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LIST OF SYMBOLS
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conditions

The Hamiltonian, defined in the usual manner for bang-bang optimal

control problems

The switching function, defined in the usual manner for bang-bang

optimal control problems
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atmospheric model, see Eq. (1.4)

The cross sectional area of spacecraft used in computing drag, see Eq.
(1.4)
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holds in Section I
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scalar argument. This definition does not hold in Section I
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These vectors contain the orbital elements which are used to specify
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A vector containing the orbital elements of the ith transfer orbit. For
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is the final orbit. This only applies for numeric subscripts.
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in Section Ill
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Applying Only to Section III, Subsection 111.2.2
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SUMMARY

This report presents new theoretical results which lead to new algorithms for the

computation of fuel-optimal multiple-bum orbit transfers of low and medium thrust.

Theoretical results introduced herein show how to add burns to an optimal trajectory and

show that the traditional set of necessary conditions may be replaced with a much simpler

set of equations. Numerical results are presented to demonstrate the utility of the

theoretical results and the new algorithms.

Two indirect methods from the literature are shown to be effective for the optimal

orbit transfer problem with relatively small numbers of burns. These methods are the

Minimizing Boundary Condition Method (MBCM) and BOUNDSCO. Both of these

methods make use of the fh'st-order necessary conditions exactly as derived by optimal

control theory.

Perturbations due to Earth's oblateness and atmospheric drag are considered.

These perturbations are of greatest interest for transfers that take place between low Earth

orbit altitudes and geosynchronous orbit altitudes. Example extremal solutions including

these effects and computed by the aforementioned methods are presented.

It is a commonly accepted notion in the field of optimal orbit transfer that the

more bums an optimal transfer executes, the lower the cost. Unfortunately, many

numerical methods are not robust enough to simply "jump" from an N-bum solution to an

N+I burn solution. A new algorithm is presented which greatly eases this process. The

method is just as easily implemented in the framework of MBCM as BOUNDSCO, any

indirect method, or a hybrid method.
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Using this algorithm and the indirect methods mentioned above, the phenomena

of multiple solutions is demonstrated for the optimal orbit transfer problem. A simple

empirical guideline is proposed which chooses between two or more multiple solutions

when using this algorithm. It is not claimed that the algorithm will obtain the globally

optimal solution.

Intuitively, one might want to think of an optimal multiple-burn u'ansfer not as

one large trajectory, but as a sequence of optimal one-burn transfers between transfer

orbits that are optimally chosen. For ideal gravity, a strong relationship is shown to exist

between these two problems. Based on this relationship, two new numerical methods are

presented which iteratively compute optimal orbit transfers. The f'u'st method, named the

Patched Method, appears to be very robust yet sluggish in convergence. The second

method, named the Modified Patched Method (MPM) seems somewhat less robust but

much faster in convergence. For optimal orbit transfers in ideal gravity with large

numbers of burns, MPM seems to be superior to the other methods investigated in this

report.

Finally, an investigation is made into a suboptimal multiple-burn guidance

scheme. This scheme is, in fact, seen to have somewhat less than desh'able terminal

error. This terminal error is improved through a time-to-go indexing scheme. Future

directions for multiple-burn guidance are suggested.

The FORTRAN code developed for this study has been collected together in a

package named ORBPACK. ORBPACK and a user manual are provided. The manual is

included as an appendix to this report.

xiv



SECTION I

THE ORBIT TRANSFER PROBLEM

I.l. Introduction

The most popular motor today for performing orbit transfers is of high thrust and

usually a solid, sometimes a liquid rocket motor. These typically have a specific impulse,

or/st,, in the lower hundreds of seconds (250s-450s) and thrust in the thousands of

Newtons 1 and up. In this range, they can be considered impulsive 2, applying changes in

velocity on a time scale much shorter than the orbit period. For many years the study of

optimal orbit transfer has focused on these impulsive motors.

With the hopes of lower fuel consumption due to an Isp typically in the thousands

of seconds, electric propulsion has recently grown in popularity and many studies have

been performed to develop the motors; a major satellite manufacturer is akeady designing

satellites which use a Xenon Ion Propulsion System (XIPS) 3. The thrust produced by

these motors is in the tens to thousandths of Newtons; for example, XIPS produces 18

thousandths of a Newton with an/st, just under 3,000 see. Obviously, orbit transfer

maneuvers with such electric propulsion will take more time and practical transfers can

no longer be modeled as impulsive. Since it is necessary to specify the maneuver with

continuous functions as opposed to discrete impulsive events, the optimal transfer

problem has been too complicated for exact analytical solutions.

IHertz, J. R.., and Arson, W. J., Space Mission Analysis and Design, Kluwer Academic
Publishers, Boston, 1991.

2Robbins, H. M., "An Analytical Study of the Impulsive Approximation," A/AA Journal,
Vol. 4, No. 8, 1966, pp. 1417-1423

3Christensen, R. A., ed., "Space Propulsion's Latest Thrust," Vectors, Vol 37, No. 1,
1995, Hughes Electronics, Los Angeles.



Numerical methodsfor the computation of optimal orbit transfers have been

widely studied. These numerical methods fall into three categories: direct, indirect, and

hybrid methods. Direct methods parameterize the thrust program and then attempt to

optimize these parameters while satisfying boundary conditions. Indirect methods

employ the mathematics of optimal control to formulate a Two-Point Boundary Value

Problem CI'PBVP) which can then be approached with a variety of numerical methods.

Hybrid methods are a combination of the two. These methods are often formed by

simply removing difficult conditions from the TPBVP and optimizing some equivalent

cost function over the released parameters.

The main objective of this research was the computation of fuel-optimal low and

medium thrust orbit transfers. Here, medium thrust was taken as 1 > T/W,, > 0.01 and

low-thrust as 0.01 > T/W,,> 0.001. This particular definition has been made because it is

the initial acceleration which the rocket motor produces compared with the gravitational

acceleration at that point that determines how easily changes in the initial orbit will be

made. In contrast, comparing the initial rocket motor acceleration with the weight of the

spacecraft as it would measure on the planet's surface does not directly indicate the

motor's ability to move the spacecraft away from a very high orbit.

Of the utmost interest was the ability to compute highly efficient transfers for the

ideal case. This will provide mission planners with the ability to compute a "best"

transfer which can be used to judge more practical schemes. However, the ideal case

does not quite represent reality; the ability to handle orbit perturbations is desirable as

this would produce more realistic "best" transfers. For trajectories that spend much time

near or beyond geosynchronous orbit, the dominant orbit perturbations will result from

either Earth oblateness effects or atmospheric drag.l

2



Software using multiple-point shooting and modified-shooting techniques were

used and produced many solutions. Using these, some characteristics of the solution have

been observed and studied. Identification of these characteristics has resulted in the

development of a new method for improving optimal orbit transfers. The method

introduces additional bums to optimal ideal-gravity orbit transfers using an under-

exploited property of the switching function. A set of improved transfers were

constructed and these uncovered new properties of optimal transfers.

Furthermore, two new methods have been developed. The fh'st is a new hybrid

approach called the Patched Method. This method combines the robustness of a direct

approach and the greater convergence speed of the multiple-shooting approach in a

configuration that can handle transfers with large numbers of bums. However, the

Patched Method pays for its robustness with speed.

The second new method is the Modified Patched Method (MPM). MPM trades

back some of the sluggishness of the Patched Method for a small loss in robustness. This

trade-off is accomplished by making use of properties specific to the orbit transfer

problem. Some of these properties appear to be new, developed here for the irtrst time.

Overall, MPM seems to be superior to any of the other methods applied in this report.

The other objective of this research was the examination of a capable guidance

algorithm for multiple-burn orbit transfer. Work on this has produced a one-burn

guidance algorithm using neighboring optimal feedback control. This guidance algorithm

could be used on a burn-by-bum basis to produce a sub-optimal trajectory.

1.2. Orbit Transfer Modelinp

The spacecraft is represented by a point mass and assumed to be a thrusting craft

acted upon by the aerodynamic drag and oblate-body gravity forces of a central body.

3



The central body, or planet, is also represented as a point mass positioned at its own

center of gravity. Furthermore, the problem is restricted to crafts of mass much smaller

than that of the central body; therefore, the planet is assumed fixed in inertial space. This

inertial space is described with a rectangular Cartesian inertial reference frame (OXYZ).

The central body is fixed at the center 0 of this frame and the z-axis is perpendicular to

that body's equator. All motion within this frame agreeing with the above assumptions

must satisfy Newton's Second Law:

d(mv)
_F = (1.1)

dt

where m is the spacecraft's mass, v is its velocity with respect to the reference frame, and

YF represents the sum of forces on the craft.

In this case, gravity, drag, and thrust make up the total force acting on the craft.

This gives

m_;' = Te r - Fa,ag - Fg,a_ (1.2)

in which the thrust is some time-varying function T(t) independent of a time-varying

direction eT(t ). This is most clearly derived by considering a momentum balance of the

spacecraft as it expells mass to produce thrust; absorbing the dm/dt term into the thrust

term produces Equation (1.2).

The thrust direction is expressed as the unit vector eT(t ). For a three-dimensional

thrust vector the control requires a magnitude and three components or two angles. For

two dimensional problems, the one magnitude and only two independent control

components or one angle is required.

It is assumed that the fuel consumption of the motor is represented by

4



T

g,1_, (1.3)

where go is Earth's gravitational acceleration at sea level and ]sp is the motor's specific

impulse.

It is assumed that the atmosphere surrounding the central body can be described

by an exponential model as in the standard atmosphere 4 resulting in the following

aerodynamic drag force:

F ,_ = lpoe-_'-'.)SCDv v
(1.4)

where ]_ is a constant from the atmosphere model describing air density variation in the

prescribed altitude region, Po is the atmosphere density at the altitude ro, S is the cross-

sectional area of the craft, C D is the craft's drag coefficient, v is the magnitude of the

velocity v, and r is the magnitude of the position vector r.

The gravitational potential energy to the second harmonic is 5

(1.5)

where R, is the equatorial radius of the central body, 0 is the latitude angle of the current

position from the equator,/z is the gravitational constant for the central body, and J2 is a

constant describing the mass distribution of the central body; for Earth J2=1082.61 ×I 0-6.

There axe additional mass distribution terms, but the series is truncated here. 0 is

4Anderson, J. D., Fundamentals of Aerodynamics, New York: McGraw-Hill Book Co.,1984.

5Space Technology Laboratories, Flight Performance Handbook for Orbital Operations,
New York: Wiley, 1963.
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describedwith Cartesiancoordinatesby z=r cos(O). This gravitational potential exerts

the following force on the spacecraft:

where

Fl'°"v oh-= _= ÷ _2 7_ -5 r

N --.diag{ 1,1,3} and I is the identity matrix.

(I.6)

The equations of motion for the spacecraft are

x(t)= f(x(t),T(t),er(t)) (1.7)

where

x(t)=[ rT(t) vT(t) re(t)] T (1.8)

and

If v l 19a,f(x(t),T(t),er(t))= Te P r- 3 : 2m r-_" _'/M'2 R--'_'ffN-5(z'_ llr-lP--Ze-'C'-'.)SC_vv
r_. _,rJ JJ 2 m | (1.gb)

-T/(gol,p) J (1.9c)

The thrust magnitude has both an upper and a lower bound. The upper bound is

called Tmax, the lower bound is zero. Therefore, the following inequality constraint must

be satisfied for all time t e [0,ty] :

O <- T <-Tmax (1.10)



For the purposes of this study a simple atmosphere model was chosen. The model

was not intended to accurately represent the Earth's atmosphere, or any other planet for

that matter. It is implemented only for the purpose of demonstrating the methods used

herein and to allow examination of its effects on the optimal transfer.

The model was defined from a reference altitude of 450 km above the planet's

equator. The entire atmosphere region was assumed isothermal with a temperature of

1,000K. The density at the definition altitude was defined to be 1.184x10q2 kg/m3. The

definition point for this model was taken from the 1976 U.S. Standard Atmosphere 6.

Also, it was assumed that Co--2 , a common approximation for spacecraft _, and the cross

sectional area of the satellite was arbitrarily chosen to be 4z m 2.

For problems in which the ideal gravity assumption is acceptable, coasting

trajectories are well understood and can be analytically represented. Therefore, it is

simplest to optimize the exit, or "thrust on," point on the initial orbit and the entry, or

"thrust off," point on the final orbit. A real spacecraft implementing the orbit transfer

could simply wait in the initial orbit until arrival at the initial orbit exit point, indicating

that the maneuver should begin.

Hence, the boundary conditions must determine all orbital elements except

position on orbit, and are written as

V(X(to))=ao (1.11a)

where the function _g determines these orbital elements for the state in question and ¢xo

and af are vectors containing the desired values at the initial and final points,

respectively. Such a determination could be accomplished several different ways.

6United States. COESA. U.S. Standard Atmosphere, ]976, Washington: GPO, 1976.

"IKing-Hele, D. Theory of Satell#e Orbits in an Atmosphere, London, Butterwonhs, 1964.

7



However,usingtheangu]armomentumandeccentricityvectors is perhaps the simplest.8

For planar transfers, all motion can be placed in X-Y plane and the components of the V

function are

IFl "- h = xv - yu

1ti2= iae. =[(v2-1a/r)x-(rrv)u]

IV,=/xe, = [(vl-la/r)y- (r%)v]

(1.12)

Where h is the angu]ar momentum, e_ is the X-component of the eccentricity vector, and

ey is the Y-component of the eccentricity vector.

In the three-dimensional case, these vectors will compose six components. Since

the angular momentum and eccentricity vectors are always perpendicular, one of these

components will be redundant and thus removable. There is one restriction on which

component is removed; it can be seen clearly by considering the property that the vectors

are always orthogonal, expressed as

h, ej + h_e_ + h,e, = 0 (1.13)

A component of one of the two vectors can be removed if it can be computed using

Equation (1.13). In other words, since Eq. (1.13) always holds, knowledge of the

removed component is implied and it is unnecessary to explicitly compute it. Another

way to state this is to say that the six components are linearly dependent. Therefore, if

for the orbit transfer problem in question, hz_O on a terminal orbit, then the _ function

components can be written as

8Kaplan, M. H. Modern Spacecraft Dynamics and Control, New York, John Wiley &
Sons, 1976.
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lVl "" h_,= yw- zv

IV2= h, = zu- xw

V3 = h, = xv - yu

le', =/ae, =[(v'-#.tlr)x-(rTv)u]

=#xe,=[(v:-l, ilr)y-(rTv)v]

(1.14a)

(1.14b)

(1.14c)

(1.14d)

(1.14e)

where x,y, and z are the components of r in OXYZ and u,v, and w are the components of

v in OXYZ.

If the initial or final portion of a transfer traverses altitudes where ideal gravity is

not a valid assumption, then the boundary conditions likely need to be reformulated. For

example, a trajectory that begins at a very low Earth-altitude cannot la'uly coast with zero

cost because energy would be lost due to atmospheric drag. For such a transfer, it would

be more realistic to fix the initial point. Likewise, some missions may be more interested

in delivering the spacecraft to a specific point in space, in which case the final condition

should be a rendezvous condition.

Anticipating numerical applications, note that the problem can be

nondimensionalized. This aided by making allstates roughly the same order. In the

presentation of example solutions, the hat (') notation will be dropped and solutions are

assumed nondimensionalized unless stated otherwise. The non-dimensionalizations

follow:

- r/r* ffl -- re�m* (1.15a-b)

i _- t/_ (1.15c)

and they require the following:

(1.15d-e)
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_, r- ro/r*
[3 E fir* (l.15f-g)

The choices of r_ and m "_"are completely arbitrary. However, it needs to be said that

after a problem is solved by these nondimensionalizations rescaling must be exercised

with caution; rescaling changes the atmosphere model and changes the equatorial radius

used for the oblateness terms. For example, a given transfer with nondimensionalized

parameters must specify the value for R, if oblateness effects were considered. If, after

rescaling, one intends this transfer to represent a maneuver about Earth then r* must be

such that R, is the radius of Earth by Equation (1.15k). Similar arguments may be made

concerning the nondimensionalized parameters for atmospheric drag effects.

Substitution of Eqs. (1.15a-k) into Eqs. (1.9a-c) shows that the nondimensional

dynamic equations are equivalent to Eqs. (1.9a-c) with p=l (the value of J2. however, has

no dimensions and is not changed). In Eq. (1.9a), choosing the scalings for r and t,

shows that the only consistent scaling for v is Eq. (1.15d). Then, in Eq. (1.9b) it is clear

that Eqs. (1.15a-h) and (1.15j-k) are required for consistency. Substitution into Eq. (1.9b)

also shows that the factor ]z appears on both sides ofEq. (1.9b), in the numerator of eve_,

term; therefore, it may be dropped from both sides. Finally, substitution into Eq. (1.9c)

reveals that Eq. (1.150 is required for consistent scaling.

10



SECTION II

COMPUTATION OF OPTIMAL ORBIT

TRANSFERS

II. 1. Literature Review

One of the earliest and most notable applications of the calculus of variations to

the orbit transfer problem was by Lawden 9. His work established the now widely-used

pointer vector theory. Lawden also derived many useful analytical results including an

analytical solution for the Lagrange multipliers over coast arcs in ideal gravitylO; his

expression is easily configured to trajectories where the transfer time is unconstrained.

He went on to conclude that for the case of escape from a circular orbit, tangential

thrusting would be nearly optimal11; however, he noted that this thrust program may not

fare so well in other cases. Lawden studied the possibility that, in addition to arcs of

maximum thrust and null thrust, arcs of intermediate-thrust may exist in an optimal

transfer 12. He later wrote a general review of rocket trajectory optimization13 and stated

that issue of the existence of intermediate-thrust arcs was still unresolved.

After Lawden's formulation was published, many other researchers produced

solutions to the Lagrange multipliers over coast arcs in ideal gravity. A set of

9Lawden, D. F., Optimal Trajectories for Space Navigation, London, Butterworths, 1963.

l°Lawden, D. F., "Fundamentals of Space Navigation," Journal of the British
Interplanetary Society, Vol. 13, No. 2, 1954, pp. 87-101, 1954.

11Lawden, D. F., "Optimal Escape from a Circular Orbit," Astronautica Acta, Vol. 4, No.
3, 1958, pp. 218-233.

l_awden, D. F., "Optimal Intermediate-Thrust Arcs in a .Gravitational Field,"
Astronautica Acta, Vol. 8, No. 2, pp. 106-123.

13Lawden, D. F., "Rocket Trajectory Optimization: 1950-1963," Journal of Guidance,
Control, and Dynamics, Vol. 14, No. 4, 1991, pp. 705-711.
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expressionsderivedby DanbyTM appear to be the earliest such work. This was actually

for the equivalent problem of determining the matrizant. At almost the same time, Pines

published work which derived constants of integration 15, some which apply during any

part of the trajectory, even intermediate-thrust arcs, and some in restricted cases. Later,

both Eckenwiler16 and Hempe117 produced formulations valid in a two-dimensional

system. Lion and Handelsman_8 derived equations for a three-dimensional system.

Glandorf 19 produced a very useful form for the Lag'range multiplier's that used the

current radius, velocity, and angular momentum vectors as reference directions. Vinh 20

developed equations which reduced the solution of the Lagrange multipliers for any

central force field to a problem of simple quadratures.

These analytical results have all proved useful in many studies of optimal orbit

_'ansfers. However, to date no closed-form expressions have been obtained for optimal

orbit transfers, including the fuel-optimal thrust-limited case considered in this repon.

Therefore, numerical methods are used to produce exact solutions for this problem which

has challenged the most sophisticated algorithms. These methods are traditionally

divided into three types: indirect, direct, and hybrid.

14Danby, J. M. A, "The Matrizant of Keplerian Motion," A/AA Journal, Vol. 2, No. 1,
1964, pp. 16-19.

15Pines, S., "Constants of the Motion for Optimum Thrust Trajectories in a Central Force
Field," A/AA Journal, Vol. 2, No. 11, 1964, pp. 2010-2014.

16Eckenwiler, M. W., "Closed-Form Lagrangian Multipliers for Coast Periods of

Optimum Trajectories," A/AA Journal, Vol.3, No. 6, June 1965, pp. 1149-1151.
17Hempel, P. R., "Representation of the Lagrangian Multipliers for Coast Periods of

Optimum Trajectories," A/AA Journal, Vol. 4, No. 4, June 1966, pp. 720-730.

18Lion, P. M., and Handelsman, M., "Primer Vector on Fixed-Time Impulsive
Trajectories," A/AA Journal, Vol. 6, No. 1, 1968, pp. 127-132.

19Glandorf, D. R., "Lagrange Multipliers and the State Transition Matrix for Coasting
Arcs," A/AA Journal, Vol. 7, No. 2, 1969, pp. 363-365.

2°Vinh, N. X., "Integration of the Primer Vector in a Central Force Field," Journal of

Optimization Theory and Applications, Vol. 9, No. 1, 1972, pp. 51-58.
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II.l.l. Indirect Methods

Indirect methods convert the optimization problem into a TPBVP though optimal

control theory. The most popular indirect methods by far seem to be the shooting and

multiple-point shooting methods.

Among the studies using indirect methods, the work by Brown, Harrold, and

Johnson 21 produced an indirect method named OPGUID/SWITCH which handles

rendezvous trajectories or free entry/exit points and free final time using a modified set of

boundary conditions. Results with OPGUID/SWITCH were presented for medium thrust

levels and two to three burns.

Another indirect method, developed by McAdoo, Jezewski, and Dawkins22 and

dubbed OPBURN, was actually a combination of two approaches. The first

approximated ideal gravity using a model for gravitational accelerations linearly varying

with altitude. This assumption results in a linear steering law and was used to simplify

low-accuracy calculation of the transfer. The data from this approach were used as the

starting iterate of another, more accurate code. Results with this method were presented

for medium thrust acceleration levels and two to three bums.

Edelbaum, Sackett, and Malchow23 produced computer code to solve minimum

time transfers (one bum) using equinoctial orbital elements as state variables. Constraints

on exposure to solar radiation were considered. This method relied heavily upon the

21Brown, K. R., Harrold, E. F., and Johnson, G. W., "Rapid Optimization of Multiple-
Burn Rocket Flights," NASA CR-1430, Sept., 1969.

22McAdoo, S., Jr., Jezewski, D. J., and Dawkins, G. S., "Development of a Method for

Optimal Maneuver Analysis of Complex Space Missions," NASA TND-7882,
April, 1975.

23Edelbaum, T.N., Sackett, L. L., and Malchow, H. L., "Optimal Low Thrust Geocentric
Transfer" AIAA Paper 73-1074, Proceedings of the AIAA lOth Electric
Propulsion Conference, Lake Tahoe, Nevada, November 1973.

13



method of averagingand was namedSECKSPOT. Horsewood, Suskin,and Pines24

modifiedSECKSPOTto produceacodefor theoptimizationof multiple-bumrendezvous

orbit transferswith plane changesbetweencircular orbits with low-thrust in an ideal

_avity field. The transfer times for these trajectories were f'Lxed.

A study by Redding 25 handled point-to-point, or rendezvous, low-thrust transfers

with plane changes. The method presented in the study includes the reduced set of

boundary conditions established earlier by Brown, et. al.21 It was limited to transfers to

geosynchronous orbits in an ideal gravity field and no results are discussed for elliptical

terminal orbits. Solutions with low-thrust were obtained for transfers with two to six

bums.

1I.1.2. Direct Methods

The most common technique for direct methods is to discrefize the control and

possibly the state, then optimize the performance index by var3'ing the control and state at

each node of the independent variable. This optimization is usually subject to some

constraints. In orbit transfer optimization, it obviously makes sense to use any helpful

results from the application of optimal control theory. Almost universally, direct

methods for orbit transfer optimization make use of a bang-bang assumption which

eliminates the possibility of intermediate-thrust arcs. The control is then taken as a

combination of switching times and directions.

The Direct Collocation with Nonlinear Programming (DCNLP) technique makes

use of polynomial approximation to both perform integration and approximate the control

;_4Horsewood, J.L., Suskin, M.A., and Pines, S., "Moon Trajectory Computational

Capability Development," NASA Lewis TR-90.51, Cleveland, Ohio 44135, July
1990.

2"SRedding, D.C., "Optimal Low-Thrust Transfers to Geosynchronous Orbit," NASA
Lewis SUDAAR 539, Cleveland, Ohio 44135, Sept. 1983.
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at nodes. Dickmanns and Wells26 made a significant contribution using a DCNLP

method based on piece-wise Hermite polynomial approximations for the state and

Lagrange multipliers. More recently, Hargraves and Paris 27 used this technique in their

OTIS (Optimal Trajectories by Implicit Simulation) program. The Direct Transcription

and Nonlinear Programming (DTNLP) technique is very similar to DCNLP, with

transcription replacing collocation for implicit integration.

Using DCNLP once then DTNLP later, Enright and Conway28,29 examined

circular, point-to-point planar transfers with ideal gravity. The methods demonstrated in

these studies were shown effective for two- and three-burn trajectories. In using the

DTNLP method, a technique was developed for calculating the Lagrange multipliers so

that Pontryagin's Minimum Principle could be checked. In some cases, it was found that

this principle had been violated.

Vulpetti and Montreali30 used nonlinear programming to optimize transfers

between circular orbits with inclinations. They did include oblateness and drag in their

gravity model; their thrust acceleration level was about 0.0019g. Example transfers

included from two to four burns. Pourtakdoust and Jalali 31 used DTNLP for three-

26Dickmanns, F.D., and Well, K.H., "Approximate Solution of Optimal Control Problems

Using Third Order Hermite Functions," IFIP-TCT, VI Technical Conference on
Optimization Techniques, Novosibirsh Springer, 1974.

27Hargraves, C.R., Paris, S.W., Vlases, W.G., "OTIS Past, Present, and Future,"

Proceedings of the 1992 AIAA conference of Guidance, Navigation, and Control,
Hilton Head, S.C. 1992

28"Enright, P.J. and Conway, B.A., "Optimal Finite-Thrust Spacecraft Trajectories Using
Collocation and Nonlinear Programming," Journal of Guidance, Control, and
Dynamics, Vol. 14, No. 5, 1991, pp. 981-985.

29En.righ¼ P.J. and Conway, B.A., "Discrete Approximations to Optimal Trajectories

Uosing Direc! Transcription and Nonlinear Programming," Journal of Guidance,
ntrot, anat)ynamics, vol. 15, No. 4, 1992, pp. 994-1002.

