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HIGH LEVERAGE SPACE TRANSPORTATION SYSTEM TECHNOLOGIES
FOR HUMAN EXPLORATION MISSIONS TO THE MOON AND BEYOND

Stanley K. Borowski* and Leonard A. Dudzinski**
NASA Lewis Research Center

Cleveland, OH 44135
(216) 977-7091 and -7107

ABSTRACT

The feasibility of returning humans to the Moon
by 2004, the 35 th anniversary of the Apollo 11
landing, is examined assuming the use of existing
launch vehicles (the Space Shuttle and Titan IVB),
a near term, advanced technology space trans-
portation system, and extraterrestrial propellant--
specifically "lunar-derived" liquid oxygen or
LUNOX. The lunar transportation system (LTS)
elements consist of an expendable, nuclear
thermal rocket (NTR)-powered translunar injection
(TLI) stage and a combination lunar lander / Earth
return vehicle (LERV) using cryogenic liquid
oxygen and hydrogen (LOX/LH2)chemical

propulsion. The "wet" LERV, carrying a crew of 2,
is configured to fit within the Shuttle orbiter cargo
bay and requires only modest assembly in low
Earth orbit. After Earth orbit rendezvous and
docking of the LERV with the Titan IVB-launched
NTR TLI stage, the initial mass in low Earth orbit
(IMLEO) is ~40 t. To maximize mission performance
at minimum mass, the LERV carries no return LOX
but uses ~7 t of LUNOX to "reoxidize" itself for a
"direct return" flight to Earth followed by an
"Apollo-style" capsule recovery. Without LUNOX,
mission capability is constrained and the total LTS
mass approaches the combined Shuttle-Titan IVB
IMLEO limit of ~45 t even with enhanced NTR and
chemical engine performance. Key technologies
are discussed, lunar mission scenarios described,
and LTS vehicle designs and characteristics are
presented. Mission versatility provided by using a
small "all LH2" NTR engine or a "LOX-augmented"
derivative, either individually or in clusters, for outer
planet robotic orbiter, small Mars cargo, lunar
"commuter", and human Mars exploration class
missions is also briefly discussed.

* Ph.D./Nuclear Engineering, Senior Member AIAA
"'Aerospace Engineer, Member AIAA

INTRODUCTION

In January 1996, NASA issued its strategic plan
for the Human Exploration and Development of
Space (HEDS). 1 The HEDS enterprise envisions
an exciting future where humans travel routinely
and economically'to and through space" to the
Moon initially, then on to Mars and other planetary
bodies in our Solar System. Preceding a human
lunar return, robotic orbiter missions like Lunar
Prospector2 will first map the chemical composition
of the lunar surface to help identify sites for
possible outposts and settlements that are rich in
extraterrestrial resources. Teleoperated surface
lander experiments would then demonstrate the
ability to extract these resources and process them
into propellants and life support gases allowing
humans to "live off the land." In addition to "in-situ"
resource utilization (ISRU), efficient surface power
generation, cryofluid storage and transfer and
advanced propulsion technologies will also be
required if sustained human presence at
dramatically lower costs are to be achieved. These
same technologies will also help open the space
frontier for commercial and industrial development.

Planning future human missions to the Moon
and Mars in today's environment is particularly
challenging. Despite an expected decline in its
future budgets, NASA and its field centers are
examining a variety of mission architectures and
"high leverage" technology options that could be
developed to send humans "back to the Moon"
before 2005 and then on to Mars no later than
2018. Prospects for an early human lunar return
mission in 2001 for under $1 billion dollars3 is
presently being examined by engineers at the
Johnson Space Center. Designing such a mission
appears particularly challenging given that the
International Space Station will still be in its final
assembly phase in the 2001-2002 timeframe and
that the Lunar Prospector Discovery mission is
estimated to cost $ 63 million dollars. 2 Futhermore,



with decreasing budgets in its future, NASA must
invest its scarce resources wisely and cannot afford
to waste them on developing "short shelf fife"
technologies to conduct a few "see we can do it "
missions. The agency would then have to invest in
new technologies to do the "Real Lunar Program,"
as well as, initiating the follow-on "Mars Program" in
the post-2010 timeframe. The challenge to NASA
therefore, is to identify and develop the fewest
number of high leverage technologies that can
accomplish most of NASA's planned missions
(e.g., cargo and piloted, lunar and Mars, as well as,
robotic science missions) and do it at an acceptable
cost.

This paper examines the feasibility of returning
humans to the Moon as early as 2004, the 35 h
anniversary of Apollo 11, using currently existing
U.S. launch vehicles (the Space Shuttle and the
Titan IVB), and a near term, advanced technology
LTS consisting of a small NTR-powered TLI stage
and a cryogenic, integrated lunar lander/ Earth
return vehicle (LERV) carrying a 2-person crew.
The LERV is designed to utilize LUNOX propellant
produced earlier using facilities and lunar surface
vehicles operated telerobotically from Earth. In the
Apollo Program, the heavy lift "Saturn V" launch
vehicle was used to place -140 t into LEO
consisting of the S-IVB TLI stage and its payload--
the "3 person" Command and Service Module
(CSM) and the Lunar Excursion Module (LEM)
weighing ~32 t and 16 t, respectively (Figure 1). A
single 200 thousand pounds thrust (200 klbf)
LOX/LH2 J2 engine (specific impulse, Isp~425 s)

powered the S-IVB stage while storable, pressure-
fed, hypergolic propellants were used in both the
CSM (Isp~314 s) and the LEM (Isp-305 s). A "lunar
orbit rendezvous" (LOR) mission profile was also
adopted for Apollo because of its mass efficiency.

