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Executive Summary

We describe a recent NASA-sponsored pilot project intended to gauge the effectiveness of using

formal methods in Space Shuttle software requirements analysis. Several Change Requests

(CRs) have been selected as promising targets to demonstrate the utility of formal methods in

this demanding application domain. A CR to add new navigation capabilities to the Shuttle,

based on Global Positioning System (GPS) technology, is the focus of this industrial usage

report. Portions of the GPS CR have been modeled using the language of SRI's Prototype

"verification System (PVS). Developing the formal specifications, even with only limited analysis
conducted on them, resulted in 86 requirements issues being discovered.

Experience with the GPS effort showed that the outlook for formal methods in this require-

ments analysis domain is quite promising. The approach detailed here produced specifications

that requirements analysts (RAs) and others from the Shuttle community can and did learn to

read and interpret, without having to become PVS practitioners. Moreover, the mere construc-

tion of formal specifications using this method can and did lead to the discovery of flaws in the

requirements. There are good prospects for continuation of the effort by Shuttle personnel.

Future efforts can use the formal specifications constructed here as the foundation for more

sophisticated analyses based on the use of formal proof. This additional tool provides the means

to answer nontrivial questions about the specifications and achieve a higher level of assurance

that the requirements are free of major flaws.
Based on the outcome of this case study, it appears that formalizing requirements would

help overcome several deficiencies that have been cited for the current requirements analysis

process:

1. There is no methodology to guide the analysis.

Formal methods offer rigorous modeling and analysis techniques that bring increased

precision and error detection to the realm of requirements.

2. There are no completion criteria.

Writing formal specifications and conducting proofs are deliberate acts to which one can

attach meaningful completion criteria.

3. There is no structured way for RAs to document the results of their analysis.

Formal specifications are tangible products that can be maintained and consulted as

analysis and development proceed. When provided as outputs of the analysis process,

formalized requirements can be used as evidence of thoroughness and coverage, as defini-

tive explanations of how CRs achieve their objectives, and as permanent artifacts useful

for answering future questions and addressing future changes.

vii





Chapter 1

Introduction

Among all the software developed by the National Aeronautics and Space Administration,

Space Shuttle flight software is generally considered exemplary. Nevertheless, much of the

requirements analysis and quality assurance activities in early lifecycle phases is done with

products and tools of the late 1970s and early 1980s. Many activities remain manual exercises

in need of more precise analysis techniques. Software upgrades to accommodate new missions

and capabilities are continually introduced. Such upgrades underscore the need recognized

in the NASA community, and in a recent assessment of Shuttle flight software development,

for "state-of-the-art technology" and "leading-edge methodologies" to meet the demands of

software development for increasingly large and complex systems [9, p. 91].

Over the last three years, NASA has investigated the use of formal methods (FM) in space

applications, as part of a three-center demonstration project involving the Langley Research

Center (LaRC), the Jet Propulsion Laboratory (JPL), and the Johnson Space Center (JSC).

The goal of NASA's Formal Methods Demonstration Project for Space Applications is to find

effective ways to use formal methods in requirements analysis and other phases of the develop-

ment lifecycle [6, 7]. The Space Shuttle program has been cooperating in several pilot projects to

apply formal methods to real-world requirements analysis activities such as upgrades supporting

the recent MIR docking missions, improved algorithms for newly automated three-engine-out

contingency abort maneuvers (3E/O) [2, 3], and the recent optimization of Reaction Control

System Jet Selection (JS) [5].

We focus in this report on the formal methods-based analysis of a new Global Positioning

System (GPS) navigation capability being added to the Shuttle [4]. This work was performed in

the context of a broader program of formal methods activity at LaRC [1]. The effort consisted

of formalizing selected Shuttle software (sub)system modifications and additions using the PVS

specification language and interactive proof-checker [10]. Our objective was to explore and

document the feasibility of formalizing critical Shuttle software requirements.

The key technical results of the project include a clear demonstration of the utility of formal

methods as a complement to the conventional Shuttle requirements analysis process. The GPS

project uncovered anomalies ranging from minor to substantive, many of which were undetected

by existing requirements analysis processes.



1.1 Motivation

Since the late 1970s Shuttle software requirements have been and continue to be written us-

ing conventions known as Functional Subsystem Software Requirements (FSSRs) -- low-level

software requirements specifications written in English prose with strong implementation bi-

ases, and accompanied by pseudo-code, tables, and flowcharts. While the authors who create

such requirements and the analysts who scrutinize them are very capable and diligent people,

there are inherent limitations in the Shuttle program's requirements capture process. Due to

the largely manual analysis methods, requirements surviving all the inspections and reviews

still contain some residual flaws. Because errors that escape early detection are more costly to

correct later, there is a definite gain to be realized by improving the quality of requirements
analysis.

As will be discussed in Section 3.2.2, there are several well-known deficiencies in the existing

requirements analysis process. Formal methods have been put forth as a possible way to address

such deficiencies. It was the intention of this case study to help determine whether this prospect

is realistic and to what extent. The GPS CR was chosen as a test case owing to its relatively

large size and complexity. As a major augmentation of the Shuttle's avionics capability, the

GPS CR contains enough complexity and poses enough development risk to make a feasibility
assessment yield meaningful answers.

It was in this spirit that the GPS pilot project was undertaken. The results of the effort

are detailed in the rest of this report.
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The authors are grateful for the cooperation and support of many people during the course of
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Chapter 2

Formal Methods Background

Formal Methods (FM) consist of a set of techniques and tools based on mathematical modeling

and formal logic that are used to specify and verify requirements and designs for computer sys-

tems and software. The use of FM on a project can assume various forms, ranging from informal

specifications using English and occasional mathematical notation, to fully formal specifications

using specification languages with a precise semantics. At their most rigorous, formal methods

involve computer-assisted proofs of key system components or properties. Project managers

choose from this spectrum of FM options as appropriate to optimize the costs and benefits

of FM use and to achieve a level of verification that meets the project's needs and budget

constraints. Formal methods play an important role in many activities including certification,

reuse, and assurance.

Additional background and overview material on formal methods can be found in a re-

cent NASA guidebook [8], excerpts of which appear below, and in Rushby's formal methods

handbooks [11, 12].

2.1 Range of Formal Methods

Formal methods allow the logical properties of a computer system to be predicted from a math-

ematical model of the system by means of a logical calculation, which is a process analogous

to numerical calculation. That is, formal methods make it possible to calculate whether a

certain description of a system is internally consistent, whether certain properties are conse-

quences of proposed requirements, or whether requirements have been interpreted correctly in

the derivation of a design. These calculations provide ways of reducing or in some cases re-

placing the subjectivity of informal and quasi-formal review and inspection processes with a

repeatable exercise. This is analogous to the role of mathematics in all other engineering disci-

plines; mathematics provides ways of modeling and predicting the behavior of systems through
calculation. The calculations of FM are based on reasoning methods drawn mainly from formal

logic. Systematic checking of these calculations may be automated.

Formal modeling of a system usually entails translating a description of the system from

a non-mathematical model (data-flow diagrams, object diagrams, scenarios, English text, etc.)

into a formal specification, using one of several formal languages. This results in a system

description having a high degree of logical precision. FM tools can then be employed to logi-

cally evaluate this specification to reach conclusions about the completeness and consistency of

the system's requirements or design. Manual analyses (e.g., peer reviews) of the formal model



are then usedas an effectivefirst checkto assurethe generalreasonablenessof the model.
Thesearefollowedby tool-basedanalyses,whichraisethe levelof reliability andconfidencein
the systemspecificationevenfurther. FM analysistechniquesarebasedon deductivereason-
ing about systemdescriptionsrather thanstatistical inferencesdrawnfrom systembehavior,
therebyallowingentireclassesof issuesto beresolvedbeforerequirementsarecommittedto the
designand implementationphases.Formalmethodscomplementthe systematictesting that
followsimplementationby allowingthetestingphaseto focusona potentiallysmalleror more
problematicrangeof test cases.

FM techniquesand tools canbe appliedto the specificationand verificationof products
from eachdevelopmentlifecycle:requirements,high-levelandlow-leveldesign,andimplemen-
tation. The processof applyingFM to requirementsor designdiffersmainly in the levelof
detailat whichthe techniquesareapplied.Thesetechniquesinclude:writing formal specifica-
tions, internal checking(e.g.,parsingandtype correctness),traceabilitychecking,specification
animation,and proofof assertions.Althoughthis entiresuiteof techniquescouldbeapplied
to all requirementsanddesignelements,this is not theusualapproach.Instead,animportant
subsetof the requirementsis chosento undergoformalmodeling,then a subsetof the tech-
niquesis chosenfor application.Thisenablesthe project to choosea levelof verificationrigor
appropriateto its budget,schedule,andto thedevelopmentteam'stechnicalneeds.

In additionto the functionsformalmethodsperformwithin a singledevelopmentlifecycle
phase,FM canalsobe usedto establishand maintainstrict traceabilitybetweensystemde-
scriptionsacrossdifferentlifecyclephases.Wecan think of a hierarchyof systemdescription
documents,eachof whichdescribesthe systemat a differentlevelof detail. Movingfrom the
mostabstractto the mostconcrete,therearerequirements,high-leveldesign,low-leveldesign,
and implementation.Thesedocumentsalsocorrespondto differentlifecyclephases.FM can
be usedto demonstratethat a propertyat somelevel in the hierarchygetsimplementedcor-
rectly bythenext-lowerlevel. In a thoroughandrigoroustreatment,FM canhelpdemonstrate
that requirementsarecorrectly reflectedin a subsequentdesignand that designfeaturesare
correctlyreflectedin a subsequentimplementation.

2.2 Formalization in the Early Lifecycle

While FM can be applied to any or all phases of the development lifecycle, the benefit-to-cost

ratio for applying FM seems to be best during the requirements and high-level design phases.

Formal methods complement early development phases, which are currently less automated,

less tightly coupled to specific languages and notations, and their work products are typically

less effectively analyzed than those of later stages of development. Formal methods compensate

for these limitations without intruding on the existing process. For example, requirements are

currently maintained as English language statements that are hard to check with automated

tools. This deficiency is mitigated by the systematic, repeatable analysis supported by FM

requirements specification and proof, while necessitating no changes to the natural language
requirements statements.

Alternatively, as FM are injected deeper into the lifecycle, integration raises more techni-

cally challenging problems and the injection of FM becomes more intrusive. For example, the

languages used for FM specification and proof and those used for programming generally exhibit

fundamental semantic differences that make it difficult to synthesize a process that effectively
uses both. Extreme care is required to ensure that such language differences are not themselves
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a sourceof errorduringdevelopment.
A soundstrategyis to applyFM to the earlierlife-cyclephaseswhereit will havethe most

positiveimpact. IncorporatingFM will usuallyadda certainamountof costto thesephases
whilesavingcostin later phasesandduringmaintenanceof theworkproducts.In this respect,
the useof FM is similar to otherdefectpreventiontechniquessuchasformal inspections.If
heavyemphasisis alreadyplacedon analysisof earlyworkproducts(e.g.,requirements),the
useof FM couldpotentiallyreducelifecyclecostby augmentingor replacingad-hoctechniques
with moreeffectiveandsystematicones.

2.3 Prototype Verification System (PVS)

PVS is an environment for formal specification and verification developed at SRI International's

Computer Science Laboratory [10]. The following sections are excerpted from SRI's World-Wide

Web description of PVS located at URL http ://www. csl. sri. com/pvs/overview, html. The

system is freely available under license from SRI.

2.3.1 The PVS System

PVS consists of a specification language, a number of predefined theories, a theorem prover,

various utilities, documentation, and several examples that illustrate different methods of using

the system in several application areas. PVS exploits the synergy between a highly expressive

specification language and powerful automated deduction; for example, some elements of the

specification language are made possible because the typechecker can use theorem proving.

