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ABSTRACT

The aerodynamics of a cascade of airfoils oscillating in
torsion about the midchord is investigated experimentally at a

large mean incidence angle and, for reference, at a low mean

incidence angle. The airfoil section is representative of a modem,

low aspect ratio, fan blade tip section. Time-dependent airfoil

surface pressure measurements were made for reduced

frequencies up to 0.g for out-of-phase oscillations at Mach

numbers up to 0.8 and chordal incidence angles of 0°and 10°. For
the 10 ° chordal incidence angle, a separation bubble formed at

the leading edge of the suction surface. The separated flow field
was found to have a dramatic effect on the chordwise distribution

of the unsteady pressure. In this region, substantial deviations
from the attached flow data were found with the deviations

becoming less apparent in the aft region of the airfoil for all

reduced frequencies. In particular, near the leading edge the

separated flow had a strong destabilizing influence while the
attached flow had a sa'ong stabilizing influence.
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inlet mach number

airfoil number 0, +1 .... +4

cascade mean inlet pressure

cascade mean exit pressure

mean pressure (zeroth harmonic)

first harmonic unsteady pressure

real part

Reynolds number, pVC/I_

cascade pressure ratio, pe=/p_,

blade spacing

maximum blade thickness

inlet velocity

chordal distance

position of maximum blade thickness

pitching axis location

mean incidence relative to the airfoil chord-line

amplitude of torsional oscillation; ct_ = 0.0209 radian

interblade phase angle

stagger angle

leading edge camber angle

dynamic viscosity at cascade inlet

density at cascade inlet



_b phase angle

co frequency of oscillation

INTRODUCTION

The demand for gas turbine engines with higher

thrust-to-weight ratio and increased durability has made the

structural dynamic response of fan and compressor blade rows
due to blade flutter a problem of increasing concern. In

particular, as part of the engine design process, blade flutter must

be accurately predicted. The failure to accurately account for this

phenomenon can lead to premature engine failure and reduced

engine life.

Many different types of flutter can occur in turbomachines;

Fig. 1 illustrates the flutter regions on a compressor performance

map. Subsonic/transonic stall flutter, schematically depicted near

the stall line at part speed, is the most difficult type of flutter to

accurately predict because viscous effects are significant. Current
state-of-the-art unsteady viscous codes have not been

demonstrated to provide accurate predictions of stall flutter at

high incidence and transonic relative inlet Mach numbers. As a
result, current stall flutter prediction systems rely on purely

empirical correlations of flutter boundaries based on previous rig

and engine testing, simplified separation models, or

semi-empirical methods. _

To evaluate current unsteady aerodynamic models and direct

the development of future models, experimental data from

oscillating cascade experiments are requh-ed. It is extremely
difficult to obtain valid experimental data with the reduced

frequency, Mach number, and mean incidence simultaneously

having appropriate values. In addition, data for simultaneous
oscillation of the airfoils at a number of different interblade phase

angles is desirable. Hence, there is a very limited quantity of

cascade unsteady aerodynamic data appropriate for

understanding and prediction of stall flutter.

Carta and St. Hilaire: and Carta 3, measured the surface

chordwise unsteady pressure distribution on harmonically

oscillating NACA 65 Series airfoils in a linear cascade. These
torsionally oscillated airfoils exhibited a decrease in aerodynamic

damping for increased incidence angles even though the steady
suction surface static pressure distribution indicated attached

flow. Although the interblade phase angles in these experiments
were within the range found for stall flutter, the Mach number

(< 0.2) and reduced frequency (0.4 based on chord) values were
low.

Szechenyi and Finas 4 and Szechenyi and Giranit _ obtained

unsteady aerodynamic data over a range of Mach numbers,

reduced frequencies, and incidence angles, including partially

and fully separated flow for a symmetrical airfoil harmonically

oscillating in torsion. For 0.5 inlet Mach number, experimental

results indicated negative aerodynamic damping for incidence

angles greater than 8 degrees for a reduced frequency of 0.74. In

this experiment only one blade was oscillated, and the unsteady

aerodynamic coefficients correspond to the influence of the
oscillation of the reference blade on itself when all other blades

in the cascade are fixed.