The LTS discussed here uses a single 20 t-
class LERV with LOX/LH2 chemical engines and a

"lunar direct" mission profile which provides "global
access" to the Moon and an "anytime abort"
capability for the crew once the LERV is refueled,
or more appropriately, "reoxidized" with LUNOX
propellant. Because ~7 kilograms of mass is
required in LEO for each kilogram of mass
delivered to the lunar surtace, the utilization of
LUNOX from the outset enables a LERV with
robust payload / vehicle margin while maintaining
size and mass compatible with that of the Space
Shuttle orbiter. To deliver the LERV to the
required TLI conditions in a mass efficient manner,

a small (~15 klbf), "all LH2" NTR transfer stage, also

weighing ~20 t, is utilized. Although the principal
focus of this paper is on the LTS elements for the
initial human lunar return mission, the technologies
and systems described here provide the basis for a
LTS that can evolve with time from an expendable
architecture to one where reusable lunar landing
and transfer vehicles (LLVs and LI-Vs) benefit from
the production and utilization of LUNOX both on
the lunar surface and in low lunar orbit (LLO). Once
available in LLO, even conventional LH2 NTR

vehicles could benefit from LUNOX usage by
outfitting them with an oxygen propellant module,
feed system and "LOX-afterburner" nozzle
allowing bipropellant operation and revolutionary
performance4 enhancements equivalent to that
found in "gas-core" NTR engines.

This paper describes system and mission
analysis results performed by Lewis Research
Center's Advanced Space Analysis Office over the
last nine months in support of NASA's Human
Lunar Return Study and the Space Transportation
Strategic Plan. The paper first discusses the key
technologies assumed in our study and describes
their characteristics. Mission and transportation
system ground rules and assumptions are then
presented along with a description of a reference
lunar mission scenario. The lunar transportation
system elements are then described and the
benefits of using LUNOX to increase delivered
payload while decreasing vehicle size are
illustrated through comparison with a system using
only Earth-supplied LOX. The paper concludes
with a brief discussion of the applicability /
evolvability of the small NTR engine and a "LOX-
augmented" derivative for other NASA missions.

LUNOX. CRYOGENIC LUNAR LANDER AND NTR
PROPULSION TECHNOLOGY DESCRIPTION

LUNOX Production and Utilization

Lunar - derived oxygen (LUNOX) has been
identified5 as the most promising initial resource to
be developed on the lunar surface. A local source
of LOX could replenish life support systems, and
fuel cells used to power electric surface vehicles.
Most importantly, the ability to provide the LERV's
"oxygen-rich" chemical rocket engines (which
typically operate at mixture ratios of ~5 to 6) with a
source of return propellant oxidizer reduces the
size and mass of the LERV, as well as, the TLI



• Apollo Program
- Saturn V .._

- Lunar Orbit "_,t_ l//
Rendezvous = 7.6 m

Command Service 5-
Module (-32 t)

Lunar Excursion

Module (-16 t)

6.6 m--_F,_

Saturn IV B

TLI Stage

J2 at 200K Ibf

_4.9 m

• Early Human Lunar Return
- Shuttle and Titan iV B

- Lunar Direct

.4--- g.1 m---P-

4.0 m

Cryogenic
Integrated Lander/
Earth Return Vehicle

(LERV) (-20 t)

Small NTR

TLI Stage
(- 20 t)

NTR at 15K Ibf

Fig. 1

IMLEO - 40 t
IMLEO - 140 t

Lunar Transportation Systems Relative Size and Mass--Then and Now

stage which provides the LERV with its required

injection velocity. This "feedback effect" can cut

the required mission IMLEO by a factor of 2.

Oxygen is also attractive as a resource

because it is abundant in the lunar regolith (~45%

by mass) 5 and can be extracted using a variety o!
techniques.6 Two of the more promising concepts

for oxygen production involve hydrogen reduction
of ilmenite (FeTiO3) in high-titanium mare soil and

ferrous iron in volcanic glass. 7 Oxygen production

via hydrogen reduction is a two step process. First,
the iron oxide (FeO) in ilmenite or volcanic glass is

reduced and oxygen is liberated to form water:

Fe-riO3(s) + H2(g) "-J" Fe(s) + TiO2(s) + H20(g)

or
FeO(s) + H2(g) --_.. Fe(s) + H20(g)

Next, the water vapor is electrolyzed to regenerate

the hydrogen reactant and oxygen resource. The

hydrogen is recycled back to react with more lunar
feedstock while the oxygen is liquified and stored

in "well-insulated" storage tanks.

Reduction expe riments7 on samples of

high-titanium mare soil and iron-rich volcanic glass
collected during the Apollo 17 mission to the

Taurus-Littrow region of the Moon have produced

significant amounts of oxygen. Yields of
~3.0 weight percent (wt %) have been measured

for ilmenite-rich, titanium soil at a reduction

temperature of ~1050 C after 3 hours. Using the
iron-rich "orange" volcanic glass, a yield of

-5.1 wt % was achieved at ~1100 C over the same

time period. These experimental results suggest
that iron- and titanium-rich soils and iron-rich

glasses, in particular, would be attractive feed-
stocks tor lunar oxygen production. In addition to

each existing in large quantities on the Moon, both

are fined grained and friable and could be used
with little or no processing prior to reduction. A

4 to 5% extraction efficiency (~20 to 25 t of lunar

feedstock per ton of LUNOX) represents an order

of magnitude improvement in oxygen yield over
earlier estimates. 8 This is very important because

reduced mining and beneficiation of bulk regolith

can lower the mass and power requirements of a

LUNOX production plant and its support vehicles.



