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ABSTRACT

An ongoing program exists to investigate mad develop magnetic suspension technologies and

modelling techniques at NASA Langley Research Center. Presently, there is a laboratory-scale

large air-gap suspension system capable of five degree-of-freedom (DOF) control that is oper-

ational and a six DOF system that is under development. Those systems levitate a cylindrical

element containing a permanent magnet core above a planar array of electromagnets, which are

used for levitation and control purposes. In order to evaluate various control approaches with

those systems, the Generic Real-Time State-Space Controller (GRTSSC) software package was

developed. That control software package allows the user to implement multiple control methods

and allows for varied input/output commands. The development of the control algorithm is pre-

sented. The desired functionality of the software is discussed, including the ability to inject noise

on sensor inputs and/or actuator outputs. Various limitations, common issues, and trade-offs are

discussed including data format precision; the drawbacks of using either Direct Memory Access

(DMA), interrupts, or program control techniques for data acquisition; and platform dependent

concerns related to the portability of the software, such as memory addressing formats. Efforts

to minimize overall controller loop-rate and a comparison of achievable controller sample rates

are discussed. The implementation of a modular code structure is presented. The format for the

controller input data file and the noise information file is presented. Controller input vector in-

formation is available for post-processing by mathematical analysis software such as MATLAB 1 .

* Work done on contract to NASA Langley Research Center at Lockheed Martin Engineering &

Sciences, NAS 1-19000.

1 Use of names of products in this report does not constitute an official endorsement of such

products, either expressed or implied, by the National Aeronautics and Space Administration or

Lockheed Martin Engineering & Sciences.
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INTRODUCTION

In order to investigate magnetic suspension technologies and modelling techniques, a

laboratory-scale large air-gap magnetic suspension system was developed at NASA-Langley

Research Center. The laboratory system, the Large Angle Magnetic Suspension Test Fixture

(LAMSTF), consists of an array of five electromagnets arranged in a circular planar configura-

tion and a suspended element that is magnetized along the long axis of the cylinder [1,2], see Fig-

ure 1. The planar array is used to provide both levitation and control of the suspended element

in five degrees-of-freedom. A six degree-of-freedom (DOF) suspension system is under develop-

ment. Various control approaches [3,4,5,6] have been investigated with the LAMSTF suspension

system, each requiring individual control algorithms to be developed. In order to simplify the

overall control system design process, the Generic Real-Time State-Space Controller (GRTSSC)

software package was developed. The software package allows for the implementation of varied

control algorithms without the need for code development for each algorithm, and was achieved

by forming the desired control method into a standardized state-space format. By using that for-

mat, multiple types of control methods may be loaded and investigated in sequence. The devel-

oped state-space control algorithm is able to be paced at varied rates with the use of an interrupt

service routine (ISR). Due to the nature of the state-space based control algorithm, the GRTSSC

has other applications besides the control of magnetic suspension systems.

SOFTWARE DESIGN CRITERIA

An interrupt-driven control system is discussed in [7], but is limited in use due to the con-

trol algorithm that was implemented. Other approaches have used high-powered DSP processor

chips to execute the control law [8], with custom hardware in some situations to handle the data

acquisition process [9]. The use of those powerful DSP processors allow high controller sample

rates to be achieved, but at a relatively high cost. Certain requirements had to be met in the

development process of the GRTSSC. Those requirements were primarily driven by the need for

versatility of the software and ease of use. Based on the system under control, the software pack-

age needed to be configurable by the user. Certain input and output conditions were required of

the control algorithm, and other requirements of the software package were due to the desired use

of the GRTSSC as an investigative tool. Thus, the emphasis of this system was not driven by the

type of the system hardware, but by the design and the method of implementation of the control

system software.
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User Configurability

The most important requirement of the software package was to allow the user to config-

ure the GRTSSC to handle different types and sizes of systems, by specifying the number of sen-

sor inputs, actuator outputs, and the number of degrees-of-freedom of the system under control.

