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SUMMARY

Magnetic bearings are often designed using magnetic circuit theory. When these bearings

are built, however, effects not included in the usual circuit theory formulation have a

significant influence on bearing performance. Two significant sources of error in the circuit

theory approach are the neglect of leakage and fringing effects and the neglect of eddy

current effects. This work formulates an augmented circuit model in which eddy current

and flux leakage and fringing effects are included. Through the use of this model, eddy

current power losses and actuator bandwidth can be derived. Electrical impedance

predictions from the model are found to be in good agreement with experimental data from

a typical magnetic bearing.

INTRODUCTION

Maxwell's equations are generally adequate to describe the magnetic and electric fields

inside a magnetic bearing. It is possible to approximately solve Maxwell's equations

directly using the finite element method [1] [2] [3]. However, the computational cost of a

3-D eddy current solution is very high. Moreover, the effects of any particular design

parameter may be difficult to isolate in such an elaborate model.

It is common to develop a simplified magnetic circuit analysis for design using the

assumptions

• no flux fringing, or spreading out of the flux in the vicinity of air gaps in the bearing.

• no flux leakage, or flux that circulates locally around a coil through unmodeled paths.

• negligible eddy current effects

• flux density uniform in every flux-carrying cross-section
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NOMENCLATURE

a Cross-sectionM area of flux path.

A Magnetic vector potential.

B Magnetic flux density.

b Frequency domain magnetic flux den-

sity.

B Vector magnetic flux density.

d Lamination thickness.

E Vector electric field intensity.

H Magnetic field intensity.

H Vector magnetic field intensity.

I Coil current.

j xflL-f

J Current density.

J Vector current density.

l length of flux path section.

L Inductance matrix.

m number of poles in stator.

M Air gap influence matrix.

n Number of turns in coil.

Pk k th pole in the expansion of #/d.

r Magnetic reluctance.

s Laplace variable.

V Voltage.

w Axial length of magnetic bearing.

zk k th zero in the expansion of P/d.

a (wa#d2/2)

; v/'5"fid/2

# Magnetic permeability.

a Electrical conductivity.

¢ magnetic flux.

a) excitation frequency.

AFt Magnetomotive force drop.

by which Maxwell's equations are reduced to a set of circuit equations [4]. The magnetic

field can then be determined by solving a relatively small set of linear algebraic equations.

The resulting magnetic circuit theory is commonly used in the design of magnetic bearings.

However, the presence of leakage, fringing, and eddy current effects can lead to significant

discrepancies between circuit theory predictions and experimental performance.

The objective of this work is to present an augmented magnetic circuit model that

accounts for the effects of eddy currents, leakage, and fringing in magnetic bearings

without abandoning the circuit paradigm. The development will be directed specifically

towards the case of active radial magnetic bearings, as pictured in Figure 1. Corrections for

eddy currents are developed from a 1-dimensional eddy current model often employed for

losses in transformer cores. Extra leakage paths are proposed to account for the effects of

flux leakage, and a magnetostatic finite element model is used to correct the reluctance of

the air gaps for fringing effects and to identify the reluctance of leakage paths. Bearing

electrical impedance predicted by the augmented circuit model is compared to

experimental measurements and to predictions made using the usual circuit techniques. In

this comparison, the augmented model predicts the experimental results more accurately

than typical circuit methods.
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Figure 1: Active radial magnetic bearing.

RELATED WORK

A one-dimensional eddy current formulation for laminated magnetic circuits has been

available since Stoll [5]. This formulation has been used more recently in several instances

to analyze eddy current losses in transformers [6] [7] [81. However, the one-dimensional

analysis has not been applied to cores with complicated connectivity. Zmood [9] applied a

one term expansion of the formulation in [5] to a simple magnetic bearing. The present

work extends Zmood's formulation so that a bearing with an arbitrarily complex network

of flux paths can be addressed with an expansion of arbitrary order.

Previous works have accounted for fringing effects at the pole tips in magnetic bearings by

isolating the tip regions from the rest of the bearing and solving magnetic scalar potential

in the region of the air gap [10] [11]. In these analyses, the iron is assumed to be infinitely

permeable; it can then be treated solely by defining a constant value of magnetic scalar

potential at the iron-air interface. The air gap reluctance deduced from this infinite

permeability solution is then assumed to apply in a magnetic circuit with high (but not

infinite) iron permeability.

