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Abstract {x} vector of correlated normal r.v's

Standard methods of structural dynamic
analysis assume that the structural
characteristics are deterministic. Recognizing
that these characteristics are actually statistical
in nature, researchers have recently developed
a variety of methods that use this information to
determine probabilities of a desired response
characteristic, such as natural frequency, without
using expensive Monte Carlo simulations. One
of the problems in these methods is correctly
identifying the statistical properties of primitive
variables such as geometry, stiffness, and mass.
This paper presents a method where the
measured dynamic properties of substructures
are used instead as the random variables. The
residual flexibility method of component mode
synthesis is combined with the probabilistic
methods to determine the cumulative distribution
function of the system eigenvalues. A simple
cantilever beam test problem is presented that
illustrates the theory.

Nomenclature

rv. random variable

CDF cumulative distribution function

PDS probabilistic dynamic synthesis
CMS component mode synthesis

FPI Fast Probability Integration

FORM First Order Reliability Method

AMV  Advanced Mean Value

o] limit state function

X vector of random variables

X* design or most probable point (MPP)
o]} probability of failure

{u} vector of uncorrelated std. normal r.v.'s
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[C]2  Correlation matrix of r.v's in substruc. a
[Llc® Cholesky decomposition of [C)3

a number of substructure
p total number of substructures
k number of kept modes/substructure
dof's degrees of freedom
i internal dof's
b boundary dof's
N total dof's/substructure
Introduction

Structural analysts have always known that
the parameters of the system being modeled are
not deterministic due to manufacturing
tolerances, material deviation, and other factors.
Until recently, the primary way to deal with this
knowledge was to use factors of safety, which
are qualitative and based primarily on
experience. In an effort to account for these
variations in the structural parameters in a more
quantitative tashion, significant research has
been performed on developing methods to
actually use the statistical characteristics of the
input quantities in the analysis to generate an
output value that is also described statistically.
Monte Carlo simulations can be performed to
calculate these probability distributions, but up to
a million runs are required for accurate results.
Approximate techniques have therefore been
developed that require several orders of
magnitude less caiculations than Monte Carlo
techniques. One such method, the "Fast
Probability Integration® (FPI) method', has
recently been implemented into a new
probabilistic finite element code, NESSUS.

Numerical analyses of structural vibration
generally use the finite element method (FEM)
as the basis for obtaining free and forced
response characteristics. A frequent problem
when using FEM is that, for large models



composed of many substructures, the number of
degrees of freedom (dof's) is so large that the
computational costs are prohibitively expensive
for eigenanalysis. This problem is particularly
relevent when using probabilistic techniques
because the eigenanalysis has to be repeated
many times. The favored solution method in
industry for the deterministic situation is to apply
dynamic component mode synthesis methods
(CMS), which reduce substantially the dof's for
the system model.

This paper defines a procedure for
combining CMS with probabilistic methods to
obtain the statistical characteristics in an efficient
manner. These characteristic are summarized
in the form of the cumulative distrubution
function (CDF). The procedure makes use of
statistical distribution information of each
substructure's dynamical modes and residual
flexibility, which are available from experimental
data. This information is synthesized into a
system model using the residual flexibility
method of CMS and the statistics of the system
dynamic characteristics are obtained using FPI.
An advantage of this method over existing
probabilistic structural analysis methods is that,
in many cases, the statistics of the substructure
dynamic characteristics may be easier to
determine than those of primitive random
variables like geometry, material stiffness, or
density. Final development of the method
should allow probabilistic methods to be applied
to much larger models than previously possible,
such as turbomachinery bladed-discs, which are
composed of many almost-identical
substructures whose structural characteristics
can be described statistically.

brobabilistic Thearetical Background

Research in the field of probabilistic
structural mechanics has concentrated in two
areas. The first can be described as
perturbation methods, and the second as
reliability methods. The perturbation method, as
developed by Collins and Thomson?3, Kiefling?,
and Collins, Kennedy and Harts, is used to
derive an analytical expression for the mean and
standard deviation of structural eigenvalues and
eigenvectors as a function of the derivatives of
the statistical characteristics of the mass and
stiffness matrix for each input random variable.
Hart and Hasselman® used component mode
synthesis to derive analytical expressions for
the system, or global, eigenvalue matrix as a
function of the modally reduced substructure

stiffness and mass matrices. This approach is
presently being studied by Mahadevan’.