3°Vulpetti, G. and Montereali, R.M., "High-Thrust and Low-Thrust Two-Stage LEO-
LEO Transfer"Acta Astronautica, Vol. 15, No. 12, 1987, pp. 973-979 (84-354)

31Pounakdoust, S.H. and Jalali, M.A., "Optimal Three-Dimensional Orbital Transfer

Using Direct Optimization Methods," Engineering Systems Design and Analysis,
Vol. 64-6, ASME, 1994, pp. 53-58.
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dimensionaltwo-burntransferswith a medium thrust level. All these studies mentioned

above either used fixed final time, fixed entry/exit positions in orbits, or both.

Another direct method that is gaining in popularity makes use of a technique

called differential inclusion.32 Coverstone-Carroll, V. and Williams, S.N.33 used

differential inclusion concepts in a direct optimization scheme that produced one- and

two-burn planar interplanetary rendezvous trajectories. The title of the study states that

these trajectories are for low-thrust, but the thrust levels fit in the medium thrust range

defined for this report.

n.l.3. Hybrid Methods

Methods are called hybrid if they don't fit neatly into either of the above

categories. Typically, hybrid methods for the orbit ta'ansfer problem involve some use of

the Lagrange multipliers and the Euler-Lagrange equations but also use direct

optimization to determine other parameters of the trajectory.

Zondervan, Wood, and Caughey34 used a hybrid method to study three-bum

transfers with plane changes in ideal gravity and for thrust levels in the medium and low-

thrust range. Their approach was to take the indirect setup and release the switching

function constraint. The switching points were then optimized directly.

32Kisielewicz., M., Differential Inclusions and Optimal Control, Kluwer Academic
Publishers, Boston, 1991.

33Coverstone-Carroll, V. and Williams, S.N., "Optimal Low Thrust Trajectories Using
Differential Inclusion Concepts," Proceedings of the AAS Rocky Mountain
Guidance Conference, Colorado, 1994.

34Zondervan, K.P., Wood, L.J., and Caughey, T.K., "Optimal Low-Thrust, Three-Burn
Orbit Transfers with Large Plane Changes," Journal of the Astronautical
Sciences, Vol. 32, No. 3, 1984, pp. 407-427.
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Ilgen35useda hybrid scheme called HYTOP to compute low-thrust transfers for

an Orbit Transfer Vehicle (OTV) study. The HYTOP algorithm uses the fact from

optimal control theory that the pointer vector function is continuous for the duration of

the transfer. The pointer vector function, and only this function, is discretized into piece-

wise linear functions. The state was represented by equinoctial orbital elements. The

final mass was then optimized over the choice of the pointer vector function parameters

subject to the TPBVP constraints.

Each hybrid method is unique, these two are by no means representative of all that

have been attempted. To date, there does not appear to be any standard hybrid

methodology.

The following subsections describe work in this research effort using indirect

methods and homotopy to compute solutions. Modified forms of both shooting and

multiple-point shooting were found capable of computing medium thrust transfers with

small numbers of burns and some low-thrust transfers. In this domain, a new method for

increasing the number of burns in a transfer was developed and is based a new property

of the switching function. This new method was used to demonstrate that optimal orbit

transfers may have multiple solutions. A/so, when using this method there is a rule-of-

thumb that may help compute the more efficient of the multiple solutions, thus, avoiding

the need to compute all possible transfers and comparing the cost directly. However,

there is no guarantee of a global minimum.

H.2.1. Application of Optimal Control

For this problem the choice of performance index is clear:.

35Ilgen, M.R., "A Hybrid Method for Computing timal'Low-Th
T " . ,, . Op rustOTV

ra.lectones, Proceedings of the AAS Rock2; Mountain Guidance Conference,
Colorado, 1994 (AAS 94-129).
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J = m(tj) (2.1)

where m(tf) represents the mass of the spacecraft including its fuel at the end of the orbit

_'ansfer. The intention, then, is to maximize the performance index, viz. maximize the

mass at the end of the transfer.

The TPBVP is constructed using the necessary conditions in the usual manner.36

Include the steering direction vector constraint in the Hamiltonian, which can be defined

for the optimization problem as

H(x(t),T(t),er(t),_.(t)) = _r (t)f(x(t),T(t),er(t))+ 2, (er.r (t)er (t) - 1)

Z '- I)
2 m gol,p

(2.2a)

(2.2b)

from which the Euler-Lagrange equations are obtained as ODEs governing the Lagmnge

multipliers

_', = -( _---_)_ [=12-_ - 3 (_"";r )r l l- P-e-*_e-'_'-',_SCDv(_. TV)rr-_ .1 2 m r (2.3a)

(2.3b)

36Bryson, A.E. and Ho, Y.-C., Applied Optimal Control, New York: Hemisphere
Publishing Corporation.
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i,,,= dH _ Ip.&.._#(,_,,),,,.,, T.,,..,,v,.,,, (2.3c)

The next Euler-Lagrange equation is easily derived as

(2.4)

so that the necessary condition is satisfied if e r = X,AZ,I and 4.= (rlx,I)/(2m);in other

words, the thrust direction is parallel to t v, which Lawden thus referred to as the pointer

vector. This choice is further supported by a sufficient condition; note that

,9/-/ 7"
= 2AoI = >0

Before r m" ' (2.5)

when ]3.,I > 0, 7">0, and m finite. Also, note that if any one of these is violated during a

burn, the trajectory is immediately indeterminate. The choice for the Lagrange multiplier

A, has been made and does not need to be solved for.

The switching function is derived by an application of the maximum principle.

The thrust magnitude, which has bounds T, naz and 0, will give H its maximum value if it

is at its maximum value when H r > 0 and at its minimum when H r < 0. The switching

function is

and the switching law is

Hr = _ 4,,
m gol,p (2.6)

H r >0, T=T,,_

H r<0, T=0 (2.7)
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If H/-were to be zero for a finite time the control would be singular. Higher-order

derivatives of H T would then be needed to calculate T. In subsection II.l., it was noted

that this singular control has been investigated by many different researchers but no

conclusions are widely accepted as to when, or if, it will be pan of the optimal control.

Many authors21.34,25,37 have identified the switching law, and associated

switching function, as a source of strong sensitivity in numerical solutions.

To complete the TPBVP, the methods of optimal control supply a set of natural

boundary conditions

where G is defined as

)1
aG

_G r

(2.8a)

(2.8b)

and xg(x) was defined in Equations (1.12). Therefore, the natural boundary conditions

can be expressed as

37Chuang, C.-H. and Goodson, T.D. "Optimal Trajectories of Low- and Medium- Thrust

Orbit Transfers with Drag and Oblateness," Submitted to the Journal of the
Astronautical Sciences.
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_,(',)l
_.(,,)J
)_,(to

Xto

(2.10)

where

[rx]
[2,-,,_-(rT,,)1-,,,.,]_ ]

(VTV)'-- VVT + _.--_-(rrr - (rTr)I)]]

(,-_rV'' , jj
(2.11)

and the subscript "X" denotes the skew symmetric matrix representation of the cross

product.

The last condition deals with the final time. For free transfer time the

transversality condition must be satisfied

II.2.2. BOUNDSCO

OG

.(.(..)...(,_)._(,.))--_-;;=o
(2.12)

One method used here to solve the TPBVP is a modification of the multiple-point

shooting method. The specific algorithms are those given by H.'J. Oberle in the

subroutine BOUNDSCO38, written in FORTRAN.

The state defined for the optimal control problem differs slightly from the state

used in BOUNDSCO. The state used in BOUNDSCO for numerical computation is

38Oberle, H. J., "BOUNDSCO - Hinweise zur Benutzung des Mehrz'ielverfahrens fi.ir die

numerische L6sung yon Randwerproblemen mit Schaltbedingungen", Hamburger
Beitr/ige zur Angewandten Mathematik, Berichte 6, 1987.

21



and includes a state denoting the transfer time, tl, and the v o and vl vectors, from the

natural boundary conditions. BOUN'DSCO does not allow user-defined parameters that

are determined in the iteration process, only functions of time; therefore, these last

quantities must be included in the state z and specified to have zero derivatives with

respect to time. Also, BOUNDSCO is restricted to problems with a fixed partition of the

independent variable; therefore, the independent variable has been defined as 're [0,1]

with t = _'t/. This requires that the system dynamics be properly transformed to the

independent variable 'r so that

d

r,I,l Fx +ll

Vo 0 [
V/ 0 ..

and these derivatives with respect to t are Eqs. (1.9a)-(1.9c) and (2.3a)-(2.3c). If x had N

components, then the BOUNDSCO state, z, has 2N+2(N-2)+l components.

BOUNDSCO addresses the switching function sensitivity problem by the explicit

inclusion of switching points in the problem formulation. The number of switching

points is not changed by BOUNDSCO. It iteratively drives the guessed switching points

to be zeros of the switching function, Eq. (2.6). The user must then decide in which

intervals to have the thrust on and in which to have thrust off. Unfortunately, with this

scheme the switching law, Eq. (2.7), may not be satisfied and must be checked after

BOUN'DSCO claims convergence to a solution.
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I"1.2.3. The Minimizing-Boundary.Condition Method

The second method used herein is called the Minimizing-Boundary-Condhion

Method (MBCM)39. MBCM is a modified shooting algorithm in which the switching

structure of the optimal control is implicit. The program checks the switching function

and the switching law to ensure that Eqs. (2.6) and (2.7) are satisfied at each integration

step.

As a modification to the simple shooting method, MBCM, expands the set of

available solutions by removing one boundary condition while keeping the same number

of unknowns. The choice of this boundary condition is arbitrary. With the number of

unknowns unchanged, the solutions become a one-dimensional family. Since this gives a

much larger set of solutions, it is much easier to solve the resulting boundary-value

problem. Once that is accomplished, the search for the solution that incorporates the final

boundary conditions is treated as a minimization problem. The gradient is numerically

calculated and used to update the initial state until the last boundary condition is satisfied.

This method is about as effective as BOUNDSCO in solving the two-point boundary-

value problems for the solved optimal orbit transfers.

I/.2.4. Example Two-Burn Extremal

A solution is presented in this subsection, obtained by both BOUNDSCO and

MBCM. It is nond'.'mensionalized and assumes ideal gravity. The transfer is made

between two planar, aligned orbits. The solution's trajectory is shown in Figure 2.1. The

transfer time has been optimized and is 19.05. The initial mass is 1.608. The initial

semimajor axis is 3.847 and eccentricity is 0.02378. The final orbit semimajor axis is 1.5

and eccentricity is 0.333. The product goIsp is 1.313 and the thrust level is 0.03.

o

39Chuang, C.-H., and Speyer, J.L., "Periodic Optimal Hypersonic SCRAMjet Cruise,"
Optimal Control Applications and Methods, Vol. 8, 1987, pp. 231-242.
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Sinceinitial altitudefor the transferis 3.905,the initial T/W o is 0.2845 and the

transfer may be categorized as a medium thrust transfer by the definition stated earlier.

With the initial orbit higher than the final orbit, this transfer may be viewed as an optimal

descent transfer. However, since atmospheric drag has not been considered, it should not

be viewed as an optimal de-orbiting transfer, where the spacecraft would be intentionally

placed in an orbit low enough for drag to eventually destroy it.

Two bums are used to complete the transfer. Most of the change in energy occurs

in the longer second burn, but most of the change in angular momentum occurs in the

fu'st burn.

II.2.5. Example Three-Burn Extremal Considering Perturbation Effects

In this subsection, another example transfer is presented. This transfer was also

obtained with both BOUNDSCO and MBCM. However, this is a three-bum transfer

whose terminal orbits are not planar. The initial orbit has the same semimajor axis and

eccentricity as the transfer from Fig. I except now the orbit is inclined 20 °, has a right

ascension of 13 °, and an argument of perigee at 15 °. The final orbit is also identical but

inclined 1° with 0 ° right ascension and an argument of perigee at 0 °. The thrust level and

specific impulse are also the same. This solution includes oblateness effects but excludes

drag effects. For the computation of oblateness effects, Earth's value for./2 (1082.61x10-

6) was used along with /?,=0.9696. Since this transfer is intended to be about the earth,

r_'=6578 km must be specified as it ensures the correct equatorial radius scaling.
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Figure 2.1
Two-Bum Extremal Orbit Transfer Solution with Free Final Time.

The trajectory is shown in Figs. 2.2-2.3. This is a fixed transfer time transfer with

t.t'=28.75. Recall that this is a descent trajectory; the initial orbit is higher than the final

orbit. It is interesting to look at this transfer in terms of the normalized time, T, the

energy, E, the angular momentum, h, the semimajor axis, a, the eccentricity, e, the right

ascension, _, the argument of perigee, co, and inclination, i, for certain segments and

points on the trajectory. For the first burn Ar=0.3616, AE=-0.07760, and Ah=-0.6566.

The burn ends at what would be an orbit of a=2.409, e=0.5420, 12=8.320 o, co=1.123 o, and

i=1.665 °. For the second burn A'r--0.1450, AE---0.1048, and Ah----0.1310. The second

bum ends at what would be an orbit of a=l.601, e=0.3742, .O=--1.073% o._---0.3892 o, and
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i=1.202 °. For the third burn A_t=0.02420, AE=-0.02101, and Ah=-0.01865. The final

mass for this transfer is 1.1656, the initial mass was 1.527. As a result of the oblateness

effects, this _'ansfer has poorer performance than if it could be performed in ideal gravity,

where it's final mass would be 1.1659.

If drag is considered in the trajectory, performance improves and the final mass is

1.1663. This is consistent with a descending transfer whose final orbit is rather low. The

altitude of perigee for the final orbit is 6578 krn where drag needs to be considered;

therefore, atmospheric drag can be used to improve performance. Obviously, with the

consideration of atmospheric drag, this transfer could be considered as an optimal de-

orbiting transfer.

The loss in performance caused by the oblateness effect is expected. The terminal

orbits have their apses aligned; since the oblateness effect causes the line of nodes to

regress, the optimal thrust program must fight this effect to return the orientation to that

of the initial orbit. The improvement caused by drag is also expected for this is a

descending trajectory and drag encourages descending trajectories.

It is interesting to note that the change in right ascension was almost exactly

divided between the first two burns while the change in both inclination and argument of

perigee happened almost entirely in the f'n'st burn. The change in inclination can be most

dramatically seen in Fig. 2.3. The burn at the top of the figure is the f'u'st burn. The next

two burns are difficult to distinguish but not very interesting from this vantage point. The

second coasting orbit, or transfer orbit, is quite similar to the final orbit; fittingly, the

third burn imparts the least energy of any of the burns.
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Figure 2.2

Figure 2.3

Y

Z

4...........................................T........771............i.............................................i
.i- " [ ° " i

3- . "_........._ .......i...............I..................:........................
. ! i Initial Orbit -

2 ...........................i.............._............i............................................,:..............

................J i ",,

i "_..... '..............i..............i.........i....
i _'i i ,!

!.i............ .............!..............!........::..
__..........ii:...:..................i.._..................

-3E i _-. i Co_.,A_.i.:_T.............T...............
-4" .... i ";"

....... _" " " "_'":"_"'";":',r::_
-4 -3 -2 -1 0 1 2 3 4

X

Projection into X-Y Plane of Three-Burn Transfer in Ideal Gravity

-1-

-2
.t

_4-i_!_i__!_i;_ '::-i:. .........i
0- ............!_ --i. • " r " .7-"':" " ".....................................i i _

..-"i..- "'i_ i i
: Final Orbit (hidden)

,,J,,I,,i,,i,,i,,i,,i,,
' ' I ' ' I ' ' 1 ' ' I ' ' I ' ' 1 ' ' I ' '

-3 -2 -1 0 l 2 3 4

Y

Projection into Z-Y Plane of Three-Burn Transfer in Ideal Gravity

This example demonstrates the ability of these methods to obtain exact solutions

to the orbit transfer problem for nonplanar trajectories that include perturbing effects.

BOUNDSCO typically can obtain such trajectories within the desired tolerance if given
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the solution under ideal gravity as the initial guess. However, performance usually

becomes unacceptable if the number of burns was increased beyond six; this is an

empirical observation and by no means constitutes an absolute limitation of

BOUNDSCO. There may well be certain cases in which BOUNDSCO can compute

_'ansfers with more than six burns quite easily; however, experience indicates that these

cases are uncommon.

11.3 A New Prooertv of the Ontimal Switching, Function

A very interesting property of the optimal control solution under ideal gravity is

that the initial and final values of the switching function are equal. Even more interesting

is that for the free transfer time problem they are both equal to zero at the initial and final

times.

This property may be explained with the following theorem. In the following, Ci °

denotes the set of/-dimensional vector functions that are continuous with respect to all

arguments, vector and/or scalar, and U denotes the set of piece-wise continuous scalar

functions with one scalar argument.

Theorem 11.1 : Given a bang-bang optimal control problem of the form:

I!

J= ['[L(x(t),t)+ M(x(t),t)u(t)]dt where L(x(t),t)e C ° and M(x(t),,) e C_°
li

and subject to the following:

X(t)=f(x(t),t)+g(X(t),v(t),t)u(t), X(t)e C °, v(t)_ CO;

uml n <- u(t) < Ureax ,U(t) e U ;

_gi(X(ti )) = O, _t f(X(tf )) = O, _g,(x(t,))_C ° _g/(x(tl )) (_ C ° "ql ! q2 "_

ti and tf are free for optimization
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and satisfying the following assumptions:

c_)_(,,c,_),,,)=_(,,(,.,-).,.,.);
(it)[_i(x(t))/o3x(t)]f(x(t),t)-_ O,[_ f(x(t))/e3x(t)]f(x(t),t)- O;

(iii)u(ti)ffiu(t//)_O

then, considering the usual optimal control formulation, introduction of the _.(t)

functions, and the Hamiltonian H(x(t),v(t),u(t),_.(t),t) function36, the following

statements are true:

(1) The switching function, S(x(t),_.(t),t)= _.(t)Tg(x(t),v(t),t)+ M(x(t),t), satisfies

S(x(ti),_.(ti))= S(x(tf),_.(t//))=-L(x (t//),t//)/u(t//)ifand only if

.(,<(,,),,,(,,),u(,,),_,(,;),,,):oand.(,<(,:),_(,:),,,(,:),_.(,:),,:):0.
(2) If the Hamiltonian is autonomous with I i and t//fixed, then

s(,<(,;),x(,,)):s(,<(,:),_.(,:))_<_

Proof:

In the usual optimal control formulation, the boundary conditions at ti and t/.

result in the familiar natural boundary conditions on the Lagrange multipliers, written as

which involve the constant Lagrange multiplier vectors vi • R qi and v//e R q2 , where R i

denotes the set of/-dimensional vectors with real-valued components. Now, consider the

dot product of _,(ti) and X(t//) with vectors callech I • R n and n 2 • R", respectively:

29



z(/;)'rn,=-,,7

This shows that, at both the initial and final times, any vector in the null space of the

relevant constraint gradient matrix is perpendicular to the corresponding Lagrange

multiplier vector. Assumption (ii) indicates appropriate choices for n I and n 2 as

With these choices, the Hamihonian at either terminal time may be written in the

following form:

H(x(t), v(t),u(t),_.(t),t)- [_.(t)'r g(x(t), v(t),t) + M(x(t),t)]u(t)+ L(x(t),t)

Statements (1) and (2) follow immediately.

The theorem is useful because it leads to a method for finding time-optimal

extremals with additional u,,,a_ arcs when u,,_n--0. Although not attempted in this work, it

may also lead to a method for finding extremals with fewer unu= arcs.

Applied to the orbit transfer problem with ideal gravity and free transfer time,

condition (1) implies the switching function must be zero at the entry/exit points. A

similar condition was successfully used in the place of Eqs. (2.10) by Brown, et. al.21 for

free transfer time problems in ideal gravity. In that work, however, the condition was

used as a boundary condition in order to reduce the number of variables in the problem.
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Onemaymakemoreuseof thispropertyof equalswitching function values than

a boundary condition; it can be used to help add burns, improving the performance of

extremal orbit transfers as shall be seen in the following subsections.

11.3.1 Family of Extremals

Exploitation of the property described earlier by Theorem If. I, along with the

favorable performance of these indirect methods allowed the study of the characteristics

of families of solutions. Herein a family of solutions is defined as a set of solutions

whose transfer times and numbers of burns vary but whose terminal orbits do not. The

optimal terminal points will vary from solution to solution because they are free for

oprirfLization.

Figure 2.4 displays a family of optimal transfers. Each data point in the figure

represents an extremal orbit transfer by its total transfer time and final mass. The

transfers are planar and the dynamics do not take drag or oblateness effects into account.

Furthermore, their terminal orbits are the same as for the transfer shown in Figure 2.1.

Though this family appears quite disjointed, it is actually quite connected. These

connections can be best seen by starting at the leftmost transfer (point (1) in Fig. 2.4) and

tracing solutions of increasing transfer time. The solutions from point (1) to point (2) are

the original set of two-burn solutions, obtained via homotopy and a TPBVP solver

(BOUNDSCO and MBCM).

At point (1) the total burn time equals the transfer time; point (1) is a one-burn

solution. Point (2) represents a local optimum in transfer time; the Hamiltonian for point

(2) is zero and this satisfies the transversality condition.
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Figure 2.4 Plot of a Family of Optimal Transfers as Final Mass versus Transfer
Time

As a result of Theorem II.1, the switching function at point (2) indicates the

existence of additional solutions. The situation is shown in Figure 2.5. Because of the

slope of HT and the fact that it is zero at both the initial and final times (from Theorem

II.1), the transfer may be extended optimally by the addition of a coast arc at the

beginning and/or at the end of the transfer. This may seem trivial; one might observe that

coast arcs can always be added; however, this particular situation leads to the addition of

burns. Lawden's solution 10 to the costates on a coast arc shows that on such an arc v,'ith

a vanishing Hamiltonian the switching function is periodic. This means that the

switching function, once crossing zero, must return to zero. In other words, for an n burn

transfer like that represented by Fig. 2.5, the periodicity of the coast arc switching

function hints at the existence of two different n+l-burn solutions and an n+2-burn

solution; each by different additions of coast arcs.

To optimally extend a transfer with coast arcs such that the switching function

will again vanish, it is required that the switching function at a terminal orbit both be
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equal to zero and have an appropriate sign for its slope: positive at the initial time and/or

negative at the final time. This situation can be seen in Figure 2.5 below, for the portion

of the switching function labeled "Original Transfer."
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Figure 2.5
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1:=1
Extended Transfe_

"_=0 -" _ 'r,=1
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Extending the Switching Function to Create More Optimal Transfers;
symbols _ and _ refer to points in Figure 2.4

One may observe that the process does not guarantee a new burn - only a new

coast arc. However, using numerical methods, one may discover that the burn can be

lengthened.

Adding the coast arc is trivial; lengthening the burn arc is not. The following

bum-addition procedure worked well. To add a bum to an n-burn solution with optimal

transfer time that begins and ends with a burn arc: Append a coast arc to the solution at

the chosen time, initial or final, making sure that states and costates are continuous. This

is easily done by integrating forward from the final time or backward from the initial

time. At both ends of the new coast arc the switching function must be zero. Use this
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extendedtransferasa guessfor thenumericalroutine setup for an n+l-bum problem with

a slightly longer transfer time. Finally, use homotopy to obtain an n+l-bum solution with

a longer transfer time.

For the guesses constructed in this report, the new coast arc was extended so that

the switching became positive for a finite time. Since the thrust was set to Tin,u for this

new interval, the boundary conditions were violated and the new arc was a non-optimal

burn because the naturaJ boundary condition was violated. However, it was found that

this new burn aided in the convergence of iterations.

There are three options for creating the next transfer in the family: extend the

transfer to right, extend it to the left, or extend it in both directions. However, because of

numerical difficulties, this last option was not favored. First, consider extension to the

right. Physically, this corresponds to adding the new burn closer to the final orbit. The

resulting transfer is represented by point (6) in Figure 2.4. Starting with point (6),

solutions with longer transfer times were easily found but solutions with shorter transfer

times were not found at all.

Now consider the second option, extension to the left. Physically, this

corresponds to adding a burn near the initial orbit. The resulting transfer is represented

by point (3) of branch (3-4-5) in Figure 2.5. Numerical difficulty w'as discovered in

attempting to find a solution with a greater transfer time than point (3); however,

solutions with lower transfer times were found constituting branch (3-4-5). Additionally,

note that this branch, though a branch of optimal solutions, is unfavorable when

compared to branch (6-7) of the family. This example of muhiplicity may be viewed as a

rearrangement of the bums in the trajectory. It has not been shown analytically, but there

is likely a connection zo a similar result for non-optimal impulsive a-ajectories18.
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By theabove discussion, points (2) and (3) and (6) are, in fact, the same transfer.

The only difference between these transfers is the addition of a coast arc, which makes no

difference in the performance associated with the transfer This means that the branches

of the family are connected and these connections are as follows, with the transfer time

increasing: (1) to (2) (which is identical to (6)) to (7); or (5) to (4) to (3) (which is

identical to (2))

Figure 2.6 shows the switching function corresponding to the transfer represented

by point (7). Compare this to Figure 2.5. The situation is repeating itself; the terminal

switching points in Fig. 2.6 are close to zero. Clearly, one may attempt to expand this

family of transfers from point (7).

Figure 2.6
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II.3.2 Multiple Solutions in the Family

Evidence of the existence of multiple solutions was found For a specified

problem (including specification of the transfer time and the number of burns) there may

exist more than one extremal transfer Such multiple solutions are represented by any

point on branch (3-4) and any point on branch (6-7) which have equal transfer times
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Conditions for multiplicity are not clear, but it is clear that solutions are not necessarily

unique. It is also clear that one cannot say that just because the transfer time for one

solution is longer than another, the former has a greater final mass; although this is

._'pically an assumption made in the literature.

One cannot help but wonder why the solutions of branch (6-7) are more fuel-

conservative than those of branch (3-4). Both branches are extensions of branch (1-2),

but the difference is where the new burn is placed. When the burn was placed near the

initial orbit, far from the attracting body, the branch was unfavorable. When the burn was

placed near the final orbit, close to the attracting body, the branch was favorable. A

principle often seen in impulsive trajectories seems to carry over in some form to finite

burn trajectories; it appears to be better to implement changes in velocity near the

attracting body, where changes in velocity will produce large increases in the already

large kinetic energy, as opposed to far away from the attracting body, where kinetic

energy is lower.

Finally, it is clear that during the burn addition process, one may conn'ol the

placement of new bums. By tending to place new burns closer to the attracting body,

undesirable solutions might be avoided.

The possibility of multiple solutions was recognized by Brusch 40 for one-bum

low-thrust transfers originating from a circular orbit. Brusch also provides some

excellent analysis concerning this phenomenon. In this research, it was found that

multiple solutions exist for multiple-burn low-thrust transfers originating from an

elliptical orbit. That the phenomenon may occur for the more general case indicates that

there are likely many cases with multiple solutions.