These previous works, however, dealt with geometries in which the pole tips could be

conveniently isolated from the geometry of the rest of the bearing. In a typical radial

magnetic bearing, the ends of the poles are not so removed from the rest of the bearing

structure as to allow an examination of the pole in isolation from the rest of the bearing.

This work presents a general infinite permeability method of determining air gap

reluctance based on magnetic vector potential that uses the solution of the field in all

sections of the air between the rotor and stator to determine fringing corrections. In this

process, the forms of additional leakage paths are suggested, and the reluctances of these

leakage paths can be determined.

EDDY CURRENT CORRECTION

The use of a one-dimensional eddy current model to describe eddy currents in thin

laminations has been addressed in the literature. As reported in Stoll [5], the effects of
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Figure 2: Magnitude and phase shift of #le(jw) versus frequency.

eddy currents can be incorporated into a frequency-dependent permeability, #fd(S):

tanh( Sv/_- fi d_)]
A

where d is lamination thickness, a is conductivity, and # is steady-state permeability.

Permeability #.fd can be used in magnetic circuit equations in a way analagous to regular

permeability: magnetomotive force drop across a section of laminated iron is

l
era(s) -

where D is the average flux density in the laminated section.

(1)

(2)

If harmonic response is desired, p/d(jw) can be evaluated at any particular w. Permeability

#/d(j_o) can be evaluated in terms of standard functions:

where

(1 -e -2v_ + 2e-V'-Zsin V'_) - j (-1 +e -_'/z + 2e-'/-z sin v/-_)

v/-_(1 + e-,/-z + 2e-<-z cos v/-_)
(3)

coa#d 2
c_ -- 2 (4)

The magnitude variation and phase shift of #]d(jw) are shown Figure 2. Once #jd(jw) is

obtained, magnetic circuit analysis then proceeds with a complex permeability for the iron

sections of flux path.

However, a model that remains in the Laplace domain is a necessary prerequisite for the

use of many tools from control theory. If (1) is simply substituted into the set of circuit

equations in symbolic form, solving the magnetic circuit equations becomes laborious.

Instead, the magnetomotive force drop across a laminated section can be defined as

Aft(s) = /b- I_(s)
#

(5)
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Figure 3: Equivalent circuit model for eddy currents.

From a magnetic circuit standpoint, I_ is merely a 1-turn coil wound around the laminated

section of interest that carries some arbitrary current, just like the regular pole windings.

The electric circuit equations for each pole winding are then written assuming that all I_'s

are arbitrary inputs to the system. The current flowing in I_ is then determined by the
transfer function

I_(s) [ l l¢(s) - a# a#sa(s) (6)

where ¢ =/_a is the total flux flowing through the laminated section. The hyperbolic

tangent can be expanded in continued fraction form as [7]:

x

tanh x - _2 (7)
1+

3+ 7
5%...

which can be substituted into (6) to yield

I_(s)¢(s)- (_a) s723+ _ where 7 = xf_d (8)
5+-..

With some algebraic manipulation, (8) can be re-arranged in the form

Io( )
1

¢(8) /1_1-'_-I + R2+_1

(9)

where

/;i -- # a
(4i + 1)l (10)

4(4i- 1)a
Ri -- ald2 ( 11 )

Equation (9) can be interpreted as the transfer function of a one-turn coil driving the chain

of resistors and inductors pictured in Figure 3. The effects of eddy currents can be viewed

as a parasitic winding around each section of iron flux path that drives a chain of resistors

and inductors. For a finite state model, the chain is simply truncated after an arbitrary

number of resistor-inductor pairs.
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Figure 4: 2-D solution region inside a magnetic bearing.

LEAKAGE AND FRINGING CORRECTIONS

To determine an adequate network of bulk flux paths and to solve for the reluctance of the

air sections in those circuit paths, the coupled coil inductances derived from a

magnetostatic field solution will be compared to the inductances derived by circuit

techniques. In both cases, inductance will be determined with # of the iron in the bearing

assumed to be infinity. The reluctances derived (for # = oc) are assumed to apply for a

finite but high permeability material with eddy current effects.

If a bearing is

2-dimensional

model, vector potential is related to flux by

OA OA

B = N cl -- "_-xC2

suitably long in the axial direction, axial end effects can be neglected; a

analysis is then sufficient to determine leakage and fringing effects. In a 2-D

where z, y, cl, and c2 refer to Figure 4. Following the development in [12], the

magnetostatic field satisfies the differential equation

V2A = J

(12)

(13)

where J is the coil current density flowing in the c3 direction.