The research described in this paper
employs the reliability method approach to
determining the statistical structural response
characteristics. To briefly review this technique,
consider the scalar limit state function g(X),
defined as

g(X) =Y(X) -y (1)

where the limit state value y is some desired
surface in the random variable space and the
performance function Y(X) is a function of the
random variables. This formulation divides the
space into two parts, g < 0 (Y < y)andg>0(Y >

The probability that the function Y not
exceed the desired value y is the probability that
g<0. For example, if y equals an eigenvalue of
interest, p(g<0) would be the probability that the
actual eigenvalue obtained is less than the
desired value.

Comel8, using the reliability approach,
developed what would later be called the First
Order Reliability Method (FORM) by truncating
the higher order terms (hot's) from the series:

800 = g + Y, o (xd+hors @)
i=1 1

where |LX is the mean value of X. This resulted

in the following simple approximations for the
mean value and standard deviation of g:

He = g(1x) (3)

2
o~ A > (gf— o2 (4)

Now assume that both the original X
distribution and the resuiting g distribution are
normal, and define g(X) < 0 to be the failure
region. A transformation of g to standard normal
coordinates can therefore be performed to
obtain the probability of failure:

7= gX) - U
Og

(5)

The probability distribution function of a
standard normal variable has a mean of zero
and a standard deviation of one, and its



cumulative distribution function &(2) is tabulated
in statistics textbooks and software packages.
Since failure is defined as g(X)<0, then if this
value is substituted into equation (5), the
equivalent failure region in standard normal
coordinates is '

Z<-B (6)

where the parameter B is defined as

_Hs
ﬁ—og : 7

The probability of failure will therefore be the
area under the probability density function to the
left of -B, which is equal 1o the value of the
cumulative distribution function @ at that point.
Since negative values for B are not tabulated,
the relationship

pt= O(-P) = 1 - () @8
is used instead to calculate this probability.

Hasofer and Lind ° refined this method
further. They introduced an initial reduction of
each of the primitive normal r.v.'s Xj into

standard normal r.v.'s vj using

_ xi —ux,

: o]

L]

9)

in terms of the standard normal r.v.'s vj, the
joint probability function is bell shaped and
symmetric about the origin. If the limit state is
defined to be g(V) = g(v1,v2), then the minimum
distance from the line

g(vi,ve) =0 (10)

to the origin can be shown to be equalto . The
point along the line g = 0 that is closest to the
origin is called the design point X . It is also
termed the most probable point because itis the
point along the line g=0 that has maximum
probability density.

The reliability method was expanded by
Rackwitz'® to multi-dimensional problems for
which the limit state curve g=0 is an explicit
function of the rv's. Wu and Wirshing'
developed the Advanced Mean Value (AMV)
method, a procedure for using the FORM with a

minimum number of calculations; this is vital for
non-explicit limit states, such as finite eleinent
solutions. The limit state is approximated as a
linear function about the means of the r.v.'s
(equation 2) and the partial derivatives are
approximately obtained by numerically
differentiating the limit state with respect to each
rv. Values of B and X are obtained for each
desired limit state by using the "Fast Probability
Integration(FPI)" method, which is a compilation
of the improvements to the FORM made by Wu,
Rackwitz, and others. At this point in the
procedure, an exact solution for each of the limit
states (usually a finite element solution) is found
by plugging in these most probable points.
These results and their associated § values can
then be used to create an entire CDF, which is
shown in Wu's paper to be very accurate in
comparison to Monte Carlo simulations for
several examples. Further iterations can be
performed by expanding the limit state about the
new design points instead of about the means
as was performed in equation (2). The FPI and
AMV methods have been incorporated in
NESSUS, a probabilistic finite element program
presently under development by NASA/Lewis
and Southwest Research Institute.