Because the lunar mission architecture
examined here assumes that LUNOX is available to
support the first piloted mission, cargo missions will
be required in advance to establish the necessary
mining infrastructure on the lunar surface. It is
envisioned9 that initial cargo flights will deliver the
LUNOX production plant and nuclear power
supply. A reactor sytem is preferred because it
allows operation during the lunar night and is less
massive than a photovoltaic system with energy
storage. The reactor would be mounted on a small
teleoperated cart and transported a safe distance
away from the LUNOX facility before power
generation begins. Subsequent flights would
deliver high duty-cycle, electric vehicles for loading
and handling regolith and for transporting
LUNOX from the production site to the LERV
(see Figure 2).

The mass and power requirements for a
teleoperated lunar production facility providing
~10.5 t of LUNOX per year (enough for 1 piloted
mission per year with a 50% reserve) are estimated
to be -4.8 t and ~35 kWe (~312 kg LUNOX / kWe ),

respectively. Additional system element masses
for the above production facility include the nuclear

reactor system at -3.0 t, 2 regolith loaders and
haulers at ~3.5 t and ~1.9 t, respectively, and 2
LUNOX tanker vehicles at ~2.9 t.

Because the LUNOX scenario places such
heavy reliance on teleoperated facilities and
support vehicles for mission success and crew
safety, it is important that such systems be
rigorously tested first on the ground and then in
dress rehearsal on the Moon before committing to
the actual piloted mission. NASA Lewis is studying
the requirements for a demonstration test of a
subscale teleoperated =LUNOX tanker" and its
mission functions under lunar vacuum and thermal
conditions at its Plum Brook Space Power Facility
(SPF), the world's largest space environment test
chamber.lO Using a currently existing "quonsent
hut" support structure outfitted with a cold wall and
quartz heating lamp arrangement to simulate lunar
day / night thermal conditions, the tanker demo
would receive oxygen trom a LOX donor tank, then
store, transport and transfer its LOX cargo to a
receiver tank simulating the LERV (illustrated in
Figure 3). These functions would be conducted
during lunar morning, noon and nighttime thermal
conditions to determine insulation effectiveness,

Fig. 2 "LUNOX" Facility and Teleoperated Support Vehicles
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boiloff, quick-connect/disconnect systems, and
transfer losses occuring during various phases of
the lunar day/night cycle. A teleoperated rover
chassis would carry the LOX tanker system and
would be operated both locally and from afar
possibly over the Internet.

Crvoaenic Lander / Earth Return Vehicle (LERV)
Technology Description and Develo0ment Status

A variety of cryogenic lunar landing vehicles
have been proposed and studied by NASA over
the last 10 years (Figure 4). In its "90-Day Study
Report,"11 NASA examined in detail a single stage,
cryogenic LOX/LH2 lunar landing vehicle (LLV)

capable of supporting a crew of 4 on the lunar
surface for ~30 days (see Figure 4c). The LLV
used four, throttleable ~15-20 klbf engines with an

Isp of ~465 s and an integrated gaseous O2/H2

RCS system. The total mass of the LLV in LEO
was ~46 t which included a surface payload (14 t),
the crew module (3.6 t) and 4 suited crew (0.8 t),
propellant (22.3 t), and the lander stage (5.0 t or
~11% of the LLV total mass). The "2 stage" Apollo
Lunar Excursion Module (Figure 4d) supported
a crew of 2 for ~3.25 days, used storable
propellants, and delivered less than 1 t of cargo to
the lunar surface. Its total mass was ~16 t.

In the "First Lunar Outpost" Study, 12,13NASA
abandoned the lunar orbit rendezvous (LOR)
approach of Apollo, with its separate transler and
landing vehicles, in favor of a "lunar direct" mission
profile using an integrated, 2 stage vehicle consist-
ing o! a cryogenic capture/ lander stage, and a
storable ascent/Earth return stage (Figure 4a). The
storable stage carried a 4 person crew capsule lor
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direct Earth entry at mission end. The FLO study
also adopted a "lunar campsite" strategy in which a
pre-integrated, reusable habitat module was
delivered to the Moon in advance ol the crew. The
mass of the hab module needed to support the
crew for -45 days on the Moon (a lunar day, night,
day cycle) was ~36 t which resulted in the need for
a large cryogenic lander stage weighing -57 t.

In the LERV concept examined here
(Figure 4b), features from both the '_J0-Day" and
FLO lunar studies are adopted. A single stage,
cryogenic lander is utilized to reduce the system
complexity and added mass of a second stage, and
to achieve the high performance needed for the
"lunar direct" mission profile assumed here. A 2
person crew and short duration (-3 days) stay on
the Moon, reduces the requirements on / and
mass of the crew capsule subsystems, and allows
for cryogenic propellant usage with acceptable
boiloff levels. A "common" crew module / Earth

return capsule allows direct reentry at mission end
and reduces the size and mass of the LTS

elements, which would grow if reusability was
imposed on the scenario.