A great simplification in the solution of (13) is to assume that the iron in the solution

region is infinitely permeable. The boundary condition

VA.n =0 (14)

then applies at the air-iron interface where n is a vector normal to the interface. The field

then need not be computed inside the iron sections.

In a radial magnetic bearing, the solution region assuming infinite iron permeability is then

limited to the air between the rotor and stator. If the stator is symmetric and the rotor is
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Figure 5: Equivalent circuit model of a 4 pole symmetric radial magnetic bearing.

centered, all possible flux distributions for any set of coil currents can be determined by the

superposition of the solutions found with only one active coil. Such a solution domain is

pictured in Figure 4 for an 8-pole radial magnetic bearing. It is then relatively

straight-forward and economical to solve for A inside the air and coils using the finite

element method [12].

Once the A field is determined inside the air and coils of the bearing, the mutual inductance

between the i th and jth coils (denoted Lij) can be determined by the integration [13]:

Li.i = wff Ai Jj dx dg (15)
1,5

In this integration, Ai is the contribution to A from current in the i th coil, Jj is the current

density contribution of the the jth coil, Ii and Ij are the currents flowing in the i th and jth

coils respectively, and w is the axial length of the bearing. The integration is taken over

the entire solution domain, but the only non-zero contributions to the integral are in the
area of the jth coil.

Note that inductance is computed by (15) without assuming any network structure for the

flux. A set of magnetic circuits must be deduced such that when the air gap reluctances in

that circuit model are appropriately chosen, the circuit theory inductance closely matches

the field theory inductance as # --* oo.

The nominal equivalent circuit model used in radial magnetic bearings is pictured in

Figure 5. For simplicity, a four pole symmetric radial bearing is shown instead of the usual

eight-pole bearing. Symbols rp, rr, and rs correspond to the reluctances in the iron of the

pole, rotor, and stator respectively. These reluctances are computed from the formula

1

"- (16)

where l corresponds to the length and a to the cross-sectional area of the segment in
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question. Reluctance rg is the air gap reluctance and has a nominal value of

r- Ig (17)
_oaz

without the inclusion of fringing effects. The flux in any part of the bearing can be

deduced by analogy to electric circuits where magnetic reluctance corresponds to electrical

resistance and magnetic flux to electrical current [4].

In the circuit model, the inductance between the i th and jth coils (denoted Lij) is

0¢i
Lij = n-- (18)

o/j

where ¢i is the flux passing through the i th coil, Ij is the current in the jth coil, and n is

the number of turns in the jth coil.

In the infinite permeability case, reluctances due to iron (r,, rs, and rp) are all zero. For a

symmetric bearing, the self inductance of each coil is

L. - (19)
m

and the mutual inductance is

= -- i :/: j (20)
m

At this point, air gap reluctance r 9 could be chosen to minimize the difference

between correspond!ng entries in circuit theory inductance matrix L and field theory
inductance matrix L. However, the existence of error between L and Z that cannot be

eliminated by the proper choice of rg suggests that extra leakage flux paths exist and

should be modeled. In the nominal circuit model, all flux produced by a coil returns to

that coil by eventually passing through another coil on the stator. The summation of the

entries of any row of L is therefore zero. The sum of the row entries in L, however, is

generally non-zero; some of the flux travels in loops not accounted for by the usual circuit

model. The chief cause of this discrepancy is a self-leakage path for each coil. Some flux

makes a complete circuit flowing only in the air and iron immediately adjacent to an active

coil and never crosses the air gap to link with other coils. Leakage mutual inductances also

exist, but these mutual leakage paths are usually an order of magnitude more reluctant

than the self-leakage path and can be neglected with little error incurred.

Fortunately, a self-leakage path is simple to incorporate into the nominal circuit model.

This leakage is a short circuit path that loops around a coil without passing through the

bulk reluctances associated with the pole iron and the air gap for the corresponding leg.

This path is visualized in Figure 6, where rl signifies the reluctance of the leakage path.
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Figure 6: Equivalent circuit for self-leakage path.

Some parts of the leakage flux travel through the iron in the leg and stator adjacent to the

coil of interest. However, the reluctance of the air part of the bulk leakage path is very

large; the increase in the reluctance of the leakage path due to finite permeability in the

iron is arguably negligibly small in comparison. The leakage flux is therefore idealized as

flowing only in the coil itself and in the air around it from a circuit standpoint.

