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ABSTRACT

This paper presents an analytical method of modelling eddy currents inside axial bearings.

The problem is solved by dividing an axial bearing into elementary geometric forms, solving the
Maxwell equations for these simplified geometries, defining boundary conditions and combining

the geometries. The final result is an analytical solution for the flux, from which the impedance
and the force of an axial bearing can be derived. Several impedance measurements have shown

that the analytical solution can fit the measured data with a precision of approximately 5°7o.

INTRODUCTION

Modelling magnetic bearings is necessary to achieve reasonable results for magnetic force

and bearing losses in order to design bearings and amplifiers. Furthermore, controller design
is based on a model of the plant including magnetic bearings. Magnetic bearings are usu-

ally modelled as equivalent electrical circuits. With simple models neglecting eddy currents,

hysteresis, saturation and material nonlinearities, it is possible to achieve approximations for

the magnetic force which are sufficient for most applications. Nevertheless, better modelling

can improve bearing design and system behaviour. For some applications such as self sensing

bearings a more precise model is necessary.
The absolute permeability l_. describes the relationship between the magnetic flux density B

and the magnetic field strength H (see equation (5)). The relative permeability l_r is material

dependent, the permeability of vacuum tL0 is constant. For simple models lit can be assumed to
be constant, but for real materials #_ depends on the magnetic field strength (i.e. p,. = l,,.(lt)).

With increasing magnetic field strength the gradient # decreases (to a limit value/I.0). There-

fore, the magnetic flux density is nearly constant for high field strengths (saturation). While
increasing and decreasing H, the flux density B has different values for forward or I)atkward

loops due to hysteresis of the material. There are complex mathematical models such as the
Preisach model [May91] to describe hysteresis, 1)ut these do not have an analytical solution.

Changing magnetic fields inside conducting materials cause currents to flow. These eddy cur-

rents have a large influence on the behaviour of magnetic bearings. The main goal of this paper
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is to achieve an analytical description of a bearing model including eddy currents. Nonlinear

material behaviour is considered in numerical calculations. Hysteresis is neglected in this paper.
For elementary geometric forms, analytical solutions for eddy currents can be found. These

solutions are sufficient to describe the behaviour of axial bearings. The elementary geometric

forms are a semi-infinite plate, a rotationally symmetric plate and a semi-infinite cylinder.

ELEMENTARY GEOMETRIC FORMS

Electromagnetic fields and, therefore, eddy currents also can be described using Maxwell's
equations ([Kiip90], [Jac83]). In order to achieve analytical solutions it is necessary to divide

an axial bearing into elementary geometric forms. Contrary to numerical results,analytical
solutions can be more useflll for bearing and controller design. Finite Element analysis can

solve two or three-dimensional problems and more complex geometric forms. These numerical
calculations are therefore used to verify analytical results and simplifications.

(1) Semi-infinite cylinder

(2) Rotational symmetric plate
(3) Air gap

(4) Coil with N turns

Figure 1: Cross section of an axial bearing. The bearing is divided into elementary forms.

Maxwell's Equations

Considering that the frequencies of the currents and fields are sufficiently low so that we can
neglect the displacement current OD/Ot, Maxwell's equations can be written as

OB dB OH

curiE- Ot - dH Ot (1)

curlH = J (2)

divB =0 (3)

Here E is the electric field strength and J the current density. The generalized Ohm's law,
with tile electric conductivity a is given by:

J =aE (4)

The material equation is:

B = #o#_H = #H (5)
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Combining equations (1), (2), (4) and (5) we obtain:

OH

curl(curl H) = - pa _ (6)

A sinusoidal variation of the fields enables the transformation of equation (6) into tile Fourier
space. O/Ot can be replaced by jw giving:

curl(curlH) = - jw pa H -- -a 2H (7)

where:

o! =_ --- (l + j) _2 a (8)

Maxwell's equations (2) and (3) can be integrated using the theorems of Stokes and Gauss
(O: magnetomotive force , (I): magnetic flux) to give:

O = f Hds = I + / JdA
OA A

(9)

(_-- / BdA (10)
av

In the following sections, solutions for the elementary geometric forms semi-infinite plate,

rotational symmetric plate and semi-infinite cylinder are given.
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Figure 2: Cross section of