This distinguishing feature of PVS has allowed perspicuous and efficient treatment of many

examples that are considered difficult for other verification systems.

2.3.2 The PVS Language

The specification language of PVS is based on classical, typed higher-order logic. The base

types include uninterpreted types that may be introduced by the user, and built-in types such

as the booleans, integers, reals, and the ordinals up to e0; the type-constructors include func-

tions, sets, tuples, records, enumerations, and recursively-defined abstract data types. Predicate
subtypes and dependent types can be used to introduce constraints, such as the type of prime

numbers. These constrained types may incur proof obligations (conditions to be established by

theorem proving) during typechecking, but greatly increase the expressiveness and naturalness

of specifications. In practice, most of the obligations are discharged automatically by the the-

orem prover. PVS specifications are organized into parameterized theories that may contain

assumptions, definitions, axioms, and theorems. Definitions are guaranteed to provide conser-

vative extension; to ensure this, recursive function definitions generate proof obligations. PVS

expressions provide the usual arithmetic and logical operators, function application, lambda ab-

straction, and quantifiers, within a natural syntax. Names may be freely overloaded, including

those of the built-in operators such as AND and +.

2.3.3 The PVS Prover

The PVS theorem prover provides a collection of powerful primitive inference procedures that

are applied interactively under user guidance within a sequent calculus framework. The prim-

5



itive inferencesinclude propositionaland quantifierrules, induction, rewriting, and decision
proceduresfor linear arithmetic. The implementationsof theseprimitive inferencesareopti-
mizedfor largeproofs: for example,propositionalsimplificationusesbinarydecisiondiagrams
(BDDs),andauto-rewritesarecachedfor efficiency.User-definedprocedurescancombinethese
primitiveinferencesto yieldhigher-levelproofstrategies.Proofsyieldscriptsthat canbeedited,
attachedto additionalformulas,and rerun. This allowsmanysimilar theoremsto be proved
efficiently,permitsproofs to be adjustedeconomicallyto follow changesin requirementsor
design,andencouragesthe developmentof readableproofs.

2.3.4 The PVS Interface

PVS uses Gnu Emacs to provide an integrated interface to its specification language and prover,

and provides many status-reporting and browsing tools, as well as the ability to generate typeset
specifications (in user-defined notation) using LaTeX.

2.3.5 PVS Applications

PVS is mainly intended for the formalization of requirements and design-level specifications, and

for the analysis of intricate and difficult problems. It (and its predecessors) have been chiefly

applied to algorithms and architectures for fault-tolerant flight control systems, and to problems

in hardware and real-time system design. Several examples are described in papers listed on

the PVS home page. Collaborative projects involving PVS are ongoing with NASA and several

aerospace companies; applications include a microprocessor for aircraft flight-control, diagnosis

and scheduling algorithms for fault-tolerant architectures, and requirements specification for
portions of the Space Shuttle flight-control system.

PVS has been installed at over 30 sites in North America, Europe, and Asia; current work is

developing PVS methodologies for highly automated hardware verification (including integra-

tion with model checkers), and for concurrent and real-time systems (including a transparent

embedding of the duration calculus, a specialized formalism for modeling time).



Chapter 3

Shuttle Software Background

NASA's prime contractor for the Space Shuttle is the Space Systems Division of Rockwell In-

ternational. Lockheed Martin Space Information Systems (formerly Loral Space Information

Systems) is their software subcontractor for both onboard Shuttle software as well as sup-

port functions. Draper Laboratory also serves Rockwell, providing requirements expertise in

guidance, navigation and control. Flight software requirements are written by Rockwell with

significant support from Draper. New requirements are submitted to Lockheed Martin for

analysis before proceeding to the development phase. After Shuttle community review and

approval, the final requirements are accepted and become binding.

3.1 Software Organization

Shuttle flight software executes in four redundant general purpose computers (GPCs), with a

fifth backup computer carrying dissimilar software. Much of the Shuttle software is organized

into major units called principal functions, each of which may be subdivided into subfunctions.

Since the late 1970s software requirements have been and continue to be written using con-

ventions known as Functional Subsystem Software Requirements (FSSRs) -- low-level software

requirements specifications written in English prose with strong implementation biases, and

accompanied by pseudo-code, tables, and flowcharts. Interfaces between software units are

specified in input-output tables. Inputs can be variables or one of three types of constant data:

I-loads (fixed for the current mission), K-loads (fixed for a series of missions), and physicM

constants (never changed).

Shuttle software modifications are packaged as Change Requests (CRs), that are typically,

but not always, modest in scope, localized in function, and intended to satisfy specific needs for

upcoming missions. Roughly once a year, software releases called Operational Increments (OIs)

are issued incorporating one or more CRs. Shuttle CRs are written as modifications, replace-

ments, or additions to existing FSSRs. Lockheed Martin Requirements Analysts (RAs) conduct

thorough reviews of new CRs, analyzing them with respect to correctness, implementability,

and testability before turning them over to the development team. Their objective is to identify

and correct problems in the requirements analysis phase, avoiding far more costly fixes later in
the lifecycle.

The formalization approach is based on several assumptions about the requirements ex-

pressed in the GPS CR and about the Shuttle software architecture in general. These assump-
tions are enumerated below.



3.1.1 Execution Environment

The following assumptions are made about those aspects of the Shuttle execution environment

pertinent to the GPS CR:

1. A principal function is a software subsystem executed periodically at a mode-dependent
rate such as 6.25 Hz.

2. A principal function is a virtual software entity that is decomposed into several subfunc-
tions.

3. The subfunctions within a principal function are executed sequentially in the order they
are presented in the requirements.

4. Outputs produced by an earlier subfunction may be passed as inputs to a subfunction

executed later within the same principal function invocation.

3.1.2 Principal Function Inputs and Outputs

Several key attributes about principal function inputs and outputs are noted below:

1. The external interface for a principal function is specified by tables of inputs and outputs.

2. Data types are identified in the input-output tables.

3. No external data objects other than those listed in the tables may be accessed.

4. Some input and output values represent "state" information, that is, data saved for con-

sumption by the next execution of the principal function, such as delay elements (z-l).

5. Any "backward" data flows from a later subfunction to an earlier one do not take place
within the same principal function invocation and are saved as state information for the
next iteration.

3.1.3 Subfunction Inputs and Outputs

Subfunctions also have input and output characteristics worth noting:

1. Subfunction inputs may be either 1) "passed down" from principal function inputs, 2)
retrieved as components of the previous state, or 3) passed from earlier subfunction out-
puts.

2. Subfunction outputs may be either 1) "passed up" to principal function outputs, 2) saved
as components of the next state, or 3) passed to later subfunction inputs.

3. No external data objects other than those listed in the tables may be accessed.

4. Data types are identified in the input-output tables.



3.1.4 Local Variables

Subfunction requirements may refer to local variables to describe the required processing steps.

1. Local variables within requirements are not explicitly identified as such; this status is

implied by their absence from the input-output tables.

2. Some local variables are accessible only within a single subfunction execution; there is no

persistence for such variables.

3. Other local variables serve as state variables that persist until the next time the subfunc-
tion is invoked.

4. Data types are not provided for locals; types must be inferred from context.

3.2 Requirements Analysis

The Space Shuttle flight software (FSW) project has a well-defined process for performing

Requirements Evaluation (RE). This process is responsible for ensuring that requirements gen-

erated by an engineer are complete, consistent, implementable, and will solve the problem that

the engineer wants to solve. However, this process does not include a well-defined set of analysis

methods or techniques. That is, while there is a well-defined process, there is not a well-defined

set of methods for accomplishing the evaluation.

3.2.1 The Change Request (CR) Process

When an engineer recognizes a need to change or add a capability to a Shuttle flight software

system, he or she will author a requirements Change Request (CR). Typically, the author sends

early drafts of a CR to a FSW requirements analyst (RA) who performs an informal review
of the CR and returns comments to the author. Once the author feels confident that the

requirements are correct, he or she submits them to a review board. After all the submitted

CRs are prioritized, those of highest priority are formally reviewed by the FSW RAs in a process

that includes the following:

• The preparation of an engineering assessment that contains a summary of the change,

why it is needed, and its potential impact on the software system.

• An in-depth analysis of the CR guided by a Requirements Inspection Checklist that

contains descriptions of generic error categories. RAs look for instances of these error

types in the CR. If they find anything that they consider erroneous, they fill out Issue

Forms to document the potential errors.

• A formal inspection of the CR (large and complex CRs may require multiple inspec-

tions) that consists of one or more meetings of responsible FSW and Shuttle community

members to review all the issues that have been found during analysis of the CR and to

compile a list of issues that must be investigated before the CR can be declared ready

for implementation. An additional purpose of the inspection is to ensure that all par-

ticipants (author, RA, developer, verifier, et al.) have a consistent understanding of the

requirements.



• Trackingandresolutionof all issues.EachIssueFormremains"open" until it is deter-
minedthat the issueis not a problem,or that it is a problemand a solutionhasbeen
found;thenit is "closed."

• Baselining.Whenall requiredinspectionshavebeenheldfor a CR and all issueshave
beenclosed,a CR is declaredreadyfor implementationby a control board. Thenit is
baselinedandscheduledfor implementation.

3.2.2 Deficiencies in the Current Process

The step in the existing process that is of most interest to this case study is the in-depth

analysis of a CR. This step involves studying, understanding, and analyzing the CR. There are

currently three major deficiencies in the analysis step.

o

.

.

There is no methodology to guide the analysis.

As described by one RA, this step is "unstructured and very dependent on the background,

intelligence, and perseverance of the IRA." To address this deficiency, the Shuttle project

is currently trying to identify methods that skilled RAs can use.

There are no completion criteria.

The project recognizes this as a key deficiency, but currently does not have a plan for
addressing it.

There is no structured way for RAs to document the results of their analysis.

This causes several problems:

• The only evidence that RAs have to show thoroughness in their analysis is the

number of issues found. RAs feel that this is not a good measure of what they do.

• When a CR is analyzed, the RA gains an understanding of how the CR works and

why it is or is not correct. Without a structured way to document the analysis that

was performed, this understanding is lost. The Shuttle project is trying to address

this drawback by encouraging RAs to make public whatever notes they jot down

while doing their analysis.

• There is no evidence that demonstrates the benefit of quality assurance on the CR.

The Issue Forms only show what is wrong with a CR. There is nothing to show what

is right about the CR.

3.2.3 Quality Metrics to Assess the Current CR Process

The existing CR process also includes the collection and analysis of quality metrics, primarily

the number of issues collected during inspection and the number of problems found in a CR

after requirements evaluation has been completed (these problems are said to have "escaped"

the RE process). The ratio of the number of escaped problems to the total number of issues

found is a measure of the quality (or effectiveness) of the RE process; this ratio is called the

process error rate. The process error rate has been gradually improving (i.e., getting smaller)

in recent years, but is still far worse than the process error rate for design and code (i.e., the

ratio of problems that escape design/code review to the total number of issues found during
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design/code).This situation indicatesthat the methodsusedfor requirementsevaluationare
not aseffectiveasthoseusedfor designandcode(thisshouldnotbesurprisinggiventheabsence
of definedmethodsfor requirementsanalysis).Notonlyis theRE process less effective, but the

data captured on software problems show that there are more errors injected into requirements

than are injected into design/code (i.e., there are more requirements errors to be found than

design or code errors to be found). As a result, most of the problems encountered using the

Shuttle software are caused by requirements errors, not software design or code errors.
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Chapter 4

GPS Change Request

As one of the larger ongoing Shuttle Change Requests (CRs), the Global Positioning System

(GPS) CR involves a significant upgrade to the Shuttle's navigation capability. Shuttles are to

be outfitted with GPS receivers and the primary avionics software will be enhanced to accept

GPS-provided positions and integrate them into navigation calculations. Prior to implementing

the CR, requirements analysts at Lockheed Martin Space Information Systems, the Shuttle

software contractor, must scrutinize the CR to identify and resolve any requirements issues.