The fluxes in the gaps are identical with and without the self-leakage path; an extra flux of

n

Cu_k = --Ii (21)
rl

is merely added to the flux that passes through the i th coil. The only effect is to increase
the self-inductance of a coil:

- + - (22)
77_ r l

Off-diagonal terms in L remain the same as before. An over-determined set of linear

equations can now be solved for r_1 and r_-1 by equating L and L. If the bearing is

symmetric, it is sufficient to compare only the first row of L and L. Denoting the first row

of L as L1, row L1 can be decomposed as:

T_2 m--1 ?./,2!7)
{.} 0L'1 = M 91 where M = "_ (23)

r t • .

--'t12 0

fn

The least-squares solutions for the gap and leakage reluctances are then

_1 [M' M] -1 ' ^'= M L 1 (24)
r I

POWER LOSS AND ACTUATOR BANDWIDTH CALCULATION

A frequency-dependent bearing inductance can be obtained either by the use of _jd(s) in

inductance calculation or by measurement of bearing electrical impedance. Once this

inductance is determined, power loss and actuator bandwith can be deduced by relatively
simple calculations.
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mass

Figure 7: Simple magnetic actuator.

Power Loss

At a given frequency a_, inductance L can be separated into real and imaginary components:

L(jw) = Lr + j L, (25)

where Lr and Li are both real numbers. In the frequency domain, the voltage drop across

the bearing is

V(jw) = jw(Lr + j Li)I(jw) (26)

Eq. (26) implies that if the current going through a bearing is

I(t) = i sinwt (27)

the voltage drop across the bearing is

V(t) = wi(-Li sinwt + Lr coswt) (28)

Noting that instantaneous power loss is I(t)V(t), the power loss can be integrated through

one cycle and divided by the cycle length to yield average power loss:

w Li i 2 (29)
Power Loss = -

In the absence of eddy currents, Li is zero. When eddy currents are modeled, Li is a

negative number, resulting in a power loss.

Actuator Bandwidth

Determination of actuator bandwidth will be addressed by considering a simple example;

however, the method is readily extended to more complicated actuators. Specifically,

consider the actuator shown in Figure 7. A single horseshoe electromagnet pulls a mass

upwards against the force of gravity. The force,f, produced by this bearing is

I(t) - 1 (¢b + ¢p)2
#oa

396

(30)



pole length lp 0.0181m

pole area a v 1.210 × 10 -4 m 2

air gap length lg 4.572 x 10-4m

air gap area ag 1.210 x 10 -4m 2

stator length ls 0.0366m

stator area as 1.210 x 10 -4m 2

rotor length l_ 0.0198m

rotor area

lain. thickness

conductivity

permeability

turns

coil resistance

shunt resistance

ar 0.786 × 10 .4 m 2

d 0.635 × 10-3m

a 9.017 x 106(_. m) -1

# 5000/to

n 76 turns/pole

R_ 0.62 f_

Rs 15.35 Ft

Table 1: Kingsbury Bearing Dimensions

where q_b is a constant bias flux and Cp is perturbation flux. If Cb is chosen to exactly

counteract gravity and the magnitude of Cp is assumed small, the net force on the mass is

1
f(t) _ --¢bCp (31)

/to a

Perturbation flux (_v(s) is related to perturbation current Ip(s) by

_ Ip (32)
n

implying that the relation between force and current in the Laplace domain is

From eq. (33), it can be concluded that the bearing bandwidth is identical to the

bandwidth of the frequency-dependent inductance.

(33)

EXPERIMENTAL COMPARISON-FREQUENCY RESPONSE

To test the accuracy of the augmented circuit methods, performance predictions made

using the circuit method were compared to experimental results from an 8-pole radial

bearing made by Kingsbury, Inc. The dimensions of this bearing are described in Table 1.

For testing purposes, only one leg of the stator is wound with a 76-turn coil.

A two-dimensional finite element analysis of the bearing and coil was performed. Since the

bearing and all windings are symmetric, it is sufficient to consider only the first row of L,

denoted L1. The first entry in this row corresponds to the self-inductance of the test coil,

and the other entries in the row correspond to the mutual inductances that would be

obtained if identical coils lay on each of the other legs. The following L1 was obtained by
the finite element model:

L/a = {2.0069,-0.2772,-0.2735,-0.2732,-0.2729,-0.2732,-0.2735,-0.2772} mHenries
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Figure 8: Test circuit.

