precise inertial reference, and an extremely

accurate drag-free attitude controller are required [ 12,13].
The GP-B satellite is divided into two secdons. The experimental payload is built

around the probe, which contains the gyros, sensors, proof mass, telescope, gas lines,
and electronics, and the dewar, which surrounds the probe with superfluid helium to

keep its temperature in the cryogenic range needed by the sensors. This equipment has
never flown before; so its reliability is uncertain. The spacecraft bus. which supports

payload operations in space, is being developed separately by Lockheed Missiles and
Space Company (LMSC). Figure 1 shows a drawing of the GP-B spacecraft.

Our work uses the separation between payload and bus to focus on spacecraft

bus optimization given the uncertain reliabUity of the launch system and the payload
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Figure I: OP-B Spacecraft

(which LMSC cannot control). It is thought that the bus should be made very simply
and reliably to not add unnecessary failure modes to ,an already high-risk situation.
This logic will be tested by the optimization carried out here.

The optimal design is driven by the form of the objective function used to model
the utility, or relative values of outcomes, of the decision maker. The objective
function for LMSC is assumed to be the fee. or profit as a percentage of the spacecraft

bus cost, it is to receive depending on the outcome of the mission. Caveat: the
following objective functions are based on generalizations and simplifications of the
NASA contracts for GP-B: the), do not explicitly give the true LMSC fee agreement.

To represent constraints, penalty functions are applied which subtract costs
that for exceeding spacecr,'fft weight, volume, and power constraints:

LMSC value -- award fee • cost fee + on-orbit fee - penalty costs (6)

The Stanford objective function is instead focused only on achieving a successful
science mission, so it is dominated by on-orbit performance:

Stanford value -- on-orbit value + cost savings -penalty costs (7)

For LMSC, the on-orbit fee percentage of the baseline bus cost of $ 100 million is

given by the following equation, assuming a spacecraft bus failure ends the mission. If
there is no failure. LMSC gets the maximum of 6%. ff a launch or payload failure
ends the mission, the LMSC fee percentage is zero unless at least six months of
success are obtained, in which case this equation for the maximum fee (MPF) is used:

[ (tin-6) 5 ]MPF = [2i61tm_61 +6 PFF - 6
(8)

_vhere tm is the number of months of successful science data.taking, and PFF is ,an

independent, subjective performance evaluation made by NASA. This equation is also
used for the Stanford on-orbit fee except that the result is normalized to one by

dividing by 6% (the best possible resul0, since it is the only driving factor.
For LMSC. NASA regulations set the minimum overall fee to 0% and the

maximum to 15% (even though (6) can give a wider range of values). Note that
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changing the redundancy of the spacecraft bus design primarily changes the on-orbit
value, unit costs, and penalty only. Since much of the LMSC award fee is independent

(for our purposes) of the bus design, it seems that greater improvement can be

expected for the Stanford function.
Also note that these functions do not employ risk aversion to express nonlinear

preferences for very good or very bad results. The functions (6) and (7) are based on
expected values only. However. Stamford places a much greater penalty on a mission

that produces no useful science data, LMSC must also worry about the consequences

of a spacecraft failure to its reputation, Future optimization runs will experiment

with how exponentially scaled risk-averse values affect the optimal solutions.

7 Design Optimization Results

Optimal design furls using both the LMSC and Stanford objective functions and the

SA _dgorithm have been conducted. Attempts have also been made to determine which

input parameter changes show the most sensitivity in the optimal results.
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Figure 2 shows the evolution of the LMSC and Stanford objective values for two

typical runs. The dashed line represents (he initial evaluation of the LMSC baseline

design. Each evaluation point represents the value of the current SA solution at the

end of each constant-temperature itcration. The last points on these plots represent
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the latest evaluations of the best solutions found, The upper plots are for runs with
the "best guess" reliability models for launch and payload operations, both of which
(mean reliability of 0.93) are considerably worse than for the baseline spacecraft bus
design (0.975). The lower plots are for runs in which the launch and payload models
were improved and uncertainty was reduced. In these latter cases, we expect the
resulting value uncertainty to decre_e, although there is less room to improve over
the baseline result. Convergence appears rapid, but the time scale is misleading, since
the termination tolerance is deliberately made small to run more reliability

simulations and study the steady-state variance of the optimal design values.
Table 3 contains the minimum numbers of working components, the LMSC

baseline design, and the best solutions for the "ori$innl reliability" case (L ,= LMSC. S
= Stanford). The algorithm was initialized with the baseline solution, so it is to be

expected that the objective value would drop as the SA algorithm explores a range of
options. Table 4 has mean result values that show 5.1% improvement over the basic
baseline design for the LMSC case and 9.2 % improvement for the Stanford case, The
greater improvement for the Stanford cases reflecL_ the greater optimization focus on
on-orbit performance in that case. Running on a Spare-10 workstation. "official"
convergence was obtained in about 10-18 hours, but as noted above, the tolerance could
have been increased (stopping the runs earlier) with little change in the results.