Probabilitic Dynamic Syrihesi

The proposed methodology makes use of
the residual flexibility method of component
mode synthesis. This method has been
developed by MacNeil'2, Craig and Chang'?,
and Martinez'®. The essential idea in CMS is
that substructure modes are truncated since
their higher modes will not have a major effect
on the system modes. The residual flexibility
method incorporates the effects of the higher
modes by determining their flexibility. A side
benefit is that all the elements of the system
stiffness matrix can be obtained from test and
that the mass matrix can be closely
approximated by a unity matrix in the non-
boundary partition (equal in size to the number
of kept modes k). Since all the substructure
information can be obtained from test,
probabilistic data can be completely
incorporated into the system matrices to obtain
the system modes.

The first step of the probabilistic dynamic
synthesis (PDS) method developed in this paper
is to divide the model of a structure into
substructures a= a,\b,...p. The physical
displacement vectors of each substructure,
which have either a subscript i denoting internal



dof's or a subscript b denoting boundary dof's,
can be written as

a b P '
X, X; X;
LT L] (11),
Xy Xy X
where dim xj + dim xp = N total dof's for that
substructure.

Each substructure is represented by n
samples. Each sample is modally tested
individually in a configuration such that the
interface locations with other substructures are
in a free condition. For substructure a, sample

i, the test will yield eigenvalues A{ and

eigenvectors {@}; . In addition, the boundary
partition of the residual flexibility matrix
[G,,,,]fare obtained from the measured

boundary drive point frequency response
functions of the boundary coordinates's. For
use in the PDS method, oniy the kept (non-
truncated) eigenvalues, the boundary
coordinates of the kept eigenvectors, and the
boundary partion of the residual flexibility matrix
are needed. These values can be combined into

a single vector {x};, defined as

’{‘P?}q

a

{(x); = i (12)

L{GH’}“’

where {(o,,}j is a vector of the boundary node

modal displacements for the j'th mode, and AMis
the jth eigenvalue of substructure .

If the entire sample of substructure & is
tested, {x}* can therefore be defined as a vector
composed of elements that are each a normally
distributed random variable with measured mean
and standard deviation. Using equation (9), this
vector is now converted to {x}'®, a vector of
standard normally distributed r.v.'s. In addition,

there will be some degree of correlation between
each of the random variables. These correlaiion
values range from zero, or no correlation, to +/-
1, or fully correlated, and can be easily
calculated from the measured data. The values

are placed in a correlation matrix [C]% relating
each element with every other element. For the
probabilistic analysis, a set of independent
standard normal random variables {u}* will have
to be obtained. This can be accomplished by
making an orthogonal transformation of [C]* with
its Cholesky Decomposition lower triangular

matrix [L]c® to uncouple the {x}' coordinates,

thereby creating {u}® '©. This can be
expressed for substructures a =ab.,...,pas

{x}*=[LI7{u}" . (13)

The FPI1 algorithm requires that each
independent random variable be varied
individually by some percentage of its standard
deviation o, which was chosen to be 50 percent
for this development, while the other r.v.'s are
kept constant at their mean values. Each of
these cases is then back-transformed to form a
corresponding case of the original correlated
random variables. These are then plugged into
the model to generate the limit state
approximation (equation 2) of the response
value, which is used to obtain a CDF and the
design points X*.

Since the distributions of the r.v.'s are
standard normal, .5 o will simply equal a value
of .5 for the r.v. to be varied. The first case is
therefore

5 0

. -_]0
=4, "=, pm=2...p (14

0 0

The next case will consist of the second element
in {u}@ equaling .5 and all the other elements of
{u}@ as well as all the elements of the other
{u}™s equaling zero, and so on.

For each case the {u} for each substructure
is then transformed to the set of correlated
standard normal r.v.'s {x}' using the transpose of

[L]® and then into the original r.v.'s {x} using
equation (9). The new vectors {*»}, [®], and



[G,,,,] are pulled out from {x} and placed in

substructure mass and stiffness matrices
according to the residual flexibility formulation:

o | A+ PuCuu -®LGy
B sym Gy |

M"—IO 15
“10 of (13)

The system mass and stiffness matrices are
now generated by directly coupling the
substructure mass and stiffness matrices. This
is accomplished by ordering the "kept” dof's of
each substructure sequentially in the system
matrices and adding the boundary partitions
together . These matrices can now be used to
form the system equation of motion,

qsa qSl

[Mys! .. +[Klsys q;n =0 (16)
q Xb
Xp

where the q's are generalized coordinates
related to the kept modes for each substructure.