These previous investigations have been partially successful

at obtaining appropriate data to improve stall flutter prediction

capabilities. However, Buffum et al. 6 have recently performed

experiments using the NASA Lewis Research Center Transonic

Oscillating Cascade to obtain unsteady aerodynamic data in the

appropriate parameter ranges. In these experiments, the steady
and unsteady aerodynamics of a cascade of airfoils oscillating in

torsion about the midchord were measured. The airfoil section

was representative of a modern low aspect ratio fan blade.

Chordal incidence angles of 0 and 10° were used. Unsteady

chordwise surface pressure measurements were made at a Mach

number of 0.5, reduced frequencies up to 1.2, and a Reynolds
number of 0.9 million. For the large mean incidence angle, a

separation bubble formed at the leading edge of the suction

surface. The separated flow field was found to have a

destabilizing influence in the leading edge region for the 180

degree interblade phase angle used in the study.

In this paper, the aerodynamics of a cascade of airfoils

executing torsion mode oscillations is investigated for subsonic
and transonic Mach numbers using the airfoil cross-section from

Buffurn et al. 6. For an inlet Mach number of 0.2, results will be

presented for a low mean incidence, attached flow condition and

a high mean incidence condition with leading edge separation.

Results are presented for a Mach number of 0.8 for the high
mean incidence condition with leading edge separation. Low

incidence angle data for this Mach number were not obtainable
because the cascade choked at a Mach number of 0.7 at 0°

chordal incidence. Additionally, some Mach 0.5 data will be used

for comparison. For details concerning the Mach 0.5 data, see
Reference 6. Reduced frequencies of 0.4 and 0.8 are presented.

The low incidence data are correlated with predictions from a

linearized cascade unsteady aerodynamics code.

FACILITY AND INSTRUMENTATION

Oscillating Cascade

The NASA Lewis Oscillating Cascade, Fig. 2, combines a

linear cascade wind tunnel capable of inlet flow approaching

Mach 1 with a high-speed airfoil drive system. The drive system

imparts torsional oscillations to the cascaded airfoils at specified

interblade phase angles and realistic values of reduced frequency.

For facility details not discussed below, see Buffum and Fleeter _.
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Air drawnfromtheaanospherepassesthough honeycomb

into a smooth contraction inlet section then into a constant area

rectangular duct. For an inlet Mach number of 0.2, turbulence

intensity in the test section was 0.3%. The duct measures 9.78 cm

in span and 58.6 cm along the stagger line. Upstream of the test

section, suction is applied through perforated sidewalls to reduce

the boundary layer thickness. Tailboards are used to adjust the

cascade exit region static pressure and also form bleed scoops
which further reduce upper and lower wall boundary layer

effects. Downstream of the test section, the air is expanded

through a diffuser into an exhaust header. The cascade inlet may

be adjusted to obtain a wide range of incidence angles.

The facility features a high-speed mechanism which may

drive any or all of the airfoils in controlled torsional oscillations.
For this investigation, all the airfoils were oscillated

simultaneously, and the maximum reduced frequency was 0.8

(based on chord). At an inlet Mach number of 0.8, this

corresponds to a 370 Hz oscillation frequency. Stainless steel
barrel cams, each having a six-cycle sinusoidal groove machined

into its periphery, are mounted on a common rotating shaft

driven by a 74.6 kW electric motor. A cam follower assembly,

consisting of a titanium alloy connecting arm with a stainless
steel button on one end, is joined on the other end to an airfoil

trunnion. The button fits into the cam groove, thus coupling the

airfoil with the camshaft. The drive system geometry fixes the

pitching amplitude to 1.2 °. Lubrication of the cam/follower
assembly is provided by an oil bath. The interblade phase angle

is fLxed by the relative positions of the cams on the drive shaft.

External to the oil bath, on the same shaft as the airfoil drive

cams, is a cam used to indicate the shaft position. A proximity

probe facing this reference cam produced a time-dependent

voltage indicating the position of the airfoils.