Componeni Min. L base L opt,: S opt. Component Min. Lbase L opt. S opt.
--S[ructure 1 1 (nc) I l 'telem. proc: 1 2 3 4

Thermal t. 1 (nc) l 1 remote proc. 1 2 4 2

- SA strin_ 92 96(nc) 96 '96' flight comp, I 2 2 3
power reg, 1 2 [ 3 solid-st, rec. 1 2 1 1

NiCd batt, 1 2 l 1 P/Y _)n'o as, 1 2 l 1

pwr'. coni. 1 l (it) 2 2 star tracker I 2 3 2
omni ant. 1 4 1 3 R/Y _ffo as. I 2 1 i

c_c. switch 1 2 2 1 hrusters 16 18 24 22

-RF switch 1 2 ..... [ 4 ATC elect, 1 2 2 2

trans, sw. 1 2 l 1 mass trim' t 2 2 1

trnspond. 1 2 4 3 SA release 4 4 /ii') 8 7
cmd, proc. 1 2 3 4 SA separ. 1 i (ix) 2 I

ac) cannot Ily redundant
Table 3: GP-B Spacecraft Optimal Design Results

Note in Table 3 that the optimal designs show some consistent patterns when
compared to the baseline solution. While the baseline has the same redundancy for all
components, the SA-generated solutions remove redundancy from less-risky or cost-
effective components and add redundancy to components that have high failure rates
and/or failure rate uncertainties. This is not surprising, and it points out the potential

sub-optimality of the traditional method of allocating redundancy. The use of penalty
functions works well, as no "invalid" solutions were accepted after the first 30

iterations. For certain components, the optimal redundancy changes significandy
from one run of the SA algorithm tO the next. m_d there are places where a human
designer could adjust the results using his own qualitative design knowledge.
Interestingly, attempts by the authors to do this have nol yet been able to achieve a
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higher objective value. This suggests that the objective function is Insensitive to
components whose optimal unit numbers vary noticeably between optimization runs.

However. the Monte Carlo function evaluation uncerlainty needs to be addressed.

Using the Central Limit Theorem (CLT), the simulated function evaluations can be
considered to be approximately Normally distributed. From Figure 2, we see that
convergence around a limited range of result values is typically obtained after about
30 iterations. Table 4 contains the mean values (p.) and standard deviations (_) of the

objectives for ,all four cases. This level of variahklity does not seem to confuse the SA
cdgorithm since convergence around the mean result is not lost after it is acquired.

Case [a ($M) o'($M) %Irhp- Case }.t(SM) i o($M) %Imp.

LMSC orig. 13.81 (1.143 5.14 Start. o6_. 13.12 0.185 9.23
LMSC imp. 14.13 0.141 3.62 Start. imp. 13.75 0.172 6.01

Table 4: Summary of Optimization Results

One approach to handling the variability question would be to monitor the
statistics in Table 4 in "real time" and to stop the Monte C,-trlo evaluations when
sufficient certainty is attained, This idea is developed for GA's in [14]. The measure of
statistical certainty could be based on a measure of risk aversion to the variability of
the award result. This approach will be examined in follow-on research.

Since the SA procedure gives good results and is flexible enough to adapt to a wide
variety of design problems, our work on the separate genetic algorithm approach is
attempting to compare and contrast the two methods as adapted to this reliability
design problem. While the SA approach chooses subsystem groups in which to make
random modifications, the GA crossover operator, since it se_u'ches by hyperplanes at
the component level, may be better able to isolate the individual components that are
critical to overall performance. Better search-by-component might avoid the
differences between unit numbers seen in different runs of the SA procedure.
However. the GA approach will consume more computer time per solution evaluation

and may not give significantly better results. Even so. our ability to modify the
canonical SA and GA approaches to fit a given design problem or apply domain-

specific knowledge suggests that various mixes of operators from both algorithms
may give the best results.

8 Summary and Conclusions

The results shown here seem to justify the use of global optimization for this
spacecraft design problem. Using simulated annealing, improvement can be obtained
relative to the LMSC baseline design even though the objective functions are only

partially sensitive to chaa_ges in component redundancy. Convergence of the global
search did not take_ very long considering the complexity of the reliability analysis
and the variance of the Monte Carlo simulations. The smooth patlern of convergence

demonstrates that evolutionary global search is a useful way of conducting reliability
optimization based on the new reliability model. Although the variance of the
objective values is significant, it does not prevent the algorithm from converging.

The usefulness of this type of design optimization algorithm is threefold. First. it
allows search of the design space to globally optimize an arbitrary value function
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based on an arbitrary system performance model. Second. it demonstrates the
flexibility of evolutionary global optimization using simulation evaluations, since it
accommodates domain-specific modifications to c,'monicnl SA and GA that improve
search efficiency. Lastly. it is a design tool that allows the user to complement the

computerized search by making manu,'d variations to the optimal result in an attempt
to gain further improvement.

The genetic algorithm-based optimization procedure is now beginning testing
using the same reliability model. Olher areas of follow-on work include simulation
variance monitoring and reduction methods and applying risk aversion to the objective
function evaluation. "Dais application of evolutionary search strategies to optimal
design under uncertainty should be very. useful for a wide range of re.al-world projects.
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