This was required due to the differences between the LAMSTF and the six DOF suspension sys-

tem, which is being developed. The LAMSTF consists of a state-space plant model with a ten-

element state vector and requires a control system capable of handling five sensor inputs and

five actuator outputs. Also, the six DOF suspension system consists of a state-space plant model

with a twelve-element state vector and requires a controller that can handle a larger number of

sensor inputs and actuator outputs.

Control Algorithm Functionality

The control algorithm was required to be able to handle the injection of noise on sensor in-

puts and actuator outputs, in addition to being able to apply sensor and actuator reference com-

mands. The noise injection is handled off-line by initializing a data structure from a user sup-

plied data file containing the noise information. The command reference inputs for the sensors

and actuators can be calculated either on-line or supplied in a data file similiar in format to the

noise data file. The ability to individually select the desired command reference channel was re-

quired in order to be able to preload setpoint data for all reference channels and, then, to be able

to investigate each channel individually. Another requirement of the control algorithm was the

ability to save pertinent data for post-processing with mathematical analysis software.

Software Package Functionality

In order to easily evaluate controllers with different design characteristics, the ability to

select from multiple control methods that are loaded during the initialization sequence was re-

quired. The GRTSSC software package must have the ability to dynamically switch between

control systems during suspension. The control algorithm should be paced by a timed interrupt,

which would imply that each controller that was loaded could execute at different sample rates.

It was also required that the software package provide a concise summary of commands and the

status of the control system to the user. Another requirement of the GRTSSC was the indepen-
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dent pacing of the data acquisition system. This was to help minimize the dependence of the

software package upon a particular data acquisition system. A final requirement of the GRTSSC

was for the source code to be portable between platforms.

LIMITATIONS AND TRADE-OFFS

To achieve the best code efficiency possible, a variety of areas were studied. Those included

the precision of the data variables, the differences between compilers, the machine architectures,

the methods of acquiring the sensor input data, and the general code optimizations. Some advan-

tages and disadvantages exist for each of these areas.

Data Precision

The precision of the data variables that are used to process the control algorithm can af-

fect both the speed and the amount of memory usage of the algorithm. Typically, machines per-

form memory access at a faster rate by using single precision data, thus increasing the speed of

memory intensive routines. The state-space representation of the control system was represented

by floating-point memory pointers. That allows dynamic memory allocation for each controller,

thereby maximizing the efficiency of the memory usage. Single precision floating-point numbers

are used, resulting in approximately a fifty percent reduction in the memory usage that was re-

quired for data and variable storage.

Machine Architectures and Compilers

The original version of the GRTSSC software package was developed on an Amiga A3000T

system by Commodore Business Machines, which was based on the MC68030 microprocessor

with MC68881 coprocessor support. The SAS/C compiler [10], version 6.55, that was used pro-

ducecl faster code with the large memory model and used double precision data. However, the

current version of the software was developed on a standard 486 DX2/66 class PC by using the

Microsoft C compiler [11], version 6.0. Faster code was produced by using the large memory

model and single precision data. It is widely known that different compilers can produce signif-

icantly different code, both in speed and size of the executable file. For example, in a comparison
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of version 6.0 of the Microsoft C compiler and the freeware GNU/C compiler, experimental re-

suits with other software suggest that a 20 percent increase in speed is achievable with the use of

the GNU/C compiler.

A significant advantage that the A3000T platform possessed was the flat memory model in-

herent in the architecture and the true pre-emptive multitasking operating system. Also, the

data acquisition subsystem was executed by a plug-in 386-PC CPU board, independent of the

main processor of the A3000T. Acquired data was transmitted through dual-port random access

memory (RAM), which existed on the 386-CPU board. That relieved the main processor of the

A3000T of the task of data acquisition, and thus it could be dedicated to the control algorithm.

The flat memory model allowed data storage space to be allocated up to the total amount of free

RAM that remained. This allowed the code to save controller input, output, and state vectors for

step responses on each degree of freedom of the suspension system. Data runs long enough to be

able to perform system identification techniques on the linear plant model were achievable. How-

ever, sample rates on the order of 1000 Hz will be required for initial control designs for the six

DOF suspension system. The A3000T using an accelerator board with a 40 MHz MC68040 was

able to achieve a sample rate of approximately 500 Hz.

