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ABSTRACT

The goal of the Contextual Alarms Management System (CALMS) project is to
develop sophisticated models to predict the onset of clinical cardiac ischemia before it
occurs. The system will continuously monitor cardiac patients and set off an alarm when

they appear about to suffer an ischemic episode. The models take as inputs information
from patient history and combine it with continuously updated information extracted
from blood pressure, oxygen saturation and ECG lines. Expert system, statistical, neural
network and rough set methodologies are then used to forecast the onset of clinical
ischemia before it transpires, thus allowing early intervention aimed at preventing morbid

complications from occurring. The models will differ from previous attempts by
including combinations of continuous and discrete inputs.

A commercial medical instrumentation and software company has invested funds
in the project with a goal of commercialization of the technology. The end product win
be a system that analyzes physiologic parameters and produces an alarm when
myocardial ischemia is present. If proven feasible, a CALMS-based system will be added
to existing heart monitoring hardware.
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INTRODUCTION

Cardiovascular disease is the leading cause of death in the US, causing about 43%
of all mortalities. Each year, more than 5 million patients arrive at Emergency Rooms
('ER) with chest pain, with 35-40% of these suffering from acute ischemia [Selker, 1989].
Coronary Care Units (CCUs) have proven to be extremely effective in preventing death
from ischemic cardiac events, but the cost of these units limits their presence to only 22%
of hospitals. When cardiac patients arrive at a medical facility, a decision must be made
as to whether they belong in the CCU or in a less expensive facility such as a Monitored
Care Unit (MCU). For patients arriving at a hospital without a CCU, a decision must be

made as to whether they can be treated in-house, or should be transported to a tertiary
care facility with a CCU.

The cost of wrong triage decisions can be staggering. Estimates of the percentage
of patients needlessly admitted to the CCU range from 50% [Rollag, 1992] to 70%
[Fineberg, 1984]. Selker [1989] concludes that each year perhaps $4 billion dollars are
spent on CCU care for such patients. In addition, many patients who would benefit from

CCU services are not admitted. It is estimated that about 11% [Fleming, 1991] of ER
patients with acute ischemic disease are inadvertently sent home. Of those admitted, 9 to
12% [RoUag, 1992; Fleming, 1991] who should be admitted to the CCU are sent to the
ward or a step down care facility.

Criteria for admission to a CCU can vary, depending on hospital practice
[Weingarten, 1993]. It is known that CCU interventions can significantly lower mortality
of patients with acute myocardial infarctions. If implemented in the first 6 - 12 hours
after an MI, arrhythmia prophylaxis, cardiac monitoring, thrombolytic therapy and
resuscitative interventions available in the CCU can all reduce mortality and morbidity
rates for cardiac patients. Quick diagnosis and triage decisions are critical for preventing
or effectively treating complications of an MI. However, cardiac triage decisions in the
emergency room are often made under severe time pressure, making optimal placements

difficult. The proposed CALMS technology will assist the ER physician in making
difficult triage decisions by giving them an objective, computer-based second opinion on
patient prognosis.

The most difficult triage decision concerns patients with unstable angina, chest
pain that is non-responsive to drug treatment. 80-90% of these people will respond to
medical therapy, while 10-20% will progress to a myocardial infarction (MI). Based on a
pilot study of patients at the University of Arkansas for Medical Sciences, about 8% of

people in an MCU will later be transferred to the CCU, indicating that the severity of
their illness was originally misinterpreted by the attending cardiologist. Emergency room
physicians and family practitioners in rural settings could be expected to have a higher
misdiagnosis rate. Once in a CCU, very few life-threatening incidents transpire. If
surgery patients, catheterization patients, people admitted to the CCU because they are in
the midst of a potentially lethal event and co-morbidity patients (who experience chest
pain along with another unrelated illness) are excluded, less than 10% of the remaining
population will experience life-threatening episodes. One reason for the low event rate is
because of interventions available only in a CCU (e.g., administration of intravenous
nitroglycerine or dobutamine), which probably prevented morbid incidences that would
have occurred otherwise. However, overcautious admission of people to the CCU likely
accounts for a large portion of the low event rate [Selker, 1989].
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PREDICTIVE MODELS

Predictive models generally depend on information from a patient's medical
history and present medical condition. Several physiologic parameters have been shown
to be indicators of future cardiac events. For example, factors as varied as age,
hypertension, diabetes, length of stay in CCU [Gheorghiade, 1987], ST and T wave
changes [Severi, 1988; Bell, 1990], sex, anterior infarction, hypotension at admission,
ventricular tachyarrhythmias, diabetes, Killip class III and IV [De Martini, 1990],

previous myocardial infarction [Nishi, 1992], and serum urea [Marik, 1990] have all been
shown to have short-term prognostic significance. Recently, changes in heart rate
variability has also been shown to be a precursor of clinical ischemia [Bianchi, 1993].