4.1 Global Positioning System (GPS) Navigation

GPS is a satellite-based navigation system operated by the U.S. Department of Defense (DoD).

It consists of a constellation of 24 satellites in high earth orbits. Navigation is effected using
a receive-only technique. Dedicated hardware receivers track four or more satellites simultane-

ously and recover their signals from the code division multiplexing inherent in their method of

transmission. Receivers solve for position and velocity, with a horizontal position accuracy of

100 meters for the Standard Positioning Service mode of operation.

The GPS retrofit to the Shuttle was planned in anticipation of TACAN, a ground-based

navigation system currently used during entry and landing, being phased out by the DoD.

Originally, GPS was required for navigation only during the entry flight phase after the dis-

appearance of TACAN, but the scope has been broadened to cover all mission phases. This

makes the GPS CR a rather significant upgrade to the Shuttle's navigation capability. Shuttle

avionics hardware will be augmented with a set of suitable GPS receivers, and the primary

avionics software will be enhanced to accept and process GPS-provided positions, making them

available to various onboard navigation functions. In particular, the GPS CR will provide the
capability to update the Shuttle navigation filter states with selected GPS state vector estimates

similar to the way state vector updates currently are received from the ground. In addition,
the new functions will provide feedback to the GPS receivers and will support crew control and

operation of GPS/General Purpose Computer (GPC) processing.

4.2 Characteristics of Application

The nature of the GPS CR application is that of a significant augmentation to a mature body

of complex navigation functions. Interfaces among components are broad, containing many
variables. Typical classes of data include:
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• Flags to indicatestatus, to requestservices,and to selectoptionsamongprocessing
choices.

* Time valuesand timeintervalsto serveas timestampswithin statevectorsand asinte-
grationintervals,and to controlwhenoperationsshouldbeperformed.

• Navigation-relatedpositionsandvelocities,usuallyin the form of three-elementvectors.

• Arraysof all thesetypesindexedby GPSreceivernumber.

• Variousnumericquantitiesrepresentingthresholds,tolerancevalues,etc.

Navigationstatevectorsareof theform (r, v, t), where r is a position, v is a velocity, and
t is the time at which the position and velocity apply. A position r or a velocity v is a three-

element vector relative to a Cartesian coordinate system. Usually the Shuttle uses an inertial

coordinate system called the "Aries mean of 1950" system, abbreviated as "M50."

An important operation on state vectors is propagating them to a new instant of time. If

we have a state vector (r, v,t), and we have a measurement or estimate of the accelerations

experienced by the vehicle over the (short) time interval [t,t'], we can propagate the state to

a new state vector (r _,v',t') using standard techniques of physical mechanics. This type of

operation is typically performed to synchronize state vectors to a common point in time.

Processing requirements within the CR are generally expressed in an algorithmic style us-

ing high-level language assignments and conditional statements. Within conditionally invoked

assignments, the assumption is the usual procedural one that a variable not assigned retains its

previous value, which may or may not have a meaningful interpretation in the current context.

Flag variables are used to indicate when other variables hold currently valid data.

4.3 Enhanced Shuttle Navigation System

The GPS upgrade is being conducted according to a two-phase integration plan. First, a

single-string implementation will be carried out involving only a single GPS receiver. After

a test and evaluation period, the full-up implementation involving three receivers will provide

the operational configuration. Software changes are designed to support a single receiver while

accommodating the three-receiver setup from the outset, thus requiring fewer additional changes
to migrate to the full-up version.

Figure 4.1 shows the integrated architecture for the enhanced navigation subsystem. GPS

receivers are managed by the GPS Subsystem Operating Program (SOP), which acts as a

device driver. The new principal function GPS Receiver State Processing accepts GPS state

vectors, and selects and conditions a usable one for presentation to the appropriate navigation

user. Another new principal function, GPS Reference State Processing, maintains reference

states for the receivers. Inertial measurement units (IMUs) provide acceleration data, and

Redundancy Management (RM) functions maintain f_lure status information.

4.4 Subset Chosen for Formal Specification

The GPS CR under scrutiny addresses only the single GPS receiver implementation. Neverthe-

less, our GPS formalization focused on a subset of the functionality because this CR is still large

and complex. After preliminary study of the CR and discussions with the GPS requirements
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Figure 4.1: Architecture for integrating GPS into navigation subsystem.

analysts, we decided to concentrate on two major new principal functions, emphasizing their

interfaces to existing navigation software and excluding crew display interface functions. The

two principal functions, known as GPS Receiver State Processing and GPS Reference State Pro-

cessing, select and modify GPS state vectors for consumption by the existing entry navigation
software.

These two principal functions, in turn, are organized into several subfunctions each. The

chosen subset of the GPS CR encompasses approximately 110 pages of requirements in the form

of prose, pseudo-code, tables, and flowcharts. The entire CR is somewhat over 1000 pages.

4.4.1 GPS Receiver State Processing

The subfunctions of GPS Receiver State Processing are as follows:

1. GPS IMU Assign

2. GPS Navigation State Propagation

3. GPS State Vector Quality Assessment

4. GPS State Vector Selection

5. GPS Reference State Announced Reset
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6. GPS Downlist Computation

Subfunctions (2), (3), and (4) involve fairly complex processing to evaluate, select, and modify

usable GPS state vectors. The other subfunctions have more modest functionality.

4.4.2 GPS Reference State Processing

The subfunctions of GPS Reference State Processing are as follows:

1. GPS External Data Snap

2. IMU GPS Selection

3. GPS Reference State Initialization and Reset

4. GPS Reference State Propagation

Of these, only subfunctions (3) and (4) contain any significant complexity.
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Chapter 5

Technical Approach

The formal methods approach is loosely based on earlier work conducted by the inter-center

team during 1993 on the Shuttle subsystem Orbit Digital Auto-pilot (DAP). Those techniques

were adapted to accommodate the needs of GPS for the Shuttle software. All work has been

mechanically assisted by the PVS toolset [10]. The distinguishing characteristic of PVS is a

highly expressive specification language coupled with a very effective interactive theorem prover

that uses decision procedures to automate most of the low-level proof steps.

5.1 State Machine Models

We have devised a strategy to mode] Shuttle principal functions based on the use of a conven-

tional abstract state machine model. Each principal function is modeled as a state machine that

takes inputs and local state values, and produces outputs and new state values. This method

provides a simple computational model similar to popular state-based methods such the A-7

model [13].

One transition of the state machine model corresponds to one scheduled execution of the

principal function, e.g., one cycle at rate 6.25 Hz or other applicable rate. All of the inputs to

the principal function are bundled together and a similar bundling of the outputs is arranged.

The state variable holds values that are (usually) not delivered to other units, but instead are

held for use on the next cycle.

The state machine transition function is a mathematically well-defined function that takes

a vector of input values and a vector of previous-state values, and maps them into a vector of

outputs and a vector of next-state values.

M :Ix S--. [0 x S]

This function M is expressed in PVS and forms the central part of the formal specification. We

construct a tuple composed of the output and state values so only a single top-level function is

needed in the formalization. Some values may appear in both the output list and the next-state
vector.

While the function M captures the functionality of the software subsystem in question, the

state machine framework can also serve to formalize abstract properties about the behavior

of the subsystem. The common approach of writing assertions about traces or sequences of

input and output vectors is easily accommodated. For example, we can introduce sequences

I(n) = < il,...,in > and O(n) -- < ol,...,on > to denote the flow of inputs and outputs
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that wouldhaveoccurredif the statemachinewererun for n transitions. A property about the

behavior of M can be expressed as a relation P between I(n) and O(n) and formally established,

i.e., we prove that the property P does indeed follow from the formal specification M using the

PVS proof-checker.

5.2 PVS Techniques

The basic structure of the formal specifications can be created using only a few of the PVS

language features. PVS specifications are organized around the concept of theories. Each theory

is composed of a sequence of declarations or definitions of various kinds. Definitions from other

theories are not visible unless explkitly imported.
Structured data types or record types are used extensively in specifications. These types

are introduced via declarations of the following form:

record_type: TYPE = [# vl: type_l, v2:type_2 .... #3

A component of a record may be accessed using the notation vl (R). A record value constructed

from individual component values may be synthesized as follows:

(# vl := <expression i>, v2 := <expression 2> .... #)

Logical variables are introduced to serve as arguments to functions and to express logical
formulas or assertions:

x, y, z: VAR vat_type

Local variable declarations also are available in most cases, but it is often clearer to enumerate

variables and their types more globally. Variable declarations apply throughout the containing

theory but no further.

A function is defined quite simply by the following notation:

fn (arg_l, arg_2 .... ): result_type = <expression>

Each of the variables arg_i must have been declared of some type previously. The definition

must be mathematically well-defined, meaning its single result value is a function of the argu-

ments and possibly some constants. No "free" variables are a/lowed within the expression. In

addition, the type of the expression must be compatible with the result type.

Besides fully defining functions, it is possible to declare unspecified functions using the
notation:

fn (arg_l, arg_2 .... ): result_type

In this case, the function's signature is provided, but there is no definition. This is often useful

when developing specifications in a top-down fashion. Also, it may be that some functions wiU

never become defined in the specification, in which case they can never be expanded during a

proof.

One type of expression in PVS is particularly useful for the kind of specifications envisioned

here. This feature, known as a LET expression, allows the introduction of bound variable names

to refer to subexpressions.
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pf_result: TYPE = [# output: pf_outputs, state: pf_state #]

principal_function (pf_inputs, pf_state,

pf_I_loads, pf_K_loads,

pf_constants) : pf_result =

(# output

state

#)

:= <output expression>,

:= <next-state expression>

Figure 5.1: PVS model of a Shuttle principal function.

LET vl = <expression i>, v2 = <expression 2> ....

IN <expression involving vl, v2 .... >

Each of the variables serves as a shorthand notation used in the final expression. The meaning

is the same as if each of the subexpressions were substituted for its corresponding variable.

5.3 Specification Approach

The state machine formalization can be realized using PVS in a variety of ways. One method is

outlined here based on the PVS facility for defining mathematically rigorous functions. It is a

scheme that prescribes an orderly structure for the notation, and allows a systematic progression

from one layer of specification to the next to manage the complexity of detailed requirements
specifications.

5.3.1 Specifying Principal Functions

At the highest level, we would like the specification of a principal function to have the general

form shown in Figure 5.1. This function is an abstract PVS rendering of the state machine model

described in section 5.1. The definition assumes all input and state values have been collected

into the structures pf_inputs and pf ._tate. Additionally, all I-load, K-load, and constant

inputs used by the principal function are collected into similar structures. The pf_.result type

is a record that contains an output component and a next-state component. Each of these

objects is, in turn, a structure containing (possibly many) subcomponents.

The output and next-state expressions in the general form above must describe the effects

of invoking the subfunctions belonging to the principal function. In practice, this can be very

complicated so a stylized method of organizing this information has been devised. It is based

on the use of a LET expression to introduce variable names corresponding to the intermediate

inputs and outputs exchanged among subfunctions.

We begin with several type declarations for the structured data types needed by the scheme.

These types, shown in Figure 5.2, implement the bundling of inputs, outputs, and state variables

discussed earlier. They help define the interface of the principal function being specified. Similar

types are used to model the collective outputs of subfunctions.