Us

Solving for rg and rl via (24) yields

Wb Wb

rg=2.631× 10° A rl=6.701 × 107 A

For comparison purposes, the air gap reluctance predicted by the nominal magnetic circuit

model without leakage and fringing corrections is

Wb
= l--2--g= 3.007 x 106--_ ---

7"9 ,nominal #og
(34)

Fringing effects reduce the predicted air gap reluctance by 12.5 percent relative to the

nominal reluctance. Leakage effects add another 0.086 mH of inductance, amounting to

4.30 percent of the total predicted self-inductance including leakage and fringing

corrections when # = o¢.

Reluctances of the iron sections are computed from (16):

Ip 150.0 m -1 ls 298.8 m -1 l_ 249.4 m -1
rp -- rs -- rr --

#fdap #fd #fda8 l_]d g/dar #]d
(35)

For any particular frequency of interest, #fd(jw) is evaluated via (3).

The test bearing is included in a measurement circuit as pictured in Figure 8. Resistance

Rc is the intrinsic resistance of the wire in the bearing's coil. Resistance R8 is an arbitrarily

chosen current shunt resistance. In the present case, a 15.35 _ resistor was employed. The

input to the circuit is the voltage V. The measured output of the circuit is the voltage Vs.

The transfer function of the electric circuit model is

Vs = (36)
V s + (n, + Re)

The test bearing was subjected to a sine wave sweep varying from 100 Hz to l0 s Hz. The

output signal was convolved with the input signal to determine the magnitude and phase

shift of the output.
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Figure 10: Response of frequency-dependent inductance.

A direct comparison of the measured transfer function _ can now be made with they
transfer functions predicted by the augmented circuit model and the nominal circuit model.

Figure 9 is a comparison of predicted and measured frequency response of test circuit. By

substituting experimentally measured values of V_/V into (36), one can solve for the

frequency-dependent inductance of the bearing. Experimentally derived and predicted

L(jw) are compared to the nominal magnetic circuit model inductance in Figure 10. In

each figure, the error bars associated with the measured data represent the maximum

deviations expected due to experimental uncertainty.

At low frequencies (less than 1000 Hz), eddy current effects are negligible; the differences

between the augmented and nominal models are due solely to leakage and fringing effects.

In this frequency region, the augmented model shows an improvement in predictive

accuracy over the nominal model. The nominal model underestimates the inductance in

this region, but the corrected gap and leakage reluctances yield an inductance at low

frequency that closely agrees with the experimentally derived inductance. The augmented
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model also correctly predicts the "corner frequency" at which the magnitude response

suddenly decreases; the nominal model over-predicts the corner slightly.

At higher frequencies, eddy currents become a significant effect. Figure (10) shows that a

significant drop in inductance is predicted by the augmented model at higher frequencies.

Experiment verifies this drop. Most significantly, eddy currents induce a recovery in phase

in a situation where a simple inductor model predicts a terminal phase lag of 90 ° as

_0 --+ oo. The augmented model predicts the recovery of phase fairly well, with some loss of

accuracy at the highest frequencies considered. Discrepancies between the augmented

model and experiment at high frequency could be due to any of several effects:

• a breakdown in the accuracy of the leakage and fringing model due to a low effective

permeability,

• capacitive effects in the test coil,

• saturation effects caused by concentration of flux near the sides of the lamination,

• mechanical resonance effects in the test apparatus.

An interesting phenomenon predicted by the augmented model is a terminal phase lag of

45 °. This result is possible because of the infinite number of poles and zeros associated

with #]d(S). Far out on the negative real axis, poles and zeros are placed increasingly close

together (on a log scale) to yield a terminal 45 ° lag. The experiment corroborates this

prediction.

CONCLUSIONS

An augmented magnetic circuit model was presented to account for eddy current, leakage,

and fringing effects in radial active magnetic bearing. Although leakage and fringing

corrections are derived from a bearing model in which the iron is assumed infinitely

permeable, a good correspondence with experimental data was observed when these

correction factors were applied to a model with complex iron permeability. The eddy

current corrections, derived from a 1-D eddy current model, were also found to adequately

account for a drop in bearing inductance with frequency. The eddy current correction can

be evaluated at a specific frequency when frequency response is desired, or truncated into a

finite-state model for use in transient response calculations or control applications. In both

instances, a structure of arbitrarily complicated connectivity can be addressed. In

summation, the augmented magnetic circuit model provides an improvement in the

prediction of bearing performance over usual circuit methods without resorting to

computationally expensive 2-D or 3-D finite element eddy current models.
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