The technologies to support a cryogenic LERV
are presently under active development in other
NASA and ESA programs. In the Delta Clipper-
Experimental Advanced (DC-XA) program, 14
technologies are being tested for future single-
stage-to-orbit vehicle concepts. The "vertical take-
off and landing" DC-XA vehicle has already
demonstrated feasibility for many of the systems
required for a LERV like a throttleable LOX/LH2

engine--the RL10A-5 provides the DC-XA with a

throttling capability from -30% to full thrust.
Other advanced "weight-saving" technologies
include a Russian-built aluminum lithium (AI/Li)
LOX tank, a graphite epoxy composite LH2 tank,
composite intertank structure, and an integrated
liquid-to-gas O2/I-12 RCS system to control the DC-

XA through its various airborne maneuvers in a
propellant efficient way. It is possible that the DC-
XA vehicle could serve as technology testbed for a
LERV program in the near future. Lastly, ESA is
currently developing a Crew Transfer Vehicle
(CTV) and a smaller, unmanned Atmospheric
Reentry Demonstrator (ARD), to be flight tested in
1997, which is derived from an "Apollo-style"
command module, is The ARD will test lightweight
construction materials, heat shield tiles and
coatings and demonstrate a parachute / recovery
system for the 2.8 t ARD capsule. Many of these
technologies and possibly a "CTV/ARD-derivative"
vehicle could form the basis for the LERV capsule.

Conventional and "LOX-Auamented" Nuclear
Thermal Rocket (NTR! PmDulsion Technoloay

NTR propulsion is the key to providing "/ow
cost access through space" for human exploration
missions of the future. Unfortunately, NASA's
investment in this technology has been fleeting at
best--a Nuclear Propulsion Office existed briefly at
Lewis Research Center from 1991 through 1993--
despite the NTR's proven performance. During the
Rover/NERVA (Nuclear Engine for Rocket Vehicle
Application) nuclear rocket programs (1955-
1973), 16 a total of twenty rocket reactors were
designed, built and tested "open air" at the Nuclear
Rocket Development Station at the Nevada Test



Site. These integrated reactor/engine tests,using

LH2 as both reactor coolant and propellant,

demonstrated a wide range of engine sizes (-50 to

250 klbf), high temperature graphite fuel providing

substantial hydrogen exhaust temperatures

(-2350-2550 K), sustained engine operation (over

60 minutes for a single burn) and restart capability--
over 20 startups / shutdowns on the same engine.

What's new about NTR propulsion today that
warrants a renewed investment in this technolgy ?

The answer lies in a reduced size, higher

performance engine that can be ground tested at

full power in a "contained facility" meeting current

environmental regulations. At present, Lewis
Research Center is studying the benefits and

development costs of a small (10-15 klbf) NTR

engine that would use improved, high

temperature, tricarbide fuel. The fuel, developed in

the nuclear rocket program of the former Soviet

Union known today as the Commonwealth of

Independent States (CIS), 17 is capable of

producing hydrogen exhaust temperatures in
excess of 3100 K. Design studies, conducted by a

joint US/CIS industry team18,19 and funded by the
Nuclear Propulsion Office between 1992-1993,

produced a small advanced NTR engine with

impressive parameters: thrust -15 klbf, Isp~940-

960 s, engine thrust-to-weight~3.1, and engine
fuel lifetime of -4.5 hours. Recent development

schedule projections and cost estimates by Lewis
Research Center and Idaho National Engineering

Lab (INEL) indicate that a small 15 klbf NTR engine
can be developed, tested in INEL's "Contained

Test Facility" (CTF) with "scrubbed" H 2 exhaust,

and integrated into a small flight stage in -7 years
at a cost of -$2.5 billion including the first flight

unit. Recurring stage cost for subsequent missions
was estimated to be -$150 million.

Although not the focus of this paper, an

enhanced version of the NTR, which leverages the

benefits of LUNOX, is being pursued at Lewis
which combines conventional LH2-cooled NTR

and supersonic combustion ramjet (scramjet)

technologies to form a LOX-augmented NTR

(LANTR) engine. 4 The LANTR concept (Figure 5)

utilizes the large divergent section of the NTR
nozzle as an "afterburner" into which LOX is

injected and supersonically combusted with
reactor-heated hydrogen emerging from the
LANTR's choked sonic throat--'scramjet propul-

Reactor ..-, Nozzle --I

Core _ Throat\
_ I - _ / Supersonic

L _ LOX

Hydrogen _/_" '_ '_.-_""_ _'_'_--_- and ....._ _ -,,.j,_
SupersomcCoolant/ _ _ _rsoni¢'_- _ T;'rust

Propellant _ _,,__ _ Augm_entation __
-//___ ,ox ('r,x+ ->3,500K

j Injection
Subsonic

Hot H2

(Tex ~ 2,500 to 2,900 K)

Life (hrs)
Tc (°K)

O/H MR = 0.0

1.0

3.0
5.0
7.0

Isp (sec)

5 10 30

2,900 2,800 2,600

941 925 891
772 762 741
647 642 631
576 573 566
514 512 508

Tankage

Fraction (%)

14.0
7.4
4.1
3.0
2.5

*For 15K Ibf LANTR with chamber pressure = 2,000 psia and _ = 500 to I

T/Weng
Ratio

3.0*

4.8

8.2
11.0
13.1

Fig. 5 Schematic / Characteristics of LOX-Augmented NTR
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sion in reverse." By varying the LOX-to-LH2 mixture

ratio (MR), the LANTR engine can operate over a
wide range of thrust and Isp values while the
reactor produces a relatively constant power
output. Thrust augmentation means that "big
engine" performance can be obtained using
smaller, more affordable, easier to test NTR
engines. The increased use of high-density LOX in
place of low-density LH2 also reduces hydrogen
tank volume. This feature provides important
flexibility to vehicle designers allowing small
LANTR-based transfer stages to be configured to
accommodate "mass- and/or volume-constrained"

launch vehicles.20 Finally, once LUNOX becomes
available in LLO to "reoxidize" LANTR-based
transfer stages, "low cost" lunar transportation will
become commonplace along with a host of other
mission possibilities. A possible "road map"
detailing the near term development and ultimate
utilization of both conventional and LOX-

augmented NTR systems is illustrated in Figure 6.