The principal function itself can be specified by characterizing its outputs and next-state

values in a systematic manner. A general scheme for doing this is sketched in Figure 5.3. In this
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pf_inputs: TYPE = [#

input_l:

input_2:

input_l_type,

input_2_type,

#]

pf_state: TYPE = [#

state_var_l:

state_var_2:

state_l_type,

state_2_type,

#]

pf_I_loads: TYPE = [#

I_load_l: I_load_l_type,

I_load_2: I_load_2_type,

#]

pf_K_loads: TYPE = [#

K_load_l: K_load_l_type,

K_load_2: K_load_2_type,

#]

pf_constants: TYPE = [#

constant_l: constant_l_type,

constant_2: constant_2_type,

#]

pf_outputs: TYPE = [#

output_l: output_l_type,

output_2: output_2_type,

#]

pf_resul%: TYPE = [# output: pf_outputs, state: pf_state #]

Figure 5.2: State machine interface types.
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principal_func_ion (pf_inputs, pf_s_a_e,

pf_I_loads, pf_K_loads,

pf_constants) : pf_result =

LET

subfun_l_out =

subfunction_l(input_l(pf_inputs),

input_2(pf_inputs), ... ,

state_var_l(pf_sta_e),

staze_var_2(pf_state) .....

I_load_l(pf_I_loads),

I_load_2(pf_I_loads) .....

K_load_l(pf_K_loads),

K_load_2(pf_K_loads), ... ,

constant_l(pf_constants),

constant_2(pf_cons_ants) ....

subfun_2_out =

subfunction_2(input_l(pf_inputs),

input_2(pf_inputs), ... ,

staZe_var_l(pf_state),

state_var_2(pf_state) .....

I_load_l(pf_I_loads),

I_load_2(pf_I_loads) .....

K_load_l(pf_K_loads),

K_load_2(pf_K_loads) .....

constant_l(pf_cons_an_s),

constant_2(pf_constants) .... ,

sf_l_output_l(subfun_l_out),

sf_l_ouZput_2(subfun_l_out) ....

IN

(# output := (# output_l := sf_i_output_j(subfun_i_out),

output_2 := sf_k_output_l(subfun_k_out),

#),

#)

state := (# state_var_l := sf_m_output_n(subfun_m_out),

state_var_2 := sf_p_output_q(subfun_p_out),

#)

Figure 5.3: General form of principal function specification.
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scheme, a LET expression is used to give names to the intermediate data objects produced by

the subfunction invocations. These output variable names can then be accessed in the defining

expressions for the overall principal function output and next-state structures.

Four categories of data are representable using the principal function arguments and the
various LET variables:

1. External inputs to the principal function extracted as individual components of the col-

lection pf_inputs.

2. Previous-state inputs to the principal function extracted as components of the collection

pf_state.

.

.

Data constants used by the principal function extracted as components of the collections

pf_l_loads,pf_K_loads,and pf_constants.

Values representing the individual subfunction outputs extracted as components of the

appropriate collection, subfun_i_out.

Note that a variable introduced using a LET expression may be referenced at any later point in

the LET expression. Thus, a variable may be given a value derived from the values of previously

listed variables within the same LET expression. This feature is used to provide the outputs

of one subfunction as inputs to later subfunctions. In Figure 5.3, for example, the subfunction

outputs are available in LET variables subfun_l_out, subftm_2_out, etc. The jth output of

subfunction i is represented schematically by the expression sf_i_output_j (subfun_i_out).

5.3.2 Specifying Subfunctions

A subfunction specification has the form of a straightforward PVS function definition plus a

data type to achieve the grouping of subfunction outputs. Figure 5.4 shows the schematic form.

The arguments to the function are inputs from one of four possible sources:

1. Principal function inputs passed down to the subfunction.

2. State variables passed down to the subfunction.

3. Data constants passed down to the subfunction.

4. Intermediate results appearing as outputs of other subfunctions.

A subfunction may use any combination of inputs from these sources. These categories are

introduced strictly for the purpose of modeling the underlying software structure. There is

nothing that distinguishes them through their representation in PVS.

Several other aspects of this specification style are noteworthy:

• The subfunction outputs are grouped together using a result type based on a record

structure, but the subfunction inputs are treated individually. An alternative would be

to group both inputs and outputs. Either arrangement is possible. It seems like the

scheme with separate inputs is more direct and more effective at describing the structures

of interconnected subfunctions that are typically encountered.
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subfun_outputs: TYPE = [#

output_l: output_l_type,

output_2: output_2_type,

#]

subfunction (input_l, input_2 .... ): subfun_outputs =

(# output_1 := < output expression 1 >,

output_2 := < output expression 2 >,

#)

Figure 5.4: General form of subfunction specification.

• No special provision is made for state variables at the subfunction level. Next-state values

are included in the list of outputs along with ordinary output values. Their treatment

as state values is handled at the next higher level in the principal function specification.

Again, the alternative scheme for handling this, namely, separating out the next-state val-

ues, is also possible. The method chosen reduces some of the data structure manipulation

that otherwise would be necessary.

• With this scheme and that for the principal function specifications, it is usually unneces-

sary to distinguish previous-state from next-state values using a variable naming conven-

tion. The appropriate role is determined by the context. However, if an input is named

something of the form prey_value in the requirements themselves, we will naturally use

this name to maintain the correspondence.

If the subfunction is to be unspecified, a stub for it may be created by omitting the PVS

function's defining expression:

subfunction (input_l, input_2 .... ) : subfun_outputs

This form would a/low the principai function to be specified in PVS without requiring the full

details of the subfunctions to be provided. Such unspecified functions can be elaborated later
if desired.

Output expressions for the subfunction specifications are simply functional expressions in-

volving the input variables such as:

GPS_off_count + 1

Often the operations will be more complicated and rely on the use of auxiliary functions to

formalize the concepts:

dot_product (vector_l, scalar_muir (alpha, vector_2) )

While the PVS specification language does not have operators like dot product as built-in

language primitives, it is a simple matter to introduce them as user-defined functions. In

this way, it is possible to formalize the relevant concepts and build up whatever operators are
suitable for the task at hand.
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5.4 Theory Organization

Large specifications written in PVS are usually organized into a number of individuM theories.

Each theory is an entity with scoping rules similar to modules or packages in modern program-

ming languages. Types, constants, functions, and a few other PVS constructs may be imported
from other theories through the use of explicit importation directives. This is usuMly done by

importing other theories in their entirety, thereby making all of their symbols visible locally.

Variables, however, are not exportable; they can be used only within a single theory.

The PVS toolset provides various commands for operating on both theories and files. A

PVS specification file may contain more than one theory. Nevertheless, it is generally advisable

to maintain a strict usage convention of having only one theory per file. This approach avoids

unwelcome complications that can arise from working with a collection of multiple-theory files.

No loss of capability is incurred by adhering to this convention.

Several considerations are worth keeping in mind when developing PVS specifications and

organizing them into theories.

1. As in programming, it is natural to develop common theories of types, constants, and

utility functions that may be imported by many other theories. It may be necessary to

structure these as hierarchies to maintain a structure parallel to that of the specification

theories they serve.

2. One theory should be dedicated to the top-level specification for the principal function.

3. Subfunction specifications should be allocated to separate theories. It may be possible to

collect them all into a single theory, especially if they are only stubbed out and not fully

defined, but in the long run it will be worthwhile to separate them.

4. Subordinate functions used to express specifications and imported by several of these

separate theories may occupy a middle position in the theory hierarchy.

5. If the formal specification effort reaches the point of carrying out mechanical proofs,

additional theories need to be included. Such theories are needed to enumerate the var-

ious axioms, lemmas, and theorems required as well as auxiliary support for the proofs

themselves.

5.5 Deviations from CR/FSSR Requirements

In deriving the preceding specification method, we have tried to be faithful to the FSSR method

of expressing requirements. A few deviations and omissions, however, should be noted.

The concept of state variables is not explicitly mentioned in FSSR-style requirements.

Their use has been inferred and a method has been provided for their specification to

make the final requirements more clear.

• No provision was introduced to capture initialization requirements for state variables.

This issue can be handled at the next higher level of modeling.

Conditional assignments in algorithmic requirements occasionally leave variable values

unspecified. We assign default values to such cases in the formal specification when it is
clear that the variable's value is a "don't care."
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• Certainprincipal functioninputs are treatedby the environmentaswrite-onlyvariables
to realizesuchthingsassignalingflags.After readingsucha flag,the principal function
resetsit, whichhasan effecton the environmentbecausethe input is implementedvia
a globalvariable.The principalfunction output tablewill not showthis variableasan
output, however,becauseit is neverreadby the externalenvironment.Nevertheless,to
modelthis situation accuratelya pseudo-outputis providedin theformal specification's
principalfunctioninterfaceto representthe effectof resettingthe externalvariable.

• Similarly,the conversesituationwith principalfunctionoutputsthat aretreatedasread-
only by the environmentcanalsoarise. Suchoutputsaregivencorrespondingpseudo-
inputsto modelany internalreadaccessesthat maybe required.
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Chapter 6

GPS Formal Specifications

This chapter illustrates the formalization approach outlined in Chapter 5 using excerpts from

the GPS formal specifications. Figures 6.1 through 6.6 show the selected excerpts. The full

formal specifications used to model the requirements for the two GPS principal functions contain

over 3200 lines of PVS notation (including comments and blank lines), packaged as eleven PVS

theories. Appendix B contains a complete listing of these theories, as found in the latest

revision of the GPS specifications. The PVS files are also available electronically via either
FTP or WWW:

air 16.larc. nasa. gov :pub/fm/larc/GPS-specs

h_tp ://atb-www. larc. nasa. gov/ftp/larc/GPS-specs

Another directory of interest is

h_ctp://atb-www. larc.nasa. gov/ftp/larc/PVS-library

which containsusefullibrariesof PVS files.

The specificationversionin Appendix B representsthe baselinedrequirementsthat were

approved foruse by the Shuttlesoftwaredevelopment team. Earlierversionsoftherequirements

and theircorresponding PVS specificationswere used to conduct the analyses describedin

Chapter Y.

6.1 Types and Common Operations

Figure 6.1 shows a portion of the vector and matrix utilities needed to formalize operations in

this application domain. Using a parameterized theory such as this made it easy to declare

vectors of reals where the index type differs from one vector type to the next. An alterna-

tive formulation would use the dimensionality, expressed as a natural number, as the theory

parameter. Using a parameterized index type has the advantage of being more general at the

expense of difficulty in expressing constraints derived from dimensiona/ity. The one case where

this arose was the cross product operation, which is only defined for vectors having dimension
three or more.

Figure 6.2 illustrates the declaration of some typical types found in this application. All

the types needed are rather simple and concrete; structured types are all of fixed size. As is

customarily done in PVS, vectors and arrays are represented by function types. Notice how

vectors of various kinds (e.g., MS0_vector) are easily introduced by importing a parameterized
theory.
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vectors [index_type: TYPE]: THEORY

BEGIN

vector: TYPE = [index_type -> real]

i,j,k: VAR index_type

a,b,c: VAR real

U,V: VAR vector

zero_vector: vector = (LAMBDA i: O)

vector_sum(U, V): vector = (LAMBDA i: U(i) + V(i))

vector_dill(U, V): vector = (LAMBDA i: U(i) - V(i))

scalar_mult(a, V): vector = (LAMBDA i: a * V(i))

END vectors

Figure 6.1: Vector operations organized as a PVS theory.

major_mode_code:

mission_time:

GPS_id:

receiver_mode:

AIF_flag:

M50_axis:

IMPORTING

M50_vector:

position_vector:

velocity_vector:

GPS_positions:

GPS_velocities:

GPS_predicate:

GPS_times:

GPS_FOM_vector:

TYPE = nat

TYPE = real

TYPE = {n: nat I I <= n _ n <= 3}

TYPE = {init, test, nay, blank}

TYPE = {auto, inhibit, force}

TYPE = {Xm, Ym, Zm}

vectors[M50_axis]

TYPE = vector[M50_axis]

TYPE = M50_vector

TYPE = M50_vector

TYPE = [GPS_id -> position_vector]

TYPE = [GPS_id -> velocity_vector]

TYPE = [GPS_id -> bool]

TYPE = [GPS_id -> mission_time]

TYPE = [GPS_id -> GPS_figure_of_merit]

Figure 6.2: Selected type declarations.
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6.2 Subfunctions

Figure 6.3 presents one of the subfunctions from GPS Receiver State Processing. The outputs

are bundled together into a single record type and used as the result type for the PVS function
used to model the Shuttle software subfunction. The definition of the PVS function contains a

single expression, a record constructor that gives values for each of the required outputs, cast

in the following form:

(# G_ref_anncd_reset :=

GPS_anncd_reset :=

GPS_anncd_reset_avail :=

R_ref_anncd_rese_ :=

T_anncd_reset :=

T_ref_anncd_reset :=

V_IMU_ref_anncd_reset :=

V_ref_anncd_reset :=

#)

<expression>

<expression>

<expression>

<expression>

<expression>

<expression>

<expression>

<expression>

In this case, all the expressions are structured objects with GPS_id as the index type. Therefore,

lambda-expressions with the variable I ranging over GPS_id are used to construct suitable values.