4°Brusch, R.G. and Vincent, T.L., "Low-Thrust, Minimum-Fuel, Orbital Transfers,"
Astronautica Acla, Vol. 16, pp. 65-74.
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1/.4. Conclusions

In this section the incl_ect methods BOUNDSCO and MBCM have demonstrated

the ability to solve the optimal orbit transfer problem for small numbers of burns and

small numbers of revolutions. Particular solutions have been presented in some detail.

These solutions demonstrate some effects of drag and oblateness on the optimal transfer.

A new method for adding burns to time-optimal orbit transfers has been

presented. This method is based on a newly observed property of the optimal switching

function and a proof has been given for this property. The method has proven its

practical utility by generating a family of solutions.

This family of solutions is a set of fixed-time optimal transfers with identical

terminal orbits and parameterized by transfer time. Using this family, some new

properties of optimal orbit transfers have been seen: multiple-bum transfers are not

necessarily unique, transfers with greater transfer time do not necessarily have greater

final mass, and local optima do not necessarily occur at transitions between N and N+I

burns when using homotopy to increase the transfer time.

Addressing the inclusion of orbit perturbations, neither BOUNDSCO nor MBCM

had difficulty obtaining solutions with atmospheric drag or oblateness terms.
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SECTION III

NEW METHODS FOR OPTIMIZING ORBIT

TRANSFERS

IIl.]. Introduction

The bang-bang smacture of the optimal orbit transfer solution is well-known. This

means the optimal transfer is made up of a series of individual interior transfers between

a sequence of orbits beginning with the specified initial orbit and ending with the desired

final orbit. However, the fact that these transfers are, individually, optima] transfers has

not yet been widely exploited. In this section, this notion is expressed concisely in a

mathematical sense and shown to be quite useful for numerical methods.

Two methods that originated with this notion are presented. First, the Patched

Method is a hybrid method with a greatly reduced number of parameters. In fact, not

only are the number of parameters reduced, but they are all free for optimization.

The Patched Method also takes advantage of another simple idea: any interior

one-burn transfer taken between two neighboring interior orbits of an N-burn transfer

should be easier to solve than the N-burn transfer as a whole. It then makes sense to

consider using the orbital elements of each intermediate transfer orbit as free parameters.

Given these parameters, the performance (final mass) is computed by solving each

individual one-bum problem in succession.

The Patched Method, however, pays for its robustness in speed. Therefore, it

seems to be most useful as a way of refining and developing initial guesses for the second

method, the Modified Patched Method (MPM). MPM is _ indirect method; no variables
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are directlyoptimized. Itenforcesconditionsnecessaryfor the transfertobe an extremal

solution.MPM assumes a bang-bang structure;however, as inBOUNDSCO, the Patched

Method, and many other methods found in the literature,MPM does not enforce

satisfactionof Pontryagin's Maximum Principle. For this problem, Pontryagin's

Maximum Principlesuppliesthe switching law as Eqs (2.6)and (2.7).These methods

only guarantee thatthe thrustwillswitch values at the zeros of the switchi.ngfunction,

Eq. (2.6);they do not guarantee that the polaritywill be consistentwith Eq. (2.7).

However, thisturnsout tobe an easy conditiontocheck afteriterationsconverge.

A few reasonable and common assumptions are made in both methods. It is

assumed that the only forces on the spacecraft are ideal gravity and the thrust from the

rocket motor. The number of arcs of maximum thrust is assumed fixed; choosing the

number of burns is often desirable and makes the problem easier to solve. The first and

last arcs are assumed to be of maximum thrust; however, no generality is lost here under

the assumption of ideal gravity. Arcs of intermediate thrust are assumed not to exist in

the trajectory because numerical experience indicates that such arcs are rare if they exist

at all. It is assumed that no part of the trajectory will be rectilinear; in other words, the

angular momentum vector never vanishes. Rectilinear trajectories are unlikely to ever be

of interest in an orbit transfer problem and, if they are of interest, the implications of zero

angular momentum should motivate the development of specialized software.

III.2. The Patched Method

Usually, when a hybrid method is formulated the assumption is made that the

solution to this new problem is always a solution to the original problem. Intuitively, this

is often easy to accept. However, it is even more reassuring to prove whatever

equivalency exists between the original formulation and that used by the hybrid method.
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This subsectiondescribesthearchitectureof thePatchedMethod,explaininghow

it functions. Also, it is shownthat necessaryconditionsfrom the traditional problem

statementare, in fact, equivalent to the necessaryconditions which arise from the

optimizationloop of thePatchedMethod.

IIL2.1. Architecture of the Method

The architecture of the Patched Method is best described as an inner and an outer

loop. Given a choice of orbital elements, the inner loop solves each one-burn problem in

succession. Each one-burn transfer has its terminal points and transfer time free for

optimization. However, the result is a suboptimal transfer; it lacks the optimal choice of

intermediate transfer orbits. The choice of transfer orbits is made by the outer loop via

unconsu'ained minimization of the complete trajectory's fuel consumption.

The method that has been chosen for the outer loop is the conjugate gradient

method. Since such methods tend to have better performance if they are supplied with an

analytical gradient, such a gradient was formulated for this case; the formulation will be

presented in this section. The particular FORTRAN code is taken from a common

reference 4 I.

The architecture of this method indicates a useful new paradigm for the orbit

transfer problem. One might think of the multiple-bum transfer optimization problem as

optimizing the fuel used by choice of the intermediate transfer orbits, expressed as

given ao,cx_,m,,c,T; rain _t_ a i 2,a,,T,c, mo-C tin_l)
a_,i=l,N-I i=l

(3.1)

41Press, W.H., et. al. Numerical Recipes." the Art of Scientific Computing, New York:
Cambridge University Press, 1989.
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where t/-o=0 and t_(a,_l,ct,T,m,) shall be called the transfer time function which

computes the optimal transfer time for the orbit transfer problem defined by the initial

orbital elements a,__, the final orbital elements a_, the thrust level T, the initial mass m,

and the fuel consumption rate c. In (3.1), the value for the initial mass of each burn is

calculated knowing the transfer times for the burns before, giving an unconstrained

minimization problem; alternatively this could have been expressed as a constraint on the

minimization.

In this section it will be proven that certain conditions necessary to solve (3.1) are

equivalent to certain conditions necessary to solve the orbit transfer fuel-optimization

problem, under certain assumptions. It will be seen that the restrictions imposed are few

and quite practical; however, it is not claimed that the two problems themselves are

equivalent; this may or may not be true. Nevertheless, this paradigm has certain

advantages. The problem expressed in (3.1) is a parameter optimization problem. If an

expression for the transfer time function were available, this would quite likely be easier

to solve than the TPBVP.

Unfortunately, there are no analytical expressions or approximations for the

transfer time function. The Patched Method must compute it numerically in the inner

loop. The inner loop uses both Direct Collocation with Nonlinear Programming

(DCNLP) and multiple-shooting to solve the one-burn transfer. Each time the optimal

solution for a one-burn trajectory is required, either method may be used. For the f'n'st

iteration, the choice is up to the user. If DCNLP is requested, the solution is found for a

high tolerance. Once this tolerance is achieved, a multiple-shooting guess is constructed.

Multiple-shooting is then used to reduce the error to the desired, lower, tolerance. If

multiple-shooting was requested as the initial method and it fails, a DCNLP guess is

constructed and DCNLP is attempted. If DCNLP is successful, then multiple-shooting is
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usedagain. This structurewaschosenbecauseit wasfound that DCNLP was typically

much too slow to use with each outer-loop iteration but multiple-shooting typically could

not converge rough guesses. The failure of multiple-shooting typically occurred with the

fu'st iteration if the initial guess for the transfer was poor or the failure would occur if the

outer loop took too large a step.

III.2.2. Using Direct Method Solutions as Guesses for Indirect Methods

At this point, the question of converting the solution from a direct method to the

guess for an indirect method arises (the inverse process is trivial because the solution

obtained by an indirect method inherently contains more information). The adjoined

performance index for the jth of N one-burn problems (1'=1 ..... N) is

(3.2)

where xj(t) is the state, uj(t) is the control, t_ is the free final time (the initial time is fixed

at 0), cxj.l and o:j are the initial and final boundary parameters, _1 (x) and _2(x) are the

boundary constraint vector functions, mi(t ) is the spacecraft mass, f(xj (t), er_ (t)) is the

state dynamics, and rn)(tj) is the performance index to be maximized. The parameter _ is

fixed while solving each one-burn; its value is equal to initial mass constraint (too) or the

final mass of the previous burn:

_i = rnj-l(tI(j-_)) (3.3)

The discretized version for the same problem, divided into M nodes indexed by i

and designed for a direct method, follows:
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=,.--._,_T[_.(y,.)__,_.]+_.T[_.(,j_)__,]
(3.4)

where Yi is the state, o.,)/is the control, _](Y) and _2(Y) are the boundary constraint

functions, A,(yi, o.)i) are integration constraints,_'j.i is the spacecraft mass, and m"j,M is

the performance index to be maximized Assignment of _., in this case, is similar to Eqn.

(3.3) as follows:

]3j = m__t. _ (3.5)

Since, for any l<k<M, both formulations solve the same problem with j=k, one

can assume that J, ...71 for any choice of a, and otk+l with_,_,,.., m,_,(tt(j_,))" then

•. _ OJj _ and °_Ji ". 07i . The implications of this are

best seen in the first-order changes for both performance indices:

rSJj = $m_(tj)

÷_,._.%.(,,/o))8,,/0)-_,_.]

+¢,'[8m,(0)-8_]
+.(x,(,,).%(,,),_,(,,))_,,

*H.(x,(t),erj(t),_.j(t))(_eT,(t)- _.jT*j (t)]dt

(3.6)
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M M

,.1 _J" A'%" (Y J'i' ('DJ_ )(_(_)_

(3.7)

Knowing the solutions for both optimal control problems, one can substitute for the state

and control of the local ex_'emals into Eqs. (3.6)-(3.7), respectively. The resulting

equations are simply:

8lj = -v_j_,r6%__ - v2jr6aj _ _jr_flj

a7 = -rl2i_, - T& j - o'jT p,

It is now quite clear that since the gradients were surmised to be approximately equal,

then V2j.l_rl2j.1, V2j_=TI2j, and _i=%.

A simple approach to convening a solution obtained v,'ith a direct method into an

appropriate guess for an indirect method is now clear. One may use a direct method to

compute rl2j_;, rl2j, and o'; then use Eq. (2.8b) to obtain an approximation of the

costates at the initial time. Knowing the states and the costates at the initial time,

obtaining an approximate time history merely requires the solution of an initial value

problem.

I11.2.3. Gradient of the Cost Function

For this application, the gradient of the cost is required. The cost for the entire

transfer is
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J".,-'" = Z t._ =- m_v(t_)- ma (0) (3.10)

where the mass at the end of the jth burn is a function of aj, ¢xj4, and miq. This is

obviously equivalent expression to (3.1). Omitting some simple steps of calculus and

algebra, the gradient of the cost functional Jo,+,,_t, may easily be written as

,,
_- r t'"" a_,(,,)JL _ am,(,,)a_,]'-' ....._-:

aOt._, T L aot^._, dm._,(t.(^._,,) dot., j

(3.11)

Equations (3.11) are not yet sufficient to implement the Patched Method.

Expressions for evaluating the terms in Eqs. (3.11) are required. To begin, note that m/is

the performance index ofthejth burn. Referring back to Eq. (3.8), one observes that

Oat- = Oaj_l =-v2J-1 (3.12a)

cgczj _o_ i = -v2_ (3.12b)

_J, o_m,(t_)

_-_m,_,(,,,,_,,)--+, (3.,:_>

so that Eqs. (3.11) can be restated as

 rvl ]T__,= r Lf.,:,(-¢"') [,,_.,T+¢+,V2,,],i_I.....N-2
(3.13)
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Which, simply, givesthe gradientof the overall cost function in terms of the Lagrange

multipliers from each respective one-burn problem. It is interesting to note that zeroing

this gradient supplies simple relations between the Lagrange multipliers associated with

the beginning of one burn to those associated with the termination of the previous bum.

It is the "patching" together of optimal burns implied by these relations that inspired the

name of the Patched Method.

1II.2.4. An Equivalent Set of Necessary Conditions

The following results will prove useful to showing the practicality of the Patched

?vlethod conditions and, later, the practicality of the Modified Patched Method conditions:

Proof."

Lemma III.1.

obvious that rank([F r

If the matrix F • R c"-2)x" yields rank(F) = n - 1 and satisfies

Ff = 0, f • R" while f satisfies _rf = 0, _. • R" and frf ¢ 0,

then _. may be expressed as _. = Fry where v • R "-2.

If rank(F) = n - 1, Ff = 0, and fa-f _ 0, then f is in the null space of F and it is

f]) = n. This in turn implies that there exists ave R 'j and fl • R

such that

Now, _.rf = 0 v'rFf + flf'rf = 0 =:_ ,6f'rf=0 =:_ fl=O. •

(i)

Lemma I1].2"

dx(t)=f(t)¥

Consider the following system of ordinary differential equations:
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T

and a matrix function F(x),

Proof:

ifdF(x(,))+ F'_f(x(t))=O, then the vector

function _.(t) "- F(x(t))rv is a solution to the differential equation (ii).

To show that a function is a solution to (ii), it suffices to substitute the function

into both sides of (ii) and show that equality holds.

8 r
R.H.S.=-[_'f(x(t))] I"(X(t))Tv

The left hand side will equal the right hand side ff d F(x(t)), F_-f(x(t))= O.

The following definitions are precursors to a theorem that will prove the

equivalence between necessary conditions for the Patched Method, which will be

expressed in the definition of conditions {H}, and necessary conditions derived from the

usual application of optimal control theory, which will be expressed in the definition of

conditions {I}. The specific problem formulation for which such conditions are

equivalent will be defined as {P}.

In what follows, Ci ° denotes the set of/-dimensional vector functions that are

continuous with respect to all arguments, vector and/or scalar, and U denotes the set of

piece-wise continuous scalar functions with one scalar argument.
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Definition: The optimal control problem {P} is of the form:

minimize J = y(t/) subject to the following constraints:

l[(t) = f(x(t))+ g(y(t),v(t))u(t), x(t)_ C°, v(t)_ CO;

_'(t)=cu(t), y(t)e C_

0 _ u(t) < utr,ar., u(t) • U ;

v(_(,./)-_.-0, v(_(,,))-%-0,vI_/,_l_co_,;
y(t,,)=y,, ;

t/. is free for optimization, to is fixed

and satisfying the following assumptions:

(i)['_--T. (x(t))]f(x (t)) = 0;

(ii) u(ti),O , u(tf),a3, and the number of arcs with u=u,,.,a x is N

(iii) g(x(t),y(t),v(t)) is not linear in v(t)

(iv) the solution only contains arcs with u=O or U=Umax ;

(vi) V(x(t))+ _g(x(t) f(x(t) = 0 when _;(t)= f(x(t))

(_i_)r'(x(,))r(x(,)),ov, _[,o,,,]

Consider the usual optimal control formulation, introduction of the Lagrange

multiplier functions _.(t), the Hamihonian H(x(t),y(t),v(t),u(t),_.(t)) function, and the

following partition of _.(t)

(t)J' _"(t)•C°' _'(t)• C°

48



Definition: For optimal control problem {P}, the conditions {I} are

.(,,(,),y(O,v(,),.(,),_(,))-_,.,(of(x(,))

÷[_.'(og(y(,),.(,))+_, (_)].(o

.- [_,(,,(,))]"_x,(t)=- x.(t)

v(,))j:o

[7( q_,.(,.)=- x(,. _0

_,(,,)--1

) g(y(t=),v(t.))+ci,(t.)-O, i-" 1.... 2(N-l)

(3.14)

=0

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

These are the transversality condition, Eq. (3.14); the Euler-Lagrange differential

equations, Eqs. (3.15)-(3.17); the natural boundary conditions, Eqs. (3.18)-(3.20); and

that the switching function vanishes at the switching points, Eq. (3.21). It is also required

by conditions {I} that the control u(t) switch values across each switching point, in a

pattern consistent with assumption (ii).

Definition: For optimal control problem {P}, the conditions {Hi are
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,,,(xc,),yc,_.,ct),,_,>,_,(,/)--_.,(,;f(.c,_)

+[_:(,;_(y<,),<,))+_,,(,)]_¢,):o

z,• )=-L_.'(*('>)]_..<,>

_tt_, (t): -_..,,(t)"r g(y(t),v(t))U(t)

u(t)= u._

_'.i(t)T['_,g(Y(t),V(t))]:O

;-..(,,)=_ ,,(,, ,;o,

to.I

•(,,.,)=_(,_)+j'r(_(,)le,
I/t

y(t): y(t,.1):y(tf,)

uc,>-o,,_[,,_,,,_]

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

where Eqs. (3.22)-(3.26) are defined fort • [t,,tf,] and the following partition is

defined

Z'(t)= L2,.(t).j,_'.,(t)•c° ,,_,,,(t)m C °
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All conditions in {11} are defined for i--1...N except Eqs. (3.30)-(3.31) which are

only defined for i=I...N-1. Finally, q=t o is assigned and the value for (tis seen to

be t_.

Theorem I11.1: If and only if

{X(t),y(t),v(t),u(t),_(t)],_ ['o, '1 ]}, V,, V t,tt, {',il i = 1.... 2(N- 1)}

satisfies {I} then

,oI,,,,l),,, ....

Proof:

(3.32)

satisfies

satisfied.

{H}, assuming that

(3.33)

the constraints and assumptions from {P] are

It will be shown, for both the necessary and sufficient pans of the theorem, that if

one condition holds, then a construction may be made such that the other is satisfied.

Assume that (3.32) satisfies {I). A solution to {H] will be constructed from

(3.32) going backwards in time. For the last u=uma x arc, wheret _ [tu,ttu ], define

9_ = _,/ (3.34)

tN = t,_u_l_ (3.35)

_.u(t) = _.(t), t _ [t^,,t_ ] (3.36)

These definitions allow Eqs. (3.14)-(3.18) and Eq. (3.20) to imply satisfaction of Eqs.

(3.22)-(3.26), (3.28), and (3.29) fo_t a [tu,t,,u] and i=N. Eq. (3.21) for i=2(N-1) specifies

that the switching function is zero at the beginning of this interval, where t--t N.

Therefore, satisfaction of Eq. (3.22) for i=N clearly implies that _,,,u 'r(t,,,,) f(x(t,v))= 0.

Considering this result, Lemma III.1 with F(x(tu))=-_(_(t N)) and assumptions (i), (v),
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and(vii), implies that thereexistsa-(,,_.,e R "-_ such that Eq. (3.27) is satisfied for i=N.

This completes the definitions for the final u=u,,_ arc.

Consider the next interval, where t e [tlcs.__l,tx], the definitions will now be

extended into this interval. Define _N.l)=ts(2N.3). The conditions {I} specify that u(t)=0

for t in this interval. This implies that Eqs. (3.31) with i=N-I are consistent with the

switching structure of {I]. Define

_.z,,. (t)= _.x (t), te[ty_._l,t^, ]

With this definition and that Eq. (3.27) is satisfied for i=N, Lemma III.2 with

F(x(r))- --_-(x(t)) and assumption (vi)implies that the Lag'range multipliers satisfy

1
The definition _'/c_,'-1) = -"_"--foX then implies that Eq. (3.30) for i=N-1 is satisfied.

A,(t^.)

The construction for the last u---0 arc is complete.

Define

t_,,_I = t,(2x_4)

Note that this definition implies satisfaction of (3.29) for i=N-1 because

). This also makes satisfaction of Eq. (3.30) for i=N-1 imply

satisfaction of (3.28) for i-N-l. After establishing these constructions, the arguments for

the previous u=u,,_ and u=0 arc may be repeated. With each repeat, the construction is
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made with scaling by an even earlier value from ;[,(t) in the following sequence

;[_,(t,), i = N .... 2. Such repetition may be continued until the beginning of the f'n'st burn

is reached. At this point, the definition

implies satisfaction of (3.27) with i=1 and completes the proof of the "if" pan of the

theorem.

Assume that (3.33) satisfies {II}. The construction of the solution to {I} will

proceed backwards in time. Consider the last U=Uma_ arc, wheret e [t_c,t_]. Define

_: = _

tj2(te_l) = tN

_.(t)= _.N(t),tE[tN,t/N]

For t_ [tN,t/_,] and i-N, thisconstructionletsEqs. (3.22)-(3.26)and (3.28)and (3.29)

imply satisfactionof Eqs. (3.18)and (3.20) at the finalpoint and Eqs. (3.14)-(3.17)

during the interval. Now, it is obvious that satisfaction of Eqs. (3.14) and (3.27) with i=N

in this interval under assumption (i) implies that Eq. (3.21) is satisfied for i=2(N-1); in

other words t,2_N__) is a switching point. This completes the construction for the last

UmUma x arC.

The definitions will now be extended into the interval [t/:N.l),tN]. With Eqs.

(3.31), the conditions {H} specify that u(t)=O for t in this interval. Define ts:2N.3)=t_N.l).

This implies that Eqs. (3.31) are consistent with this switching structure of {I} up to and

including this interval. Now define
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for all t in this interval. Knowing u(t)---O and that Eqs. (3.31) are satisfied in this interval,

Lemma III.2 with
F(x(t)) =-_-(x(t)) implies satisfaction of Eq.assumption (vi) and

(3.15) in this interval. Define

=

for all t in this interval. Knowing u(t)=0, this immediately implies satisfaction of Eq.

(3.16) in the interval. Finally, since E.q. (3.14) was satisfied in the previous interval, Eqs.

(3.15)-(3.16) are satisfied continuously from t=t/to any point in the current interval, and

since the control switched values at a switching point, then Eq. (3.14) is satisfied in this

interval. This completes the construction for the last u---0 arc.

Define ts¢eN.4)=tlv.l. Consider the interval [tN.I,tIcN.1) ]. Conditions {II} specify

that this is a u=u,,_ interval which, by the definitions, is consistent with the switching

structure of {I]. Define

in this interval. Equations (3.22) and (3.28) with i:N-1 imply that tfl_,.s) is a switching

point. Considering the definitions, Eq. (3.28) with i=N-1 and Eq. (3.30) with i=N-2

obviously imply continuity of the Lagrange multipliers _., (t) across the switching point

t1_N.l); continuity of _(t) across this point is immediately implied by the definition.

Therefore, Eqs (3.15) and (3.16) are satisfied across the switching point.
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The previous arguments for the final u=u,,,,,, and u=0 arcs may be repeated,

implying satisfaction of the conditions in {I} for each interval. After repeating the

arguments and reaching the beginning of the trajectory, the following definitions will

have been made and are presented for the sake of clarity:

Li=i*l

t(,)= k(,),
LJ,,i+|

,,[,,,,_,,,,,1,;=2....

i=2 .... N-1

i=1 .... N-1

Finally, for the fLrst u=u,,_ interval, one more definition is required. The definition

forces satisfaction of Eq. (3.27) with i=1 to imply satisfaction of Eq. (3.19). •

The theorem does not assure satisfaction of Pontryagin's Minimum Principle.

This principle requires that

u(t) = 0 when _.. (t) rg(y(t), v(t))+ cf_,(t) > 0
(3.37)

u(t) - u,_ when _.. (t) "rg(y(t), v(t))+ c_.,(t) < 0

It should be noted that in the application of the Patched Method to the optimal

orbit transfer problem, a second-order condition was taken into account. Lawden's

pointer vector theory is a second-order condition and is explicitly specified. Also, note
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that this condition was determined considering the maximization problem instead of the

equivalent minimization problem.

To apply Theorem III.1 to the orbit transfer optimization problem, the

assumptions of the theorem must be satisfied. Assumptions (i), (iii), and (vii) are

obviously satisfied. There may still be debate over assumption (iv); however, based on

numerical experience, orbit transfers that violate (iv) are rare if they exist at all.

Assumption (ii) is made in anticipation of the ideal gravity assumption. In such a

case, coasting before the first burn contributes zero cost and coasting after the final burn

contributes zero cost. It therefore makes no sense to allow such arcs as part of the

trajectory to be calculated. If an initial and/or final coast arc is desired, it may be added

to the computed trajectory without affecting optimality.

Rectilinear orbits will be explicitly excluded from candidate orbit transfer

trajectories. Such orbits intersect the center of gravitation and are, therefore, rarely of

interest for the orbit transfer problem. With this exclusion made, assumptions (v) and

(vi) may now be shown true for the orbit transfer optimization problem.

It is desired that if h = ]r x v] _ 0, then the vector function

rxv ]

yields

momentum and eccentricity vectors, then removes the third component of the eccentricity

vector. _g(x) as defined above yields
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wherethe subscript "X" denotes the skew symmetric matrix representation of the cross

product. The result, rankI_V_Xx(t))l=5i s desired. The task is simplified by the

following simple manipulation

Ox

03.3 [-v,]

05,, ][i:_3 13,3][[(rrr__rxrx] [r,] ]

which makes use of the identity axb x = ba T - (arb)l. This, in combination with

03x3 5

rankI[Is,5 05,,_]IIv_3 13,,311 =

implies

rank(_(_(t)))=min( (r [-v.] It.] ]I1

It is most convenient to consider, without loss of generality, the following rotation of

vectors r and v into the X-Y plane via an orthonormal matrix W defined such that

Wr = and Wv =
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It is easyto showthat thisrotationdoesnot affect rank It_(_x(t)) 1.

that, after rotation,

Substitution reveals

,-o,,k//r rank

"0 0 -vO0 y

0 0 u 0 0 -x

v -u 0 y x 0

__2 g_ 0 0 -h 0

g)x -gx 2 0 h 0 0

0 0 0 0 0 0

',,,'here h=xv-yu andg = (r.rr'U)3,_. It can be shown that

det O0vO0 0 u 0 -

v -u 0 x = -gxh 3

-gy_ gxy 0 -h

gxy -gx 2 0 0

det

"0 0 -v 0 y

0 0 u 0 -x

v -u 0 y 0

-gy" gxy 0 0 0

gxy -gx 2 0 h 0

= gyh3

so that as long as h_:0, o_t(x(t)) has a nonzero minor of order 5. In other words, as long&

as the orbit is not rectilinear, rank I °_'_?_(/))/= 5.