The PC class machine proved quite capable of generating the required controller sample

rates for the six DOF suspension system. A comparison of achievable sample rates is shown in

Figure 2. The data presented for the five DOF LAMSTF system was obtained with the required

number of system inputs and outputs. The data presented for the six DOF suspension system

was obtMned with assumed number of sensor inputs of seven and assumed number of actuator

outputs of eight. The plots shown in Figure 2 demonstrate the effect that the number of con-

troller states has upon the maximum achievable controller sample rate. The affect of the num-

ber of controller inputs and outputs can also be seen by the difference between the two suspen-

sion systems that are compared. One disadvantage of a standard PC class machine is the seg-

mented memory architecture due to the 80x86 chipset. As a result of the segmented memory

architecture, most common compilers, such as the Microsoft C compiler, are limited by the op-

erating system to the lower 640 kilobytes (KB) of RAM. In order to access the memory beyond

one megabyte (MB), 32-bit compilers with a DOS-extender must be used, such as the GNU/C

compiler. Unless a 32-bit compiler is used, limitations are placed on the amount of data that can

be stored real-time, due to the limited amount of memory that would be available. In order to

save the required number of data samples to perform system identification, only the measured

sensor signals are stored for further post-processing. Other disadvantages of this class of machine

are the need of the CPU to handle the data acquisition cycle and the necessity of a separate high

resolution timer to provide the pacing for the timed interrupt of the control algorithm.
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Data Acquisition Interface

Data acquistion is performed by a plug-in analog-to-digital convertor (ADC) data acquisition

PC card. Those types of cards typically offer several programming modes, including DMA data

transfer, interrupt driven data acquisition, and program control techniques. The program control

technique for data acquisition is the most straight-forward of all approaches. It also tends to be

slower and also must take place within the control algorithm's iterative loop. Another approach

deals with the use of interrupts to acquire data. That approach has the benefit of occuring out-

side of the control loop and typically has a higher data transfer rate than the program control

method. Significantly higher data transfer rates are achievable with the use of DMA. DMA data

transfer also has the benefit of occuring as a background process relative to the control loop. The

large throughput rates that are achievable by using DMA can adversely affect the timing of other

interrupts due to the fact that during a single DMA transfer, the CPU address, data, and con-

trol buses are under the control of the DMA controller. It should be noted that this discussion of

DMA is specific to the standard PC class computer. The DMA process can vary between plat-

forms. As the need for faster controller sample rates increases, there exists the possibility of the

time skews between acquired data samples becoming large relative to the controller sample rate.

This can be detrimental to the designed control method under investigation. A simultaneous

sample-and-hold can be utilized to eliminate that effect. There is a certain amount of overhead

involved in using the general purpose driver software provided by the vendors. If the use of the

general purpose vendor software is not desired, it is necessary to develop routines to handle the

interface to the ADC board through its command registers.

Code Optimizations

Several approaches can be used to minimize the loop time of the control algorithm cycle.

One method that can be used is to apply the use of boolean logic to control events within the al-

gorithm, instead of the use of conditional statements. That has the effect that the same amount

of code would be executed every iteration of the control loop, thus preventing variances in the

loop time of the control algorithm. Other steps that can be taken is to remove variable decla-

rations or equations that are constant from within any iterative loop. Another step that can be

performed is to enable optimizations within the compiler, primarily any time-based optimiza-

tions. This can result in significant increases in the speed of routines that are computationally

intensive. Any duplicate code that can be written as a separate routine should be implemented

594



as separate function calls, allowing the compiler optimizer to function efficiently.

ALGORITHM IMPLEMENTATION

The GRTSSC software package is composed of three distinct processes. The foreground pro-

cess provides for user interface with the GRTSSC software package. The process consists of rou-

tines that load controller initialization information, save measured data information, allow for pa-

rameter modification by the user between control runs, and provide a status update of the soft-

ware to the screen. The data input process provides for the data acquisition of the sensor inputs

from the magnetic suspension system. The control algorithm process of the GRTSSC performs

the control law calculations of the desired control algorithm.