To further illustrate the approach, consider the following example:

(LAMBDA I: IF GPS_DG_SF(I) THEN R_GPS(I) ELSE null_position ENDIF)

Because this term is a lambda-expression it evaluates to a function from {1, 2, 3) to position

vectors. For GPS receiver I, if its "data good" flag is set (GPS_DG.SF(I) holds), then the

position value R_GPS (I) derived from the input R_GPS is the resulting value, otherwise a default

position value is used.

In several cases, the subfunction requirements are fairly complex and it was necessary to

introduce intermediate PVS functions to decompose the formalization. While this is a natural

thing to do, it does cause some loss of traceability to the original requirements. Clarity and

readability were judged more important, however, and such decompositions were introduced

as needed. A consistent decomposition scheme helped make the use of such intermediates as

transparent as possible.

6.3 Principal Functions

Figure 6.4 shows the method of modeling principal function interfaces as records of individual

values corresponding to Shuttle program variables. Because the interfaces at this level are quite

broad, some of these lists become moderately long, on the order of 20 or 30 elements. In reality,

these inputs and outputs are not actually "passed" in any programming language sense during

execution; they are usually accessed as global variables and thus can be thought of as having the

semantics of "call by reference." Consequently, our formalization must necessarily be viewed

as a model of the software structure, and in some cases there are unpleasant artifacts of the

difference between the model and the real system3

aFor example, when output variables are to be updated conditionally, the requirements often fail to specify
their values in the "else" cases. In practice, these variables would retain their previous values, while in the formal
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ref_state_anncd_reset_out: TYPE

G_ref anncd_reset:

GPS_anncd_reset:

GPS_anncd_reset_avail:

R_ref_anncd_reset:

T_anncd_reset:

T_ref_anncd_reset:

V_IMU_ref_anncd_reset:

V_ref_anncd_reset:

#3

= [#

GPS_accelerat ions,

GPS_predicat e,

GPS_predicate,

GPS_positions,

GPS_times,

GPS_times,

GPS_velocities,

GPS_velocities

ref_state_announced_reset(DT_anncd_reset:

G_two:

GPS_DG_SF:

GPS_SW_cap:

R_GPS:

T_anncd_reset:

T_current_filt:

T_GPS:

V_current_GPS:

V_GPS:

)

delta_time,

GPS_accelerations,

GPS_predicate,

num_GPS,

GPS_positions,

GPS_times,

mission_time,

GPS_times,

GPS_velocities,

GPS_velocities

: re__state_anncd_reset_out =

(# G_ref_anncd_reset :=

(LAMBDA I: IF GPS_DG_SF(I) THEN G_two(I) ELSE null_acceleration ENDIF),

GPS_anncd_reset :=

(LAMBDA I: GPS_DG_SF(I) AND

(T_current_filt - T_anncd_reset(I) > DT_anncd_reset)),

GPS_anncd_reset_avail := GPS_DG_SF,

R_ref_anncd_reset :=

(LAMBDA I: IF GPS_DG_SF(I) THEN R_GPS(I) ELSE null_position ENDIF),

T_anncd_reset :=

(LAMBDA I: IF GPS_DG_SF(I) AND

(T_current_filt - T_anncd_reset(I) > DT_anncd_reset)

THEN T_current_filt

ELSE null_mission_time

ENDIF),

T_ref_anncd_reset :=

(LAMBDA I: IF GPS_DG_SF(I) THEN T_GPS(I) ELSE null_mission_time ENDIF),

V_IMU_ref_anncd_reset :=

(LAMBDA I: IF GPS_DG_SF(I)

THEN V_current_GPS(I)

ELSE null_velocity

ENDIF),

V_ref_anncd_reset :=

(LAMBDA I: IF GPS_DG_SF(I) THEN V_GPS(I) ELSE null_velocity ENDIF)

#)

Figure 6.3: Sample subfunction of Receiver State Processing.
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rec_sp_inputs: TYPE = [#

crew_deselect_rcvr:

FOM:

GPS_predicate,

GPS_FOM_vector,

V_GPS_ECEF :

V_Iast_GPS :

#]

GPS_velocities_WGS84,

GPS_velocities

rec_sp_state: TYPE = [#

G_two_prev:

GPS_DG_SF_prev:

GPS_accelerations,

GPS_predicate,

V_last_GPS_sel :

V_last_GPS_two :

#]

velocity_vector,

velocity_vector

rec_sp_I_loads: TYPE = [#

alt_SF:

ang_SF:

nonzero_real,

nonzero_real,

SF_vel:

sig_diag_GPS_nom:

#]

nonzero_real,

coy_diagonal_vector

rec_sp_K_loads: TYPE = [#

acc_prop_min: real,

GPS_SW_cap: num_GPS

#]

rec_sp_constants: TYPE = [#

ATFL_0V : nat,

deg_to_r ad : real,

nautmi_per_ft : real

#]

rec_sp_outputs: TYPE = [#

corr_coeff_GPS:

crew_des_rcvr_rcvd:

corr_coeff_vector,

GPS_predicate,

V_IMU_ref_an_ncd_reset : GPS_velocities,

V_ref_axmcd_reset : GPS_velocities

#3

rec_sp_result: TYPE = [# output: rec_sp_outputs, state: rec_sp_szate #]

Figure 6.4: Principal function interface types.
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Figures 6.5 and 6.6 depict the top-level structure of the GPS Receiver State Processing
model. Its interface types are given by the declarations shown in Figure 6.4. Its body has the

following form:

LET sf_l_out = subfun-l(...),

IN

sf_n_out = subfun-n(...)

(# outpuZ := (# ... #),

state := (# ... #)

#)

Each local variable assignment of the LET-expression represents the invocation of a subfunction

and the storage of its intermediate results. Components of these local variables can be used

directly as principal function outputs or passed to later subfunctions on the list. The final ex-

pression denotes the ultimate principal function result, which has the form of a record of output

values plus state values. Each of these two is itself a record object having many components.

6.4 Organization and Statistics

PVS declarations must be grouped into theories. The nature of the GPS CR and the Shuttle

software application suggest a theory organization centered on the principal function as the

main architectural unit. Each principal function can then be presented in three PVS theories:

1. Types and operations. These would include unspecified functions to denote support oper-

ations appearing elsewhere in the Shuttle software hierarchy.

2. Sub functions. Included would be each of the subfunctions modeled to whatever level of

detail is considered appropriate.

3. Principal function. The top-level structure of the principal function, including all the

interface variables, would appear here.

This is the basic organization we have followed_ except that the subfunctions for Receiver State

Processing were too complex to fit comfortably into a single theory, so that one theory was
expanded into three.

At the next higher level of aggregation, the GPS specifications were organized into the
following three groups of PVS theories:

1. Common theories. These consist of three short theories used to model vector and matrix

operations needed to express GPS processing.

2. GPS Receiver State Processing. Five theories were used to represent this principal function
and its types and subfunctions.

specification they would be equated with default values, as discussed in Section 5.5. As long as the variables in

question are considered "dead" under the "else" conditions, there should be no serious consequences. One must

a/ways be aware of such modeling artifacts, however, to ensure that they cause no distortions during analysis.
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GPS_receiver_state_processing(rec_sp_inputs: rec_sp_inputs,

rec_sp_state: rec_sp_state,

rec_sp_I_loads: rec_sp_I_loads,

rec_sp_K_loads: rec_sp_K_loads,

rec_sp_constants: rec_sp_constants

) : rec_sp_result =

LET IMU_assign_out =

IMU_assign(

GPS_installed

GPS_SW_cap

nav_IMU_to_GPS

V_current_filt

V_last_GPS_two

(rec_sp_I_loads),

(rec_sp_K_loads),

(rec_sp_inputs),

(rec sp_inputs),

(rec_sp_state)),

nay_state_prop_out =

naY_state_propagation(

G_two_prev

GPS_DG

(rec_sp_state),

(rec_sp_inputs),

V_last_GPS_prev

V_last_GPS_sel

(IMU_assign_out),

(rec_sp_state)),

SV_qual_assess_out =

state_vector_quality_assessment(

G_two (nay_state_prop_out),

GPSDG_SF (nay_state_prop_out),

V_GPS

V_GPS_prev

(nay_state_prop_out),

(nay_state_prop_out)),

state_vect eel_out =

state_vector_selection(

corr_coeff_GPS_nom

crew_deselect_rcvr

V_GPS

V_GPS_sel

(rec_sp_I_loads),

(rec_sp_inputs),

(nay_state_prop_out),

(nay_state_prop_out)),

ref_st_ann_reset_out =

tel_state_announced_reset(

DTanncd_reset (rec_sp_I_loads),

G_two (nay_state_prop_out),

V current_GPS (IMU_assign_out),

V GPS (nay_state_prop_out)),

Figure 6.5: Principal function specification.

31



GPS_downlist_out =

GPS_downlist_computation(

alt_SF (rec_sp_I_1oads),

ang_SF (rec_sp_I_loads),

T_GPS_sel (state_vect_sel_out),

V GPS_sel (state_vect sel_out) )

IN (# output := (#

corr_coeff_GPS := corr_coeff_GPS (state_vect_sel_out),

crew_des_rcvr_rcvd := crew_des_rcvr_rcvd (state_vect_sel_out),

V_IMU_ref_anncd_reset :

V_IMU_ref_anncd_reset (ref_st_ann_reset_out),

V_ref_anncd_reset := V_ref_anncd_reset (ref_st_ann_reset_out)

#),

#)

state := (#

G_two_prev

GPS_DG_SF_prev

V_last_GPS_sel

V_last_GPS_two

#)

:= G_two_prev

:= GPS_DG_SF_prev

:= V_last_GPS_sel

:= V_last_GPS_two

(SV_qual_assess_out),

(SV_qual_assess_out),

(nay_state_prop_out),

(nav_state_prop_ou_)

Figure 6.6: Principal function specification (cont'd).

3. GPS Reference State Processing. Three theories were used to represent this principal
function and its types and subfunctions.

The two principal functions had types in common that could have been factored out of the type

theories as written. Future versions of the specifications may incorporate additional common-

ality along these lines.

Table 6.1 presents summary statistics on the PVS theories found in Appendix B. The figures
in this table are raw line counts and character counts. No attempt has been made to subtract

out blank lines and comments. Note that there is no generally accepted measure of formal

specifications corresponding to the "lines of code" metric commonly used for programming
language source code.
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Theory Name Line Count Character Count

rec_sp_types

rec_sp_subfuns_l

rec_sp_subfuns_2

rec_sp_subfuns_3

rec_sp_pf

275

347

876

230

483

8278

12872

35282

9773

22591

SubtotMs 2211 88796

ref_sp_Zypes 118 3382

ref_sp_subfuns 541 21598

ref_sp_pf 285 12135

SubtotMs 944 37115

vectors 50 1274

matrices 31 757

maZrix_mult 18 353

Subtot_s 99 2384

TotMs 3254 128295

Table 6.1: Summary statistics for PVS theories.
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Chapter 7

Analysis Results

Analysis results from the GPS case study are summarized below. The two main activities

of constructing PVS specifications and identifying potential requirements issues are discussed.