LUNAR MISSION / TRANSPORTATION SYSTEM
GROUND RULES AND ASSUMPTIONS

The ground rules and assumptions for the
reference and alternative lunar mission scenarios
examined in this study are summarized in Table 1.
Provided are details on outbound and return

payloads, parking orbits, mission velocity change

(z_V) requirements and duration, and launch
vehicle characteristics. In addition to the primary
AV maneuvers indicated, midcourse correction
maneuvers (AV = 30 m/s) are also performed using
either storable or gaseous 02/H2, bipropellant

RCS systems. Tables 2 and 3 detail assumptions
for the NTR-powered TLI stage and the chemical
propulsion LERV, respectively, on primary and
secondary propulsion, cryogenic tankage, thermal
protection and boiloff rates, primary structure, and
contingency factors used in this study.

An aluminum-lithium alloy "Weldalite"
(Ftu = 111 ksi, p = 0.0976 Ibm/in3 = 2700 kg/m3) has

been used for the cryogenic LOX and LH2 tanks

and a graphite / epoxy composite IM7/977-2
(Ftu =91 ksi, p = 0.057 Ibm/in3 = 1577 kg/m3) for

non-pressurized primary structures. Wall
thicknesses for the LH 2/LOX tanks were calculated

based on a 35 / 50 psi internal pressure and
included hydrostatic loads using a "4 g" load factor
along with a safety factor of 1.5. A 2.5% ullage was
also assumed in this study.

A 1.5 inch helium-purged, multilayer insulation
(MLI) system (at 50 layers per inch) is assumed for
thermal protection of the TLI stage LH 2 tank while

2 inches are applied to the LERV's LOX and LH2
tanks. These insulation thicknesses reduce boiloff
to acceptable levels and also satisfy the "ground



Table1. ReferenceLunarMissionGroundRulesandAssumptions

PayloadOutbound: 3.40 - 4.50 t Crew Capsule
0.45 t Crew (2) and Suits

0.05 - 0.30 t Surfacepayload

Payload Inbound: 3.40 - 4.50 t Crew Capsule
0.45 t Crew (2) and Suits

0.01 - 0.05 t LunarSamples

• Parking Orbits: 185 km
110-300 km

Circular (Earth departure)
Circular (lunar arrival/departure)

• Trans-lunar injection AV: 3145 rn/s + g-losses
• Lunarorbit capture / trans-Earth injection_V: 1050m/s
• Lunar descent / lunar ascent 2_V:2000 m/s / 1900m/s
• Direct lunar descent / direct ascent and Earth return AV: 2510 rn/s
• NTR TLI stage disposal AV: 30 rn/s (lunar swingby and gravity assist)
• Mission duration: 12-14 days (2-4 in LEO, 7 in transit, 3 days at/on Moon)
• Launch vehicle type: Space Shuttle and Titan IVB
• Payload Delivery Capability: 25.4 t and 21.6 t to 28.5 deg. inclination
• LTS assembly scenario: Space Shuttle then Titan IVB launches with EOR & D (IMLEO: - 40 to 45 t)

Table 2. NTR TLI Stage System Assumptions

NTR System:

RCS System:

Thrust / Weight
Fuel / Propellant
Isp
External Shield Mass

Flight Reserve
Trapped Residuals
Cooldown (effective)

Propellant
Isp
Tankage

Cryogenic Material
Tankage: Diameter

Geometry
Insulation

LH 2Boiloff*

= 15 klbf / 4904 Ibm

= Tricarbide / Cryogenic LH2
= 940 s (@ 2900 K) / 960 s (@ 3025 K)
= 2.76 kg/MWt of reactor power
= 1% of usable LH2 propellant
= 1% of total tank capacity
= 3% of usable LH2propellant

• Primary Structure:

• Contingency:

= N2OJMMH
= 320 s
= 5% of total RCS propellants

= "Weldalite" AI/Li alloy
= 4.6m

= Cylindrical tank with 1'_2 domes
= 1.5 inches MLI + micrometeoroid debris shield

= 1.75 kg/m2/month (LEO @ ~ 240 K)
= 10.73 kg/day (for 12.4 m tank length)
= 11.74 kg/day (for 13.6 m tank length)

Materials = "Weldalite" AI/Li and Graphite/Epoxy Composite

Engine, shield, and stage dry mass = 15%

" Assumes 3 x "Lockheed Eqn" heat flux estimates for MLI At < 2 inches

9



hold"thermalprotectionrequirementsfor "wet-
launched"LH2tanksof 1.5inches.21Theinstalled
densityofthe 1.5inchMLIsystemis-2.05kg/m2,
andtheresultingLH2boiloffratefromtheTLIstage
whilein LEOis -1.75kg/m2/month(basedonan
estimatedheatfluxof -0.294W/m2ata LEOsink
temperatureof -240 K).FortheLERV,maximum
boiloffratesforLOXandLH2havebeenestimated
assuminga lunarsurfacetemperatureof -394 K
(equivalentto "early afternoon" on the Moon). At
this temperature, the estimated heat flux is
-1.1 W/m2 and the boiloff rates for LH 2 and LOX

are -6.51 and 13.26 kg/m2/month, respectively.
Also shown in Table 3 are boiloff rates for the

LERV propellants in LEO, cislunar space and LLO.
Lastly, a 0.25 mm thick sheet of aluminum
(corresponding to -0.682 kg/m2) is included in the
total tank weight estimates to provide protection
against micrometeoroids and regolith backscatter
from engine exhaust during landing and takeoff.