The upper wall and the lower tailboard are acoustically

treated. Experiments performed before acoustic treatrnent was
installed s.9 indicated that reflections of acoustic waves by the

solid walls were compromising the blade-to-blade periodicity of

the unsteady flow field. Thus the walls were modified to reduce
acoustic wave reflections. Portions of the solid boundaries were

replaced by perforated plates backed by enclosures filled with
Kevlar fiber as depicted in Fig. 3. Rice _° provided the design

parameters (plate thickness and porosity, hole diameter,
enclosure depth and Kevlar density). Bleed lines were attached
to the cavities to allow boundary layer suction through the

perforated walls.

_Airfoils

The airfoils used in this study have a cross-section similar to

that found in the tip region of current low aspect ratio fan blades.

The airfoil section was designed using the Pratt & Whitney fan

and compressor aerodynamic design system, which is for flow in

circular ducts. Hence, to simulate the two dimensional conditions
to be encountered in the linear cascade, the airfoils were designed

using a radius ratio of 0.99. The loading levels, losses, solidity,
and stagger angle are consistent with current design practice for

fan blades. The airfoil cascade parameters are given in Table l;

refer to Fig. 4 for definitions of the geometry.

Table 1 Airfoil and cascade parameters

Chord, C

Maximum thickness, t,_

Location of maximum thickness, x,L,

Leading edge camber angle, 0*

Number of airfoils

8.89 cm

0.048 chord

0.625chord

-9.5 degrees

9

60 degrees
Stagger angle, _'

Solidity, C/S 1.52

Pitching axis 0.5 chord

Instrumentation

Wall static pressure taps were used to measure the inlet and

exit pressures. From these measurements, mean values were
determined to provide the cascade pressure rise.

Four airfoils were instrumented with static pressure taps.

Two airfoils were instrumented with taps very near the midspan,

one on the suction surface, the other on the pressure surface. As

shown in Fig. 5(a), taps were clustered near the leading edge to

capture the large pressure gradients there. Taps were also
clustered in the 50 to 70% chord region in anticipation of shock

wave impingement on the pressure surface when operating near
choked flow conditions. Two additional airfoils were

instrumented with pressure taps, Fig. 5(b), some of which are

redundant to the midspan instrumentation shown in part (a) and
others which indicate the spanwise variations in the pressure.

The redundant midspan taps were used to indicate blade-to-blade

periodicity of the cascade steady flow field. The spanwise taps

supply information on the three-dimensionality of the flow field.

Two airfoils were instrumented with flush-mounted

miniature pressure transducers. The transducers were chosen for

having the following desirable characteristics: small dimensions,

high frequency response and invariance of dynamic response
with change in temperature. Static and dynamic calibrations
were made.

Kulite Semiconductor Products miniature pressure
transducers were used, each of which consists of a silicon

diaphragm containing a four-arm strain gage bridge mounted



over a cylindrical cavity. Slots were machined into the airfoil
surfaces to allow the transducer diaphragms to be mounted flush
with the airfoil surface and to serve as passages for the wire
leads. Once the transducers were installed, each slot was filled

and smoothed to the airfoil contour, and each transducer was
coated with RTV (room-temperature-vulcanizing rubber) for

improved durability and conformance with the airfoil profile. To
provide isolation from airfoil strain, each transducer was potted
in RTV. The pressure sensitive diameter was 0.7 mm (0.8% of
the airfoil chord).

The transducers were located on the upper surface of one
airfoil and the lower surface of another airfoil. There were 15

transducers per surface. The locations, the same as those of the
midspan pressure taps (Fig. 5(a)), vary from 6 to 95% of chord.
The transducer thickness relative to the airfoil thickness was the

limiting factor in placing the transducers closest to the leading
and trailing edges; at these locations, the airfoil thickness was
chosen to be at least twice the transducer thickness.

Static calibration of the transducers was performed at NASA
Lewis Research Center. Each blade was installed in a calibration

chamber, the ambient pressure of which was controlled using a
vacuum pump. The U'ansducer electronics and the data
acquisition system were identical to those used during all of the
calibrations and the unsteady experiments. The response for each
transducer was linear. The calibrations were repeatable - changes
in sensitivities were typically less than 0.25% between
calibrations.