On balance, the outcome suggests a positive outlook for formal methods as a requirements

analysis technique. Some Shuttle requirements analysts are optimistic about the potential

impact of formal methods, while others in the Shuttle community became curious about the

potential benefits of formalization and expressed interest in learning more. In particular, during

requirements inspections some of the requirements authors from Draper Laboratory were asking
how we uncovered so many issues.

7.1 Phasing of Specifications with CR Schedule

Initially, the relevant portions of the CR were analyzed to determine the basic structure of the

principal functions and how they are decomposed into subfunctions. Based on this organization,

a general approach for modeling the functions and expressing the formal specifications in PVS

was devised. A preliminary working document on this prescribed technique for writing formal

specifications for the GPS CR was drafted and formed the basis of Chapter 5.

Next, the interfaces of the principal functions and their subfunctions were carefully scru-

tinized. Particular emphasis was placed on being able to identify the types of all inputs and

outputs, and to match up a_ the data flows that are implicit in the tabular format presented

in the requirements. While conducting this anMysis and preparing to write the formal specifi-

cations, various minor discrepancies were detected in the CR and these were reported to Loral

(now Lockheed Martin) requirements analysts.

A set of preliminary formal specifications was developed for the principal functions known

as GPS Receiver State Processing and GPS Reference State Processing, using the language of

PVS. Assumptions were made as needed to overcome the discrepancies encountered. Enough

detail was provided in the formal specifications to characterize the functions with high precision.

In parallel with this activity, several requirements analysts had been learning formal methods

and PVS and positioning themselves to carry out this work after the trial project was finished.

Formalization of the two principal functions in PVS has been completed and revised three

times to keep up with requirements changes. Because of the breadth of this CR, convergence
has been slow. Requirements changes have been frequent and extensive as the CR was worked

through the review process. Our initial formal specification was based on a preliminary version

of the CR, before the two-phase implementation plan (single-receiver followed by three-receiver)
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wasadopted. Subsequentversionswerewritten to model the single-stringGP$ CR and its
modifications.

PVS versions were written for Mod B, Mod D/E and Mod F/G of the CR. This activity took

place over a four-month period. Each modification was followed by a requirements inspection,

accompanied by various issues written against the corresponding version of the CR. Some, but

not all, of the responses to these issues would be incorporated into the following modification.

Significant requirements changes were still being inserted at each of these modification stages.

7.2 Issues Identified through Formal Methods

The formal modeling step demonstrated that it is not difficult to bring the precision of for-

malization to bear on the type of requirements we examined. Expressing the requirements in

the language of an off-the-shelf verification methodology was straightforward. We found PVS

effective for this purpose; we feel other formal languages would also fare well. The higher-order

logic features of PVS proved to be useful, although not strictly necessary because of the concrete

nature of the GPS requirements. A less expressive language, such as one based on first-order

logic, could have been used with only a small loss of elegance.

This much was unsurprising. What was more of a pleasant discovery was the number of

problems found in the requirements as a simple consequence of carrying out the formalization.

While many have claimed this as a benefit of formal methods, we can offer another piece of

anecdotal evidence to support it. All of the errors identified so far have been due to carrying the

analysis only to the point of typechecking. It was also our intention to take up some theorem

proving as well, but this has had to wait for the requirements themselves to reach a firmer state

of convergence.

7.2.1 Types of Requirements Issues

Feedback from requirements analysts indicated our approach was helpful in detecting three

classes of errors normally tracked by the Shuttle program:

• Type 4 -- requirements do not meet CR author's intent.

• Type 6 -- requirements not technically clear, understandable and maintainable.

• Type 9 -- interfaces inconsistent.

An example of Type 4 errors encountered in the CR is omission due to conditionally updating

variables. Suppose, for example, one branch of a conditional assigns several variables, leaving

them unassigned on the other branch. The requirements author intends for the values to be

"don't cares" in the other branch, but occasionally this is faulty because some variables such

as flags need to be assigned in both cases. Similar problems encountered are those due to

overlapping conditions, leading to ambiguity in the correct assignments to make.

Examples of Type 9 errors include numerous, minor cases of incomplete and inconsistent

interfaces. Missing inputs and outputs from tables, mismatches across tables, inappropriate

types, and incorrect names are all typical errors seen in the subfunction and principal function

interfaces. Most are problems that could be avoided through greater use of automation in the

requirements capture process.
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Issue Severity Mod B Mod D/E Mod F/G Totals

High Major

Low Major

High Minor
Low Minor

1

7

19

8

0

3

40

0

0

0

6

2

Totals 35 43 8

1

10

65

10

86

Table 7.1: Summary of issues detected by formal methods.

7.2.2 Summary Statistics

All requirements issues detected during the formalization were passed on to Loral (now Lock-

heed Martin) representatives. Those deemed to be real issues, that is, not caused by the

misunderstandings of an outsider, were then officially submitted on behalf of the formal meth-

ods analysis as ones to be addressed during the requirements inspections. Severity levels are

attached to valid issues during the inspections. This allowed us to get "credit" for identifying
problems and led to some rudimentary measurements on the effectiveness of formalization.

Table 7.1 summarizes a preliminary accounting of the issues identified during our analysis.

The issues are broken out by severity level for the three inspections of the CR that took place.

A grand total of 86 issues were submitted for the three inspections. Of these issues, 72 of the

86 were of Type 9 (interfaces inconsistent). The rest were primarily scattered among Type 4

(requirements do not meet CR author's intent) and Type 6 (requirements not technically clear,

understandable and maintainable). Appendix A lists the issues summarized by Table 7.1.

The meaning of the severity categories used in Table 7.1 is as follows:

1. High major -- Cannot implement requirement.

2. Low major -- Requirement does not correctly reflect CR author's intent.

3. High minor -- "Support" requirements are incorrect or confusing.

4. Low minor -- Minor documentation changes.

As can be seen by these results, the added precision of formalization used early in the
lifecycle can yield tangible benefits. While many of these issues could have been found with

lighter-weight techniques, the use of formal specifications can detect them and leave open the

option of deductive analysis later on. Thus, these results by themselves suggest a potential

boost from the use of formal methods plus the promise of additional benefits if proving is
ultimately attempted.

It is worth noting that most errors detected in the CR during the formalization exercise

were not directly found by typechecking or other automated analysis activity, but were detected

during the act of writing the specifications or during the review and preparation leading up to

the writing step. Additional problems were found during the typechecking phase as well. When

we reach the point of modeling higher level properties and carrying out proofs, we expect to see

fewer errors still. This is consistent with general observations practitioners have made about

inspections and reviews. Light-weight forms of analysis applied early detect more problems and

detect them quickly, but they are usually superficial. As more powerful analysis methods are
introduced, we find more subtle problems, but they tend to be less numerous.
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Chapter 8

Assessment of Impact

The GPS FM Task represents an application of formal methods to requirements analysis on a

substantial new capability to be added to the Shuttle flight software (FSW). The size of the CR

for just the first phase of implementation (single GPS receiver) exceeds 1000 pages. Because

of the size and number of subsystems involved, as indicated in Figure 4.1, this application is

one of high complexity. While the GPS FM task was scoped to two principal functions, it was

sufficiently broad to constitute a true test of formal methods within a large new Shuttle FSW

development activity.

8.1 Comparison with Existing Requirements Analysis Process

Building formal specification models in PVS for the GPS Receiver State Processing and GPS

Reference State Processing principal functions helped Shuttle Requirements Analysts to ad-

dress the process deficiencies identified in Section 3.2.2. The technical approach to building a

formal model described in Chapter 5 imposed a method for conducting requirements analysis

on each principal function. Defining the inputs, outputs and state variables at the principal

function as well as subfunction levels, combined with PVS type checking, helped our Shuttle

FM RA team identify many interface issues. As can be seen in Appendix A, the overwhelming

majority of issues submitted by the team were interface issues. Moreover, expressing function

internal logic and algorithms helped the team identify some consistency and completeness issues

in the CR requirements. While the building of a formal specification cannot be construed as

a full methodology for requirements analysis, the process did allow our FM RA team to me-

thodically investigate interfaces and logical conditions within the functions. The team's ability

to surface issues was noticed by other Shuttle community members at the three major GPS

CR requirements inspections held from May through September of 1995. Specifically, the CR

authors at Charles Stark Draper Laboratory expressed interest in our team's application of
formal methods to the GPS CR.

While currently unable to quantify a completeness measure for RA using formal methods,

the team believes FM can help establish a greater degree of confidence in its completeness.

Typechecking by PVS of constants, variables, and inputs and outputs across function definitions

helped establish a high degree of confidence in the consistency and completeness of interfaces.

Though not pursued during this task, the team also believes defining properties and proving

them as indicated in Chapter 9 would build confidence in the consistency and completeness of

logical formulations in the CR. Having proven properties in some areas of the CR might also
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allowtestingto focusin otherareas.
A key advantageof usingformalmethodsduring requirementsanalysisis havinga formal

specificationmodelas a product of the analysis.The formalmodel,alongwith assumptions
and rationaledefinedduring its development,serveto documentthe resultsof the analysis.
Furthermore,themodelprovidesa basisfromwhichto continueanalysis,particularlyoffurther
requirementschanges.The modelcanbe updatedand typechecked,newpropertiescanbe
established,andold propertiesre-established.

8.2 Benefits vs. Cost from a Shuttle Community Perspective

From a Shuttle Requirements Analyst's perspective, the major benefit of formal methods is in

improving the requirements analysis process, as discussed in Section 8.1. A further potential

benefit is the indication that FM helped to identify errors earlier in the process. Because of

the complexity of the GPS CR, a series of inspections was necessary over a six month period

to completely evaluate the CR. An analysis of FM issues after the first inspection revealed,

however, that of 28 issues submitted, only four of them would have been found at that time

by conventional means. Most certainly many of these errors would have been detected at

subsequent inspections. But this analysis is a clear indication that formal methods added rigor

to the process of requirements analysis so that errors could be more easily uncovered.

Our RA team for the GPS FM task found that building formal specification models helped

considerably in focusing on the requirements for the GPS software subsystem. In contrast, the

FSSR change pages contain a high degree of design detail as well as requirements because of

the nature of the FSSRs themselves, tending to obscure the requirements. Therefore, formal

specification models offer a major potential benefit from a Shuttle community perspective by

serving as working requirements models. The models can serve as a means of communication

between Lockheed Martin RAs and Shuttle community members on assessing contemplated

requirements changes and evaluating pending changes.

On the the cost side, our Shuttle GPS RA team found training in formal methods is a

prerequisite. Because of the background needed in mathematical logic to apply the formal

methods approach to building models, some analysts may have difficulty in relating to these

types of models. A novice team working on a complicated system such as the Shuttle GPS

software subsystem may also have difficulty in building a formal model. We recommend that

an expert in formal methods and tools be retained as either a consultant or member of the team.

From the team's experience with the GPS CR, we recommend establishing a priori analysis

objectives to be achieved with the formal methods model, as these objectives will drive how to
formulate the model.

Our GPS experience seems to indicate that systems with either many logical decisions or

a number of interacting functions are well suited to a formal methods approach. While there

likely are other types of systems that are well suited, we also recognize there may be some

systems, e.g., a system implementing a well-defined and well-understood numerical algorithm,

that are not well suited. Nevertheless, our experience on the GPS pilot task as well as other

Shuttle pilot tasks indicates there are many areas in the Shuttle software where formal methods

would provide the long term benefits described above at a reasonable cost.
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Chapter 9

Recommendations for Future Work

Due to the iterations needed for the GPS requirements to stabilize, only the basic formalization

step and several revisions were carried out during the case study. Several logical continuations

are possible from this point of departure. Suggested courses of action are indicated below.