Now, for assumption (vi) it must be shown that if the vector function f(x) is

58



,I J/I"jV _ r

d

and V(x) is as already defined, then when _t-tx(t) = f(x(t)),

It is easy to show that

(_tt_ _(x(t))+-_ _(x(t))_ f(x(t))) --"0

[ [0] [I]1
Of(x)= + 3, ._--"_', rr "] [O]J_" -(r)r-_) I (rWr) J

Note that the time notation

I @V(x) II"a 3
has been dropped for convenience. Evaluating

0 "FMH

_'|11 = -v_

Ml: =
-_rx

M:, = (vTv)I- VVT + (rTr_(rrT _ (rTr)I)

J rTv

M_ -- "irTr_)3:2 f--(rTv) + 2(rvT) + 2(vrT) -- _r_ (rrT)t

0

Next, the time derivative of each term in _-x V(x ) can be expressed as:
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---d(v,)=-_dt " " r_

d

_'t (r_)= v_

(r_r)

(_) ' )

r_')="---_,(_,,'÷,,_') 3_, tr',,_"

d

With these expressions it can easily be shown that

dO

"_'t_" _(x(t))+ _- _(x(t))_? f(x(t))= 0

This is more than just satisfaction of a simple condition that proves useful to the theorem.

In fact, this shows that Eq. (2.12) is the solution of the ODEs for the Lagrange

multipliers, Eqs. (2.3a-c), when the Hamiltonian vanishes and ideal gravity is assumed.

As reviewed earlier, many previous research efforts have focused on obtaining such

solutions, but the form found herein is different from those.

IIL2.5. Solution using the Patched Method with Eleven Burns

The plots below represent the current capability of the Patched Method. The

eleven-burn solution represented by these plots has a larger number of burns than
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obtained BOUNDSCO or MBCM, in this study. Few solutions, if any, with this number

of bums have been obtained in the literature. However, the Modified Patched Method,

introduced in the next subsection, has produced solution with even larger numbers of

bums.

Also indicative of the Patched Method, the convergence tolerance for the outer

loop was set relatively high, 10-3, to prevent prohibitively long computation times.

For this example, the thrust level is 0.09698, the product go/w is 0.3929, the initial

mass is 10. The initial orbit is circular with a radius of 1; the final orbit has an

eccentricity of 0.398 and a final semimajor axis of 1.708. With this information the value

of T/W o for this transfer is calculated to be 0.009698, placing it in the low-thrust transfer

range.

Figure 3.1 is a plot the transfer orbit elements, viz. angular momentum,

eccentricity vector x-component, and eccentricity vector y-component, versus transfer

orbit number. The shape of the angular momentum and eccentricity x-component curves

seem to indicate a second order polynomial fit could be used to reduce the number of

variables in the problem. The eccentricity y-component is always small in this transfer;

suggesting that it could be assumed zero or, more generally, the same parameterization

may be used. The zeroth orbit is the fixed initial orbit and the eleventh orbit is the fixed

final orbit.
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Figure 3.1
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Orbital Elements of Each Transfer Orbit of Eleven Burn Solution

Figure 3.2 shows the angular position of the initial orbit exit point and final orbi_

entry point of each versus the index enumerating which transfer orbit the burn ends at.

The symmetry of this plot is somewhat surprising. Even though each transfer orbit has its

apse roughly aligned with the x-axis, each pair of angular positions axe not reflected

about the x-axis. The trend over time is almost exactly opposite between the two

positions, but note that the values are not quite the negatives of each other. Also, it is

clear that each burn of this transfer axe perigee burns; each occurring around perigee.
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Figure 3.2 Orbit Transfer Terminal Points Indexed by Ending Orbit

Another interesting trend is found in Fig. 3.3, showing the burn length versus the

same index as before. The burn length decreases monotonically with each successive

burn, but does not decrease linearly. One can, of course, observe a relationship in the

trend of bum length and angular positions from Figure 3.2. Both plots have a sharp

change at the third burn which holds till the fourth burn and then returns to follow the

trend from the first two. The irregular trend for this burn is attributed to the high

tolerance given for the convergence criteria.
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Figure 3.3
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171.3. The Modified Patched Method _IPM)

The Relaxed Patched Method is tailored to the orbit transfer optimization problem

through known relations concerning the behavior of states and costates at different points

along the trajectory. The concept central to these relations is that each bum of a multiple-

burn orbit transfer qualifies as an optimal transfer between its own local terminal orbits.

This method uses an algorithm similar to shooting methods.

This method puts forth an algorithm for computing problem constraints given the

values of the problem variables. The number of variables and constraints are equal.

Also, the method can be used with any muhi-dimensional root-finding algorithm. The

discussion below describes the variables and computation of the constraints for a two-

bum trajectory.
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In the following description of the variables and constraints, the vector

3"=[ 3"''r 3""r] T isusedinstead°fthem°rec°mmon[_.. T 3.. v 2,.] "r so that X._ can be

discussed separately.

The arc between points #1 and #2 is assumed to be an arc of maximum thrust.

Referring to Fig. 3.4, the variables at #1 are the initial true anomaly, 01; the f'u'st burn

length, _; and, the vector of constant Lagrange multipliers for the start of the first burn,

v 1. The only constraint associated with point #1 is for v t to have unity magnitude.

al orbi

t=tfl
t=-t2

orl

#1

#4

t=t I

Figure 3.4 Diagram Illustrating the Layout of a Two-Bum Transfer

Knowing the true anomaly, 0, and the rest of the orbital elements, at, state, x(t)

may be calculated with the function _i(8,'ct). Therefore, the Lagrange multipliers, _.(tl) ,

and the state, x(tl) , at the initial orbit exit point may be computed using

,,(,,)= (3.38)
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(3.39)

Where V(x) is a function that calculates the orbital elements o_ given the state x. The

Lagrange multipliers, _.(tf:), and final state of the fLrst burn, x(t.t.:), are calculated by

numerical integration of the Euler-Lagrange and state differential equations.

The vector variables a 1 and v 2 are associated witb point #2. These are used to

evaluate the constraints at point #2 as

))1
The trajectory between points #2 and #3 is assumed to be an arc of null thrust.

The variables e2, the initial true anomaly for the second bum, and t.,_, the second burn

length, are associated with point #3. With these values, the Lag'range multipliers and the

state may be calculated, much as before, with

= (3.42)

_.(t2) = x(t2) v, (3.43)

Using the integration results from the fin'st bum and Eq. (3.43), the following constraint is

evaluated at point #3
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The arc betweenpoints #3 and #4 is assumed to be of maximum thrust. The

variables 02, al, and v2, specified at points #2 and #3 enable the calculation of the

Lag'range multipliers, _'(+.t'2), and final state, x(t/2), in the same manner as the previous

burn - numerically integrating from t2 to tf2 with the initial conditions Eqs. (3.42) and

(3.43).

The two-bum trajectory ends at point #4. The constant Lagrange multiplier vector

v 3 is associated with this point. The constraints evaluated at point #4 are

_l/(X(t/2)) = 0C2 (3.45)

These constraints complete the system.

With the discussion of the formulation for a two-bum trajectory concluded, the

formulation for a more general problem is clear. For an N-burn trajectory with or0, aN,

m o, T, go, and ]_ specified, the variables are

{a,li= 1.... N-1},{0,,t/:[i=l .... N}, {v, [i "- I .... N+I}

By use of which, the following quantities are calculated

x(t,)= f_(O,;ot,_,) : i= l .... N

(3.47)

(3.48)

t0x' ' ')) v,; i= 1.... U (3.49)
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lnd re(t)= mo---

= ir[,,/,))÷
,, re(t)

9 r _ "lT

X,(,)
,,'herev(,)-E(')I

t-tf, t£-t i t_[t,,t:]
g°l,p ' '

The constraints that must be then evaluated and satisfied are

Vl] = 1

i=l .... N

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

I),,(,:)[= [k,(t,._)[; i= ] .... N-1 (3.57)

This gives a total of 2N(M+I) variables and the same number of constraints, ',,,'here M is

the number of orbital elements. For nonplanar transfers M=5 but for planar transfers, it is

more efficient to rotate the coordinate system so that M=3.

In summary, the Modified Patched Method executes the following procedure for

the ith burn, i=I...N, of an N-bum transfer. Given the current iterates Oi, ai.1, and v i ,

(note, however, that u o is not an iterate but a specified constant) calculate x(ti) and k(ti)

with Eqs (3.48)-(3.49). If i=1, evaluate the scaling constraint, Eq. (3.54). Given t.n, and

the calculated initial values x(ti) , k(ti) , compute x(ttT), k(tfi) with Eqs (3.50)-(3.53).

Evaluate the burn terminal point constraints, Eqs (3.55)-(3.56). If i<N, evaluate the

switching function constraint, Eq. (3.57), where _,v(ti+l) is calculated with (3.,:19) knowing

Vi.l.
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When implementing MPM on a computer, the angular variable 8i should be

replaced by the variables 11i, 12. and the constraint 11i2+ 12i2=I. This common substitution

removes the periodic redundancy that may confuse a numerical method.

Completion of the iterative process updating the variables in (3.47) to satisfy the

conditions in Eqs. (3.54)-(3.56) allows the final condition of the Modified Patched

Method to be checked. Briefly, this checks the switching law:

[k'(t_-X'(t) > 0, T=T..=
tact) goI,,

_ ;t.(,) <0. r=o
re(t) goI.,

(3.58)

This condition is, in fact, borrowed directly from the application of Pontryagin's

Maximum Principle. When all conditions are satisfied, it may be claimed that an

extremal solution has been obtained.

The relationship between the Patched Method and MPM is primarily in the use of

Eqs. (3.49) and (3.56), which perform basically the same function as Eqs. (3.27), (3.28),

and (3.30) from the Patched Method. However, MPM also includes a technique

apparently f'u'st employed by Brown, et. al. 21 which removes one Lagrange multiplier

(2_) and significantly affects the way the switching conditions are handled. This

technique is present here as the use of Equation (3.57).

IIL3.1. Equivalency of MPM Conditions and Necessary Conditions

This subsection is concerned with proving the equivalency between necessary

conditions and the Modified Patched Method conditions. From the standpoint of showing

mathematical equivalence, some combinations of variables and constraints in MPM are
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unnecessary.Essentially,guessingintermediateorbital elementscan be replacedby

requiringthestateto becontinuousbetweenbums.

Definition: For optimalcontrol problem {P}, the conditions {111} are

[v,[ > 0 (3.59)

(3.60)

_.(t)- x(t, v,; i- 1.... N (3.61)

T

= ) g(y(',..).,'0,..));i=1....x-1 (3.62)

f,j

x(,_)_-x0,)+j[f(x(,))+g(yu).v(,))u_],,
li

,,r _ 7T

md y(t)=Yo+CU,,_ t-t/_+ t._-tj , te t,,tr,

i--1 .... N-1

x(,..,)= +'i'r(,,(n),,

:,,(,)=y(,,.,)- y(,,_)
,(n=o,,

i= 1.... N (3.63)

(3.64)

_'(t_')'g(y(tl_'),v(tp,'))t> 0C

where tj=t o is assigned and the value for 9is seen to be qN.

(3.65)

Theorem IH.2: If and only if
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Proof."

satisfies {I} then

{x(/),y(t), v(t),u(t),_.(t)lt _[t_,t_]},{t,,t_'=l .... N},{v, Ii = 1.... U + 1}

satisfies {111}, assuming that the constraints and assumptions from
satisfied.

(3.66)

(3.67)

{V} are

Both sufficiency and necessity will be proven by assuming satisfaction of one set

of conditions and then constructing the solution to the other. From here on, assume that

the constraints and assumptions from {P} are satisfied. The "if" part will be proven after

the "only if" part. To prove the "only if" part, it will be useful to follow time in reverse

from t--_ to the initial time, t--t o.

Assume that (3.67) satisfies {HI]. Define a scaling factor 7'e R,

--C

)' = _.(t _, )r gO'(t_.,), V(t_)) (3.68)

Equation (3.65) ensures that the 7 exists as a finite real number. Define _,.: = 7'v_,,,_,

_.,(t/)= 7'_.(t,_), and recall that t1=t_. Note that this conslruction makes satisfaction of

(3.60) with i=N imply satisfaction of (3.18). Now, define,_,(t/)= 1 which satisfies

(3.20); this makes the switching function in the form of Eq. (3.21) vanish for m_.

It is obvious that when assumption (i) holds, Eq. (3.18) is satisfied, and Eq. (3.21)

vanishes for t-t/then Eq. (3.14) is satisfied at _,. Now, extend the construction so that

_., (t)" 7"_,(t), t e[tN,tm] and Eq. (3.16)is satisfied. Note that this and Eqs. (3.63)imply
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that all Euler-Lagrangedifferential equations,Eqs. (3.15)-(3.17),are satisfiedin this

interval. Therefore,theHamiltonianis constantin the intervalandis henceequalto zero

at t=-tN. Now, with the Hamiltonian zero, assumption (i) and Eq. (3.61) with i=N implies

that the switching function vanishes again at t=t N. Define t_2(N.l)=tN. Since by (3.64) and

(3.63), the bang-bang control, u(t), switches from u,u = to zero at t=t N, the Hamiltonian

will be continuous across this switching point and, therefore, zero.

].,emma I/'I.2 with F(x(t))=-_(x(,)) fort _ [t__,,t^.J, Eq. (3.64), and assumption

(vi)impliessatisfactionof Ex:Is.(3.15)and (3.17)inthisinterval.Extend the construction

so that 2,(t)=,_,(tu)= 2,(t_,_1 ) in the interval, thereby satisfying Eq. (3.16). Having

this construction, knowing that the switching function vanishes at t=-tN, that u(t)=0 is

assigned in this interval by (3.64), satisfaction of Eq. (3.62) implies that the switching

function vanishes at t=tlw. 1. In order to imply satisfaction of Eq. (3.14) at the end of this

interval, it must be recognized that again, the bang-bang conn'ol switches values at t=tk¢, j.

Define ts(lN.l )=t_,.l.

The arguments in the preceding two paragraphs may be repeated until the initial

time, to is reached. Recall that tl--t o. Define_¢, =-WI and recall that previous

definitions require _._(to)= ?_,(tj); these definitions imply satisfaction of (3.19). The

proof of the "only if" part is complete.

For the "if" pan of the theorem, assume that (3.66) satisfies {I}. Define

_.(t)=X.(t), te[to,tt] and recall that tf=tfN and tl=t o. Define vl =-_, o and v_ =vt"

Given assumption (i), it is immediately obvious that all conditions in {111} except Eqs.

(3.59), (3.62), (3.65), (3.61) with i_l, and (3.60) with i_N. Note that (3.61) and (3.60)

each apply at a switching point and when u=uma x. Furthermore, Eq. (3.14) specifies that

the Hamiltonian is zero throughout the trajectory. Therefore, by Lemma IIIil, Eqs (3.14),
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(3.21), and assumptions (v) and (vii) there exists a different value v for each switching

point such that Eqs. (3.60) and (3.6I) hold; however, Lemma Ili.1 does not guarantee that

the value ofv at one end of the kth u--0 arc (i=k-I in (3.60)) equals the value ofv at the

other end (i=k in (3.61)). But, Lemma III.2 withF(x(t)) = -_(x(t)) and assumption (vi)

implies that _.,(t)= -_-(x(t)) V solves (3.15) when u=O. Therefore, the value of v at

one end of a u---0 arc must equal the value of v at the other end of the u--0 arc.

Eq. (3.65) is implied by the switching function vanishing at t--tf. Finally, it is

obvious that the boundary value problem cannot be solved if _.x(t) = 0; therefore 1_°[> 0,

by assumption (v). That implies satisfaction of Eq (3.59). II

111.3.2. MPM Example Solutions

The following examples satisfy all the conditions implied by the Euler-Lagrange

equations and the Pontryagin Maximum Principle. All quantities have been

nondimensionalized.

The fast example solution is a 5-burn transfer reproducing a solution presented in

a paper by Redding. Both the initial orbit and the final orbit are circular. However, there

is an inclination of 28.5 ° between them. In this presentation of the solution, the initial

orbit is equatorial and the final orbit is inclined 28.5 °. The initial orbit radius is 1, the

final orbit radius is 6.4. The initial nondimensional acceleration is 0.0517 and the

nondimensional characteristic velocity is 0.567. Both the transfer computed by Redding

and this solution calculated with the Modified Patched Method have final transfer orbits

with e---0.723 and an inclination 26.5 ° away from that of the final orbit. Perigee burn

durations for both range from 1.26 to 1.13. Both have a total transfer time of 60. Finally,

it is worth noting that the solution presented here was computed without knowing the

particulars of Redding's solution.
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Figure 3.7

22

2

1.8

1.6

14

1.2 "

1

Transfer Time Va Burn Number

2 3 4 5
Burn Number

Transfer Time Vs Orbit Number for each Burn of a 5-Burn Transfer
with Plane Changes

The second example is a 19-burn transfer. The initial nondimensional

acceleration produced by the rocket motor (T/mo) is 0.09698 and the initial

nondimensional characteristic velocity (golsp) is 0.3929. The initial orbit is circular with

a radius of 1, the final orbit has eccentricity of 0.73315 and a semimajor axis of 9.26.

The total burn time for this trajectory is 26.84. Figures 3.8 -- 3.9 show data in similar

form for this transfer as Figures 3.5-3.7 for the previous transfer.

This 19-burn trajectory was extended to a 27-burn trajectory. This process

involved the determination of transfers with 20, 22, 23, 24 burns, etc. It was found that

adding burns one at a time was usually successful, two at a time slightly less successful,

and so on. It was also interesting to see the decreasing improvement of the transfer's

performance as plotted in Figure 3.10.
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Figure 3.10
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The third example is the aforementioned 27-bum trajectory. All parameters are

identical between this transfer and the previous except the number of burns. The total

burn time for this trajectory is 26.64. This is only a 0.7% decrease in transfer time for

42% more bums.
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Figure 3.12
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The fourth transfer is identical to the third except that the final orbit has an

inclination of 63.4 ° This inclination angle was chosen because it is large and represents

the inclination of the useful Molniya class of orbits. To obtain the solution, the planar

transfer was used as the initial guess and the Modified Patched Method obtained the

solution in 6 iterations. The following figures represent the transfer.

Each of these transfers show similar trends. An almost linear variation in the

largest components of the angular momentum and eccentricity vectors and for the n'ansfer

time ,,,,'hen plotted against the orbit or burn number. However, this trend is broken for the

last burn. In each transfer, the last burn is an apogee burn and all previous burns are

perigee burns. Each perigee burn steadily changes the angular momentum and

eccentricity. The apogee burn then makes a last large change that brings the spacecraft to

the final orbit. This last burn is also considerably longer than the burn before it. In the 5-

bum case, Fig. (3.7) shows that the last burn is much longer than the first burn. In the 19-

burn case, Fig. (3.9) shows the last burn almost just as long as the previous burn; in the

27-burn case, Fig. (3.15) indicates that it is considerably longer.
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One feature that seems common to the large number of burns case and the small

number of burns case is the use of the distant burn for inclination changes. Referring

back to the nonplanar 3-bum transfer shown in Figs. 2.2-2.3, it is clear that the f'_rst burn

is making most of the inclination change. Also, it is clear from the 27-burn transfer

represented in Fig. (3.13) that the hy component of the angular momentum ve."tor, which

indicates the inclination, has very little variation until the final burn takes its value from

almost zero to almost -2. This same trend can be seen for the 5-bum a'ansfer represented

by Fig. 3.5; where the h= component indicates inclination for this transfer.

IIl.4. Inclusion of Perturbation Terms

Neither the Patched Method nor MPM are equipped to produce exact solutions to

fuel-optimal orbit transfer problems in the presence of orbit perturbations. Note that

including orbit perturbations will cause assumption (i) from {P} to be violated.

The tradeoff between making the ideal gravity assumption and obtaining solutions

with much larger numbers of burns was deemed acceptable. It is hoped that the
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techniquesusedin this tradeoff will find application in future research into the orbit

transfer problem including perturbations.

However, BOUNDSCO was able to obtain a solution including orbit perturbations

for the 5-burn transfer presented above in Figure 3.5. Perturbations are considered for

this trajectory as opposed to the others, because BOUNDSCO iterations did not converge

for the others, even after several trials including initial guesses that were slightly

perturbed from the exact solution.

Figures 3.16-3.18 shows the changes in orbital elements and transfer time induced

by the inclusion of atmospheric drag and oblateness effects. It is clear that the ex=emal

trajectory includes a lengthened second burn which raises the energy of the second

transfer orbit, thereby raising its altitude and decreasing the effect of drag. It is not so

clear what decides that the longer burn will be the second and not the first. The nodal

regression seems to manifest itself as a decreasing H_, component; it is interesting to note

that, like inclination changes, the extremal transfer doesn't make the correction until the

last bum. Turning attention to the burn lengths, note that the amount by which the first

burn is shortened almost exactly counters the amount by which the next burn is

lengthened. A similar trend shows itself for the third and fourth burns. The last burn is

only slightly shorter, but not enough to indicate whether the total burn time is longer or

shorter. In fact the final mass of the ideal gravity transfer was 3.762; for the transfer with

perturbations it was 3.760. This is a performance loss of only 0.07%, a surprising result

considering that the individual burn times change by as much as 1.6%.
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1/1.5 Conclusions

In this section, two new methods for computing multiple-bum orbit transfers are

presented. These methods, the Patched Method and the Modified Patched Method, have

been developed specifically to fill an apparent gap in computational ability for fuel-

optimal transfers with large numbers of bums. For this type of problem, both methods

have out-performed BOUb,rDSCO and MBCM from the previous section.

The conditions upon which each of these methods are based on have been proven

equivalent to necessary conditions. However, for both methods it is required that

Pontryagin's Maximum Principle be checked after iterations have stopped.

The Patched Method, though slow, was very robust in obtaining solutions.

Because of its use of a direct method, it was usually able to obtain the one-bum solutions

between each pair of orbits. Also, the optimization of the transfer orbits usually

proceeded well in the sense that each iteration would produce a better choice of orbital

elements. However, the overall method tended to be quite slow because the cumulative
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time required to compute the one-burn transfers in successionwas quite long and
increasedwith numberof bums.

MPM computed solutions beyond the capability of any of the other methods

investigated in this report. MPM was much quicker and slightly less robust, as would be

expected of a method more akin to multiple-point shooting. Therefore, it is suggested

that the Patched Method be used with a very low tolerance to obtain initial guesses for

_,_M.

Neither the Patched Method nor MPM is designed to handle orbit perturbations.

However, the marked improvement in performance found with these configurations

should be motivation enough for a future research effort to produce similar configurations

that can handle orbit perturbations efficiently.

Also in this section, a new formulation for the solution of the Lagrange

multipliers is presented. This formulation is valid over coast arcs where the Hamiltonian

vanishes.
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SECTION IV

GUIDANCE FOR OPTIMAL ORBIT TRANSFERS

IV.I. Introduction

The guidance scheme examined here is an implicit one which implements

neighboring optimal feedback guidance. An implicit guidance system was chosen due to

the fact that that type of guidance system often handles disturbances well42. Neighboring

optimal feedback guidance was chosen because it has the advantage of being a feedback

system, as opposed to open-loop guidance and it can be implemented very easily as with

a gain-scheduling scheme. There also appears to be a lack of studies in the literature

which examine this type of guidance scheme for this problem.

In this formulation, the initial orbit exit point is assumed to be perturbed from the

nominal point but the other boundary condition, specifying the final orbit, is assumed

unchanged. The goal is to use the controller to bring the u'ajectory to the final orbit at

some point with minimal fuel.

In order for this guidance scheme to be implementable, the neighboring trajectory

must exist; the sufficient conditions for a local extremal must be satisfied. The

satisfaction of these conditions for the nominal solution will be shown. Following that,

the guidance scheme will be investigated, including the use of a time-to-go indexing

scheme.

42Naidu, D. Subbamm. Aeroassisted Orbital Transfer: Guidance and Control Strategies.
New York: Springer-Verlag, 1994.
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IV.2. Literature Review

Many researchers have used the f'u'st variation to compute exu-emal solutions to

the fuel-optimal orbit transfer problem. However, few, if any, have made use of the

conditions related to the second variation of the cost functional in computation. These

provide sufficient conditions which, when met, declare an extremal solution as a locally

weak optimal solution.

Once the second variation of the cost functional is verified so that it is known

whether the sufficient conditions are met, the information obtained can then be used to

implement a guidance scheme. Guidance schemes can typically be divided into two

categories: implicit and explicit. Implicit guidance systems are characterized by the fact

that the vehicle's motion must be precomputed on the ground and then compared to the

actual motion. The equations which need to be solved axe based upon the difference

between these measured and precomputed values. The solutions to these equations are

used in the vehicle's steering and velocity control. Explicit guidance systems are

generalized by the fact that the vehicle's equations of motion are modeled and solved for

by on-board computers during its motion. The solutions for the equations are solved

continuously and are used to determine the difference between the vehicle's current

motion and its destination. Commands are then generated to alleviate the anticipated

error.

Guidance schemes have been presented in various papers.43 A guidance scheme

which is implemented using a linear tangent law is presented by Sinha, Shrivastave, Bhat,

43Chuang, C.-H., Goodson, T.D., Ledsinger, L.A., "The Second Variation and

Neighboring Optimal Feedback Guidance for Multiple Burn Orbit Transfers,"
Proceedings of the 1995 AIAA Conference on Gui'dance, Navigation, and Control,
Baltimore, Maryland, USA.
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and Prabhu. _ In a paper by Lu 45, a nonlinear guidance law is developed using two

different strategies. One strategy uses optimal control theory to generate a new optimal

trajectory onboard from the start, while the other uses flight-path-restoring-guidance to

bring the trajectory back to the nominal. A guidance scheme that is developed using

inverse methods for unthrusted, lift-modulated vehicles along an optima] space curve is

presented by Hough. 46 Linearized guidance laws applicable to many different types of

space missions are presented by Tempelman. 47 These guidance laws are based on fixed

and free final time arrivals. NaJdu42 presents a neighboring optimal guidance scheme

applicable to aeroassisted orbital transfers.

IV.3. Preliminary Consideratioq_i

Earlier, the optimal orbit transfer problem was given as a maximization problem.

To conform to the convention used for the second variation36 it is transformed to a

minimization problem. For the minimization problem, the performance index can be

made negative and considered a cost functional

J= -m(,/) (4.1)

As the necessary conditions are first-order conditions, they remain unchanged. However,

Lawden's pointer vector theory is second-order and requires that the control be such that

e r Ix,t (4.2)

_Sinha, S. K., S.K. S hriva_ava, M. S. Bhat, and K. S. Prabhu. "Optimal Explicit
Guidance zor l nree-_imensional Launch Trajectory," Acta Astronautica. Vol. 9,
1989, pp. 115-125.

45Lu, P., "A General Nonlinear Guidance Law," Proceedings of the the AIAA Guidance,
Navigation, and Control Conference, Scottsdale, Arizona, 1994.