To determine the frequency response of the transducers, a
resonant tube assembly similar to that used by Capece and
Fleeter" was used to excite the transducers with acoustic waves.

The assembly consists of a 20.3 cm diameter, 4.6 m long plastic
tube with a speaker mounted at one end. An instrumented airfoil
was mounted at the opposite end of the tube, which was open to
atmosphere. Amplified sine waves were used to drive the
speaker which in turn created acoustic waves in the tube for
excitation of the transducers. The resulting pressure transducer

responses were flat to frequencies in excess of I000 Hz within
+2% in magnitude and ±3 degrees in phase.

During the experiments, the pressure transducers are subject
to maximum accelerations in excess of 300 times that due to

gravity. Acceleration deflects the transducer diaphragm and thus
produces apparent pressure signals. Calibration was used to
correct for this effect. Each blade was oscillated in a chamber

with low ambient pressure (1.2 kPa) over the range of
frequencies encountered in the experiments. The mode of
oscillation was identical to that used in the cascade. Through

Fourier analysis of the resulting signals, the transducer responses
as a function of oscillation frequency were determined. Second
degree polynomial curves were found to fit the calibration data
well; the calibration coefficients were used to correct the

experimental data. For example, at 370 Hz, the correction for the
upper surface leading edge transducer was 2.6 kPa.

DATA ACQUISITION AND ANALYSIS

Unsteady signals from the pressure transducers and the
proximity probe were recorded using a Teac XR-7000 VHS tape
recorder. During tape playback, the signals were simultaneously
digitized at rates typically 10 times the oscillation frequency,
with 16,384 samples taken per channel. Each channel of data was
divided into blocks with 1024 samples, windowed using a
Harming window, then Fourier transformed to determine the first
harmonic of each block. The f'u'stharmonic of each block was

referenced to the airfoil motion by subtracting from it the phase
of the first harmonic motion signal (from the proximity probe) of
the corresponding block. Once all of the blocks from a channel
were decomposed in this manner, the first harmonic block results
were averaged and the complex-valued acceleration response was
subtracted vectorally.

The motion of the nth airfoil is defined by the change in the
incidence angle with time:

aa(t) = a + a I Re[exp(i(cot + n[3))] (1)

The first harmonic unsteady pressure coefficient is defined as

pl(x) (2)
c,,(x)= p

The pressure difference coefficient is defined to be the difference
between the lower and upper surface unsteady pressure
coefficients:

AC. = (C.),o....- (3)

The unsteady aerodynamic moment coefficient for a flat plate
airfoil is defined as

1

o_XP X X X: - (4)

I
X

0

, .) (.)where Cu = - 3 ACp _ and x/C=0.5. The work done on

the airfoil by the fluid per cycle of oscillation is proportional to
Im(Cu), thus the sign of Ira(Cu) determines the airfoil stability
with Im(Cu)> 0 indicating instability.



RESULTS

Results will be presented for 0° and I0 ° of incidence at an
inlet Mach number of 0.2 and for 10° incidence at 0.8 Mach

number. These incidence angles are based on the cascade inlet

angles relative to the airfoil chord-line; upstream flow angle
measurements were not made. Unsteady data will be presented

for a 180 ° interblade phase angle and reduced frequencies of 0.4

and 0.8.

For a = 0 ° , the steady and unsteady data are correlated with

two dimensional potential flow predictions; the influence of
stream tube contraction was not considered in the analyses. For

c_= 10° , solutions were not obtainable due to the extremely large

flow gradients created by the sharp leading edge of the airfoils.
The steady flow surface pressure distribution is correlated with

the nonlinear full potential solver SFLOW _2, and the first

harmonic surface pressure distribution is correlated with the

linearized analysis LINFLO _3. The predictions from SFLOW are

used by LINFLO as the nonlinear background steady flow
around which the harmonic unsteady flow solutions are formed.