LUNAR MISSION SCENARIO DESCRIPTION

The reference lunar scenario examined in this
study assumes a split mission architecture
involving both cargo and piloted missions operated
initially in an "expendable mode" in order to
maximize payload delivered to the Moon on each
mission, maintain a "two launch" mission capability
(IMLEO limited to -40 - 45 t), and reduce the LTS
size and cost. The piloted mission employs a
"lunar direct" flight profileg,22 and assumes the
availability of LUNOX for lander refill and Earth
return. The mission flight profile is illustrated in
Figure 7. The Space Shuttle and Titan IVB, with a
combined payload delivery capability to LEO of
-45 t, are used to deliver the LTS elements to the
185 km (100 n. mi.) staging orbit. The LERV's
"wet" lander stage and crew capsule with a
combined mass of 20 t are delivered first in the

orbiter's payload bay "side-by-side." Once in orbit
the capsule is installed atop the lander and the

Table 3. LERV Transportation System Assumptions

• Primary
Propulsion:

Total Thrust = 12.5 - 15.0 Idbf

Propellant = LOX/LH2
Isp = 450 s (@ O/H MR = 5.2)

= 465 s (@ O/H MR = 6.0)
Flight Reserve = 1% of usable propellant
Trapped Residuals = 1% of total tank capacity

• RCS System: Propellants = N204/MMH and GO2/GHz
Isp = 320 s and 400 s
Tankage = 5% of total propellants (storable)

• Cryogenic Material
Tankage: Geometries

Insulation

LH2/LOX Boiloff*

= "Weldalite" AI/Li alloy
= Cylindrical with 1/'_2 domes/spheres
= 2.0 inches MLI + micrometeoroid debris shield

= 1.31 / 2.44 kg/mZ/month (LEO @ - 240K)
= 0.56 / 0.90 kg/m2/month (in-space @ - 172K)
= 1.91 / 3.68 kg/m2/month (LLO @ - 272K)
= 6.51/13.26 kg/m2/month (LS @ - 394K)

• Primary Structure: Materials = "Weldalite" AI/Li and Graphite/Epoxy Composite

• Contingency: Dry Stage Mass = 15%

*Assumes 3x "Lockheed Eqn" heat flux estimates for MLI t_t<_2 inches

10
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Fig. 7 Reference "Lunar Direct" Mission Scenario Using NTR, LERV and LUNOX

_ntegrated LERV's systems are checked out. Next,

the NTR-powered TLI stage, also weighing -20 t, is
launched to LEO by the Titan IVB where Earth orbit

rendezvous and docking (EOR&D) with the LERV

results in the integrated spacecraft shown in

Figures 7 and 8.

Over the next 1 to 2 days, the integrated LTS

is checked out in preparation for the TLI launch

window. At the appropriate time the NTR engine is

powered up and performs a sustained 28 minute
TLI burn which sends the coupled spacecraft on a

trajectory to the Moon. Gravity losses for the
"single burn" Earth departure scenario are

estimated to be -205 m/s. Following an

appropriate cooldown period (-5 hours) for the

NTR engine, the piloted LERV and TLI stage

separate with the LERV continuing on its nominal

mission while the NTR stage executes a

retargeting maneuver with its RCS system to

perform a "trailing edge" lunar swingby. The

11

resulting lunar gravity assist is used to deliver the

"spent" NTR stage to a long-lived (-105 year) helio-
centric orbit with minimal risk of Earth reencounter.

Following a 3.5 day transit, the LERV uses its

four LOX/LH2 engines to propulsively capture into

a temporary parking orbit around the Moon.

Pausing here allows time for navigational updates

and phasing alignment over the desired landing
site, and most importantly, time to communicate

with the LUNOX production facility and its tanker

vehicle to verify that all is ready for the LERV's

arrival. Should equipment problems arise on the
surface, the LERV would abort the landing and

return to Earth using the remaining onboard

landing propellant (equivalent AV=2000 m/s).

At the appropriate time, the LERV, with its 2

person crew, deorbits and lands on the lunar
surface--an event which would be televised world-

wide by cameras onboard the waiting LUNOX



tanker. The LERV consists of a "state-of-the-art"
Apollo-style capsule mounted atop a combination
service module / lunar lander. It lands on the lunar
surface with its LOX tanks essentially "empty" but
within a reasonable distance of the LUNOX
production facilities predeployed on an earlier
cargo flight. The LERV does carry sufficient LH 2
fuel for the return trip back to Earth however.
Shortly after landing, the crew's first major activity is
to remotely activate and direct the nearby surface
tanker to transport and refill the LERV's LOX tank
with -7 t of LUNOX supplied by the production
facility. Once reoxidized, the LERV is ready to
leave should an emergency situation arise over the
next 3 days. Because the LERV is only designed
to support its crew for 3 days on the lunar surface,
extended staytimes will require a surface habitation
facility be delivered on an earlier cargo mission.
Near the end of the surface stay, the crew with its
samples, ascends to a temporary lunar phasing
orbit, then performs the trans-Earth injection (TEl)
burn for the trip back. Near Earth, the crew module
separates from the lander stage and performs a
direct Earth entry while the lander stage is
expended in cislunar space via an Earth fly-by.