The system eigenvalues are then obtained,
and a single eigenvalue of interest is chosen.
This eigenvalue corresponds to a single point on
the random vector response surface defined in
the FPl method. As each independent random
variable in the p number of {u} vectors is varied,
‘a new response surtace point is obtained. This
surface can be directly input into the FPI code
and a CDF obtained for the chosen system
eigenvalue. This will be only a first
approximation to the CDF, however. The MPP's
are plugged back into the substructures' mass
and stiffness matrices, the system is re-
synthesized, and new, updated eigenvalue
levels are obtained for each probability level,
following the AMV method described by Wu.
These levels are then plotted to show the entire
CDF.

TestCase

Analysis of a spring-mass system (Figure 1)
using the PDS method has been completed.
The test system consists of two substructures, a

Full Model

m m2 m3 méd mS mb6

Sub. a Sub.b

o—Aepferle

Figure 1 Test Case System

and b, each having four dof's. 5000 samples of
each substructure were created initially using
standard Monte Carlo techniques. To achieve
complete probabilistic generality, each spring in
the system was assigned a normal distribution
with a mean of 200 and standard deviation of 10,
and each mass was assigned a normal
distribution with a mean of 1.0 and standard
deviation of 0.5. The Monte Carlo random
vectors were then used to create the mass and
stiffness matrices for the substructures (5000 for
each) and a modal analysis run on the
substructure samples to obtain their eigenvalues

{A)% and eigenvectors [®]®. Three of the four
modes for each substructure were "kept" for the

‘analysis. The boundary partition of the N x N

residual flexibility matrix [G,,,,]‘JL was analytically

calculated directly from the modes that had been
chosen to be truncated, in this case just the
highest one, using

[Gl= i [{—(p}—i—”—r] (17

imk+l

where, in this case, k=3 and N=4. The statistics
on these dynamic characteristics and the
correlation between them were then calculated.
These statistics are listed in Table 1. The listed
quantities comprise the vectors {x}2 and (x}b as
described in equation (12).

A distribution characterization routine'” was
also performed on the distributions to see if they
could be characterized as normal, which is an
assumption of the methodology outlined
(several more steps wouid have to be performed
to handle non-normal distributions).'® Partial



Table 1 Statistics of Dynamic Characteristics

Substructure A

1 30.283 2.5256
2 245.90 20.897
3 553.01 47.274

Eigenvectors, boundary location only

1 .7072 .0225

2 -.7066 .05786

3 .70588 .011097
Residual Flexibility (one boundary point only)

Mean Stan iati

6.3848E-04 3.0688E-04
Substructure B

1 0.0 0.0

2 150.31 13.402

3 488.99 44.077

Eigenvectors, boundary location only

1 53517 .014106

2 .75643 043935

3 -.66730 .36929
Mean Standard Deviation
7.4945E-04 2.9817E-04

Table 2 Partial Results of Distribution Types
Routine

Substructure B, Eigenvalue 2

Normal: .00948

Exponential:  .30339
Weibuil: .04448
EVD: .04323
Lognormal: .00934

Normal Distrubution Parameters
sample mean = 150.61
sample std. dev. = 6.502

Normal Distribution CDF fit to data

143.0 1210
147.0 .2895
150.0 .4628
155.0 .7503

Lognormal Parameters, base e
mu =5.014
sigma = 0.43201

Lognormal Distribution CDF fit to data

143.0 .1193
147.0 2947
150.0 4713
155.0 .7540

results of the distribution characterization routine

for one of the r.v.'s are shown in Table 2. The
"W" statistic is a goodness-of-fit test developed
by Wirshing and Carlson, where a-smaller
number indicates a closer fit.'® The results show
that the data is well represented by both normal
and lognormal distributions, with the lognormal
being a little better. The CDF values for each
distribution, however, indicate that the curves for
the two distributions predict almost exactly the
same value, which can be the case for a
particular set of lognormal parameters. The
assumption of normality was therefore deemed
to be accurate.