9.1 Maintaining Formal Specifications

Given the work already performed to formalize the GPS requirements, the most straightfor-

ward continuation is simply to maintain the existing PVS specifications in the face of regular

updates. This should involve only minimal effort, assuming that the requirements do not un-

dergo significant change. And if they do, the extra effort required to update the specifications

may be well worth it if it leads to a more definitive evaluation of the impact of changes. The

anticipated migration to the three-receiver GPS CR is an example of a moderate specification

update that should contribute to an assessment of the full-up CR.

With a formalized version of the baselined requirements available, several benefits immedi-

ately accrue. By maintaining current PVS specifications of the CR, many effects of requirements

changes can be evaluated directly, especially during early stages of software design before an im-

plementation is available. Consider, for example, a requirements change that involves deleting

several interface variables and adding several others. Reflecting those changes in the PVS spec-

ifications and typechecking again can be carried out quickly by analysts familiar with the PVS
formulation. Immediately detectable would be several classes of errors such as omissions from

interface tables, type mismatches, inappropriate operations on new variables, and processing
steps still referring to deleted variables.

Another benefit is simply having a machine-readable form of the requirements at hand.

Many exploratory questions can be answered simply by searching the PVS specification files

for occurrences of any identifiers of interest. Auxiliary information about the requirements can

be constructed from these specifications and maintained as well. Such information can include

metrics about various aspects of the requirements and their interrelationships. Indexes and

cross references are also readily constructed from the PVS theories, some of which are already
available from the built-in PVS commands.

Finally, we expect the formalized requirements to be useful during system testing. The PVS

theories could play a role in resolving requirements ambiguities that may arise during testing,

either during the selection of test cases or in the interpretation of anomalous test results. While

the requirements as expressed in PVS specifications may not turn out to be the ones originally
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intended, their more precise expression in PVS should aid in the search for the cause of failed

test cases. Testing may be further focused if various system properties can be established, as

elaborated in the next section.

9.2 Formulating High-Level Properties

In addition to specifications that capture the functionality of principal functions, often it is

desirable to formalize abstract properties about the long-term behavior of software subsystems.

Formulating such properties is a way of assuring that certain critical constraints on system

operation are always observed. It allows us to reason in a "longitudinal" manner by expressing

what should be true about software behavior over time rather than merely what holds at the

current step. The specification framework sketched here can be extended easily to accommodate

property-oriented assertions. Coupling this technique with theorem proving would provide a

powerful means of analyzing the requirements for adherence to key system-level operating goals.

A logical next step in the application of formal methods to GPS would be to identify

and formalize important behavioral properties of the processing of GPS position and velocity

vectors. In particular, the feedback loop shown in Figure 4.1 involving the principal functions

Receiver State Processing and Reference State Processing is fertile ground for investigation.

Proving that suitable properties hold would offer a powerful means of further shaking out the

requirements.

Expressing behavioral properties and constraints in PVS is readily accomplished using the

specification language features. Let us consider one possible method based on the following

declarations for the trace concept:

trace_record: TYPE =

[# input: pf_inputs, output: pf_outputs, state: pf_state #]

trace: TYPE = [nat -> trace_record]

This kind of trace is an infinite sequence of records < H0, H1,... > representing one possible

history of events for the principal function in question. Formulation as a finite sequence is

possible as well. The value Hi records the output and next state produced by the principal

function during its ith execution, given that it receives the input found in Hi and has the

previous state found in H_-I. H0 is used to specify the initial state.

WeU-formedness conditions on traces are easily constructed:

valid_trace(H: trace, PF: principal_function): bool =

valid_initial_state(state(H(O))) AND

(FOKALL i: LET step = PF(inpu_(H(i+l)), state(H(i)),

I_loads, K_loads, constants)

IN output(H(i+l)) = output(step) AND

state(H(i+l)) = state(step) )

It may also be necessary to impose constraints on inputs, state values, and constants to char-

acterize well-formedness. Such conditions are simply added to the valid_trace predicate.

Now properties may be expressed as predicates over traces:
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(FORALL (H: trace): valid_trace(H, PF) => property(H))

Properties expressed in this way could take one of several forms depending on what type of

relationship among trace records is desired:

1. (FORALL i: P(H(±)))

This form imposes the predicate P on each trace record in isolation. This would be

appropriate for specifying an invariant of the principal function's operation. Each output-

state pair must satisfy the condition without reference to any earlier trace elements. A

typical use would be expressing how important variables should be related to one another.

Flag variables, for example, often need to satisfy mutual exclusion and this would be a

good place to express that constraint.

2. (FORALL i: P(H(i)) => Q(H(i), H(i+l)))

A second form compares successive pairs of trace records. This might be used to char-

acterize valid state transitions,sequencing properties, proper reaction to transients and

mode changes, and plausibilitychecks on elaborate computations. Here the predicate P

is used to select when 0 should apply, or alternatively,to rule out comparisons at the

beginning and at transitionsthat need to be exempt from the constraints.

3. (FORALL i: P(H, i))

A third form is used to compare the current trace record to the entire sequence of records

that preceded it. P typically would be defined as a function recursive in the variable i.

Uses for this form include expressing comprehensive sequencing requirements, cumulative

execution effects, and desired cyclic behavior.

Clearly, other forms of property formulation are possible. Note that properties such as these

are usually proved with some form of mathematical induction. It is often necessary to state a

more comprehensive property than desired so that the induction hypothesis is strong enough

to complete the proof.

Given the preceding definitions, consider an example to illustrate the formulation of prop-

erties. Suppose we wish to express a feasibility cricerion on selected GPS state vectors. In

particular, suppose we want to ensure that a newly selected state vector does not deviate too

far from the one previously selected. The physics of Shuttle flight dictate how much change in

position and velocity are possible over a short time interval. If we just stipulate that differences

between adjacent state vectors are within suitable upper bounds, then we can use the result-

ing property to establish that no wildly errant state vectors will be transmitted by the GPS

subsystem.

Figure 9.1 shows how we might formulate this idea in PVS. A few simplifications have been

assumed for this illustration, namely, that a selected state vector is available each time, and

no conditions exist that might disqualify a state vector from consideration. In actual use, such

conditions would need to be factored into the predicates.

9.3 Opportunities for Deductive Analysis

Expressing high-level properties of the form suggested in the previous section offers another

valuable means of analyzing requirements. Just as with the specification of functionality itself,
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valid_pair(Hl, H2: trace_record): bool =

feasible_delta(sel_state(output(H1)), sel_state(output(H2)))

feasible_delta(SVl, SV2: state_vector): bool =

time(SV2) - time(SV1) <= near_time_limit IMPLIES

vector_mag(vector_diff(position(SV2), position(SVl)))

<= max_position_delta AND

vector_mag(vector_diff(velocity(SV2), velocity(SVl)))

<= max_velocity_delta

Figure 9.1: Sample behavioral property for GPS Receiver State Processing.

the act of formalizing behavioral properties can often lead to the detection of errors without

even attempting to prove them. Formulating invariaats and other constraints forces attention

on certain aspects of system behavior and how they must be realized. By writing them down,

one often notices cases that may not be addressed properly or areas of processing that look

insufficiently elaborated.

Nevertheless, the most benefit to be obtained from formal methods comes from the proof

of important system properties. Constructing a proof leads to additionai scrutiny being placed

on the area under study. By shining the strong light of mechanical theorem proving in the

dark corners of a specification, it is possible to reveal flaws that might escape detection even by

extensive test procedures. Conversely, once the proof of a property has been established, high

confidence in that aspect of system behavior is justified based on the strong evidence of logical
deduction.

PVS provides a powerful mechanical prover for carrying out such deductions. Using it

successfully requires more experience than needed to write specifications. Once a comfortable

level of proficiency in specification writing has been achieved, further analyses based on proof

techniques may be explored. It is best to start with modest undertakings and proceed gradually

to more ambitious proof attempts. Effective prover use requires a good understanding of how

to attack the proof activity methodically and decompose the effort into manageable pieces.

One aspect of using a prover that may not be apparent is the need to carefully structure

formal specifications to facilitate proving. Prover performance is sensitive to the complexity of

specification expressions. While the typechecker may be able to cope with a certain level of

complexity, the prover's performance can degrade significantly when presented with expressions

containing many terms. The solution is to introduce intermediate function definitions and

supporting lemmas that make deduction steps small enough that the prover is not trying to
handle too many details at once.

The GPS specifications developed during the case study have not been organized to enhance

theorem proving. Emphasis was placed on fidelity to the CR requirements. Repackaging of the

specifications will probably be necessary before embarking on an extensive proof campaign.

The one area likely to need attention is the use of long lists of inputs for the various specifi-

cation functions. Some grouping of the inputs using record types may be advisable so fewer

separate arguments appear. A similar grouping of output and state variable lists may also be

helpful. These are already specified using record types, but additional grouping into hierarchies

of records should be considered. This would reduce the number of components in the large

record types and improve the prover's performance during simplification steps. Experimental
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modificationssuchasthesemaybedonegraduallyto determineif andto whatextentthey are
needed.
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Chapter 10

Conclusions

Experience with the GPS effort showed that the outlook for formal methods in this requirements

analysis domain is quite promising. PVS has been used effectively to formalize this application,

and the state machine specification approach should be easy to duplicate for other areas. There

are good prospects for continuation of the effort by Lockheed Martin personnel. Some Shuttle

RAs are optimistic about the potential impact of FM. Although the specification activity was

assisted by tools, doing manual specification is also feasible here, albeit with reduced benefits.

PVS provides a formal specification language of considerable theoretical power while still

preserving the syntactic flavor of modern programming languages. This makes the specifications

fairly readable to nonexperts and makes their development less difficult than might otherwise

be the case with specification languages whose features are more limiting. The scheme detailed

here leads to specifications that RAs and others from the Shuttle community can and did

learn to read and interpret without having to become PVS practitioners. Moreover, the mere

construction of formal specifications using this method can and did lead to the discovery of

flaws in the requirements. Future efforts can use the specifications as the foundation for more

sophisticated analyses based on the use of formal proof. This additional tool provides the means

to answer nontrivial questions about the specifications and achieve a higher level of assurance
that the requirements are free of major flaws.

An additional (longer term) possibility is for the requirements authors themselves to use

formal specifications in writing the original requirements. This approach would offer the advan-

tage of more rigor from the outset, eliminating the more trivial requirements issues identified

in this study. Requirements analysts could then concentrate fully on more substantial issues,

making better use of their time and effort. Using their time to conduct deductive analyses, for

example, becomes more feasible under this scenario.

The methods outlined for formally specifying requirements were devised to meet the needs

of the chosen CR. They are methods having fundamental utility that should lend themselves

to other avionics applications. Tailoring a scheme for other uses or fine tuning it for the

intended CR is easily accomplished. Alternative specification styles could readily be adopted.

Experience in using the methods on real-world applications will help determine what direction
future refinements should take.

Finally, it is worth considering how formalizing requirements would help overcome the de-

ficiencies cited earlier for the current requirements analysis process:

1. There is no methodology to guide the analysis.
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Formalmethodsoffer rigorousmodelingand analysistechniquesthat bring increased
precisionanderrordetectionto the realmof requirements.

2. There are no completion criteria.

Writing formal specifications and conducting proofs are deliberate acts to which one can

attach meaningful completion criteria.

3. There is no structured way for RAs to document the results of their analysis.

Formal specifications are tangible products that can be maintained and consulted as

analysis and development proceed. When provided as outputs of the analysis process,

formalized requirements can be used as evidence of thoroughness and coverage, as defini-

tive explanations of how CRs achieve their objectives, and as permanent artifacts useful

for answering future questions and addressing future changes.