46Hough, M. E., "Explicit Guidance Along an Optimal Space Curve," Journal of
Guidance, Control, and Dynamics. Vol. 12, 1989, pp. 495-504.

47Tempelman, W., "Linear Guidance Laws for Space Missions," Journal of Guidance,
Control, and Dynamics. Vol. 9, 1986, pp. 495-502.

87



Furthermore,Pontryagin'sMinimum Principlerequiresthatanextremalsolution satisfy

Hs<O, T=T..=

Hs>O, T=0 (4.3)

where

(4.4)

If an extremal solution to the maximization problem is given as state time history

x(t), Lagrange-multiplier time history _.(t), and Lagrange multipliers v, (associated with

boundary conditions) then an extrema] solution for the minimization problem with the

cost function in Eq. (4.1) can be constructed as x(t), (-1)*_(t), and (-1)*v.

Additionally, it makes more sense in the planar guidance problem to consider the

control as an angle 0, rather than individual components of a unit vector. This simplifies

analysis because the control is now a scalar. Equation (4.2) now gives

tan(O) = - )'__z.,
2,, (4.5)

A practical approach to guidance is suggested by previous results in this report. If

a multiple-burn transfer can be thought of as consisting of multiple optimal one-bum

transfers, then it should be reasonable to examine a guidance scheme that attempts to

match each of the intermediate transfer orbits of the multiple-burn transfer. In other

words, use neighboring optimal feedback guidance for one bum at a time.
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This is not suggested to be an optimal guidance scheme. By focusing on each

bum with neighboring optimal feedback, but not considering the trajectory as a whole,

this guidance scheme becomes a sub-optima/guidance scheme.

Each burn can be considered an extremal solution. These extremal solutions are

considered to have a fixed initial point and free transfer time but the final point is only

constrained in that it must lie on the final orbit. Recall, however, that in computing the

multiple-bum transfer the initial point was not fixed; this condition is imposed for

practical considerations. If the spacecraft is delivered to the correct orbit, and coasting to

the nominal bm'n-on point has zero cost, then there is no reason to attempt to compute a

new bum-on point. This reasoning holds for the beginning of each burn.

IV.4, The Second Variation for One.Burn Problem.,:.

Considering the second variation of the augmented cost functional, J, a new

optimal control problem can be stated. 36 In this new problem, the state is _x, the control

8u, and the Lagrange-multipliers are 6X and dv. The new problem is linear and can be

solved using a sweepback method. For the problem considered here, x=[r T vT m]T and

u=0.

When the final time is free for optimization, the transversality condition must be

satisfied by the nominal solution. The notation for this condition is

where

dG BG x

G(x,v)= ¢(x)+ :V(x)

--0 (4.6a)

(4.6b)
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In general, neighboring optimal feedbackguidance allows consideration of

changes in boundary conditions. No such changes are considered, assuming that the

destination orbit is fixed. Formulation will be made below for the free final time case.

The change in state and costate can be estimated with a linear time-varying

dynamic system. This dynamic system is given below, where it is understood that matrix

functions are evaluated with the nominal trajectory.

where

d tSx = A(t)tSx - B(t)b"L (4.7)

d oD, = -C(t)_x - Ar(t)o_ (4.8)

A(O = f. -f,H.,H,,.

B(t) = f.H_f_ r

H -IC(t)=H n - _,H_,H_

(4.9)

(4.1o)

(4.11)

Evaluating Eqs. (4.7)-(4.11) the recurring terms in the differential equations are:

fx

0

0

1

0

0

f# --

) 3#x2__ r s r 5
0

r 5 -- 7 1.5

0 0 0 0

1 0 0 0
T T

0 ---cos(O) ---sin(O) 0
m m

0 0---sin(O)--cos(O) 0
m

°T

0

0
(4.12)

(4.13)
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[ Z
_ )}

Q = r' [ {(2,y + _.,x)r'- 5(_.:r)xy} {(/q'uy + 2"x)r2- 5(_"a'r)xy} ]
{(32,y + _._x)r 2- 5(_.rr)xy}J

(4.14)

(4.15)

H_, = TI_.,I (4.16)

H,,, = 0 (4.17)

note that r=[x y]r, v:[u v] r, and _, [/1. 2] r= are taken as the nominal

trajectory. Using the sweepback method for nonlinear terminal constraints the form for

5_. and 5V can be v,Titten as

o_(t)= P(t)_x(t) + S(t)dv

_ = gr (t)Sx(t)+ V(t)dv

which allows the solution for dv to be written as

(4.18)

(4.19)

dv = V-' (t,)[6_/- _r (t o)6X(to )] (4.20)

As mentioned above, c5_=0 will be considered here. The matrices P(t), S(t), and _7(t),

are computed using the following relations:

P(t) = P(t) m(t)m T(t)
_z(t) (4.21)

S(t) = S(t)- .m(t)nr(t)
a(t) (4.22)

V'(t) = V(/)- rl(t)nT (t)
o_(t) (4.23)
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Now thematricesP(t), S(t), V(t), re(t), n(t), and the scalar function o_(t) are computed

from a dynamic system. The boundary condition equations for this system are given by:

P(,,)-[0..÷0;v./.],.,, _,_)

s(,,)-Iv:l,.,, _4.2s)

V(//)= 0 (4.26)

where in the development for the orbital transfer these are:

"a b d

bcf

P(//)= d f h

e g i

0 0 0

e O

g 0

i 0

i o

o o

a-- vz_t

b= v_

x3x,2x][y3x y]r3 r_ +7 + v_ r3 r_

Y 3_Yl+ _ 7 jr3 r_ j v_t

7 +7 + v_ x 3xy2

d -- _'_,t3v

e = v_ - v_u+2v3v

f =-v 1- v_v+2v3u

g = -v_u

h = 2 v3y

i = -v3x - v2y

j = 2 v_x

(4.27)

(4.28a)

(4.28b)

(4.28c)

(4.28d)

(4.28e)

(4.280

(4.28g)

(4.28h)

(4.28i)

(4.28j)

and expression for Eq. (4.25) was previously given as Eq. (2.11).
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Following from the assumptions expressed as Eqs. (4.18)-(4.19), the following

nonlinear equations for P, S, and V must be integrated backwards. The results will be

used to check the sufficient conditions governing a minimizing solution.

Ib = -PA - ATP + PBP - C

S =-(AT-PB)S

= STBS

rh =-(AT- PB)m

fi = STBm

& = mrBm

with the following boundary conditions applying

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

ev

dr/

The sufficient conditions for a minimizing solution can now be stated as follows:

convexity condition: Hoe (t) > 0 for t, < t < tz (4.38)

V'-* (t) exists for to _<t < t!
normality condition:

a-* (t) exists for t, _<t < t:

conjugate point condition: P(t)- S(t)'V -* (t)S r (t) finite for t, _<t < t/ (4.40)

(4.39a)

(4.39b)
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The convexitycondition is satisfiedfor any transfersatisfyingEquation (4.5). This can

beseenby noting thatEq. (4.16)is positivedefinite, irrespectiveof the time history for

theLagrangemultipliers.

Theeigenvaluesof V"are plotted in Figure 4.1. Figures 4.2-4.4 plot the elements

of the conjugate point condition matrix. Figure 4.5 is a plot of a(t). Figure 4.1 shows

that "V is positive definite in the required interval. Figure 4.5 shows that a(t) is negative

definite in the required interval. Since the normality condition requires that the inverse of

x-7 and a(t) exists in the interval, this solution is normal. Figures 4.2-4.4 show that the

conjugate point condition is satisfied. The elements are bounded in the required interval

and grow asymptotically at the final time; the curves in the figures have been truncated to

show their variations prior to this asymptotic growth. Therefore, this solution satisfies

the sufficient conditions for minimizing the cost functional with free transfer time.

It seems appropriate to first attempt the guidance scheme for a relatively

uncomplicated transfer. Such a transfer was presented in Fig. 2.1 and discussed in

subsection [II.2.4]. The transfer is planar; no plane changes occur. The guidance scheme

considered here will be simulated for this trajectory.

IV.4.1. Neighboring Optimal Feedback Guidance

Conveniently, construction of a neighboring optimal feedback guidance law uses

the same information as that required to check the second variation of the cost functional.

As a result, much of the derivation required of guidance law has been stated already. The

remaining discussion will describe how to form the feedback control law and adjust the

characteristics of the bang-bang control in a feedback law.

The control, 80, for the fixed final time problem can be found using
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-I T-- T--
60(t)= -H,,,,[(f,,P)Sx + f,,Sdv]

_ H-1 r--
and the change in the final time, dtf, is:

.+,-+)]+,

(4.4])

(4.42)

Evaluatingdr/determineswhen thethrustwillbe turnedofftocomplete the n'ansfcr.
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Figure 4.3
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This continuous feedback law has been constructed by estimating dv at each instant of

time instead of solving for dv at the initial time and then using this value for all time

The feedback law depends on P, S, and V as functions of time. A particular

advantage of neighboring optimal feedback is that the linearized TPBVP only has to be

solved once. Afterwards, sampled values of the feedback gains may be stored. The

feedback gains may then be computed for any time by interpolation between stored

values. Use of this control should keep the spacecraft on a neighboring optimal solution

and deliver it to the required orbit.

The block diagram for the feedback controller needed for neighboring optimal feedback

guidance is shown in Figure 4.6.
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Figure 4.6
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where Al(t) is the feedback gain from Eq. (4.41), computing 80.

1V.4.2. Simulation of the Guidance Algorithm

Justification for a feedback algorithm lies in Fig. 4.7 and Fig. 4.8. It can be noted

that there is error in the variation of the states from the neighboring optimal trajectory

when guidance is not used, Fig. 4.7, i.e., when the control correction is not used.

However, Fig. 4.8 shows that a feedback law is needed because when implementing it,

the errors in the variation of the states becomes much less, comparatively, than that using

no guidance whatsoever. The neighboring optimal trajectory referenced in Figs. 4.7-4.8

was computed with BOUNrDSCO.

IV.4.3. Time-To-Go Implementation

Since this problem is a free final-tir_e problem, the possibility exists that the final-

time will increase and the guidance algorithm will "run out of gains"; this is a familiar

issue for neighboring optimal feedback guidance. The approach used in this stud), is

based on discretizing the gains by N time nodes {t 1..... ti.... tN} where tN is earlier than the

nominal z: The gains at the nominal t/will be infinite and impractical to store. Both the

gains for calculating dt/, via Eq. (4.42), and for 80, via Eq. (4.41), are then calculated at

any time by linear interpolation between stored values.
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Figure 4.7
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To consider time-to-go, the guidance must make active use of the dt] estimation.

Since both the nominal and the actual trajectories start at fi, dti_ can be initially calculated

using the gains at that time. The length of the fh'st guidance interval is then found by

relating it to the estimated time-to-go.

At,1 = t/ +dt/l (t2_t2) (4.43)
tl

Then, at the end of the i-lth guidance interval, the gains at t, are used to calculate dt_.

Using this information, the length of the ith guidance interval can be computed as

i-1

t, +at.,-  ,at+
= (t,.,- t,)

tz-t ,

(4.44)

This continues until At, is computed as zero or a negative number or until i--N. When

i=N, the Nth gain is used for the entire interval At._. When this interval ends, the

guidance scheme is finished.

The plots below compare guidance performance with and without this time-to-go

formulation. The curves represent the time history of the boundary condition error, i.e.

Eqs. (1.12) minus the desired orbital elements, evaluated continuously. Figure 4.9 makes

continuous use of the gains but indexes these gains at the current actual time without

calculating dt I. For the perturbation simulated, the transfer time needs to increase and this

fu'st scheme must terminate prematurely. Figure 4.10 makes use the discretized gains and

time-to-go formulation. This simulation also incorporates a practical saturation limit on

the size of the gains. The improvement due to the time-to-go formulation is obvious

when comparing these plots. Therefore, this is both a practical and superior
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implementationof the continuousburn guidanceconsideringthe boundarycondition
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IV._. Multinle Burn Guldan_'f

The guidance for multiple burns can also be discretized. For the two burn case,

discretized guidance using time-to-go is used for the fu'st burn. The guidance algorithm

will place the spacecraft on the intermediate transfer orbit via the neighboring optimal

trajectory. Since the cost on this coast arc is zero, the spacecraft can coast on this arc

until it reaches the point at which the next bum is to start. Once the spacecraft reaches

this point, discretized guidance using time-to-go can be used again for the second burn.

The boundary conditions for the second burn should than be satisfied by the neighboring

path. For multiple bums, this guidance scheme is extended in a straightforward manner.

The guidance scheme detailed above was used to recover the two burn transfer of

Fig. 2.1 in the presence of an initial perturbation. Fig. 4.11 shows the boundary condition

errors for the fu'st burn given an initial perturbation of 10 .3 in non-dimensionalized units.

The boundary conditions are satisfied rather well for this bum. The resulting boundary

condition errors for the second burn are shown in Figure 4.12. The boundary conditions

are satisfied very well for this burn.

Figures 4.13 & 4.14 show the boundary condition errors during the second burn

for a perturbation of the same magnitude as above in only the x position and the u

velocity, respectively. Note that the error in the boundary conditions is slightly greater in

Figure 4.14. This suggests that the trajectory is more sensitive to disturbances in the u

velocity than in the x position.
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Figure 4.11 Plot of Boundary Condition Error for Discrete Guidance During the
First Bum
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Figure 4.13
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The resulting orbit transfer trajectory is shown in Figure 4.15. This plot corresponds to

the boundary condition errors as shown in Figures 4.11 and 4.12.
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IV.6. Conclusions

Extremal one burn trajectories have been shown to be weak locally optimal

solutions using sufficient conditions. This does not prove that the multiple-bum transfer

from which they were taken is itself a weak locally optimal solution, but it does allow the

use of a new suboptimal guidance scheme.

This scheme was shown to reduce the terminal errors for small perturbations of

the initial state. To increase the size of allowable penu:r, bations, a time-to-go indexing
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schemewassimulated. This time-to-go indexing did improve theperformanceof the

guidancescheme.

The suboptimalmultiple-burnguidancewith time-to-go indexing wassimulated

xor a planar transfer. The performance of this guidance scheme did not match

expectations. The implication is that the region in which a linear control correction is a

valid assumption was quite small. Actually, this is not a surprising conclusion since

obtaining the nominal solutions is usually quite a challenge for iterarive algorithms that

attempt linear corrections for each iteration. If indeed this implication is correct, then a

more sophisticated approach for neighboring feedback control is required.
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS FOR

FURTHER STUDY

V.I. Transfers with Small Numbers of Burn,_

It has been found that methods already present in the literature axe capable of

computing fuel-optimal orbit transfers with small numbers of burns. The methods

investigated here were multiple-point shooting and modified shooting. However, a

common way to attempt to increase the performance of a transfer is to increase the

number of burns executed and, unfortunately, these methods are not very robust in that

sense.

A new method has been introduced that is very useful for adding burns to fuel-

optimal orbit transfers. The method is used in conjunction with homotopy and an

iterative technique for computing transfers; the iterative technique must incorporate

knowledge of the Lagrange multipliers. The method does require that the initial point,

the final point, and the transfer time be free for optimization. It also assumes that the

a'ansfer is performed under the influence of ideal gravity. This assumption is required to

obtain the switching function property that the method relies on.

It is recommended that this method be further developed such that orbit

perturbations are taken into account. Since the switching function property in question

no longer applies for this case, the task is challenging. Obviously, a fairly different

approach must be taken. It is likely that requiring trajectories to begin and end with coast

arcs will be necessary, since cost arcs will no longer be orbits. Perhaps then some
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conditions may be identified under which the coast arcs could be extended to find optimal

locations for the burns to be added.

Y.3. Transfers with Larr, e Numbers of Burns

The results of this research point to the Modified Patched Method as a practical

way to compute fuel-optimal transfers with large numbers of burns. It does not appear

that such a method existed previously in the literature, making MPM and theoretical

results behind it the central contributions of this report.

An interesting spin-off of the theoretical development is a new formulation for the

integration of the Lagrange multipliers over a time-optimal coast arc for the nonplanar

case assuming ideal gravity. The formulation results from satisfaction of l.emma IH.2.

This particular formulation proved quite useful for MPM and may prove useful in future

algorithms and future theoretical developments.

M.PM does not allow for orbit perturbations. This restriction was a small price to

pay for performance previously unobtained, viz. the ability to compute transfers with

upwards of 27-bums and large inclination changes. Now that this performance has been

obtained for the ideal gravity case, it is suggested that a future research effort should be

able to produce a method with similar performance, or better, while taking orbit

perturbations into account.

If an attempt is made to adapt MPM for orbit perturbations without recovering

any properties lost, then MPM will degenerate into multiple-point shooting. This study

has already concluded that multiple-point shooting does not perform well for large

numbers of bums; therefore, some recovery of the properties from Theorem Ill. 1 and/or

Theorem III.2 must be made. Since the concept central to both the Patched Method and
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MPM is the relationship of the optimal orbit transfer problem with the problem expressed

by (3.1), it seems reasonable to expect some form of (3.1) to be recovered in the presence

of orbit perturbations.

3,'.2.Multinle.Burn Guidance

A suboptimal multiple-burn guidance scheme was developed through this

researchand itsperformance investigated.The scheme may be described as "burn-by-

burn" neighboringoptimal feedback guidance with a time-to-goindexing scheme foreach

burn.The performance of thisguidance scheme did not match expectations.

Since guidance has much practical importance, it is suggested that future research

attempt to develop an improved guidance scheme. It is likely that this would involve

techniques to improve neighboring optimal feedback or replacing this with some other

one-burn guidance scheme. On the other hand, a future research effort might attempt to

find an optimal guidance algorithm for the multiple-burn transfer as a whole. Since there

is a strong relationship between the sufficient conditions for optimality and the

computation of neighboring optimal feedback gains for the one-burn problem, a similar

relationship might be expected for the multiple-burn problem. If an optimal multiple-

burn guidance scheme is developed, it will likely lead to the development of sufficient

conditions for the optimality of multiple-bum transfers.
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L Introduction

ORBPACK is a collection of FORTRAN 77 programs for computing
optimal orbit transfers. For the most part, these are all indirect

methods; they are concerned with solving the Two Point Boundary
Value Problem provided by optimal control theory.

None of these routines guarantee a globally optimum solution; only
extremal solutions are claimed by convergence of iterations. With
the exception of MBCM, solutions obtained with these methods must
have their switching law checked. One must be sure that, in the

computed solution, the thrust is on when the switching function is
positive and the thrust is offwhen the switching function is

negative. Furthermore, these methods assume that no intermediate
thrust arcs will be found in the solution.

The charts below summarizes the programs in ORBPACK:

Solvers

Name

BND3D

MBCM3D

[ Method

Multiple Shooting
(BNDSCO)

MPMM2D,
MPMM3D

Shooting w/ Minimizing
Boundary Condition Method

PA T2 D Patched Method

Modified Patched Method

[ Libraries

BNDSCO

VF02AD

I Suggested Use

mediumflow thrust;
feb, burns

medium/low thrust;
few burns

BNDSCO; IMSL medium/low thrust
IMSL; ODEPACK mediurn/low thrust;

short burns

l Name
'GSHOOT

b,

MPM2D3D
MP2BND

BND2MBCM

[Use

random shootingforone-burn guesses

convert MPMM2D files to MPMM3D files

convert MPMM3D files to BND3D files
convert BND3D files to MBCM files

Libraries

IMSL; ODEPACK
N/A

ODEPACK

N/A

All codes as suppliedin ORBPACK solvemultipleburn orbit

transferswith freefinaltime and freeinitialand finalpoints
BND3D isalreadyconfiguredso toswitchbetween freeand fixed

finaltime problems. MBCM3D can easilybe reconfiguredforsuch.
PAT2D, MPMM2D, and MPMM3D have fixedconfigurations.

PAT2D, MPMM2D, and MPMM3D are also fixed to solve only
problems where ideal gravity is assumed. BND3D and MBCM3D

are configured to solve problems that include drag and oblateness
effects. Finally, codes with the "2D" suffix are configured to solve
planar transfers; the "3D" sufRx indicates that the code is
configured for nonplanar transfers.

Applied ControlLaboratory August1995
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IL Orbit Transfer Problem Definition

I1.1. Parameters
All the programs in ORBPACK require the following orbit transfer
parameters to be determined:

For the gravitating body:

• the gravitational constant for the central body (_)

For the rocket motor:

• maximum thrust

• specificimpulse (Isp)

For the terminal orbits,BND3D and MBCM3D require:
• semimajor axis

• eccentricity

• right ascension {degrees)

• argument of perigee (degrees)

• inclination (degrees)

For the terminal orbits,MPMM2D, MPMM3D, and PAT2D require:
• angular momentum vector (X, Y, Z components)

• eccentricityvector (X, Y components)

Each program also requires a value for Earth's acceleration at sea-

level(go)in appropriate units;this number isonly used in

conjunction with the specificimpulse to compute the fuel
consumption.

BND3D and MBCM3D can account for oblateness and drag effects.

For oblateness: R e isthe equatorial radius ofthe central body and J2

isa constant describing the mass distributionof the central body;

forEarth J2=1082.61x10-6. For drag: flisa constant from the

atmosphere model describing air density variation in the

prescribed altituderegion,Po isthe atmosphere density at the

altituder@ S isthe cross-sectionalarea of the craR, and C D isthe
craft'sdrag coefficient.

The gravitational potential, including oblateness, is modeled as:

r

where r isthe magnitude ofthe positionvector r. The drag forceis
modeled as:

where v is the magnitude of the velocity v. Note that this form for the

density variation indicates an isothermal region of the atmosphere.

August 1995
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1"I.2. Scaling Itisvery useful for numerical methods to work with numbers that

are at or near the same order. This can be accomplished through
nondimensionalizations. Such nondimensionalizations for the

orbit transfer problem follow:

f=r/r°

_I • tT//nl _

and they require the following:

• v/-_/r _

:'o• ro/r _

°)

o2)

R, •R,/r _

Note that these nondimensionalizations result in dynamics with

/_=1. The choices ofr vt and rn _ are completely arbitrary, A choice

for m _r might be one such that the initial nondimensionalized mass

is 1 or 10. A choice for r _ might be the radius of the planet or a

number such that the initial semimajor axis, radius of perigee, or
an "average" radius is 1.

Applie0 Control Laboratory Augusl 1995
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HI. Mnking Guesses for the Optimal Transfer

There are many differentways thatone couldconceiveofto make

guesses. The routinesformaking guesses,listedbelow,have been
provided.

The tutorialsinChapter VIIIdemonstratehow tomake guesseswith
thesemethods.

ITI.I. GSHOOT Random

Guess (Single Burn Only)
The subroutineGSHOOT willrandomly make guessesforthe one-

burn orbittransferproblem intwo dimensions. Input forGSHOOT

isatextfile.Itsoutputconsistsoftwo textfileswhich representdata
fordirectand indirectmethods.

How to use _OOT
GSHOOT requiresa file,named "GINPUT," forinput. A typical
"GINPUT" filefollows:

M'J = I 00
OC • I 00

ISP = 0. 5673

TK_UST = 0.51(6

MO = 10 C030

A3 • i. 00030
EO = C.O00

WO = OOO0

= .1.285
ED = 0.219

WD = 000G

."%'.AX : 0 000

NGS = : 30
N:X = 3

where MU (/_) is the gravitational constant, GO (go) is the

gravitational acceleration of the earth at sea level, ISP (Isp) is the
motor's specific impulse, and Thrust is the motor's thrust level. MO
(m o) is the initial mass for the transfer. The next parameters

specify the terminal orbits: AO (a o) is the initial orbit's semimajor

axis, EO (%) the initial orbit's eccentricity, and WO (%) is the

initial orbit's argument of perigee; AF (af), EF (el), and (wf) are the
corresponding parameters for the final orbit. TMAX is the

maximum burn time; if it is set to zero, then TMAX is assigned by
GSHOOT to the amount of time required for the mass to vanish.
NGS is how many guesses to make; half of these will be almost

tangential thrusting with random initial true anomaly and the
other half will have random initial direction and random initial

true anomaly. For a detailed description of the file format, see
Appendix A.

GSHOOT will create output files =DIRECT.DAT" and

=INDIRECT.DAT" which can be used to construct a multiple burn
guess in the PATCH2D file format. Both of these files have
identical headers:

August1995
AppliedControlLaboratory
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I" • 0

_[$P • 0
AC • e
]_¢0 • e

]E'Y_ • e
J_" • e
]E_ • e

These output files contain the necessary information

If this output file represents a guess for any but the last burn, delete

the last three of these lines (AF, EXF, EYF) when constructing the

multiple.burn guess file. However, if this guess is for the last burn,

keep the last three lines and delete lines six through eight (AO, EXO,
EYO). If the guess is any but the first burn, then delete the first three
lines (T, GO, ISP).

GSHOOT makes a random guess by choosing the constant

Lagrange multipliers (v) as a random vector with unity magnitude.
Since all the Lagrange multipliers may be scaled by an arbitrary

constant, there is no loss of generality. The state vector is computed
knowing the initial orbital elements and randomly choosing the

initial true anomaly. Next, the vectors )_r and )_ are calculated for

the initial time, using the following equation:

x,(,,,)j- ('(',)) "
(3.1>

The initial value for Am is found by specifying that the switclung
function is zero at the initial time:

(3.2_

That the switching function is zero at the initial time is known to be

true for the free transfer time and free terminal points problem.

With the initial state and costate known, the initial value problem is

integrated forward in time until either the desired final semimajor
axis (AD) is reached, the current radius becomes small, the

spacecraft enters a parabolic orbit, or the mass becomes small.

For guesses that are almost tangential, _ is chosen to be (+/-) v and

_'r is chosen to be (+/-) (u/r3)r. The positive sign usually produces

orbit raising and the negative sign orbit lowering. Note that this

initial guess for the costates zeros the Hamiltonian when the

switching function is zero. Therefore, the vi's can be found by
solving the least-squares problem of Eq. (3.1).

GSHOOT will try as many guesses as the user requests. The guess

that best meets the required boundary conditions _ill be output.

Applied Control Laboratory
August 1995
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]312. PAT2D Sub-Optimal

Transfer Guess (Multiple
Burn Only)

Usin_ PAT2D to

Compute Guesses

PAT2D creates sub-optimal trajectoriesin the sense that the choice

of intermediate transfer orbitshas been fixed and each burn is an

optimal one-burn orbittransfer. PAT2D iteratesupon the choice of

intermediate transfer orbits untilitfinds a choice that gives a local

maximum in final mass The PAT2D program is described in
detailin Chapter V.