LTS VEHICLE DESCRIPTIONS / COMPARISONS

The relative size and mass of the NTR transfer

stage and chemical LERV with and without LUNOX
usage is shown in Figure 8. Table 4 summarizes
LERV system assumptions and mass breakdown
both in LEO and on the lunar surface (IMLS) prior
to Earth return. The mass elements include the
suited crew, surface-landed payload (S/PL), the
LERV's return crew capsule (LERC), and lunar
landing stage, and returned lunar samples or
payload (R/PL). The required amounts of Earth-
supplied LOX and LH 2, as well as, quantities of
LUNOX for ascent and Earth return are also shown.

Figure 8a shows the reference piloted vehicle
configuration for the "LUNOX scenario" discussed
above. After EOR&D, the total vehicle length and
mass is -25 meters and -40 t, respectively. The
TLI stage itself is -18.7 m long but can easily be
accommodated by the Titan IVB booster with a
76 foot (-23.2 m) long payload fairing. The NTR-
powered TLI stage uses a single 15 klbf engine,
dual turbopumps for improved reliability, and
ternary carbide fuel elements. At the hydrogen
exhaust temperature and nozzle inlet pressure of
2900 K and 2000 psia, respectively, the specific
impulse is -940 s using a nozzle expansion ratio of

12

300 to 1. Other elements of the NTR TLI stage
include: (1) an external radiation shield for crew
protection; (2) a 4.6 m diameter by 12.4 m long LH2
tank; (3) a forward cylindrical adaptor housing the
RCS, avionics, auxiliary power, and docking
systems; (4) forward and aft cylindrical band skirts;
and (5) a conical thrust structure. The TLI stage
"dry" mass is -7 t which includes -3.64 t for the
15 klbf NTR and shield. The LH2 and RCS

propellant loads total -13 t. Included in this total is
propellant to perform a small (-30 m/s) "trailing
edge" lunar swingby maneuver for stage disposal
after LERV separation. The stage is also provided
with an -4 kilowatt electric (kWe) fuel cell auxiliary

power system which can provide the stage with
-2 kWe average power for up to 5.5 days. Table 5
summarizes the mass properties of the TLI stage
shown in Figures 7 and 8a.

The reference LERV uses four new
throttleable LOX/LH 2 engines (each at -6 klbf with

4:1 throttling) which operate at an O/H mixture ratio
MR = 5.2 and Isp = 450 s. The LERV lander stage
is set at 15 % of the "wet" LERV mass in LEO.
Preliminary weight estimates of individual
subsystem elements show this assumption to be
conservative and to provide ample mass margin. In
total, the mass of the crew capsule and "dry" lander
stage is -7.5 t or -37.5% of the LERV's initial mass
in LEO, and this weight can be redistributed as
necessary if dictated by future analysis. In addition
to the crew, the LERV also transports -0.3 t of
equipment (-0.22 t for an "Apollo-style" lunar rover
and -0.08 t of science equipment) to the lunar
surface. Power for the LERV during most of the 12
day mission is supplied by two 4 kWe fuel cells

which provide -3 kW e average power, as well as,
consumable water for the crew and coolant for the
active thermal control system. Fuel cell reactants
totaling -0.36 t, at an O/H ratio of 8 to 1, are stored
within the LERV's propellant tanks. The LERV
transports -1.34 t of LH2 to the lunar surface (with

-40 kg being lost to boiloff over the 3 day lunar
stay) and refills its LOX tank with -7 t of LUNOX to
return the LERV with its -4.5 t crew capsule and
-0.5 t of crew and lunar samples back to Earth. The
LOX, LH2 and storable RCS propellant loads are

-8.38, 2.95 and 0.34 t, respectively, for a total
IMLEO for the LERV of -20 t which includes
-0.16 t for the LERV's TLI stage adaptor. The
same LERV lander and TLI stage are also capable
of delivering -6.6 t of lunar surface payload on
"l-way" cargo missions. This is sufficient to
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accommodate all of the envisioned

elements needed to support the piloted

mission scenario.

surface
LUNOX

Without LUNOX, the LERV must carry its own

return LOX resulting in a substantial reduction in

mission capability. To stay within the IMLEO limit of

-45 t provided by the Shuttle and Titan IVB, a

"direct descent" trajectory profile23 must be

adopted (see Figure 9) to reduce the total mission

AV requirements (see Table l).While direct
descent can improve performance in the cargo

flight mode, it is a higher risk trajectory profile for

piloted missions and does not provide for a "free
return" abort. Lunar surface site accessibility and

lighting conditions flexibility is also degraded.

Propulsion system performance and vehicle size
must also be increased (see Figure 8b). For the TLI

stage, the NTR fuel temperature is increased to

-3025 K to achieve a higher Isp of -960 s.

However, for a given reactor power level, this
increase comes at the expense of a decrease in

thrust to -14.7 klbf. The TLI stage length and mass

also increase in order to accommodate the larger

LH 2 propellant load (-14.4t) needed to send a

heavier LERV (-23.4 t) to the Moon.