(a) a semi-infinite plate, (b) a rotational plate, (c) a semi-infinite cylinder

Semi-infinite Plate

A very long plate with thickness d and a magnetic field only in the z-direction has an eddy

current flow in the x-direction. Equation (7) leads to the following differential equation:

curl 0 = 0 = 0 (11)
H_ 0 0
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with the general solution:

(o)(0)(0)curl _)Y = 0 = 0

0 - °2-_u -c_2Hz
By 2

Hz (y) = cle "u + c2e -"u

(12)

(13)

(14)

OH_
,5(y) -

Oy
__ CIO, C c_y -- C20[C -°y (15)

Rotational Symmetric Plate

curl (/,r)(o)(o)0 = _ = ,Iv
0 0 0

(16)

curl _ = 0 = 0
00_ 10 ( r Ol_!b_t] 0

Equation (17) represents the following two differential equations:

(17)

.02Hr - a2H, (18)
Oz 2

10Hr 02 H_
---+ -0 (t9)
r Oz OzOr

The solution for the differential equations (18) and (19) can be found by separation of the

variables:
Hdr, z)= _(,-)z(z) (20)

Equation (18) can be transformed to:

02Z
__ = _2z (21)
Oz 2

with tile general solution:
Z(z) = zte "_ + z2e-°_ (22)

Equation (19) can be transformed to:

1 OT_
-7-_+ --0
r Or

(23)
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with the general solution:
1

n(r) = rl- (24)
7"

Equation (22) and (24) lead to:
1

gr(r, z) = _(c,e _'z + c2e -_'_)
T

(25)

Without regard for r, equation (25) is similar to equation (14) (the case of the senti-infinite

plate).

Semi-infinite Cylinder

(o)(o) (o)curl 0 = -
H_ 0or = J_OO

(26)

(o)( o )(o)curl _ o___ = 0 = 0 (27)
0 _1or _ 7" -o_2Hz

10Hz
02H---2-_+ a2H_ = 0 (28)

Or 2 r Or

The substitution f = ar transforms the differential equation (28) into Bessel's equation:

_2 02 Hz _ OHz
0f------if-+ --_ - f2H_ = 0 (29)

with the general solution:
gz(f) = C,Io(f) + c2Ko(f) (30)

or written without substitution:

H_(r) = ClIo(ar) + c2Ko((_r) (31)

Here, I0 is the modified Bessel function of first type and zeroth order and K0 is the modified

Bessel function of second type and zeroth order. More detailed information can be found in

[AS65]. For calculations with Bessel functions, especially with complex arguments, a power
series expansion is necessary. A solution without Bessel functions is therefore desirable.

It can be clearly seen that equation (31) leads to equation (14) when Ri >> d (Ri: inner radius

of the cylinder). A numerical comparison of the results for equation (31) and equation (14)
shows that the difference between these two equations is only significant for unrealistically small

values of Ri (Ri < d).

An analysis of the cases of the semi-infinite cylinder and the rotational symmetric plate shows

that these cases can be described with the equations of the semi-infinite plate. The problem of

eddy currents in a semi-infinite plate is well known in the literature ([Sto74], [Kiipg0}), because

the choice of lamination thickness is important for high power transformers and electrical
machines.
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BOUNDARY CONDITIONS

Solutionsof differential equationsrequiredefinitions of boundary conditions. Current field
lines haveto be closed. This is valid for eddy currents too. It is thereforeassumedthat eddy
currents in a semi-infinite plate turn back at infinity. Eddy currents flow in one direction at
oneedgeand in the other direction at the secondedge(seefigure 3 (a)). This solution is given
in the literature ([Sto74], [Kiip90]).
For a semi-infinite cylinder a secondsolution is possible. Contrary to a plate, a cylinder is
geometricallyclosedand thereforeeddy currentscan flow in one direction (seefigure 3 (b)).
Calculations with the Finite Element program FEMAG ([Ins94]) produce this solution by de-

fault.

Case (a): A cylinder with an intersection.

Eddy currents flow in two directions.

Jx

f

Ca+se (b): A cylinder without an intersection.
Eddy currents flow in one direction.

Figure 3: The two different boundary conditions. Cylinders with or without intersection.

Cylinder with intersection

The constants ct and c2 of equations (14) and (15) can be found by defining two boundary

conditions. The first boundary condition is given by

Hz(-d) = H0 (32)

The second boundary condition can be derived using Kirchhoff's law.
currents has to be O.