A modularized approach was used in developing the GRTSSC software package. The ap-

proach minimizes the amount of modifications required for implementing the package on various

platforms. Any machine dependencies due to hardware or architecture were implemented in sep-

arate routines, where possible. It would be left up to the user to write the necessary routines for

a new platform. Those routines deal primarily with the data acquisition subsystem, the pacing of

the control algorithm via interrupt, and some user interface via the keyboard. The software was

implemented in C and adheres to the ANSI compliance standard, with the exception of platform

dependent code.

Foreground Process

The foreground process of the GRTSSC software package provides a menu from which the

user can load controller state-space information, modify reference input/output parameters, save

acquired data to a file, and execute the control algorithm. Two configuration files exist, which

cannot be altered while the software is running. The structure of those configuration files is pre-

sented in Table I. The first of the files determines the number of system inputs, system outputs,

degrees-of-freedom of the system under control, and certain setpoint reference data for the sen-

sors and actuators. The second configuration file provides the data necessary for noise injection

on either the sensors or actuators. During run-time, the user may load pre-calculated controller

state-space information from an input data file. The controller input data file is summarized in

Table II. That file contains specific information concerning the size of the input, output, and

state vector of the controller; initial conditions for various vectors; and the control system state-
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space matrices. By using the format specified, beginning with the number of controller states,

nx, multiple controllers can be appended to the end of the controller input data file. The format

for the data output file is presented in Table III. A time base and measured sensor inputs are

written to the file for post-processing by MATLAB.

Data Input Process

An existing DAS-40 ADC card by Keithley-Metrabyte [12] is utilized for data input func-

tions. The card provides 12-bit 16-channel single-ended/8-channel differential input capabilities

and can achieve a 250 KHz throughput rate by using DMA to transfer acquired data from the

ADC to buffer memory residing on the PC. By using the on-board pacer clock for the DMA data

transfer process, the card is programmed with vendor provided routines to sample a sequence of

channels continuously. The acquistion of each channel and the DMA transfer is paced at 70 KHz

per channel by the on-board pacer clock. The data input process starts prior to the beginning of

the control algorithm process and terminates at the end of the control algorithm process.

Control Algorithm Process

The control algorithm process is summarized in Figure 3. The control algorithm executes in

an ISR paced by an interrupt generated by a CIO-CTR05 Counter/Timer board by Computer-

Boards [13]. The timer board possesses a one MHz oscillator and a single Am9513 counter timer

chip with five 16-bit counters. By using register level programming, a single counter is enabled to

decrement from a loaded value and generates a CPU interrupt upon reaching zero. The number

of counts required is a function of the oscillator frequency and the desired sample rate, as shown

in equation (1).

Counts- fosc/2
r (1)

The ADC input routine, shown in Figure 3, consists of copying the measured sensor data from

the DMA memory buffer to memory pointers used by the control algorithm. A CIO-DAC16/12

digital-to-analog convertor (DAC) card by ComputerBoards [14] is used for the data output of

the control algorithm. That card provides 12-bit 16-channel single-ended/8-channel differential

output capabilities for the control system. The DAC output routine, shown in Figure 3, outputs

the calculated control actuator commands, using register level programming.
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The control algorithm implements the discrete-time state-space equations shown in equations

(2) and (3).

{Xck+, } =[Acl{Xch}+[Bcl{Uck +U,,o,,,-Ur_f}

{Yc,} = [C_] {Xck} + IDol {Uc, + U,,ois, - U,-, I} + {Y,,o,s_} - {Y,'¢I}

(2)

(3)

Note that the discrete-time state-space equations are written from the standpoint of the control

computer. The input vector, {Uck }, is the measured sensor signals, and the output vector, {Ych },

is the calculated control actuator commands to the plant model. Noise injection occurs via the

sensor and actuator noise inputs, U, oise and Y, ois¢. Reference inputs are provided for the sensors

and actuators, U,._f and Y,._f, see Figure 4. A state-space model in modal canonical form is uti-

lized in the control algorithm. That significantly reduces the amount of matrix-vector multiply

and addition operations performed by the control algorithm. The controller system matrix, [A_],

is ordered as shown in equation (4).

[Ac]=

"all a12 0 ......

a21 a22 a23 0

0 a32 a33 a34 0

: *., ",. "., "..