The airfoil trailing edge was modified by inserting a wedge

in place of the f'mite radius trailing edge for enforcement of the
Kutta condition. This gave a trailing edge that was not a lz'ue cusp

configuration. This was found to challenge the steady and

unsteady computational implementations of the Kutta condition.

A 120 by 21 H-Grid was used in the computations. A

localized region of the grid is illustrated in Fig. 6. This cosine

distributed grid yields a large number of grid points in the

leading and trailing edge regions where the flow gradients are the

highest. The cascade inlet flow angle was varied until the best
match was found between the steady chordwise pressure

coefficient data and the predictions. This resulted in a 1.5 °

chordal incidence angle being used in all of the predictions.

Steady Aerodynamics

For a linear cascade to be a valid simulation of a

turbomachine blade row, the cascade must exhibit good

passage-to-passage periodicity for the steady flow field. To

verify that the cascade was periodic, airfoil surface pressure
distributions were obtained at the center airfoil position (position

0) and the two adjacent positions (positions -1 and 1) in the nine
airfoil cascade. The resulting airfoil surface pressure distributions

for M---0.2 and _ = 0° are shown in Fig. 7. There is a net increase

in the pressure coefficient through the passage which indicates
that the flow is accelerating. Overall, the periodicity is good.

From the leading edge to 30% of chord on the upper surface, the

position 1 _ values are somewhat larger that the rest. On the
lower surface, the position -1 values tend to be less than the

others, with the larger differences again being toward the leading

edge. Cascade pressure ratio and Reynolds number for the steady

flow conditions are given in Table 2.

There is excellent agreement between the data and the

SFLOW predictions up to about 80% chord. Af_ of this location

the predictions show a steep pressure gradient as the trailing edge

is approached, whereas the upper surface data do not have this
trend and the lower surface data have a more gradual pressure

gradient. The discrepancy in the data-theory correlation in this

region is attributed to the airfoil modification and viscous effects.

The predicted static pressure ratio for the cascade was 0.994.

Increasing the incidence angle to 10° (Fig. 8) changes the
behavior of the cascade so that now there is flow separation off

the leading edge of the airfoil upper surface and a net pressure
rise across the cascade. Cascade periodicity is improved xelative

to the low incidence data.

Increasing the inlet Mach number to 0.8 while maintaining

the 10 ° incidence angle (Fig. 9) does little to change the steady

pressure coefficient distribution from that for M=0.2. Low

incidence, M=0.g data are not available because, at cL= 0 °, the

cascade choked at M=0.7.

To visualize the flow, the airfoil surface was coated with an

oil-pigment mixture. At 10° incidence, separation from the upper
surface was evident. The largest separated region was found at

midspan; there, the flow was separated from the leading edge to
about 40% of chord. Near the endwalls, the separation bubble

extended to about 7% of chord. Between midspan and the

endwalls, the reattachment region was defined by a smooth arc.

This qualitative description is independent of inlet Mach number.

To quantify three-dimensional effects in the steady flow,

pressure taps were placed at several different spanwise locations

of the blade upper surface. Despite the three-dimensional nature

of the separation bubble, Fig. 10 shows that the midspan and
35% span pressure distributions are nearly identical. Over the
fast half of the airfoil, the 17.5% span data for the upper surface

differ from the other data. Clearly, this is due to the

three-dimensional nature of the separated flow. The upper

surface 17.5% span data with the peak near the leading edge and

the rapid decrease in _ with increasing chordwise position more

closely resemble attached flow data, in contrast to the data at the

other spanwise positions.



Table 2 Cascade pressure ratio and Reynolds number

Mach no. Incidence Pressure Reynolds
ratio number

0.2 0° 0.996 0.38x I06

0.2 I0° 1.006 0.38x 104

0.8 I0° 1.075 1.2x IOs

Unsteady Aerodynamics

Unsteady pressure data will be presented for out-of-phase

oscillations (_ = 180°). The a = 0° data will be correlated with

linearized flow analysis predictions. Comparisons between the

M=0.2 cc= 0° and (z = 10 ° data will be used to isolate effects of the

mean flow on the unsteady aerodynamics. The effects of reduced

frequency and Mach number on the unsteady separated flow will
also be investigated. Cascade dynamic periodicity was a primary

concern; to quantify periodicity, unsteady data were obtained at

the center airfoil position and the two adjacent positions in the
nine airfoil cascade.