J_
2

/ J_(y)dy -- 0
___

2

The sum of all the

(33)

Equation (33) can be written as:

(34)
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The solutions for H,, J_. and the flux (I) with the boundary condition of a cylinder with

intersection are as follows (A is the area of the cross section of a cylinder)"

cosh( v) (35)
H=(y) = H0cosh(cx_ )

H sinh(ay)Jx(y) =
cosh(a _)

(36)

/fd_ A /_d_ tanh(a-_) (37)= B(IA = It_ H_(y)dy = Ap, Ho d
2 2 c_

BO
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Figure 4: IH (y)I and Ig_(y)l for a cylinder with intersection.

Figure 4 shows the decrease of the H-field in the middle of the core and the increase of eddy
currents near the surface of the core with increasing frequency. The following model parameters

have been used.

d = 6.10 -s m
A = 1.39.10 -s m 2

/to = 47r. 10 -7 H/m

p _ = 5000
Ho = 79.6 A/m

Bo = itolt_Ho = 0.5 T
a = 2.10 7 (tim) -1

Cylinder without intersection

In the cruse of a cylinder without intersection the start and end of the i)late are fixed together

and therefore eddy currents can have closed field lines and flow in one direction (the opposite
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direction of the coil current), t The eddy current density at the outer surface of tile (:ore is zero.

el and c2 in equations (1,1) and (15) can be found I)y defining two boundary conditions. Tile
first boundary condition is given by:

= It0 (38)

Tile second boundary condition is given by:

.l_ (_)=0 (39)

The solutions for H_, ,Ix and (I) with the boundary condition of a cylinder without intersection
are

cosh(a_ - ay)

H=(y) = Ito c_,sh(_-d) (40)

Jx(Y) = c_H0 sinh(c_ _
costl(ad)

(41)

= A#Ho tanh(ad)
ad (42)

E
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Figure 5: IH (v)I and I&(y)l for a cylinder without intersection

Figure 5 shows the decrease of the H-field near to the outer surface of the core and the

increase of eddy currents near to the inner surface of the core with increasing frequency. The
model parameters of the preceding section have been used.

tThe uni<lirectional eddy current flow reminds us of a transformer with a shorted secondary winding. With

the transformer equation, a model for eddy currents would be very simple. A transformer however has two

windings and one core. Currents flow inside the windings and the core is only used as a magnetic material. An

axial bearing has one winding and the core has two functions (fi)r conducting and as a magnetic material). The

transformer equation therefore would lead to an unacceptable error.
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Comparison of the two boundary conditions

The generalized form of the flux equation can be written as:

(I) = fro tanh(_)
7

(43)

with _o = A pHo and with "7 = a_...ad.

x 10 -s
1

?"

0.5
v

0
10 -2

................ $ ...........................

100 10 2 10 4

f [Hz]

-- cylinder without intersection
Figure 6: I(I)(f)l _ _ cylinder with intersection

A comparison of the flux equations (36) and (42) shows that 7 is two times larger for

unidirectional than for bidirectional eddy currents. Figure 6 shows the frequency dependent
flux for both cases with the same q)0.

The flux bandwidth of bidirectional eddy currents is 4 times higher (see figure 6). This does
not correspond to measurements which only show a factor of 2. This difference is caused by

the frequency dependence of (I)0.

In tile case of bidirectional eddy currents, (I)0 is constant for all frequencies. The H-field only

changes inside the core and the boundary conditions at the surface of the core remain the same.
This leads to frequency independance of the global H-field.

For unidirectional eddy currents the boundary conditions change at tile surface of the core.

This leads to a global change of the H-field and, therefore, to a change of q)0. In order to

achieve analytical solutions it is necessary to expand the problem of modelling eddy currents

with the problem of modelling inductances. Calculation of inductances can be done for simple

geometric setups, but for complex geometries such as axial bearings analytical models are not
available.

Several measurements have shown that the flux curves are similar for both eddy current cases.