While other methods could address these deficiencies to varying degrees, the theoretical power

of mathematical models justifies the initial investment needed to create them.
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Appendix A

Issues Uncovered

The following is a list of the requirements issues surfaced during the GPS case study. These

issues were submitted during the officia/requirements inspection process and have been used

to revise and correct the actual GPS CR. A summary of the issues and a discussion of their

significance appear in Chapter 7. Note that the issue titles in the following list were truncated

by the database report generator when the list was created.

ISSUE TRACKING REPORT 11/16/95

SEARCH FOR IDENTIFIER=91051, SOURCE=FORMAL

SORT BY ISSUE TYPE, ISSUE SEVERITY,

i TRACKING i TITLE IISSUEI ISSUE i ISSUE i PF I ISSUE J

]IDENTIFIER { { NUM { SOURCE _ SEVERITY } { TYPE {

.........................................................................................

91051B

91051B

91051B

91051B

91051B

91051B

91051B

91051G

91051E

91051E

91051E

91051E

91051E

91051B

91051B

910518

91051B

91051B

910518

910518

91051B

910518

NO VARIABLE CROSS REFERENCE 049 FORMAL MTH HMINOR

GPS_RCVR_STATUS TESTED INST 345 FORMAL MTH HMAJOR

'OR' IN CONDITIONAL STATEME 340 FORMALMTH LMAJOR

GPS_RCVR_ANNCD_RESET TESTED 358 FORMALMTH LMAJDR

LAST SENTENCE OF PARAGRAPH 617 FORM_LMET LMAJOR

FOM_SV_SEL 053 FORMALMTR LMAJOR

GPS_RCVR_A_NCD_RESET TEST U 359 FORMALMTR LMINOR

R_GPS_PREV, V_GPS_PREV INPU 334 FORMAL MET HMINOR

NAUTMI_OER_FT INCORRECTLY R 209 FORMAL HTH HMINOR

DELTA_RATIO_SV_SEL_STAT INC 206 FORMALMTH HMINOR

GPS_DELV_QA3(1) TESTED AGAI 191 FORMAL MTH LMAJOR

OA_OVERRIDE INCORRECTLYREF 182 FORMALMTH LMAJOR

NUM_GPS_SEL TESTED AGAINST 183 FORMAL MTB LMAJOR

TABLE 4.3.3.5-1 CHANGES 054 FORMAL MTH RMINOR

INCORRECT OUTPUT DESTINATIO 052 FORMAL MTH HMINOR

ADD CONSTANT GO TO TABLE 4. 051 FORMALMTH HMINOR

TABLE 4.3.3.2-1 SOURCE OF V 048 FORMALMTH RMINOR

FILT_RESTART_DISPLAY IS AN 616 FOKMALMET RMINOR

GPS_INIT_REQUEST SHOULD BE 361 FORMALMTH RMINOR

GPS_MODE NOT NEEDED IN TABL 360 FOKMALMTH RMINOR

R_AVGG AND V_AVGG MISSING F 354 FORMALMTH HMINOR

G_GPS HAS EXTRA SOURCE IN T 353 FORMALMTH RMINOR

4.21

4.18

4.18

4.18

4.18

4.21

4.18

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4 21

4 21

4 21

4 18

4 18

4 18

4 18

4.18
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91051B

91051B

91051B

91051B

91051B

91051B

91051B

91051B

91051B

91051G

91051G

91051G

91051G

91051G

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051E

91051B

91051B

91051G

91051G

91051B

T_GPS_OUTPUT_BIAS SHOULD BE 352 FORMAL MTH HMINOR

GPS_INSTALLED IS MISSING FR 351 FORMAL MTH HMINOR

FILT_RESTART IS MISSING FRO 350 FORMAL MTH HMINOR

GM_DEG_GPS_AID IS MISSING F 349 FORMAL MTH HMINOR

GM_ORD_GPS_AID IS MISSING F 348 FORMAL MTH HMINOR

GPS_ANNCD_RESET IS MISSING 347 FORAALMTH }[MINOR

UNNEEDED INPUTS IN TABLE 4. 343 FORMAL MTH }{MINOR

INCONSISTENT DESTINATIONS 342 FORMAL MTH HMINOR

GPS_INSTALLED MISSING FROM 341 FORMAL MTH HMINOR

GPS_SEL_DELR(DELV)_UVW PARA 344 FOR_LMET }{MINOR

MISSING GPS SV SELECT INPUT 343 FORMAL MET RMINOR

GPS_QA3_RTOL, VTOL INPUT PA 337 FORMAL MET RMINOR

DT_QA2 PARAMETER 332 FOR/4ALMET }{MINOR

DELTA_RATIO_QA2_IND, MAX OU 331 FORMAL MET RMINOR

INCORRECT INDEXING FOR GPS_ 236 FOP_L MTH }{MINOR

MISSING INPUTS FOR TABLE 4. 233 FORMAL MTH }{MINOR

DELR NOT NEEDED IN TABLE 232 FORMAL M TH }{MINOR

DELR_RATIO_QA2_DISPLAY IS N 231 FORMALMTH }{MINOR

INCORRECT SOURCE FOR CORR_C 230 FORMAL MTB HMINOR

INCORRECT SOURCE FOR GPS_AL 229 FORMAL MTH HMINOR

INCORRECT SOURCE FOR GPS_SV 228 FORMAL MTH HMINOR

INCORRECT SOURCE FOR SIG_DI 227 FORMAL MTH HMINOR

T_GPS_LAST_UPDATE MISSING F 217 FORMAL MTH HMINOR

DELR_RATIO_SV_SEL DOES NOT 226 FORMAL MTH }{MINOR

DELTA_RATIO_IND_SEL DOES NO 225 FOR/_L MTH }{MINOR

GPS_LAT/LON_IND HAS DIFFERE 224 FORMAL MTH }{MINOR

MVS_RCVR_SEL NOT ON PF OUTP 223 FORMAL MTH }{MINOR

MISSING OUTPUTS FROM TABLE 222 FOR_LMTH HMINOR

INCORRECT SOURCE FOR GPS_DG 221 FORMAL MTH RMINOR

INCORRECT COLUM_ HEADING 248 FORMAL PITH RMINOR

CREW_DES_RCVR IMPROPERLY RE 247 FORMIAL MTH HMINOR

PRINCIPAL FUNCTION OUTPUT T 237 FORMAL MTB HMINOR

IMPROPER SOURCE FOR GPS_DG_ 246 FORMAL MTH HMINOR

IMPROPER SOURCE FOR GPS_OFF 245 FORMAL MTH HMINOR

UNKNOWN SOURCE FOR GPS_TO_N 244 FORMALMTH HMINOR

IMPROPER SOURCE FOR MVS_RCV 243 FORMAL MTH }{MINOR

IMPROPER SOURCE FOR SF_POS 242 FORMAL MTH RMINOR

IMPROPER SOURCE AND REFEREN 241 FOP_L MTH HMINOR

MISSING INPUTS FOR TABLE 4. 240 FOP_MAL MTH HMINOR

GPS_COLLECTION_WHRD INCORRE 239 FOI_L MTH HMINOR

R/V_GPS_SEL_DL IMPROPERLY L 238 FORMAL MTH }{MINOR

DA_THRESHOLD MISSING FROM K 168 FORMAL MTB HMINOR

IMPROPER SOURCE FOR G_TWO_P 165 FORMAL MTH HMINOR

INCORRECT SOURCE FOR R/T/V_ 164 FORMAL MTH }{MINOR

INCORRECT SOURCE FOR V_LAST 163 FORMAL MTH HMINOR

R/V_GPS AND R_GPS_PREV NOT 162 FORMAL MTH HMINOR

G_TWO MISSING FROM INPUT TA 216 FDRMAL MTH HMINOR

OUTPUTS DELR/DELV_RATIO_qA3 214 FO_LMTH HMINOR

DELR_MAG MISSING AS AN INTE 213 FORMAL MTH HMINOR

GPS DG SF_PREV LISTED TWICE 212 FDRMALMTH RMINOR

INCORRECT SOURCE FOR GPS_DG 210 FDRMAL MTM RMINOR

ACC_PROP_MIN IMPROPERLY REF 169 FORMAL MTM RMINOR

GPS_MODE NOT CONSISTENTLY N 339 FORMAL MTR LMAJOR

GPS_INIT_REQUEST NOT CONSIS 338 FORMAL MTH LMAJOR

IMU_I(2,3)_FAIL PARAMETERS 156 FORMAL MET LMINOR

IMU_SFC_GPS 157 FORMAL MET LMINOR

GPS_REF_INIT IS MISSING FRO 363 FORMAL MTH LMINOR

4.18

4.18

4.18

4.18

4.18

4.18

4.18

4.18

4.18

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.21

4.18

4.18

4.18

4.18

4.18

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9
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91051B

91051B

91051B

91051B

91051B

91051B

91051B

GPS_DEG_GPS_AID IS MISSING 362 FORMAL MTH LMINOR 4.18 9

GPS_SW_CAP IS LISTED TWOCE 357 FORMAL MTH LMINOR 4.18 9

CLOCK/CLOCKTIME IS AN UNUSE 356 FORMAL MTH LMINOR 4.18 9

T_CURRENT IS MISSING FROM T 355 FORMAL MTH LMINOR 4.18 9

GPS_OR/)_GPS_AID IS MISSING 346 FORMAL MTH LMINOR 4.18 9

UNUSED OUTPUT IN TABLE 4.6. 344 FORMAL MTH [,MINOR 4.18 9

GPS RCVR STATE PROC I-LOADS 050 FORMAL MTH LMAJOR 4.21 19

EXPLANATIONS:

PRINCIPAL FUNCTION (PF)

4.18 - GPS REFERENCE STATE PROCESSING

4.21 - GPS RECEIVER STATE PROCESSING

ISSUE SEVERITY

HMAJOR - LORAL DOES NOT KNOW HOW TO IMPLEMENT THE REQUIRF2_./_T

HMINOR - EXISTING REQUIREMENT DOES NOT CORRECTLY REFLECT THE CR AUTHOR'S INTENT

L_LEJOR - "SUPPORT" REQUIREMENTS ARE INCORRECT OR CONFUSING

LMINOR - MINOR DOCUMENTATION CHANGES

ISSUE TYPE

3 - ALL NECESSARY REQUIREMENTS PAGES INCLUDED

4 - REQUIREMENTS MEET CR AUTHOR'S INTENT; CR WILL WORK

6 - REQUIREMENTS TECHNICALLY CLEAR, UNDERSTANDABLE AND MAINTAINABLE

9 - INTERFACES DOCUMENTED AND CONSISTENT

19 - ILOAD, KLOAD AND LEVEL C DATA REQUIREMENTS COMMPLETE
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Appendix B

Formal Specifications of the GPS

Principal Functions

The full text of the PVS theories used to formalize the chosen subset of the GPS CR is contained

in this appendix. Summary statistics for the PVS theories appear in Table 6.1 on page 33. The

revision level of the requirements captured by these specifications is Mod K. Earlier versions

of the requirements were used in the formalizations and analyses described in Chapter 7. The

Mod K revision of the CR was baselined as the approved set of requirements used to begin

software development.

PVS allows theories to be grouped together into files as long as no theory is split across

more than one file. The eleven PVS theories of the GPS specifications are grouped into seven

files. Their organization and starting page numbers within the listing are shown below.

File name PVS theories

vec_or.pvs vectors

matrices

matrixnnult

rec_sp_types .pvs

rec_sp_subfuns_l, pvs

rec_sp_subfuns_2, pvs

rec_sp_subfuns_3, pvs

rec_sp_pf, pvs

ref _st ate_pro c.pvs

rec_sp_types

rec_sp_subfuns_l

rec_sp_subfuns_2

rec_sp_subfuns_3

rec -qp_pf

ref_sp_types

ref_sp_subfuns

ref_sp_pf

Page

52

53

56

60

69

72

77
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