Starting with the M=0.2 (_ = 0 ° data, fu'st harmonic unsteady

pressure coefficients for J3= 180° , k--0.8 are shown in Fig. 11.
Data were taken for three blade positions. Referring to the

schematic in Fig. 11, data were taken at blade positions -1, 0 (the

cascade center) and 1. For the Cp values, 95% confidence
intervals of .-_% are estimated. For both surfaces, the data are

highly periodic. The lower surface response is dominated by

Re(Cp) forward of midchord. Gaps in the lower surface data at 60
and 65% of chord are due to transducer failures. In conWast, the

upper surface response on the forward half of the airfoil is nearly

constant outside of an abrupt increase in both the real and

imaginary parts very near the leading edge. As with the lower
surface, data at some upper surface transducer locations are

missing due to faulty transducers.

The predictions of the chordwise distribution of Cp are in

good agreement with the data in both magnitude and trend.

Changing the mean incidence angle to 10° has a dramatic

effect on the upper surface unsteady pressure coefficient
distributions. The lower surface data, Fig. 12(a), are quite similar

to the ct = 0° data although the Re(Cp) data reach a slightly

smaller peak in the leading edge region. The upper surface

pressure coefficients, Fig. 12Co), are affected significantly by the

separation; relative to the ct = 0° data, much larger pressure
fluctuations are evident over the In'st half of the blade with the

exception of x/C=O.06. Despite the severely separated flow, the

unsteady pressure data are highly periodic.

Airfoil upper surface pressure spectra for these two

conditions are shown in Fig. 13. At low incidence, Fig. 13(a), the

spectra are dominated by the response at the oscillation

frequency, and only in the measurement nearest the leading edge

is there a significant higher harmonic response. In conwast, the

high incidence spectra, Fig. 13(b), show higher harmonics at all
locations encompassed by the steady flow separation bubble.

However, the first harmonics are still dominant.

To further investigate mean flow effects, unsteady data were

obtained for M=0.8, cc = 10 °. Cpdistributions for [5-- 180 ° , k=0.8

are shown in Fig. 14. The data generally exhibit good periodicity,

although there are some blade-to-blade differences in the

imaginary part where the flow was separated. The data are

qualitatively quite similar to the M--0.2, cc = 10 ° data, although

the magnitudes of the Cpvalues on the lower surface are larger

for the larger Mach number.

The effect of Mach number on AC e distributions for cc = 100

and k=0.8 is shown in Fig. 15 for M=0.2, 0.5 and 0.8. The aCp

values were calculated using the center airfoil data; where center

airfoil data were incomplete, available data from the neighboring

airfoils were used. The difference in magnitude for M=0.2 and

0.5 is small, but the values for M=0.8 are significantly larger.

Phase differences are relatively small over the fL,'St half of the

airfoil. Beyond that, the differences are much larger, at 80 and

90% of chord, the M--0.2 phase angle data differ from the

corresponding M=0.5 and 0.8 data by roughly 100°.

Since the aeroelastician is ultimately interested in predicting

the stability of a blade row, data illustrating the effect of the
mean flow on the chordwise distribution of lm(C'_) are shown in

Fig. 16. As discussed earlier, the work done by the fluid on the

airfoil per cycle of oscillation is proportional to Im(C's_. For

M=0.2 and 0.5, Im(C'M ) data for both a = 0 ° and 10° are

presented in addition to the M=O.8, cx = 10 ° data. The most
obvious differences are due to the gross nature of the flow, i.e.,

attached versus separated flow. In the vicinity of the leading

edge, the attached flow contributes to the cascade stability while
the separated flow is destabilizing. In a region varying from 8 to

16% of chord, the opposite becomes true: the attached flow is

destabilizing and the separated flow in stabilizing. Beyond
midchord, the trends become the same although the separated

flow condition leads to a greater stabilizing influence than the
attached flow.