At this point the procedure follows the
outline discussed previously for an actual case,
which would use modal testing of physical
samples to generate the dynamic characteristics

and correlation matrix. For each substructure, a
matrix composed of cases of {u} vectors (see
equation 14) was generated and multiplied by
the correlation Cholesky decomposition matrix
[L]c to obtain {x}', the set of correlated standard
normal r.v.'s. These were then converted to
their non-standard normal distributions and used
in the residual flexibility substructure stiffness
matrix. The substructures were then coupled
together and a modal analysis was performed on
the system matrices. The first system
eigenvalue for each case, which was the
response value chosen, was then input along
with its {u} case into the FPI algorithm routine.

The output of the FPI routine is the "Mean
Value Solution,” an initial estimate of the CDF of
the response variable, and the MPP's for the
specified CDF probability levels. One MPP from
the output is shown in Table 3. Following the
AMV procedure, these MPP's were recorrelated
and converted to the original dynamic r.v.'s as




Table 3 Sample MPP Output

Fund. Evalue Response Value = 0.806648E+01
Probability = 0.010000000 ’

Most Probable Point

suba LY. value

ui -0.5067741E+00
u2 -0.1808948E+00
u3 0.6107269E-01
u4 -0.1579644E+01
ud -0.1287386E+00
ué -0.4253657E-01
u?7 0.2481191E+00
subb rv. _yalue

ui -0.1500363E+01 -
u2 0.2808886E+00
u3 -0.2627451E+00
u4d £0.6609528E-02
ub -0.2985903E+00
ué -0.5956755E-01
u? 0.2272107E+00

before, coupled, and a solution obtained for the
updated fundamental eigenvalue. This value
and its associated probability level were then
used to create a new CDF.

For verification of the PDS method, a Monte
Carlo analysis was performed on the same non-
deterministic spring-mass system with the
system eigenvalue directly obtained from each
sample. The CDF for this “full" model is
superimposed on the AMV CDF from the PDS
method in Figure 2. A very small amount of
error is indicated graphically. To identify the
error quantitatively , the amount of variation of
the fundamental eigenvalue from its mean value
at selected probability values for the PDS
‘method was compared to the spread for the full
model. The result shown in Table 4 indicates
that the deviations from the mean as computed
by the AMV and MC methods agree to within
5%. In addition, the mean value of the
fundamental eigenvalue computed by the AMV
method is 8.727, which is only .2 % higher than
that computed using MC, and the AMV standard
deviation is .272, which is only 3.2 % less than
the MC standard deviation of 0.281.

Concluding Remarks

A new methodology has been presented for
performing analysis of structures composed of
substructures whose dynamic characteristics
can be statistically identified. This method uses
the substructure eigenvalues, eigenvectors, and

1.2
1.1 ----#---- pdsamv
1.0 1 full mod. mc

Cum. Dist. Function

75 80 8.5 9.0 9.5

Figure 2

CDF's for fund. evalue using PDS
method and M.C. of full model

residual flexibility as random vectors for
determining the desired response value by
combining new probabilistic analysis techniques
with the residual flexibility method of component
mode synthesis. Results for a test case show
the method predicts close to the same
cumulative distribution function for the system
fundamental eigenvalue as a non-substructured
probabilistic Monte Carlo analysis.

Future work on this method includes
examining some basic conceptual questions on
the limitations and applicability of the method.
Since some of the dynamic characteristics
necessary for the synthesis may be difficult to
measure in some circumstances, the formulation
of a hybrid method combining analysis and test
will be pursued. Other questions include finding
cases where the number of random variables
can be reduced by perhaps only allowing
stiffness or mass to vary, and examining the
effect of boundary variability for situations like
the fir tree interface between blades and discs,
which are neither fixed nor free. In addition, the
method will be compared to perturbation
methods to determine the areas of most efficient
applicability for each one.
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