PAT2D requires two filesfor input. The firstfile,

=PATCH2D.TOLS," sets accuracy levels and limits the number of

iterations(formore information on this file,see Chapter V). The

second file,"PATCH2D.GUESS," supplies the guess information

for both the choice ofintermediate transfer orbitsand the trajectories

of the burn arcs between them. This latterfilemust be in the PAT2D

format (formore information, see Appendix A and Chapter V).

The guess information from GSHOOT, or some other source, must

be put into the PAT2D format. When run, the firstthing that PAT2D

will do issolve the one-burn problems defined by the intermediate

transfer orbits.Often, the output from this step alone isa

sufficientlygood solution guess. This output is contained in the file
"PATCH2D.INITIAL."

On the other hand, it is not uncommon for that output to be an

insufficient guess. In this case, one approach is to allow PAT2D to

iterate. At some point during the iteration, the user may take the file

"PATCH2D.BEST" and use it as an initial solution guess.

Alternatively, the user may set a rather loose stopping criterion for

PAT2D and wait until this criterion is met. In this approach, the file
"PATCH2D.SOL" will be the solution guess.

August1995
AppliedControl Laboratory



ORBPACK Users Maquar

Pa2e 7

IV. The Modified Patched Method (MPMM2D, MPMM3D)
The subroutine MPM2D (MPM3D) is a realization of the Modified
Patched Method in two (three) dimensions. The file "MPMM2D.f"
(MPMM3D.f) contains an implementation of MPM2D (MPM3D)
using IMSL's NEQNF to solve the nonlinear equations, its
FORTRAN program name is MPMM2D (MPMM3D).

IV.I. Using MPM_I2D to
C-_p,te Solutions

MPMM2D (MPMM3D) requires only one input file, which must

follow the PAT2D (PAT3D) format (see Appendix A). This data file
must be named "MPM2D.GUESS" CMPM3D.GUESS")

The code "MPM2D3D.ff will convert an "MPM2D.GUESS" file into

a _MPM3D.GUESS" file. In this code, no other input is required
except "MPM2D.GUESS"

Data File (Input)

MPMM2D

MPMM3D

In "MPM2D.GUESS," ('MPM3D.GUESS') the tolerance setting
(TOL) is the root-finding tolerance. The tolerance used in
numerical integration is one-thousandth of this number. No
information in the header is ignored.

For MPMM2D (MPMM3D), the option SEL may only be chosen as 1

or 2. These options indicate the data for the burn is given in the
format for an indirect method. MPMM2D (MPMM3D) will treat
both SEL=I and SEL=2 identically.

MPMM2D (MPMM3D) only uses specific items from the PAT2D file
format. The lines below are representative of the data for one burn
in the PAT2D format. The underlined "#" symbols indicate which
number items are important to MPM2D calculations.

a =l
ex =

ey =

NODE = 3

SEL = 1

index.x.Y.U.v.m.lx.ly.lu.lv.lm.tf.gl.g2.gO.g4.g5.g6

3, I, t, I, I, I, I, t, i, t, I, I, I, i, I, I, i, I,

4' i, i, I, I, i, i, i, i, i, i, I, I, I, i, i, t, i,

hy = .t

hz = l
ex = .I[

e:/ = .11
NODE = 3

SKL = 1

LNDEX, X, Y. Z, U, V, W. M. LX, LY, LZ. LU, LV. LW, i.M, TF, G1, G2, G3, G4, G5, G6. G.: G.= 3¢, Z:.

1' J' /' 1' e. o. o. a. w. o. #. _. _. e. l. 1. o. _. _. _. o. ,. e. a. a a
2, I, I, i, 1, t, I. t, i. I, I, I, I, I, I, e. I, I, I, I, I, 1. i. o e J

3, t, e, I, l, I, t. I. l, I, I, l, I, i, I I, t, #, I, t I, o, I, I s e

4, t, I, I* I, I, I, I, I, t, I, I, I, I, t, I, I, i, t, ti I, I, i. i. i l

Applied Control Laboratory August 1995
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MPM2D Iteration
Info to Screen

MPM3D Iteration
Info to Screen

The important number items are "a," "ex," and "ey_ with "x," "y,"
"m," _tf," "g4," "g5," and "g6" on the first line only. All other
numbers are read by the program but not used. The "x" and "y_
coordinates are used only to compute the true anomaly angle that the
burn begins at. The only mass value remembered is the initial
mass value. The mass costate is used to scale the constant
Lagrange multipliers "g4," "gS," and "g6" in a manner consistent
with patching the burns together; otherwise, it is not used.

Listedbelow issample screenoutputfrom "MPMM2D.F"

Cur Norm _t0 Best Norm (atl e $h_rt Time Bn# 1st Wrst E1 EJe
..............................................

o,5os:E.oo I o.,5=5_E-oo 1 0,_12,9E.oi--7 ;:;;;;;_:;_- -';_"
o,_5:E.o0 ,5 °,_0_E.oo 15 o_1=,,E.°1 , o3o95=_.0= 1,
0.63552E-02 90 0.63550E-02 89 0 10551E*CI 4 0,28471E-_2 14

0 4ESTSE-02 135 0.48575E-02 I05 01060_E-31 4 C.24346E-C2 14

Required e Functlon Eval$ • 172

..............................

Tot&] Burn Tlme= _.51402842448_

Final Mass • 4.066434637841

Shortest Burn Ls_g_h = 1.128883878329
Shortest Burn is 04

..............................

The first block of text is the iteration table. The column "Cur.
Norm" shows the current 2-norm of the constraint errors in the
absolute sense. The iteration, or number of times called, at which
this value was computed is listed in column _It#. _ The lowest norm
of constraint errors yet computed, next to the iteration number it was
computed at is given under the =Best Norm (at) #" column. The
length of the shortest burn at the current iteration is under "Short
Time" and the burn with this length is indicated under the "Bn# _
column. Finally, the largest absolute value of a constraint
component for the best norm is listed under =Bst Wrst El. _ with
"El# _ listing which constraint component this is.

The iteration table from MPM3D is slightly different. It has the
following header:

where _WRST C. EL." indicates the worst element of the current
iteration constraint error vector.

For MPMM2D and MPMM3D, below the iteration table is the

number of function calls required to reach an error level indicated

by the tolerance. ARer this, some statistics of the solution are given.
The "Total Burn Time" is the total amount of time the motor is on.
The "Final Mass" is the mass of the spacecraft at the end of the
transfer. The "Shortest Burn Length" is length in time of the

quickest burn. Finally, the burn number for this quickest, or
shortest, burn is listed.

August1995 AppliedControlLaboratory
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Data File Output

IV,.2. The Slmncture of the

MPMM2D (MPM]VI3D) Code

The subroutine MPM2D (MPM3D), if desired, creates an output file
that gives the status of iterations. The file is named

"MPM2D.ISTAT" ('MPM3D.ISTAT"). This file is useful for

computer systems that operate under a queuing system because such

a system often does not show output to the screen until after execution

is completed. However, such queuing systems usually allow files

that are created and closed to appear in the users directory.

Therefore, during execution under a queuing system, the user may
list the contents of "MPM2D.ISTAT" ("MPM3D.ISTAT") and see

current iteration information. The content of"MPM2D.ISTAT _

('MPM3D.ISTAT") is three lines long: the first two lines are the

table headings from the iteration table, the third line is the current
entry in the iteration table.

Both the main routine MPMM2D (MPMM3D) and MPM2D

(MPM3D) contribute to a file named "MPM2D.REPORT'"

(_MPM3D.REPORT"). The first lines in this file gives feedback
from MPMM2D (MPMM3D) while reading "MPM2D.GUESS"

(_MPM3D.GUESS") so that any errors in that file may be easily
identified.

The first eleven lines give the header parameters. At the beginning
of each line, the text from _MPM2D.GUESS" ("MPM3D.GUESS"_ is

given, then the number read from that line, and finally, in

parentheses, the name of the variable which MPMM2D (MPMM3D)
has assigned this number to. This same pattern is continued as

MPMM2D (MPMM3D) reads the orbital elements of the transfer
orbits.

The twelfth line and lines below are printed as each line of the input
are read. Following this is a listing of the values of each variable

used by MPM2D (MPM3D) for the first iteration; then a listing of the
constraint values when given these variables.

Next is the iteration table as printed to the screen. Following this. a

total number of calls to MPM2D (MPM3D). Then a listing of

variables and constraint evaluations for the solution. Final]), at
the bottom of the file is the solution summary statistics just as
printed to the screen.

The other file created by MPMM2D (MPMM3D) is _MPM2D.SOL _

("MPM3D.SOL"), the solution file. This file contains the solution to
the orbit transfer problem in the PAT2D (PAT3D) format.

The structure of the MPMM2D (MPMM3D) program is generalized
in the fol]o_ing diagram, not intended as a formal flow chart:
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M_PM_k2D/MPM_L_D Diagram

IMSL SOLVER (NEONF)

T[RATION AND GRADIENT LOOP

ODEPACK INTEGRATOR 1
(LSODE)

The main routine, calls the multidimensional nonlinear equation

solver,IMSL's NEQNF, with the guess from =MPM2D.GUESS"

(=MPM3D.GUESS") The solver callsMPM2D (MPM3D) iteratively

to solve the problem and to numerically compute partialderivatives.
This recurrent use of MPM2D (MPM3D) is illustratedin the

diagram by a loop with an arrow on it,connecting the two blocks.

MPM2D (MPM3D) evaluates the MPM conditions given the
variables. For each burn in the orbit transfer problem, variables

are sent to BURN. This subroutine integrates each burn arc by

calling LSODE and evaluates boundary conditions for that burn by
calling BCC (BCC). The derivatives for integration, required for

LSODE, are supplied by FBURN. FBURN is called repeatedly by
LSODE during solution of each burn's initial value problem.

August 1995
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V. The Patched Method in Two Dimensions (PAT2D)
The subroutine FUNC is a realization of the Patched Method in two

dimensions. The file "PAT2D.f' contains an implementation of

FUNC with the conjugate gradient method. The conjugate gradient
algorithm was taken from "Numerical Recipes" and is only
slightly modified from what is presented there.

V.]- lTsing PAT2D to
Compu_ SO]>
Optimal/Extremal Solutions

PAT2D requires two input files for execution. These files specie-
iteration parameters CPATCH2D.TOLS") and the initial solution

guess CPATCH2D.GUESS"). The "PATCH2D GUESS" file must

be in the PAT2D format (see Appendix A). The format for

"PATCH2D.TOLS" is much simpler and demonstrated in the
example below:

FTOL = 1.00000000000000000000E-08

LTOL = 1.00000000000000000000E-07

GTOL = 1.00000000000000000000E-03

TOL2 = 1.00000000000000000000E-05

:ITMX = 200

MFU_ = 200

MITN -- I000

ITMB = 15

V.2. How PAT2D Works

The FORMAT edit descriptors for the first four lines, containing
REAL values, are (1X,A6,D27.20) and likewise for the last four

lines, containing INTEGER values, (1X_A6,I6). The value for

FTOL specifies the function value stopping criterion, when the
change in total burn time after a line search is less than FTOL the

iteration stops. The value for LTOL is the line search tolerance.

GTOL specifies how small the 2-norm of the gradient should be fore
stopping. TOL2 is the tolerance for DCNLP one-burn solutions_

ITMX is the maximum number of allowed conjugate gradient
iterations. MFUN limits function calls and MITN limits the

overall iteration count for DCNLP. ITNB limits the number of

multiple-shooting iterations performed by BOUNDSCO.

The diagram below shows the general structure of the code in the file
_PAT2D.f."

PAT2D Diagram
FIE R&TION

LOOPS

GRADF.NT

LOOP
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The subroutineFUNC istheheart ofPAT2D. This isthe function

that,given the choiceofintermediateorbitalelements,calculates

the totalburn time forthe transfer.FRPRMN isthe conjugate

gradientroutine,from =Numerical Recipes,_ that iterativelycalls
FUNC and DFUNC (gradientroutine)tofindthe optimalchoiceof
intermediatetransferorbits.

PAT2D has a two-loopstructure;thereisan innerloop

(FUNC/ONEBRN) and an outerloop(FRPRMN). The outerloop
successivelychanges the transferorbitsuntila minimum isfound

in the totalburn time (maximum offinalmass). The inner loop

solvesthe one burn trajectoriesbetween each transferorbit.Solving
thistrajectoriesyieldsthe burn time s foreach intermediate

transfer.These burn times are summed, givingthe outputof
FUNC.

Note thateach successfulouterloopiterationproducesa suboptimal
transfer.This transfersatisfiesallthe conditionson the statebut is
not an extrema] transfer.

The main routineloadsthe solutionguess and callsFUNC once,
beforeFRPRMN does. This isdone because thereisno assurance
thatthe trajectoryguessesin the PATCH2D.GUESS filewill

successfullyproduce a suboptimalsolution.The outputfrom this

firstcallisnamed =PATCH2D.INITLAL" and isoftena good guess

forMPMM2D. However, ifthisisa poorguess,then a good strategy
istoallowPAT2D severaliterationstoproduce a transfercloserto
the solution.

The innerloopiterationsare a littlecomplicated.This isthe result

ofan attempttomake them robust.Itisalsodesignedso thateach

successfulinnerloopiterationproduces a solutiontothe Two Point

Boundary Value Problem (TPBVP) with BOUNDSCO, a multiple-
pointshootingalgorithm(MS). However, itiswidelyknown that

directmethods oftenhave a largeregionofconvergencethan
indirectmethods. Therefore,DirectCollocationwith Nonlinear

Programming (DCNLP) has alsobeen implemented.

The followingdiagram shows how the ONEBRN subroutine

interpretsthe user'sselectionas towhat isthe appropriatefirst
action,use MS orDCNLP first?

August1995
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ONEB_ F_o_ Chart part ]
(abrid_,ed _

ONEBPJ_" F_ow Chart part 2

(abridged)

No

<
I)uess, _ w_h DCNLPj

MS 9utsi _oi_ w_ MSJ

No

[DCNLPiju, ess Iio_ve w_lh DCNLPJ

?
guess Io /

NLP guessJ

6

Note that a MS guess can be given for DCNLP in this structure. A

DCNLP guess cannot be given for his because a DCNLP solution is

required in the conversion process from DCNLP information to his
information.

The next diagrams shows how MS (BNDSCO) and DCNLP (IMSL's
DNOONF) are incorporated:

V %. guess j

ves

Attempts with either method have a similar structure. If a failure in

iterations occurs, the guess is perturbed and the method attempted
again. After each failure, the perturbation size is increased. If his

fails too many times, control is handed over to DChrLP. However, if
DCNLP fails too many times there is no backup and an error exit
Occurs.

After ONEBRN succeeds in computing a his solution, the SEL
parameter is set to 2 for that burn.
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Output files: • "PATCH2D.HIST" (iteration data)

• "PATCH2D.INITLAL" (firstsuboptimal sol) firstoptimal
solution obtained, in patch2d format

• "PATCH2D.SOL" contains the extremal solution obtained to
tolerance

° "PATCH2D.BURN" (iterationstatus) prints iteration status;

fileis useful when program is being run under a queuing
system and screen output iswithheld. Printed aRer a burn is
solved.

° "PATCH2D.COST" (iterationstatus)',fileisuseful when

program isbeing run under a queuing sys and screen output is
withheld. Printed aRer a complete transfer issolved.

• "PATCH2D.CURRENT" contains current suboptimal
trajectory,unless itisthe best.

• "PATCH2D.BEST" contains best suboptimal trajectoryto date

• "PATCH2D.PERT" gives information as to the progress of
solving the current burn.

• "FRPRMN.OUT" output from conjugate gradient routine,
FRPRMN

• "FRPRMN.ITERATES" current output from FRPRMN, for info
when using a queuing system

August 1995
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VI. The Multiple Shooting Approach (BND3D)
The BND3D program implements the modified multiple.point (MS)
algorithm of BOUNDSCO (Boundary value problem solver tnth
Switching Conditions). BOUNDSCO makes use of Net'ton's

method, a Broyden update, and Deuflhard's relaxation strategy.
One should refer to the BOUNDSCO manual l for detailed

information on BOUNDSCO. Note that BOUNDSCO does not make
use of an analyticalgradient.

BND3D also has a homotopy loop around BNDSCO. A homotopy
variable U is defined such that, as the loop repeats, U t-ill change
from l to UMIN (The choice of UMIN is set by the user, but usually is
chosen as 0). Certain parameters for the orbit transfer problem
definition are included in the homotopy loop and vary as the value of
U changes. A tutorial using homotopy is included in the Tutorials
section.

The code MP2BND will convert MPMM3D input files into BND3D
input files.

VI.I. Using BND3D to
Compute Solutions

BND3D requires two input files: "BND3D.SCRIPT" which contains

instructions and parameters, and another file (named by userJ
which contains the solution guess.

The format of the file "BND3D.SCRIPT" depends on hot' BND3D is
to be used. This format is best described line-by-line The
character in the first column of each line is ignored.

The four different layouts of the "BND3D.SCRIPT" file are
described below:

Normal Execution:

Free Final Time, No
Homotopg,

• Line 1:

• Line 2:

* Line 3:

• Line 4:
• Line 5:

(1X,A28) On this line, the name of the file containing the
solution guess is specified. No more than 28 characters
are allowed.

(lX,I6) Here, a "1" indicates that boundary condition
errors should be displayed to the screen, in addition to the
normal BNDSCO iteration output; a "0" indicates
otherwise. Usually, one would place a "0" here; this

output is usually only useful in finding errors in the input
file.

(lX,I6) A Ul" on this lines chooses the free final time
option.

(lX,I6) A _0" deselects the homotopy option.
(1X,I6) A "1" on this line tells BNDSCO to insert nodes

for the switching times in the output; a "0" says not to.

]Oberle, H.J, Grimm, W., "BNDSCO: A Program for the Numerical Solution of Optimal Control
Problems," English Translation of DFVLR-Mitt. 85-05.
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• Line 6: (A,D12.5) The value on this line sets the BNDSCO

parameter FCMIN. FCMIN is the lower limit of the
relaxation factor.

• Line 7: (A,D12.5) The value on this line sets the BNDSCO
iteration tolerance.

• Line 8: (1X,I4) The maximum number of iterations.

• Line 9: (1X,A28) The name for the file containing the solution

• Line 10: (1X,I6) A "1" on this line requests detailed solution

information (=BND3D.EXTRA" and the file named on
the next line). A =0 _ indicates otherwise.

• Line 11: (1X,A28) The file name for additional information (if a
=1" on the previous line).

Fixed Final Time;

No Homotopy
Line I:

• (IX,A28) On this line,the name ofthe filecontaining the
solution guess isspecified.No more than 28 characters
are allowed.

* Line 2: (1X,16) Here, a =1_indicates that boundary condition

errors should be displayed to the screen,in addition to the

normal BNDSCO iterationoutput; a "0" indicates

otherwise. Usually, one would place a =0" here; this

output isusually only useful in finding errors in the input
file.

• Line 3: (1X,I6) A "0" on this lines chooses the fixed final time
option.

• Line 4: (A, D12.5) The value for the final time.

• Line 5: (ZX,I6) A "0" deselects the homotopy option.

• Line 6: (1X,I6) A =1_ on this line tells BNDSCO to insert nodes

for the switching times in the output; a =0 n says not to.
• Line 7: (A,D12.5) The value on this line sets the BNDSCO

parameter FCMIN. FCMIN is the lower limit of the
relaxation factor.

• Line 8: (A,D125) The value on this line sets the BNDSCO
iteration tolerance.

• Line 9: (1X,I4) The maximum number of iterations.

• Line 10: (1X_A28) The name for the file containing the solution

• Line 11: (1X,I6) A =1_ on this line requests detailed solution

information (=BND3D.EXTRA" and the file named on
the next line). A "0 _ indicates otherwise.

• Line 12: (1X_,28) The file name for additional information (if a
"1" on the previous line).

Free Final Time,
Homotopy Activated

• Line 1:

* Line 2:

Line 3:

(1X,A28) On this line,the name ofthe filecontaining the

solution guess is specified.No more than 28 characters
are allowed.

(1X,16) Here, a =I" indicates that boundary condition

errors should be displayed to the screen,in addition to the

normal BNDSCO iterationoutput; a =0" indicates

otherwise. Usually, one would place a =0" here; this

output isusually only useful in finding errors in the input
file.

(1X,I6) A =1" on this lines chooses the free final time
option.

August1995
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Line 4:
Line 5:

Line 6:

Line 7:
Line 8:
Line 9:
Line 10:
Line 11:
Line 12:
Line 13:
Line 14:

(1X,I6) A "l" selects the homotopy option.

(1X,I6) the suggested number ofhomotopy loops to
perform

(*) Enter UMIN, the value of the homotopy variable to stop
at. The homotopy variable, U, starts at 1 and ends at
UMIN. Enter "0.0" here to attempt to achieve the values
below.

(') Enter the desired maximum thrust level

(*) Enter the desired specific impulse
(*) Enter the desired final orbit semimajor axis

(*) Enter the desired final orbit eccentricity

(') Enter the desired final orbit argument of perigee
(*) Enter the desired initial orbit semimajor axis
(') Enter the desired initial orbit eccentricitv

(*) Enter the desired initial orbit argument of perigee
Line 15: (*) Enter the desired initial orbit argument inclination
Line 16: (1X,I6) A "1" on this line tells BNDSCO to insert nodes

for the switching times in the output; a "0" says not to.
• Line 17: (A,D12.5) The value on this line sets the BNDSCO

parameter FCMIN. FCMIN is the lower limit of the
relaxation factor.

• Line 18: (A, D12.5) The value on this line sets the BNDSCO
iteration tolerance.

• Line 19: (1X,I4) The maximum number of iterations.

• Line 20: (1Xj_28) The name for the file containing the solution
• Line 21: (1X,I6) A _1" on this line requests detailed solution

information ("BND3D.EXTRA" and the file named on
the next line). A "0" indicates otherwise.

• Line 22: (1X,A28) The file name for additional information (if a
"1" on the previous line).

Fixed Final Time,
Homotopy Acti,_ated
(in this case, the
fLxed final time is
also achieved

through the homotopy
loop)

• Line 1: (1X_,28) On this line, the name of the file containing the
solution guess is specified. No more than 28 characters
are allowed.

• Line 2: (1X,I6) Here, a "1" indicates that boundary condition
errors should be displayed to the screen, in addition to the
normal BNDSCO iteration output; a "0" indicates
otherwise. Usually, one would place a _0" here; this

.output is usually only useful in finding errors in the input
file.

• Line 3: (1X,I6) A _0" on this lines chooses the fixed final time
option.

• (A,D12.5) The value for the final time.

• (1X,I6) A "1" selects the homotopy option.
• (1X,I6) the suggested number ofhomotopy loops to

perform

• (')Enter UMIN, thevalue ofthe homotopy variabletostop
at.The homotopy variable,U, startsati and ends at

UMIN. Enter "0.0"here toattempttoachievethe values
below.

• (*) Enter the desired maximum thrust level

• (*) Enter the desired specific impulse
• (*) Enter the desired final orbit semimajor axis

Line 4:
Line 5:
Line 6:

Line 7:

Line 8:
Line 9:
Line 10:

Applied Control Laboratory August1995



VI,2. The BND3D Guess File
Format

* Line 11: (*) Enter the desired final orbit eccentricity
• Line 12: (*) Enter the desired final orbit argument of perigee
• Line 13: (*) Enter the desired initial orbit semimajor axis
• . Line 14: (*) Enter the desired initial orbit eccentricity

• Line 15: (•) Enter the desired initial orbit argument of perigee
• Line 16: (*) Enter the desired initial orbit argument inclination
• Line 17: (1X,I6) A =1" on this line tells BNDSCO to insert nodes

for the switching times in the output; a =0" says not to.
Line 18: (A, D12.5) The value on this line sets the BNDSCO

parameter FCMIN. FCMIN is the lower limit of the
relaxation factor.

Line 19: (A, D12.5) The value on this line sets the BNDSCO
iteration tolerance.

Line 20: (1X,I4) The maximum number of iterations.

Line 21: (IX,A28) The name forthe filecontainingthe solution
Line 22: (IX,16)A "I"on thislinerequestsdetailedsolution

information("BND3D.EXTRA _ and the filenamed on
the next line).A =0"indicatesotherwise.

Line 23: (1X,A28) The filename foradditionalinformation(ifa
"l_on the previousline).

The BND3D Guess file(named in =BND3D.SCRIPT -)has a specific
format. The firsttwenty linesspecifyorbittransferparameters of

type DOUBLE PRECISION and have FOR,_LAT editdescriptors
(IX_A9,F30.15).These parameters are as followsand in thisorder:

MU

REQ
J2

GO

BETA

RO

ROU

S

CD

ISP

THRUST
AI

El

OMEGAI
RAI

I-I

AF

EF

OMEGAF
RAF
I-F

gravitationalconstantofthe centralbody (I.0forno
dimensions)

equatorialradiusofthe centralbody

constantdescribingthe mass distributionofthe

centralbody;forEarthJ2=1082.61x10-6
accelerationat sea-level

constantfrom the atmosphere model describingair
densityvariationin the prescribedaltituderegion
ro,+REQ

atmosphere densityatthe altituder@
cross-sectionalarea ofthe craft
drag coefficient

specificimpulse
maximum thrust

initialsemimajor axis

initialeccentricity

initialargument ofperigee(degrees)
initialright ascension(degrees)

initialinclination(degrees)
finalsemimajor axis

finaleccentricity

finalargument ofperigee(degrees)
finalright ascension(degrees)
finalinclination(degrees)

August1995
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The 21st line (1X,I5) gives the number of intervals (# nodes. 1).

The next line is a dummy stnng line (IX,A) that, on output, is used

to provide a header for the data in the following lines (useful in
plotting results).

The next (# nodes} lines gives the BN'D3D state at each node with
edit descriptors (1X,F30.15,25(A2,F30.15)). The BND3D state is as
follows:

0 l 2 3 4 5 6 7 8 9 I0 II 12 13 14 15

(T, X, Y, Z, U, V, W, M, L-X, L-Y, L-Z. L-U, L-V, L-W, L-M, TF,

{ FINAL OKB]T ) ( INITIAL ORBIT )

16 17 28 19 20 21 22 23 24 25

GI, G2, G3, G4, G5, G6, GT, GS, Gg, GI0)

<X.Y.Z> IS POSITION <L-X,L-Y.L-Z> IS LA.M_DA-R

<U,V,W> IS VELOCITY <L-U,L-V,L-W> IS LAlg._DA-V

M IS MASS

L-M IS LAMBDA-M

T IS THE NCPJ_L]ZED TIME [0.I]

Rrhere TF is the final time and G# are components of the constant

Lagrange multipliers (v); GI-G5 being _, for the final boundary

conditions and G6-G10 being v for the initial boundary conditions.