For the LERV's LOX/LH2 chemical engines, the

chamber pressure and mixture ratio are increased

to achieve a Isp of -465 s. A gaseous O2/H2 RCS

with Isp of -400 s is also assumed. This increase in

13



Table 4. LERV System Assumptions and Mass Characteristics

• Mission Profile:

• Propellant:
• MR/Isp:
• IMLEO/IMLS:

• Crew (2) & Suits:
• MSIPL:
• MtERc:

• Mm_,_o,:
• MRCS prop:

• MLOX:
- Outbound
- Inbound
- LS boiloff

• MLH2:

- Outbound
- Inbound
- LS boiloff

• IV_.u,ox:
• MR_L:

Lunar Direct w/LUNOX

LOX/LHz
5.2 1450 s

20.0 t / 16.25 t
0.45 t
0.30 t
4.42 t

3.0t/0.16t
0.19 t/0.15 t

8.38 t

1.61 t
1.30 t
O.04t
6.78 t
0.05 t

Direct Descent wo/LUNOX

LOX/LH2
6.0 1465s

23.56 t / 13.17 t
0.45 t
0.05 t
3.36 t

3.5t/0.16 t
0.18 t / 0.06 t

8.59 t
4.88 t
0.04t

1.43 t
0.81 t
0.04t

0.01 t

performance cannot compensate, however, for
the extra 5 t of return LOX and the heavier lander
stage required to carry it. The result is a decrease
in the available mass and therefore capability of
crew capsule (from -4.4 to 3.4 t) , as well as, in
payload delivered to the lunar surface (see
Table 4). With no lunar rover and only -50 kg of
science equipment available to the astronauts,
EVA activities will be limited to short distances

Table 5. TLI Stage Mass Properties

Staqe Element Mass (ka)
Structure 607
Propellant Tank 1065
Thermal Protection System 508
Avionics and Power 293

Reaction Control System 227
NTR Assembly

15 klbf NTR 2224
External Shield 940
Propellant Feed/TVC 171

Contingency (15%) 905
Dry Mass 6940
LH2 Propellant 12741
RCS Propellant 100
Wet TL I Stage Mass 19781

away from the LERV similar to that on the Apollo
12 and 14 missions. Returned lunar samples will
also be limited to -10 kg, substantially less than
that returned on the earlier Apollo missions.
Although an initial 2004 human lunar return
mission appears doable without LUNOX,
subsequent flights would greatly benefit from its
use and help to restore lost mission versatility and
vehicle robustness.
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OTHER MISSION APPLICATIONS FOR THE NTR

Investing wisely in "high leverage" technologies
with growth capability and applications to more
ambitious human missions beyond the 2004 lunar
return discussed here is an important point not to
be overlooked. The small NTR stage is an excellent
example of a wise technology investment for
NASA for with it a wide range of missions become
possible (see Figure 10). In less than 6 months
after humans return to the Moon (see Figure 6),
the same small NTR stage could be used to
dispatch a robotic orbiter mission to Pluto using a
single Titan IVB launch and a Jupiter gravity assist
opportunity available in June 2006. Direct flight,
"short transit time" orbiter missions to Saturn
(2.3 years), Uranus (6.6 years), and Neptune
(12.6 years) are also possible each year.24
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How far can we go with LANTR propulsion?
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Fig. 11 Human Expansion Possibilities With LOX-Augmented NTR (LANTR)

In preparation for the human exploration of Mars,
small Mars cargo missions capable of delivering up
to 10 t of surface payload can be carried out using
the Titan IVB-launched small NTR stage for trans-
Mars injection and the Space Shuttle for launching
the Mars payload with its biconic-shaped aero-
capture and descent system. Higher capacity cargo
and Mars piloted missions would use the same
15 klbf NTR engine in a clustered arrangement to
provide the optimum mission thrust level. A cargo
version of the current Space Shuttle (Shuttle C) or
an "in-line" Shuttle-derived vehicle with a lift
capability of -70 t to LEO would probably be
utilized for these missions to avoid the substantial
LEO asembly requirements using "volume-limited"
smaller capacity (-20 t-class) launch systems such
as the reusable launch vehicle (RLV).

With time, initial outposts on the Moon and
Mars will grow to centralized bases and settlements
with a substantial human presence. LUNOX
production facilities on the lunar surface will supply
propellant depots in low lunar orbit and in tum a
"LOX-augmented" NTR (LANTR)-powered LTS
which will "revolutionize" cislunar space travel.
Commuter flights2S to and from the Moon with
"one-way" trips of 36 to 24 hours will become
commonplace using LANTR-powered passenger
shuttles. On Mars, reusable LANTR-powered
landers, operating from specially prepared landing
sites, will transport significant quantities of payload
to and from a Phobos station and propellant depot.
The Phobos depot would also provide reusable
LANTR-powered Mars transfer vehicles with their
return propellant allowing them to transport more
high value cargo to Mars instead of bulk propellant
and expended lander/aerobrake hardware mass.
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Beyond the Moon and Mars lies the asteroid
belt and the Jupiter system (see Figure 11) where
large quantities of water are believed to exist.
Water ice has been detected on Ceres, the largest
of the main-belt asteroids, and the Galilean
satellites, Europa, Ganymede, and Callisto, are
known to possess large amounts of water ice on
their surfaces from the Voyager missions. Using
ISRU and LANTR technologies, extraterrestrial
sources of LOX and LH2 can be developed and

utilized to facilitate human expansion into the Solar
System. While such missions and capabilities are
wondrous to imagine what is most exciting to the
authors is the fact that these technologies could
be developed in the next 10 to 15 years!
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