: 0 an-2n-3 att-2n-2

: 0 an-ln--2

0 ......... 0

0

°.

an-2n--1 0

an--ln-1 an--ln

ann--1 ann

(4)

Without the modal canonical form of the state-space controller, the [A¢] matrix would require

n 2 multiplications and n (n - 1) additions, where n is the number of states of the controller. By

using the modal canonical form, the number of multiplications can be reduced to 3n - 2, and the

number of additions can be reduced to 2 (n - 1).

The input and output operations of the control algorithm take place as close to the same

time point as possible. That has the effect of minimizing the amount of computational process-

ing time, $, that occurs between input and output. The majority of control calculations then

occur after the output of the actuator control command, but before the next sensor input dur-

ing the next control iteration, refer to Figure 5. This allows the user to implement control algo-

rithms with or without frame delays, simply by including the delays in the state-space model

The feedthrough of the measured sensor inputs via the controller state-space matrix, [D_], is the

only calculation required between the input and output functions. The larger the ratio of the

computational processing time, $, to that of the controller sample rate, r, the more adverse the
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effects upon the system, if not properly modelled during the controller design phase. The com-

putational processing time, 6, can be modelled as a transport delay in simulation efforts for the

closed-loop system.

CONCLUSIONS

A digital control algorithm for magnetic suspension systems has been developed, and de-

sign criteria for the software package has been presented and discussed, including the limitations

and trade-offs inherent in any design. Due to the nature of the design of the GRTSSC, applica-

tions towards other types of systems exist. System hardware requirements were presented and

discussed. Development of the control software package was discussed, including the design of

the control algorithm. The efforts involved in producing the fastest possible control sample rate

are discussed. The resulting package has a versatile configuration and can be used to investigate

a variety of control approaches and applications without the need of developing separate source

code for each control approach.
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Table I. Format Summary of Configuration Files

System.cfg Noise.cfg

Line # Data Line # Data

1 # sensors (Pts,en) 1 input pts (Ptsin)

2 # actuators (Ptsact) 2 output pts (Ptso.t

3 # DOF's 3 recyle input (0/1)

4 # saved data (Ptssav) 4 recyle output (0/1)

5 sensor zero bias 5 input noise data

6 auto DOF cycle (0/1) : :

7 initial sensor ref 5+Ptsin-1 input noise data

8 max sensor ref 5+Ptsin output noise data

9 min sensor ref : :

10 # sens ref pts 5+Ptsin+Ptsout-1 output noise data

11 # sens delay counts

12 sens ref recycle (0/1

13 initial actuator ref

14 max actuator ref

15 min actuator ref

16 # act ref pts

17 # act delay counts

18 act ref recycle (0/1)
19 P2S Matrix

:

19+Ptsaen-1 P2S Matrix
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Table II. Format Summaryof Controller Input Data File

Filename= Ctrl_dat.m
Line # Data

1 SuspensionCurrents
2 Amplifier Gain Adjust
3 # of Controller State (nz)
4 # of Controller Inputs (n_,
5 # of Controller Outputs (n_)
6 Controller SampleRate (7")
7 Initial Controller State Vector
8 [Ac Matrix
:

8+nx-1 [Ac Matrix

8+n_ [Be Matrix

:

8+2"n_-1 [B_ Matrix

8+2"n_ [Co] Matrix

:

8+2*nz+2*n_-1

[Cc Matrix

[D_] Matrix

[De Matrix

Table III. Format Summary of Saved Data Output File

Filename = Out_dat.m

Line # Data

1 Time Vector Header

2 Time Vector Data

:

2+Ptssav-1 Time Vector Data

2+Ptssav Time Vector Trailer

2+PtSsav+l Measured Data Header

2 + PtS sav + 2 Measured Data, Uc,

:

2+2*Pts,av+ l Measured Data, Uc_

2+2*Ptssav+2 Measured Data Trailer
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Figure 1. Coil layout of the LAMSTF suspension system.
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Figure 2. Maximum achievable controller sample rates, using a 486 DX2/66 PC.
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Figure 3. Control algorithm flow diagram.
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Figure 5. Timeline of control algorithm.
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