The nodes are entered in the reverse order, starting with the final
node and ending with the initial node.

Following the node information is a line (IX,I5) for the number of

switching points. It is suggested to use an even number of switching
points - this indicates to BNDSCO that the first and last intervals are
burn arcs.

The next lines (IX,F30.15), one for each s_itching point, give the
switching times in normalized time [0,1]. No lines after these are
read.

%q.3. Hog" BND3D Works BND3D supplies the necessary routines (F and CON) to BNDSCO.

"F" supplies the derivatives of the state and "CON _ evaluates the

boundary conditions. The routine "BCC" computes repeated
formulas, "LSG" loads the solution guess, "SAVSOL" saves solution

data in the same format as the guess data. The routine _DIFSYB"
performs numerical integration.
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BND3D Flow Dia&,r'ma

The flow diagram below indicates the interdependence of the
BND3D subroutines.

BNDSCO

INTEGRATION LOOP
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VII. The Minimizing Boundary Condition Method (MBCM3D)
The Minimizing Boundary Condition Method (MBCM) is a relaxed
simple shooting algorithm. Instead of using a multidimensional
nonlinear equation solver for the two point boundary value problem
(TPB\rP), it transforms the TPB\rP into a nonlinear programming
(NLP) problem.

As includedin ORBPACK, MBCM3D usesthe squareofthe

Hamiltonian as the NLP costfunction.All otherboundary
conditionsare taken as NLP constraints.

VII.1. Using MBCM3D to
Compute Solu_ons

MBCM3D requires one input file, MBCM3D.GUESS. This file has a
very specific format. The first 47 lines of this file have the

FORMAT edit descriptors (1X,A9,E30.15 ). They describe, in the
following order:

MU

REQ
J2

GO
BETA

RO

ROU

S
CD
ISP

THRUST
AI
EI
OMEGA]
RAI
I-I
AF
EF
OMEGAF
RAF
I-F

gravitational constant of the central body (1.0 for no
dimensions)

equatorial radius of the central body
constant describing the mass distribution of the

central body; for Earth J2=lO82.61xlO "6
acceleration at sea-level

constant from the atmosphere model describing air
density variation in the prescribed altitude region
ro_ +REQ

atmosphere density at the altitude rc_
cross-sectional area of the craft

drag coefficient
specific impulse
maximum thrust

initial semimajor axis
initial eccentricity
initial argument of perigee (degrees)
initial right ascension (degrees)
initial inclination (degrees)
final semimajor axis
final eccentricity

final argument of perigee (degrees)
final right ascension (degrees)
final inclination (degrees)

{the next 14 lines give the initial state]
T F transfer time

[the next 10 lines give G1-G10]
ACC solution tolerance

Where G# are components of the constant Lagrange multipliers
(v); G1-G5 being v for the final boundary conditions and G6-G10
being v for the initial boundary conditions.

The last line of "MBCM3D.GUESS" (1X,A9,110) gives the maximum
number of iterations.
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VIL2. How MBCM3D Works

The code =BND2MBCM.f' will convert a BND3D guess file named

_BND3D.GUESS _ into a MBCM3D guess file ("MBCM3D,GUESS-).

MBCM3D uses VF02AD tosolve the NLP problem. VF02AD uses

reverse communication: the main routine callsOF to compute NLP

cost and constraints given input; then GRD to compute gradients;
then callsVF02AD to compute the new iterates.The main routine

then uses these new iteratesas input for OF and repeats the loop until
VF02AD signals convergence.

OF evaluates the TPBVP as a NLP. The shooting problem is

integrated with RK, a Runge-Kutta integration routine. Integration

ofthe shooting problem isinterrupted oRen to check the sign of the

switching function. Ifa sign change is detected, the integration

interval is adjusted until the exact switching point islocated.

During this process, OF keeps track ofthe sign ofthe switching

function and appropriately adheres to the optimal switching law.

This should ensure that the S_tch/ng law isfollowed, however, itis

always prudent to check the switching law after a solution is
claimed.

MBCM3D Flow Diagram

The flow diagram below indicates the interdependence of the
MBCM3D subroutines.

MAIN

0 GRADIENT INTEGRATION

L OOP LOOP
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VIII. Tutorials

V]].I. Planar Five Burn

Transfer

Use GSHOOT to

Construct a Guess

The following tutorials demonstrate some aspects of using

ORBPACK that the user may commonly encounter.

This tutorial demonstrates the use of the supplied code in solving a
planar transfer from a circular LEO to circular GEO, The initial

radius is 6600 kin, the final radius is 42241 km. The initial rocket

motor thrust is 9.918 kN; its Isp is 450 seconds. The initial mass is
20980 kg. A five burn solution is desired.

After nondimensionalization, these parameters are: initial

mass=10, thrust=0.5166, go=l, Isp=0.5673, initial radius=l, final
radius=6.4.

Based on the characteristics of these types of transfers, the following
guess for the transfer orbits may seem reasonable:

a •

1.285 0.2189

1.570 0.3584

1.856 0.4550

3.707 0.7262

All their apses are aligned and the final transfer orbit is similar to
the Hohmann transfer orbit.

The trajectory for each burn will now be guessed using GSHOOT.
The "INDIRECT.DAT _ files produced by GSHOOT will then be

concatenated together to form an _MPM2D.guess" file. The first

burn input file for GSHOOT ("GINPUT') is supplied as
"Tutorials/2D 5burn/GSHOOT/burn 1]GINPUT" and listed below:

Mu - :.0C,

Go - 1.00

Is_ ffiC. 56_3
Thrust ffi0.5166

Mo = I0.0000

ac = _ OOCOC

e: * O,OC, _

wc - 9.00t

ad = :1.2_5
ed - 0.2:19

wd = 0.000

TF_X - 0.0O0
NGS = 10O

NZX = 3

GSHOOT reports:

Best constant iagrLnge multipliers (initzal)

C... 0.15245E*CG 0.96E20E-00 0.14561E-0_

Best _nit_e_ _rue ano_aiy
v¢= 0.5304_K*03

Best transfer time

Of= 0.19312E*0_

Best relative errors (h,ex,ey,N$)

G .. 0.1BSI?E-0_ -0.49820E-0_ 0.15555E-02 0.27599E-02

The resulting filehas been supplied as "Tutorials/2D

5burn/GSHOOT/burn I/INDIRECT.DAT" The second burn

"GINPUT" is {"Tutorials/2D 5burn/GSHOOT/burn 2/"]:
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M_ • 1.00

Go • 1.00

Isp - 0. 567}

Thrust • 0.5]66

Mo • 10,0000

Io = 1.285
ec • 0.2].9
wo • 0.000
ad • 1. 570
ed • 0.3584

vd • 0. 000
TMAX - 0 C00

NG$ • 1OC
N:X • 3

GSHOOT reports:

_est constant Ligrange mult_pl_er$ (init:al)

C,.. 0.7C359Eo00 0.17901Eo00 °0.24402E-14

Best initial true anomaly
vo- 0.5645].£°01

Best transfer t:me

rE= 0.11458E-01

Best relatlve errors (h,ex,ey,Hs)
G... 0.10846E-07 -0.82805E-02 -0.16307E-02 0.32135E-03

The resulting filehas been supplied as =Tutorials/2D

5burn/GSHOOT/burn 2/INDIRECT.DAT = The third burn =" is

["Tutorials/2D 5burn/GSHOOT/burn 3/"]

Mu • 1.00

Go • 1.00

!Sp - 0.5E73

Thrust • 0 5166

MO = 10.0000
a0 • 1.5_0

e0 = 0.}584

w0 = 0 000

ad = 1856

eo • 0,4550

wd = 0.000
TKAX • 0.000

NG5 = 100

NIX • 3

GSHOOT reports:

Best cortstL_t Lagrange mul_tplier= (Inlttal)

C .. 0 54451E-0C 0.26192E°00 -0.10330£-14
Best ini_lal _rt_e anomaly

vo= 0.60064E-J!

Best transfer time

tf= 0.79429E*00

Best re!a:ive errcr$ (h,ex,ey,Hs)

G.. 0.929_4E-08 C,48454E-0_ 0,1}2@BE-01 -0.354}EE-_2

The resulting filehas been supplied as "Tutorials/2D

5burn/GSHOOT/burn3/" The fourth burn "" ["Tutorials/2D
5burn/GSHOOT/burn 4/"]:

mu • 1.00

G¢ - 1.00

:SP • 0.5673

Thrust = 0.5].66
Mo • 10.0000

ao • 1856

eo = 0.4550

wo = 0.000
ad = 3 _07
ed = 0.7262

wd • 0.00C

Ttd,z_ • 0. 000
NGS - 100

NIX = 3

GSHOOT reports:
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Attempt Computation
of Solution with
MPMM2D

MPMM2D OutPut

Best constant l_gra.nge mu]t:_i_ers (in:t_al)
C .. 0,44412E*00 0 3O915E-O0 0.35928E-14

kst _n_t_al true anomaly
vo- 0.53_82E°0]

Best transfer time
if- 0._82_5E-01

_est reJat_ve errors (h,ex,ey,Hs)
G.. 058828E-0B -0.39904E-01 01_988E-0] -0.36813E-02

The resulting file has been supplied as "Tutor_als/2D

5burn/GSHOOTADurn 41" The fifth burn _" ["Tutorials/2D
5burn/GSHOOT/burn 5/"]:

m_ - 1.06

Go - _.0O

]sp • 0.5673

Thrust - 0.5i66

Mo - 10.CC00

so " 3._C_
eo - 0_7262

wc - 0.00_

ad = 6 40C

ed _ O.DCC5

w'-J • C0O5
T_iAX - 0.000
NGS _ _00
fCIX • 3

GSHOOT reports:

Best constant iagrange multipliers (initial)

C... 0.28015E-0C -0.71802E-00 -0._3715£-0C
Best initial true anomaly

vo= 0 3009_E-DI

MS_ transfer tlme

if= 0.3_219E,01

Best re/at;ve errors (h.ex,ey,He)

G... 0.26077E-II -0.93204E-02 -0.25981E-01 0.538C,8E-01

The GSHOOT output has been supplied as "Tutorials/2D
5burn/GSHOOT/burn 5/_

The files easily concatenate. The resulting file has been supplied
as "Tutorials/2D 5burnlGSHOOT/MPM2D.guess .

At this point, we have a solution guess for the entire trajectory in the
PATCH2D format. One option for obtaining the solution is to run
MPMM2D _nth this input. However, one may get a iteration history
like this:
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If MPMM2D Fails,
Use PATCH2D

C_r Norm Ire Jbest Norm (st) I Short Time Bne Bst Wrst E1 E_=
....................................................................

0 68_35E°01 1 0 68"/35E-01 1 0 79429£._0 3 C 34:4_E-:I 42
0 68"_35E.01 45 0.68735£o01 45 0.79429E.3O 3 G 34_45E-_1 43
0 68735E*01 90 0 68735£o01 45 0.79429E-00 3 0 34`545E*C1 43

BCC: Possib2e conflict _.n orbit choice
A--2 61771;643152
E=2.335666952254
w-2. 556150238017

[LOC.ATI ON II]

BCC: Possible confllct in orbit choice
A=-2 617712643152

E=2.33566695_254

W=2,556150238017

IL,OCAT: O_ t:)

BUKN W;AB.NING. BCC CLA_M_ AN EK_O_

IN THE IN:T_AI, PCI_'T CALC',Y,..ATI,_N
W'_=5 684341886_808E-14

W2-l 858576979153
W3=0,7387094236308

[LOCATION g:]

BCC: Possible conflict _.n orJ_it choice
A=4 li17497825609

E=I.458915419989

W=-0. 5075814176646

[LOCAT_ ON #1]

IN.'ONSI STI2_T :

A'(Ie0-E,,2_,LT,0E0

S."OP (called by BCC )

CP: 2.5 155s, Wailciock: 29 935s, 33 71 of 2-CPU Mach-ne

HWM met:.: 213617. HWM stack: 26810, Sr.eck overflows: 0

Note that the current norm errorstarted at6.3735: though such a

large error does not always induce failureof MPMM2D, itmay.

In such a situation,the more robust PATCH2D isuseful. Since the

fileformat isidentical,this is very convenient. PATCH2D does

require one additional input file,for its inner loop tolerances. The

fileiscalled =PATCH2D.tols" and for this tutorial,ithas been

supplied as "Tutorials/2D 5burn/PATCH2D/PATCH2D.tols- and
listedbelow:

I FTOL = 1 000000C00350030000COE-C8

LTOL • 1.00000C00OGOCOC000000E-07

GTCL • 1.0030C0003_00_3_3C000E-03
TOL2 - 1-000000O0000000G00000E-05

We have chosen a rather stricttolerance for "function

improvement" convergence, a slightly less stricttolerance for "line

search" convergence, a very loose tolerance for "gradient norm"

convergence, and a rather loose convergence tolerance for DCNLP
iterations.

Itneeds to be said that the drawback to PATCH2D isitsspeed. For

this tutorial,PATCH2D was run. After renaming

=MPM2D.GUESS" to =PATCH2D.GUESS" and running PATCH2D,
we see the following iterations:

August 1995
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Use PA TCH2D

Output for MPMM2D

Punct_ox TOL (FTCL_ • _.E-F

Gradient TC'L IGTOL_ - 3 E-3

L:,ne Seater. 3"0', iLTOL1 • _ E-_

Max O lterate$ I:ITItAXJ z 2CC

:IT@ Cost _C _I_ r ov_e.q t Gradient Cr;ter;or,

0 O 66455E-0_ O.OO000£-00 0.49211E-C2

1 0.66d55E-03 O00000E-O0 0.4_211[-C2 0 86837E-03 7 12

2 0.66C21E,01 -043418E-0] 0.14439E-02 01219086-0: _ 2_

3 0.659136"01 "0 54372E'03 0.56984E-C1 O 5230_E-C2 4 3;

4 0.658856-0_ -0 569866-01 0,12130E-02 0.3094DE-01 5 #l

5 0._56316-0:-0.6_566-01 0.E225CE. CI 0.555626-01 4 5_

6 O 655546.0] -0 9_1396-01 0.185_06°_2 0 133956-CI 5 £2

7 0"654_76"_I -0968266-C1 0.I19926-02 0.122996-01 4 7_

8 0654256-01 -0.102996-00 G.390346o01 0198446-02 5 81

9 0654166-01 -0]02686-00 0.752076-_I 08P9546-C2 5 91

_0 0.653_26-01 -0.]08336-00 0.7_0696-0_ 0852666-DI 3 ICI

11 0.65329E.0] -0.112596-00 0.809686°01 0.2134!E-92 5 111

12 0 652386-01 -0.11366E-30 0.326646-02 0.322596-C_ 6 121

13 0.653126-01 -O.II432E*0D 0.'134986*01 0.53050E-04 ( i_I

34 065311E-01 -0114356.00 0.558076-:0 C 310566-D4 5 14C

15 0653116-0i -0.114366-00 0.330326-00 016464E-04 3 149

16 C653116-01 -0,134396-00 0.76@_96-00 0.18_2iEoC_ 3 15_

1_ 0.653106-C1 -0.I14466-00 0.213946-C_ 0242986-C2 3 i_

3_ 0653C96-01 -0._14566*0C 0.193656-CI C.149_36-:2 4 l -I

19 01_5308E'01 "0"i14_6E'00 01832_3E'00 _ IC038E-C2 4 l_E

2C O 6_3086-CI -O.I]_VlE-00 0.544406-00 0.11256[-04 4 19_

21 0_53_66.01 -0.114916-00 0,425_36-DC 0.96T24/-04 5 It(

22 0 6EOCTE-CI -C 114_56-D0 0 804166-00 0 I06446-[_ 2 215

23 0.653&76°01 -0114EIE-DC 0.15'5696-01 0134746-C3 4 _14

24 O £53066-0] -0._1467Z*00 0.433706-0C O 32_226-_4 3 222

25 O 653066°01 -0._14896-00 0,704246°CG 0.2492CE-34 4 _41

26 0.65306K-01 -0_I&90E-00 0.5_3086°0_ 0.209976-03 4 253

27 0 E53CSE-CI -C.I15316-00 0.14!6_E-tI C,_?2556-_3 4 2(i

26 0._55036-_,I -C.115146-00 0.309_36-_1 C106666-_1 6 _--

29 0.652506-01 -0.120486-00 0.759"IE-CI 0 63111E-G2 ? 2_9

30 0.652096-01 -0.124636-00 0.213146-01 034_8_E-G3 5 299

31 OlE52CTE-D3 -0.124816o00 0 18041_-01 0.235156-33 6 3C9

The PATCH2D code had been left to run overnight, about 12 hrs. It

did not satisfy any convergence criterion by the 31st iteration,

execution was terminated. The output file "PATCH2D.BEST" has
been put into in the "Tutorial" folder as "Tutorials/2D
5burn/PATCH2D/PATCH2D.BEST-

Now, this file was renamed to "MPM2D.GUESS" and used for input
to "MPMM2D." The iterations are listed below:

CU_.. NORM _T= BEST NOrM (AT) @ SHORT TIYS_ EN= BST Y_T EL EL=

....................................................................

O 4C_4CE-O0 1 0.4=2406. C3 1 0.69_656-=_ 3 C _.c_r.-- 34

0.4024CE, 00 45 0.402406,00 _I 0.696656°C0 3 C.315256°CC 34

0,353626-02 90 0.353616-C2 72 0.I09596-CI 3 0 192496-:_ 2_

0.2441!E-06 135 0.3588_E-I0 i_3 0.I1266E-CI 4 C.3CS_E-:j 1_

0.65414E-C9 i_5 0.303946-10 I_4 0,1128EE-ZI 4 Ci4-l_E-i: l!

C 290686-I0 _25 0.290686-I0 225 C.llI_EE-[i 4 C.131:6E-1: iv

0.72452E-D9 23t 0.290686-I0 225 G.112@86-71 4 C_313EE-I: 1_

0.I19_7K-06 315 0.269656-I0 274 0.I12_66-3: 4 C.2IO_:E-IC 2_

0 470586-07 360 0._2446-_0 331 0.I12866-C1 4 C.I645EE-lC i_

0.282316-08 405 0.203206-I0 380 O.I126EE-C! 4 C.I5=I:E-IC 26

0.237826-06 450 D.153186-I0 441 0.I12566-01 4 C 1365CE-15 i_

0.341416-I0 495 0.136156-I0 493 0.I12886°CI 4 0.9976CE-I_ _E

0.I17856-08 540 0.136156-I0 493 0.112B_E*01 4 C.9976_E-II 2(

0.405136-06 585 0.133396-I0 544 0.112886*C; 4 C92666E-11 2(

0.470616°09 _30 0.I16246-I0 599 0.I12886-_I 4 0965256°11 26

0.787236-07 6_5 0.985226-11 65¢ 0.112886-_I 4 C E_751E-ll 2_

"'" FATAL EKROF 3 from NE_F The iteration has not made ge_d _ro_ress
"'" The user ma_' try a new _niti81 guess

Obviously, the solution was found; however, a shortcoming in the

NEQNF solver did not allow it to claim convergence. This seems to

be common among nonlinear equation solvers. An easy fix is to

perturb the guess slightly. In this case, the eccentricity of the first
transfer orbit was perturbed from

I ex • _.14423_536906_28362£06.00
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to

I Ix • 0.26433_536906_2836260E°00

For this new guess, in the =Tutorial" folder as =Tutorials/2D

5burn/MPM2D.GUESS," the MPMM2D iterations axe:

CU_. NORM 2T# BEST NORM (AT} t SHORT TZHZ I_l BST I,¢P_: EL. ELI

.... ;- .... ;" .... ;" --;;-
0.40418£°00 45 0.40418£-00 41 0 6_6ESE-00 3 0.31525£-0G 34

030687E-01 90 0.30687£-01 56 0.I0688E-01 3 0_14_37E-01 26

0_46830E-07 135 0.21092£-10 122 0.I1288E-31 4 C.13E35E-10 25

0 E09CSE-07 180 0.18042E-I0 172 0,I1288E-01 4 0.144_7E-IC 22

0.30214E-06 225 0.I_836E-I0 220 0.21288E-01 4 0.14065E-IC 22

RE_U2RED I FI_CTION EVALS = 268
..............................

TOTAL JUW.N TIME • 6.51_50674051

FINAI, MASS . 4.068383805015

SHORTEST B',.3KN _T',4 = 1.1288316158_8
SHORTEST BURN I$ Q4

..............................

SOLUTION SAVED

The solution fileis given in the =TutoriaF folder as =Tutorials/2D
5burn/MPM2D.SOL _.

VII.2. Convert MPM_3D

File to BND3D File,Run
BN-D3D

Run MP2BND

This tutorialdemonstrates how to use MP2BND to convert a
MPMM3D fileto a BND3D file.

The file =Tutorials/MPM to BND3D/MPM3D.GUESS" is a solution

to an orbit transfer problem, as claimed by MPMM3D. The

particular problem it solves is not relevant, but it will be clarified
anyway. The header of this file follows:

TOL

MU

T

Go

Isp

hxo

hyo

hzo

exo

eyo =

hxf =

hyf =

hzf =

ex f =

eyf =

NORB =

= 0.10000000000000000000E-08

= 0-10000000000000000000E_01

= 0.5165830000000006S053E.00

= 0.1O000000000000000000E.01

= 0.56730999999999909278E.00

= 0-47715876030000003993E÷00

: 0.00000000000000000000E.00

= 0.87881711269999840397E÷00

= 0.00000000000000000000E.00
0-00000000000000000000E.00

0,00000000000000000000E÷00

O.O0000000000000000000E+O0

0.25298517739999937248E,01

0.00000000000000000000E,00

0.00000000000000000000E+00

5

The orbittransfer is,therefore,from LEO to GEO and circleto circle

in 6 burns. Now, suppose we want tofurther investigatethis problem

with the more general BND3D code, so that oblateness and drag
effectscan be modeled.

'The main task here isto simply run MP2BNq). This code will

create the file"BND3D.GUESS" which h_[sbeen supplied as
=Tutorials/MPM to BND3D/BND3D.GUESS."
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Run BND3D to check

Pa_e 29

It is prudent at this point to use BND3D to check MPMM3D's results

In this tutorial, the following "BND3D SCRIPT" file was used:

BND3D GUESS

0

0

0

ld-4

ld-lO

100

_CD3DSOL

I

BND3D.KEINT

which is supplied as "Tutorials/MPM to BND3D/BND3D SCRIPT -

This says the input file is "BND3D.GUESS," don't show B.C errors

to the screen, solve with free final time, don't include switching

points as nodes in the output, FCMIN=ID-4, TOL=ID-10, use no more

than 100 iterations, save solution as "BND3D.SOL," provide

additional info and save this info in "BND3D.REINT." The output
BND3D produces to the screen is listed below:

B.C.$ _ C

NOM_TOPy : 0

MU= I ,00CC,0CDC,000t0t_C0

KEC,= 0.00O3000000D0000000E.00

02= 0. O00000O000000C0O00E.0O
GO= 1,00000000000000000

B_A= 0 0O0OCC3000000D00COE° 00

R3= 0. 000t0OCrJOCCC C0030OE.,CO
_=t'= 00CC=O_CC :OCC =C3CDCIZ-CC

S= 0.0000O0DO00000CD00OE.0C

CD- 0.0O00000DCODDOOOD00E. OC

lSP= _.5(_3C_99999999@96_

ThrUST,, C 5165830000000_I014

AI= i ,OSC?tCCOSID526792

El= O,OD_OCOOODOOCDOOOOOE.OG

OM"_GA I = O. O DC:O'JC 500 tO :,CC C5 C C,Z.OC
KAI= 85. 9999999_9706 _ E _0

2-_= 26 5C90C_0009_10819

A.F= 6 40C14999641091_26

EF, 0.0CC00C Sc CC30COG000E. 03

OM_='C_kF= 0 0OC3DCOCODCOO00000E. ZC
RAF= C. 0OSCCC _SCS3CCCCC'DOE-CC

!-F= G.ODODOOOODODOOOOODOE._

N-_TE: A._SLE__ _2ST BE IN DEG.r_EE£
M= 44

"N= 25

t
.... ::::::::::::::::::::::::::::::::::: .......................................

INITIAL DATA

Applied Control Laboratory
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0

!

2

3

4 -

5

6

"-t

e

9

I0

11

12

.13

141

15

1'7

18

14D-07

]4D-07

14D-0_

14D-07

14D-07

14D-07
I_D-0_

IID-D_

iiD-07

.34D-15

.34D-15

.26D-15
.26D-15

73D-15
_3D-15

43D-15

.4_D-15

.4nD-16

.4_D-26

22D-18

22D-18

"5D-20

.75D-20

.32D-21

.32D-21

,16D-21
.48D-22
.48D-22
-36D-25

.36D-25

.36D-25

.36D-25

.18D-25

.29D-25

.2ZD-:5

38D-25

,28D-25
.28D-25

.36D-2_

.36D-25

.11D-07

.IID-0_

.67D-07

.67D-07

.6_D-07
,66D-0_

66D-07

51D-07
51D-07

,44D-15
4_D-_5

.31D-15

_31D-15

.21D-14

.21D-14

.12D-14

12_-14

18D-16

18D-16

81D-18

81D-18

38D-19

.38D-19

.66D-21

.66D-21

.55D-21

.55D-21

.17D-21

.I?D-21

.58D-24

.5@D-24

.IOD-24

.IOD-24

.20D-24

.28D-24

,26D-24
.5_D-25

.50D-25

.70D-24

.?0D-24

.IID-0_

.IIDo07

.67D-07

.67D-07

.66D-0_

66D-07

,51D-0_

51D-C _

_2D-12

."3D-12

.28D-14

33D-_4

32D-14

21D-14

12D-14

13D-14

24D-16

19D-16
11D-17

lID-13

.14D-IB

.83D-I_

.55D-20

.35Do20

.56D-20

.79D-20

.26D-19

.26D-19

.50D-19

.51D-19

._6D-21

,66D-21

.36D-19

.4CD-i9

.35D-19

.23D-19

.95D-20

.58D-20

.18D-19

.17D-19

,76D-08 0 .38D-08 93D-_2
._6D-0g .00O

.14D-O_ I 36D-06 .BgD-_

.14D-0_ .001

.14D-07 2 .36D*08 ,89D-C2

.13D-07 .008

.Z3D-07 3 .36D-G8 ._D-_
10D-07 121

,IOD-07 4 .36D-08 89D-_2
.43D-]0 I 0OC

44D-IC 5 .36D-C8 .89D-C_
•58D-12 I 00C

43D-12 6 .20Do09 .89D-32
._?D-II I 000

_3D-13 0 .37D.CE .89D-C_
,42D-13 .236

.SCD-I_ i 4_D'09 @gD-C_

.76D-]4 l._0O

.12D-14 2 .22D-09 .89D-C2
.14D-15 100C

.16D-15 3 .2_D-C9 .89D-5_

.25D-16 1.0O0

.15D-16 4 ,47D-08 .E_D-0_

.87D-17 I_000

.33D-17 5 45D°98 .89D_D2

.61D-17 i 0O0

.35D-16 0 .37DoOE .89D°_2

.10D-16 .449

•22D-17 l.O:_

.23D-I? C .37D-_E ._9Do:2

.18D-I_ I O00

•98D-IE i 42D-_8 _gE-C_
.19D-I? I_C'_

56D-17 4Z3
.52D-I_ 08C

.11D-I_ .OC_

•68D-18 ,001

.17D-17 0 .37D°08 ._D-C_
•96D-18 OCI

•95D-18 0 37D-08 .89D-_:
.2_D-25 .95D-25 .96D-21 .33D-18 .I03

19 .28D-25 ,95D-25 .27D-20 .16D-18 I _5_°r7 E_D.^2

.:::::':::::;:ZXSZ:::Z::ZXZZZ::: ...................... ;":'; ..... ;-:--:

SCL'dT==,N OBTAINED AFTER 20

SCLLTl_24 _ATA

S%q TCH I NG POINTS

ITEKAT2_: STEPS

Useful Information
in BND3D.EXTRA

=========================================......................................
NAw_-- OF F;LE FOR S OLL_:ON DATA: ->Eh_3D SOL •-

It eventually computes the solution to its own criterion, however, it is
clear that BND3D has verified the MPMM3D solution.