Therefore, the equations for bidirectional eddy currents can be used for unidirectional eddy

currents too. It is clear that axial bearings with screw-holes or other gaps have uni- and

bidirectional eddy currents and, therefore, the flux curve is between the two extreme eddy
current cases.
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ELECTRICAL MODEL AND FORCES

The last boundary value H0 can be found by closing the magnetic circuit. In order to build

the complete magnetic circuit different materials have to be combined. Solutions for the flux
are independent from the depth of the core (i.e. from the z-direction). Different materials lead
to different solutions. It is clear that the flux changes in a transition region from one solution

to the other. Finite Element analysis is used to calculate the flux distribution in a transition

region between different materials. Figure 7 shows that the flux in the air gap is homogeneous

even for high frequencies and that the transition region in the iron is small. Combining several

materials is possible because the flux density distribution inside one material has little influence

on the flux density distribution inside the next material.

Figure 7: The flux inside the air gap is homogeneous even with a highly nonhomogeneous flux

inside the unlaminated core (f = 1KHz).

For calculations with eddy currents, it is useful to define the cut-off frequency ]'9 of the flux

decrease inside the core. In the literature fg is called the cut-off frequency of the lamination

(see also [Kiip90]). 1 (44)
f9 - 7ra#d:

Axial bearing materials normally have either a very low f9 (unlaminated iron) or a very high

fg (laminated iron, special magneti_ core ma_rials such as Corovac 2 and air (fg,a/r --+ OO))('45)
Hdl = E nrnxm = NI

rn=l

rb = f B.,dAm = A,,,po#r,,_H._
tanh(%,_)

"Ym

(46)

2Corovac is a high frequency core material with a _ 5 • 10"SS/m and #r _ 130. The l_r of Corovac is low
compared to ferrite cores which are used for high frequency transformers. The machinability of Corovac is
however much better.
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Solvilagthe system of equations (45) and (46) leads to the flux equation (for n different

materials): #oN I
= . (47)

,,=1 pr,mAm tanh(% 0

The modelling of axial bearings cannot be improved using more than two terms of the sum.

The first term represents all materials with low f9 and the second term includes all materials

with a behaviour as air (f0 is very high and tanh(')'m)/7,, = 1). This simplification is based

upon the fact that a connection of two materials with similar fg leads to:

tanh('h) tanh('),2) tanh(73)
al + a2 _ a3 (48)

71 72 73

Tile reduced flux equation is:

#oNAI 1 1

= 1I____.__7__ = pogmI _ (49)2x + pr tanh(7) 2x 1 + 1ale tan

with:
2x

ale = _ lie (50)

All areas are normalized to the area of the air gap A. x is tile length of tile air gap (including

lengths of materials with very high fg) and lfe is the length of the unlaminated core.

Saturation

In the previous calculations IL, has been assumed to be constant. Saturation of the magnetic

material leads to a limit value for the flux. The solution for the flux therefore gives unre-

alistically high values at the surface. Even with simple models for saturation (e.g. Frhhlich
model [Sto74]), it is not possible to derive an analytical solution for the differential equations.

Numerical calculations have shown that the behaviour of the H-field with saturation is very

similar to the behaviour without saturation. It is therefore not necessary to include saturation
into a model for eddy currents.

Equivalent Electrical Circuit

When x is assumed to be constant, the impedance of an eddy current affected coil can be
written as:

Nd_ 1 (51)Z -- U _ -_ - jwLo 1

f I 1 + ale ta '-7-r-rnntT)

with:

Lo =/toN2A_-_-_ (52)
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Forces

The magnetic force is proportional to the square of the flux. Therefore a reduction of the

flux due to eddy currents will also reduce the force to:

(I)2 K 12 1 (53)
F--

jL/0 A 4 x2 ( ]. _ _21 + a/r tanh(7) )

with:
K =/LoN2A (54)

O

o
O

LL

.U 0.5

o

0 A

10 -2 10 ° 10 2 10 4

l [Hz]

Figure 8: Normalized force dynamics IF/FDcI of an axial bearing (fg ._ 0.02ttz, a/, .._ 200)

NONLINEAR PARAMETER IDENTIFICATION

Parameter Identification

It is clear that the impedance of a coil not only depends on the inductance affected by

the eddy currents. An impedance model must also include the coil resistance Rcu, the coil
inductance Lcu and the coil capacitance C¢,, (see figure 9). Tile last two parameters are necessary

to model the frequency range above 10kHz. Thus, the total impedance is:

I Rcu Lcu

Z

Figure 9: Complete equivalent electrical circuit
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1

Ztot - jwCc, il(Z + nc, + jwL_,,) (55)

Robustness of the identification can be improved by defining tile constraints. The authors

used the constraint algorithm from the MATLAB Optimization Toolbox. The parameter range

described below is sufficient to approximate all measured axial bearings. Less stringent con-

straints are possible, but computational time increases.