On the basis of these data, increasing the Mach number

appears to increase the cascade stability when the flow is
separated. However, because the stability is strongly dependent

on the unsteady aerodynamics near the airfoil leading edge, the

question of the stability of this airfoil section cannot be

definitively answered.

Fig. 17 shows the effect of reduced frequency on the

chordwise distribution oflm(C'M ) for M=0.8. Outside the leading

edge region, the higher reduced frequency data indicate greater



stability. Very near the leading edge, however, the k=0.8 curve

has greater slope and potentially a greater destabilizing influence.

SUMMARY AND CONCLUSION

A series of fundamental experiments have been performed
in the NASA Lewis Transonic Oscillating Cascade Facility to

investigate the steady and torsion mode oscillating aerodynamics

of both attached and separated flow for subsonic and transonic
mean flow conditions, and realistic values of reduced frequency.

For an inlet Mach number of 0.2, steady and unsteady

aerodynamic data were presented for low mean incidence

attached flow and high mean incidence flow with leading edge

separation. The surface pressure distributions were quantified for
reduced frequencies of 0.4 and 0.8. Additionally, for an inlet

Mach number of 0.8 steady and unsteady aerodynamic data for

the high mean incidence flow with leading edge separation were

presented for reduced frequencies of 0.4 and 0.8. Low mean
incidence data for this Mach number were not obtainable because

the cascade choked at a Mach number of 0.7 for a = 0 ° . For the

attached flow cases the steady and unsteady aerodynamic data

were correlated with potential flow analysis predictions.

Analysis of this data and correlation with predictions from

the potential flow analysis indicate the following:

I) The steady mean flow was found to separate from the

leading edge and reattach at 40% chord at 10 degrees of chordal
incidence. While the separation zone was found to decrease in

the endwall regions, the flow was shown to be two dimensional

in the midspan region where the steady and unsteady

aerodynamic response measurements were quantified.

2) The passage-to-passage periodicity was found to be good

for attached and separated steady flow, signifying that the

cascade provided a valid simulation of a turbomachinery blade
row. The cascade also exhibited good passage-to-passage

dynamic periodicity for attached and separated flow, thus

providing a valid simulation of a turbomachine blade row

undergoing torsion mode oscillations at a constant interblade

phase angle.

3) Significant differences in the unsteady pressure
distributions were found between attached and separated flow. In

the separated flow regions, substantial deviations fi'om attached

flow, low incidence data were found with the deviations

becoming less in the aft region of the airfoil.

4) Comparing the chordwise distribution of Im(C'M )
forward of midchord revealed opposite trends for attached and

separated flows. In the leading edge region, separated flows had a

strong destabilizing influence whereas the attached flows had a

strong stabilizing influence. Conversely, between lO and 50% of

chord, the separated flows become stabilizing while the attached

flows became destabilizing. Aft of midchord, the differences

were smaller. The destabilizing influence in the leading edge

region for separated flow decreased with increasing Math

number. Additionally, for attached flow, increasing the Mach
number was also found to be more stabilizing at the leading edge

and also in the 20% chord region. These phenomena need further

investigation.

5) For a Mach number of 0.8, the lm(C'u ) distribution for

separated flow indicated that an increasing reduced frequency
might be more destabilizing in the immediated leading edge

region. However, just downstream of the leading edge, increasing

the reduced frequency had a strong stabilizing effect.

6) Correlation of the steady attached flow experimental

data with the predictions from a nonlinear two dimensional

potential code was good except in the trailing edge region. The
discrepancy between the data and the predictions are attributed to
viscous effects not included in the computational model and the

replacement of the finite radius trailing edge with a wedge.

7) Correlation of the attached flow In'st harmonic data with

predictions from a linearized potential code was good over most
of the airfoil. The predictions captured the trend and magnitude

of the unsteady pressure distributions. Differences between the

experimental data and the predictions were most significant in

the trailing edge region where the deviations in the steady flow
were also influencing the unsteady predictions.
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