The information provided by BND3D.EXTRA is arguable

essential. This filecontains data for the switching function and

Hamiltonian as functions of time. The plot below is a graphical

representation of what BND3D.EXTRA provides
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Useful Information

in BND3D.REINT

SWITCHINq
..... HAMILTONIA_-'-'_

01

0

z_-01

..0.2
I,,-

-0.3

-04

-0.5

-0.6

BND3D.EXTRA

!. ..... ........0

-2 10 _

• -410 '=

i -6 10"9
•810 _

-110 e

I, _ , .I i , , , t _ _ , , , . . _ i -1.2 I0 "e

0 0.2 0.4 TIME 0,6 0.8 1

The Hamiltonian isalmost zero,and very closetothe tolerance.

The jumps inthe Hamiltonian at the switchingpointsisa common
numerical phenomenon. Also very important, note that this

verifies the assumed switching structure: thrust on at the

beginning, precisely ten switching points, and thrust on at the end.

Finally, note the hump between the fourth and fiRh burns, noting the

location of such humps is often useful in deciding the location of an
additional burn

The file "BND3D.REINT" also supplies useful data in the form of a

detailed trajectory. The complete state and costate is included The

plot below, a projection of the trajectory onto the x-y plane, was

created using the rat, data in the =BND3D.REINT" file.

x

3 BND3D.REINT
T ..............................................................i..................................

1 ............

0

........ ...........................
.2 , f , , , I , , I , ' , '

-2 0 2 4 6 8
Y

Note that this plot is rotated 90 ° for clarity.

VIL3. Run BND3D with

Hmnotopy
This tutorial begins with the solution file from the "Convert

MPMM3D File to BND3D File, Run BND3D;" tutorial.

Suppose we try and accomplish this change in one step, by altering
the =BND3D.GUESS" file. The script (=BND3D.SCRIPT _) is,
simply:
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BND3D. GUESS

0

1

0

0

Id-4

Id-10

I00

BND3D.SOL

1

BND3D.REINT

Here is the BND3D output to the screen:

BC $ _ D

FKEE FINAL TIME: 1

HOM_'CTOFY : 0

M'J= I. 0000000000000C000

KEQ. 0.0COCOO000000000COOE.00

3;.= 0,00CC00C33000O00O00E-00

GO" I. 00000000000000000

BETA. 0 000000000C00000000£-00

R3, 0 000000000000000000£-00

ROU= C. C0_0C0000C_,OCCO000E-0C
S= O, 003000000000000000E*00

CD- O. O00000000000000000E. O0
ISP= 0-567309999999998982

T_UST= 0. 516583000000301014

AI= i .00000C00010538792

E]- 0.0000O000000000000OZ.00

OMEGAI - 0 •000OD0000000000000£.00
RA:= 89,9999999997066880

I-I= 28. 5000330009010819

AF= 6. 63314999841091043

EF= 0. 000_00030000000000E* 00

OM2C, A2= 0. 000000000000000000E.00

]q.AF= O. 000000000000000000E.00

:-F= 0.000003_00000003300E.00

N_.'DTE:ANGLES MUST BE IN DEGREES
M= 44

"N= 25

IN:TIAL DATA

N=25 M=44 M$=IO

PRESCRIEED RELATI_T PF_CIS!ON .10D-D9

MAXI_,/M pI_M.IT'2"m",_'H_R OF ITERATIONS100

0 .150-02 .15D-02 .220-01 .IID-03 0 .390-_8 .93D.-C_
.150-02 .150-02 .22D-01 .IID_03 .000

1 .15D-02 .150-02 .19D-0i .I00-03 0 .3TD-C'8 .890-02
•150-02 .150-02 .19D-01 .100-03 .003

2 .15D-02 .150-02 .4ED-01 .IID-03 I .E7D°08 .E9D_2
.160-02 .18D-02 .22D°00 .13D*03 .026

.150-02 .150-02 .49D-01 .IID-03 .005

3 .150-02 .15D-02 .370*00 .IID-03 0 .370°08 .890*02
.150-02 .15D-02 .41D.00 -IID°03 .017

4 .15D-02 .150-02 .90D-01 .460-03 0 .360-08 .E90°02
.15D-02 .150-02 .88D-01 .45D-03 .011

5 .15D-02 .15D-02 .130-02 .62D.03 0 .37D°08 .E9D°02
.210-02 .260-02 .18D-02 .82D-03 .056

140-02 .150-C2 .130-02 .61D-03 0i9

6 .14D-02 .150-02 .18D°02 81D-03 0 .]TD°0B _90-3_
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.26D-02 .36D-02 .28D-02 .12D-G4 Cz3

.14D-C2 .35D-02 ._7D_02 .79D-C'3 0:5

.142-02 .15D-62 .23D-02 ._0D-04 0

.31D-02 ,44D-61 .40D_C2 .17D*04 .09_

.llD-O_ ._4D-02 .22D*02 .IOD. 04 0!9
8 .14D-$2 ._5D-C2 .28D. 02 .13D-04 O

67D-C2 .15D-01 .9DD-02 .4CD-O4 .144
.13D-02 15_-02 .27D*C2 .32D_04 .023

9 ._3D-02 .15D-02 .3ED*0_ .16D-04 O

5CD-02 .lID-01 .84D°G2 .3£D-04 .155

13D-0_ .15D-C_ .34D-22 15D-64 .031

10 .13D-C2 .15D-02 .4ED-02 .21D-04 O

•]4:,-0: .30C-_l .22D-0_ .70D-04 .135

11 ._4D-C_ .3OD-0: .30D-C3 .14D-C5 0

•34D-0_ .76D-0_ .62D-C3 .27D*05 .03_

.14D-0] .30D-01 .30D-03 34D-05 .004
:ma,ny lines oratted fcr brr,'ity]

62 .15D*0C .15D-C1 .29D-0: .24D-02 O

.]4D-00 ._5D*0_ .26D_01 .20D-03 089

63 .I_Do0C ._SD-0: .2£D-0_ .I?D-03

.5_D.0_ .26D. 02 .:0D_0_ .23D_06 1.00C

66 .14D-00 .34D_0: .23D_01 .28D°03 C
.16D-00 ._6D-0_ .23D-01 .:gD°C_ ._39

65 _6D-0C .16D-0_ .25D-0] .23D°03 0

IID. G_ .30D_02 ._OD-C3 .5_D-0_ i.O_:

• _5D-00 .15D-C_ .22D-C1 .I_D-03 ,30_
66 .ISD-00 ._SD-Ol .24D*01 ._8D-03 I

.96D°0_ .25D-02 .4_D_03 .58D°05 i 00C

.17D-_2 .15D°DI .22D*01 ._4D°_3 .C'91

3{D-:+ 6£3-:1

29D-[E _ - ..I

.5E2-:{ _t:,-::

•6ED-t{ .9_L-:;

_2D-56 9£:-:i

Execution was terminated early because BND3D was clearly stuck.
In this type of situation, where BND3D has difficulty, it is often
useful to resort to homotopy.

BND3D has a homotopy loop and is utilized, for this tutorial, with the
following script (supplied as "BND3D
HOMOTOPY/BND3 D.SCRIPT"):

_:D3D.GUESS

0

1

1

I0

0D0

0.516583D0

0.5673D0

6.6D0

0D0

0D0

ID0

0D0

0D0

28.5D0

0

id-4

1d-7

100

BND3D.SOL

3

BND3D.REINT

To make convergence easier, the tolerance was reduced to 10 .7. Ten
homotopy steps have been suggested and the final semimajor axis is
requested to be 6.6.

The output to the screen is very long for a homotopy run, and is
omitted from the tutorial, however, it may be found in the file

"BND3D HOMOTOPY/screen output." One the other hand, the
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VII.4. Using MBCM3D

"BND3D HOMOTOPY/BND3D.REPORT" file indicates how the
homotopy progressed:

I J,

0

I

• 2

3

4

5

6

7

8

9

I0

ii

12

13

KP,

25

22

25

3O

19

19

26

19

28

-4

17

14

23

17

U, DU

.9000000D-00

.8000000D-00

-7D00000D÷00

.6000000D_G0

.5000000D-00

-4000000D÷00

.3000000D*00

.2000000D*00

.ID00000D_00

.1387779D-15

.7500000D-01

.5000000D-01

.2500000D-01

.1457168D-15

-.I000000D-00

-.1000000D*00

-.I000000D*00

-.I000000D*00

-.1000000D_00

-.100G00CD÷00

-.1000000D*00

-.1000000D_00

-.1000000D-00

-.1000000D*00

-.2500000D-01

-.2500000D-01

-.2500000D-01

-.2500000D-01

Thisindicatesthateven though ten stepswere suggest,thirteenwere

required.Iterationsfailedforthe ninth step.BND3D then adjusted
the stepsize(DU) to one-quarterand continueduntilcompletion.

The following sample input file has been supplied for MBCM3D
("Tutorials/MBCM3D/MBCM3D.GUESS-):

! 02_=:_OCGOOCD3C
C.COOC23_DD_DO00
C.OCCOOOCCCCO00_O
0 00980_000000000
0 3000C_COS00300
O.O0000000COGO0_O
0.300003330300000
00CO0_:_OOOC_O
00COOCCO:COO6_O0

13400COO00002000CO
O 0300CO000000000
3 847305_00000000
0.023777042C00000
O.O000COOOOOCtCO0
0.0000_0000000030
O.O00CO00300000OO
1-500000000000000
0333333333333333
0.$600_0000000600,
0,003_00030000000
C.OCOOOOOCO000000

"3.1_768_i90_73156
2.375DC7893528269
000t_O0000000000

-C.339133504323169
-0-393443660534349
O.00000CDO0000000
1,52700000_000000
0-084150649480784

"C-C70063915_70165
0-000000000000000
0.531758699754281
0.737783173534899
0.0000000_0000000
O 782111317020586

19.0551498_i397220
0.000000000000000
0,000000000000000

-0.65_087_95635957
-0-2359@865145_670
-0.000453092937198
0 00000C0CO000000
0,000000000000000
0-205432772910901

"0.028605410141037
0006351966699377
0000001001000000
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I note. all a_n,gles are in degrees

The MBCM3D iterations, output to the screen (see fi]e

_TutorialsFMB CM 3D/screen.output') follow:

ITERATIONS •

X • -03117680190_32E*01
-0.309133504322]7£.00

0 152_O000000D00E-01
0 00030C0_ÙC,0000E.00
0.00303C00300000E-00
0 0_C300005O0O00E-0C

-0.23596865145967E*00

0 O0000000000O00r_O0
0.£_51966_993770/-02

F ffi 0.86334494474323E-09

C - 0.00000O00ÙD0000E-00
0.3180_9_81_3901£-02

0.43951_9_89_C31_-C_

0.844_672955175E-03
O O0_OCOO0000000E-OO

0.22530999940806E-03

l CALLS OF VF02AD - ]

0.23_50098935283£-01 0.000O3[[0;OCOOC[-:t
-0.393443660534_5E,50 0.0005::3C0:;$:5E.::
0.84150649480984E-C1 -0.700_£15C7C1(_E.C1

0533958£999542BE,00 0.7379_33735349:E.C_

0 _8_I1231902059E-0C 0.190531498_139TE. Ci

0.00Ù300000OC0Z0E-C[ -C _5£3E'_5(2_9£Z-C_

-0.45309293719800E-03 0.0003000005:$001.0_
0.20543297291090E-0C -0.2_:5410141C39E-C1

0.O00000000000COE-C0
0.187645EC7330_3E-02

O 0O000000_O000E-0C
O.O0O0000000_00E°CO
O.O0000DOOOOO000£-OC
0.173131539_96_5E-03

-0.2281585232C229E-=2

-0.292_$9_19_9"91E-C[

"C.II_IsEg_6604:IE-_I

-0.1_C254_E832E95E-lZ
-0.342_T$29934915E
0 00CCOCCDOC_C[[-

-0.2_7408{97499_0E-04 -0.2117939363_298E.04

-C.59569532495894E-05 "0.9062_565540682E-05

_TEKAT_ONS ffi 2 _S OF V?C2AD = 2

X : -C31C3{5C22095;4E-:I 0.239286421449_C,E-C1

-C.3113_3_3&250C,3E-0C -0 291953212_2_B_E-3_
O.152700000SOD00E.01 0.8_9_5314195680E-01

-0.8319809410_340E-20 0.535965_2155236E°00
-0.4b_I533_30OlSE-20 0.782038_824_917E-00

-0.3012_171897082E-19 0.1223203938_95E-_9

-0.23620_59957290E*00 -0.205EgB_5044_6B£-_3

0.24944301628696E-20 0.20554053313719£*00
0.64656688122166E-02

F = 6.2491C103180511E-_I

C ffi-0.580425_348546_E-20 -O.300_&I924(5134E-2D

-0.86883230043198E-03 0._2_79925362639K-02

-C "756_5264914_4E-C3 C.8624_$73594_E-2_

-0.65£54C_291520E-03 -O.1549369ET04O00E-19
-0.15£74219322676E-21 -C.211593_5206815E-19

-0.3_5051090_i338E-04 0.29911257_i90_9E-04

0382C_6"713602E-0_ -0.85_25_21599361E-C?

D.24236_?O60E263K-05 0.306748_3788606[-05

[llnes omitted!

:TEKATIONS = 5 CALLS OF VF02AD = 5

X ffi-0.31113166253539E-01

-0.31DO9903414240E.O0
O.l_CC_0t_00_0E-Cl

-C.55E23%_74945_4E-20

:_._9584336609_2E-2C,._57Eg1208253,gE-20

-0.2_59_854959_7iE°00

-C._9_71334222064E-19

0 _2519253321_92E-02

F = 0.21219202906824E-25

C - -0.58129998968682E-20
-0.999_6993908268E-09

-0.91132788548312E-09

-0.49651912359394E-07

-0.208848£2884158E-20

-0.49293613635371E-09

0.51403326040145E-11

0.3337_211£35954E-10

THE PRIh_NG OF THE LAST

VALUES THA_ ARZ RETJRA'ED

0 CCCtC:=:$5:?:C[-

0 0CCOC':::CL:CCZE-LZ

0.2556_44(_53[_E-I£

-0 425_236_65341_E-l[
-0.705674_22912_IE°CI

0.734455Bg_93_E£-_C

0,]9_52_649149"5E-_

-0£56{525EZIl_£E.CZ

-C.374:5954:_33_Z-_C

-0.264196_26C,4_99E-C1

0.238308940526_5E.01 0.699_@:tg_--120E-::

C.839490_9:4444_E-_I -C 7O3CC5£:'2_5_5£-Z1

0.5234_632_9?41E-CC D.73634:4_2_ll_E.-_

•1569520_35S468E-20 -0.656C_2:_BlgZE.::

-0-45317463C_3CIIE-03 -O.(2_363%51_{568E-I-

0.20543273853{32E-0C -0.2_54£185_£17E-_1

0.89436352481144E-21 0.20736086983_33E-06

0.33018123685169E-0_ 0.200_199_439_50E-C"

0.6725466_259_9E-20 -0.359C7479_5_216E-0=

0.460734029_5487Z-20 0.10904E_I264{51E-36

-0.8479004_1647_7E-20 0.8312E5262647ElE-_9

0.35_93772_2925E-09 0.91C54:_257{_1C, E-I_

-0.17852386235973E-II -0.34634033_9_,215E-_3
C.2116906809_93E-10 0.39EC222_5:_391£-16

ITEKAT:ON G_%_5 THE

_Y $'Lf_ROLTI_ VT'C:2A..D

"--SOLUTION CO_3ED---

X • -0.3111316£2535"9E-01

0.23830894092665E*CI

O.6990EI09_97120E-20

-0._10097034142401-00

-0.39;7312_003103E-00

-C.202645782_629_E-20

0.15270_00000000E-21
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0 83949089044448£-0_
-0 70300590_39595i-0]
-0._5823_67494574£-2c

053348632289741£°00

0.73634049255129£°00
-0.79958433860932E-20

C_BZlII3298E_4Eo3C

0.19C73788066349E.02
-0.75789120825379E-20

-0=25695206359468E-20

-0.65608_62138191£o00

-0,23598854759_71Eo00

-Od5317463073CllE-03

-0.62836395106568E-I_

-C.7%771334223064E-13
0.20543273853632E.00

*0.286054EI858627E-01

0_63519253321692E-02
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Appendix A GSHOOTs Format

The input file "" for "GSHOOT" has a specific file format. The file

must consist of exactly 14 lines. The variables read from this file

have a specific order: MU, GO, ]SP, THRUST, MO, AO, EO, WO,

AD, ED, WD, TMAX, NGS, and NIX. A J] variables are of the type

REAL except the last two, NGS and NIX, which are of the t)'pe
INTEGER An examp]e file is listed be]ow.

Mu • ] CB

ac • _ 00C_0

e_ = _ OOC

_'_ z 000C

ad _ 1 2_5

ed _ 0._19

wb _ 0,00:

'Et",._X : C OCC

NS$ _ _OC

NIX _ 3

On each line intended to supp]y a REAL variable, the FORTRA.\"
FORMAT layout is (1X_,9,F30.15); for INTEGER variables, this

statement is (1X,A9,I10). Therefore, each line starts with a blank

space followed by nine characters, all of which are ignored. Only
the numerical data follo_Sng is used.
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A]:)pend B The PAT2D and PAT3D File Formats
The PAT2D file format is used by MPMM2D and PAT2D. The

PAT3D file format is only used by MPMM3D. They are called the

PAT formats because al} of the information supplied by the PAT2D

format is used by PAT2D; only some of the information is used by

MPMM2D and MPMM3D. Exactly what information is used by

MPMM2D and MPMM3D is described in Chapter IV.

The PAT2D format is represented below:

,"C :_ = I

H'j = II

T = II

GO = o

ZSP • e

A0 • e

EXO • ii

£'z'0 = ii

AF = ii

EX.F = I

L_'F • o

(i • ii

ix = I

ey • Ii

NORB • 2

NODE = .3

SEL = 1

_nd_x,x. y, u,v,_, lx. ly, lu, iv, l_,,tf, gl,g;,g3, g_.gS, g,_

1. O. e. O. 8. i. I. #. O. o, |. I. O. O. e e. l. o,

2, I, |, O, g, (I, O, II, |, I, O, O, tl, li. t. II. O, O,

3. (I, I e, e, # e. (I, O, #, I. O, e. e, e, |. I, |.

4. • O, t, e, $*. e. #. O, |. e, I. ,I. O, |. #. O, g,

L ":
e_,' = I

N3DE = 3

5EL = 2

_nde.x, x y,u,v,m, !x, i_', lu, Iv, ira, t f,gl. g2.g._,g4 g5, g6

I, I _, l, I, I, 1, I. p, _, I, l, 1, |, i, I I l,

2, il I, I, I, #, 1. l, l, l, iI. t, I. |, I, 0, I, I,

3. e. e 1, t, l, I. t, #. _. |. 1, I. #, I. g, I I.

4, #, I, I, i, i, 0, |, |, l, l, I, II, I, 1, I. t, O,
a = i

ex = t

ey = #

SE: = 3

1'I_'D£X, X, Y, U, V. M, TF, L:, L2

I, O, I. l, e. l, ii, e, I.

2. #, #. o, l, i. l. l, l,

3, e, |, #, o, l, l, u, o.

4, #. i. 0, i, l, #, l, t.

where the symbol "#" is used in place of digits. The first eleven

lines give constants for the orbit transfer problem in t)Te REAL.

These have a fixed order: TOL, MU, T, GO, ISP, AO, EXO, EYO, AF,

EXF, and E]T. Their descriptions follow:

TOL .......... THE SOLUTION TOLERANCE

MU ........... THE GRAVITATIONAL CONSTANT FOR THE CENTRAL BODY

T ............ THE THRUST LEVEL OF THE ROCKET MOTOR

GO ........... EARTH'S GRAVITATIONAL ACCELERATION AT SEA-LE'v'EL

[ONLY USED FOR GET MOTOR FUEL CONSUMPTION]

ISP .......... SPECIFIC IMPULSE OF ROCKET MOTOR

AO ........... INITIAL ORBIT SEMIMAJOR AXIS

EXO .......... INITIAL ORBIT X-COMPONENT ECCENTRICITY

EYO .......... INITIAL ORBIT Y-COMPONEnT ECCENTRICITY

AF ........... FINAL ORBIT SEMIMAJOR AXIS

EXF .......... FINAL ORBIT X-COMPONENT ECCENTRICITY

EYF .......... FINAL ORBIT Y-COMPONENT ECCENTRICITY

August1995
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Note that these apply to the transfer as a whole, esp. when referring
to the initial and final orbits. The FORTRAN FORMAT edit

descriptors for each of these first eleven lines is (1X_A6,E27.20).

The PAT3D format up to this point is identical except that HXO,

HYO, HZO, EXO, EYO, HXF, HYF, HZF, EXF, EYF replace AO,
EXO, EYO, AF, EXF, and EYF. Their descriptions follow:

HXO ..........

HYO ..........

HZO ..........
EXO ..........
EYO ..........
HXF ..........

HZF ..........

EXF ..........

EYF ..........

INITIA.L ORBIT X-COMPONENT ANG. MOMENTUM,

INITIAL ORBIT Y-COMPONENT ANG. MOMEh"I22M,

INITIAL ORBIT Z-COMPONENT ANG. MOMEN_YM

:ENITIAL OR.BIT X-COMPONENT ECCENTRICITY

XNITIAL ORBIT Y-COMPONENT ECCENTRICITY

FINAL OR.BIT X-COMPONENT ANG. MOME_rrUM

FINAL ORBIT Y-COMPONENT ANG. MOMENTUM

FINAL ORBIT Z-COMPONENT ANG. MOMENT'JN

FINAL ORBIT X-COMPONENT ECCENTR3CITY

FINAL OKBIT Y-COMPONENT ECCENTRICITY

For both PAT2D and PAT3D formats, the next line indicates how

many intermediate transfer orbits there are. The variable NORB

takes on this value. The FORTRAN FORMAT edit descriptors for
this line is (1X,A6,I3). This same layout is used for the next two

lines, both also containing INTEGER data. These lines specify

data for the first burn. NODE is how many nodes, not counting the

first one, are to be used for this burn. Specifying a =3" for NODE
indicates that four lines of data will describe the burn.

The line after NODE's is for SEL. The variable SEL indicates

which method should be used. Note that in the PAT2D

representation above, three different values are given for SEL. A

=1" indicates that the data below is in a multiple-point shooting

format but Direct Collocation with Nonlinear Programming
(DCNLP) should be used in the first attempt to obtain a solution. A

=2" also indicates that the data below is in a multiple-point shooting
format but that multiple-point shooting should be used in the first

attempt to obtain a solution A "3_ indicates that the data below is in a

DCNLP format and DCNLP should be used in the first attempt to
obtain a solution. The following table summarizes:

SEL Guess Format Method to tr7 T_rst

1 Multiple Shooting DCNLP

2 Multiple Shooting Multiple Shooting
3 DCNLP DCNLP

No matter what format the data lines will be in, the line following
SEL's line has the FORMAT edit descriptors (IX,A). The contents of
this line are ignored.

Note that since MPMM3D cannot accept SEL=3, in PAT2D only
SEL=I or SEL=2 is acceptable.

The next NODE+I lines are the guess data for that burn. The

FORMAT edit descriptors are (lX,I3,A1,50(D27.20_A1) irrespective

of which guess format is intended. Considering only PAT2D, the
multiple-point shooting format has 18 elements in each line. These
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elements are in the following order:INDEX, X, Y, U, V, M, LX, LY,

LU, LV, LM, TF, GI, G2, G3, G4, G5, G6. "INDEX _ numbers each

line;the firstline represents the initialpoint for this burn and last

line represents the finalpoint for this burn. The linesfor each burn

are evenly spaced. _X, Y, U, V _ are the Cartesian components ofthe
2D position and velocityvectors, respectively. "M" isthe mass.

"LX, LY, LU, LV, LM" are the values ofthe Lagrange multiplier
functionstor costates,kr, kv, and Am, respectively. "TF" isthe

length oftime the burn lasts."GI, G2, G3" are the constant

Lagrange multipliers,vf,associated with the finalboundary

conditions. _G4, G5, G6" are the constant Lagrange multipliers,Vo,
associated with the initialboundary conditions.

For PAT3D, the multiple-point shooting format has 26 elements in

each line. These elements are in the following order: INDEX, X, Y,

Z, U, V, W, M, LX, LY, LZ, LU, LV, LW, LM, TF, G1, G2, G3, G4, G5,

G6, G7, G8, G9, G10. Their meanings are simple extensions of those
from PAT2D.

The DCNLP format has 9 elements in each line. These elements

are in the follo_-ingorder: INDEX, X, Y, U, V, M, TF, L1, L2. All of

these are as described above, except "L1, L2" which are the Cartesian

components in the inertialframe of the thrust directionunit vector.
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