All parameter ranges excluding R_,, are written with exponential notation. Tile fitting al-

gorithm therefore fits the exponent of the parameters. This method avoids tlle value 0 and

guarantees convergence.

The ranges of the fitted parameters are given below.

/_Ctt _ 0

Ccu = 1.10 -12

L_u = 1.10 -6

Lo = 1 • 10 -3

afe = 1 • 10 °

h = 1.10 -3

.. 2

.. 1 • 10 -9 F

.. 1 • 10 -a It

.. 1 • 10 ° H

.. 1 • 10 3

.. 1.101 Hz

104

10 2
o

9.
I

N
_" 10 o
,10

10 -2
101

J
J

f

J

........ i ........ i ........ I ........ t .......

102 103 104 10s I 0s
f [Hz]

IO0

o
o 0

W
-so

¢-
¢,,,

-I00
101

........ , ....... ,t ........ t ........ i .......

102 103 104 I0 s I0 s

f [Hz]

Figure 10: Example 1" Axial bearing with unlaminated core and target.
-- : calculated data,- - : measured data

Identified parameters: Rcu _ 1.512, Cc_ _ 800pF, L_u _ 120/g-/, Lo _ 12mH, a.fe _ 3, f9 7Hz
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10+

_I03 I
!"_t102 I

 'o:I
10' ...........................................

101 102 103 104 105 106

f [Hz]

601 ' , -_ .......

4o[

20" .........
10 _ 102 103 104 I0 s 10e

I [Hz]

Figure 11" Example 2: Axial bearing with a Corovac core and an unlaminated target.
-- • calculated data, - - • measured data

Identified parameters: Rc_ _ 0.4f_,C_, _ 150pF, Lc_ _ 120tLH, L0 _ 1.4mH, a/e _ 150, [g
0.12Hz

The fitting error e is approximately 5% with the usual air gap and increases up to 10% when

the air gap is small and the flux is saturated and is given by:

e = -....,1 (56)
FI, Zmeas

where n is the number of measured values, Z/it the fitted impedance and Zm,a, the measured

impedance.

Losses

The spectral losses of an axial bearing are given by:

(1)) (57,P = real(Uconj(I))= IUI2real(conj

Figure 12 shows normalized loss based on impedance measurements of an axial bearing with
a Corovac core. At low frequencies losses are very high due to Rc_. With increasing frequency
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losses decrease. It is therefore useful to choose the switching frequency of an amplifier as high

as possible. As mentioned in section Comparison of the two boundary conditions, a radial

intersection of an axial bearing can increase the bandwidth of the flux and leads to lower losses.

It is only sufficient to intersect unlaminated parts of the core with low fg, i.e. in most cases tile

axial bearing target. An axial bearing without intersection suffers more than 40% higher loss

than one with intersection at frequencies typically used for switching amplifiers (20 - 200 ktlz).

I 0 °

"C
r-

10 -2

c
0-

10 -4

0.4

0.2

i i

10 2 10 4 10_

f [Hz]

i

10 2 10 4 10 e

f[Hz]

Figure 12: upper plot: normalized losses P. = P/]u[ 2 of an axial bearing with Corovac core

and steel target (-- PI" target intersected , - - P2: target not intersected )
lower plot: relative difference between the two curves of the upper plot, P_ = (P2 - P1)/PI

Measurement

Measurements of axial bearing impedances are made with a LCR-meter (tip 4284A) includ-

ing a power current source (HP 42841A). The LCR-meter has the possibility to measure with

logarithmically sweeped frequencies from 20Hz up to 1Mttz. A host computer controls the
measurement via GPIB-interface.

The power current source allows measurements of very high inductances and can superpose the

measurement signal with a DC-bias current of up to 20A.

CONCLUSIONS

A model for eddy currents in axial bearings has been derived which can describe the be-
haviour for a wide frequency range. From the analytical solution for the flux, the impedance,

the magnetic force and the losses can be calculated. Measurements have shown that the model

is very precise.
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