Several researchers have developed models to predict which patients could most
benefit being in the CCU [Pozen, 1984; Brush, 1985; Weingarten, 1989, Selker, 1991].
Pozen et. al developed a model based on seven discrete inputs to the logistic equation.
This model worked best at excluding patients from the CCU (rather than predicting who
should be admitted), but missed some obvious candidates [Green, 1988]. In addition, two

of the criteria can not be reliably found in a patients medical records (nitroglycerine use
and history of heart attacks), and another two may have ambiguous interpretations (S-T
segment "straightening" and chest pain as the chief complaint). An improved version of
the logistic model [Selker, 1991] used twelve discrete inputs and was shown to perform
about as well as an ER physician. To be generally accepted by physicians, however, a
decision aid must perform significantly better than physician judgment.

Brush [1984] developed a model based on an "ECG score" that predicted
complications in cardiac patients, but the model had disappointing performance when
used outside the environment it was developed in [Green, 1988]. Other groups have
developed practice guidelines based on expert opinions on how to treat cardiac patients
[Weingarten, 1993]. These guidelines work best at selecting patients for early transfer
from the CCU, rather than choosing patients suitable for admission.

MODELING TECHNIQUES

Neural Networks

Artificial neural network techniques show excellent promise in being able to
overcome the limitations of presently used computer methods to predict patient
prognosis. This is because these networks can be trained to recognize complex
relationships that exist between inputs (i.e., physiologic data) and outputs (i.e., patient
outcome) [de Villiers, 1993]. These subtle relationships in the data are automatically
recognized by the network, even if they are unknown to clinicians. Because neural
networks can learn any arbitrary relationship between a given set of inputs and outputs,
they can normally be expected to perform at least as well as and usually better than any
other modeling technique. As the complexity of the problem increases, so does the
superiority of neural networks over most other methods. Importantly, neural network
techniques have previously been shown to be able to handle the inaccuracy and
inconsistency associated with patient histories and physical findings [Pike, 1992;
Edenbrandt, 1992; Baxt, 1991; Marik, 1990; Gheorghiade, 1988]. Further, the networks
appears to be able to deal with the complexities of disease states characterized by several
totally differing clinical presentations [Dassen, 1990].

The disadvantage of neural network models is that, while they often have
excellent overall results, they do not reveal how a given prediction was made. Physicians
sometimes feel uncomfortable with this "black box" approach to patient management in
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complicatedcasesbecauseit isdifficult to know whento overrulethenetworkprediction.
This objection can be overcomeby having a model that candemonstrativelyperform
muchbetterthanstandardphysicianjudgment.

Rough Sets
Rough sets is a new and powerful technique for extracting rules from data

[Pawlak, 1984]. Rough sets have been shown to create impressive predictor models and
are especially well suited for problems with inconsistent data, as is often the case with

medical problems. Like neural networks, rough sets is a completely data driven technique
that can find relationships that exist between problem parameters. A major advantage of
rough set models is that they can explain the reason a certain decision was made by
revealing what rules were fired. This makes it easier for a physician to reject a decision
made by the model on the rare occasions when an unusual set of circumstances suggests
such action.

In order to create a rough set model, continuous data must be divided into discrete
categories, (e.g., high, medium and low). The rough set algorithm will compare the
discretized inputs and output, and eliminate redundant inputs. From the remaining data, a
set of rules will be generated that indicates what the likely outcome will be for a given
combination of inputs. Certain rules axe generated from consistent examples and
uncertain rules are generated from inconsistent data. For example, an uncertain rule might
state that under given conditions the outcome will be positive 80% of the time. Various

methods are employed to give strengths to different rules so that when contradictory rules
axe fired the most important one will determine the decision.

Rough sets have a few minor disadvantages that have to do with the requirement
for discretization of continuous data. If a problem has more than a few inputs, a large
amount of data is required to extract rules for all possible combinations of input
categories. If a rule has not been generated for a particular combination during training
(i.e., rule extraction from a training set of example cases), then no decision can be made
when this particular combination occurs during model use. Also, several examples of
each combination of categories are desirable to ensure the rules work for a majority of
cases. Therefore, a large number of training examples are necessary for the rough set
model to generate reliable rules for all possible scenarios.

A second slight disadvantage of rough sets has to do with the crispness of the
categories defined for continuous data. For example, a heart rate of 40 - 60 might be
considered low, 61 - 80 medium and 81-120 high. Two people may have nearly identical
physiologic signs, but one has a heart rate of 80 and the other a heart rate of 8 I. These
people would be considered as being in different categories (80 = Medium, 81 = High),
even though they are nearly identical. If a large set of examples is available to extract
rules from, this disadvantage can be overcome by using a large number of categories for
important variables.

Logistic Regression
Logistic regression is a standard statistical tool that has been used for predictive

models with some success [Pozen, 1984; Selker, 1991]. Logistic regression assumes the
desired output (usually a "yes" Or a "no") fits the sigmoid-shaped logistic equation. The
technique has advantages over discriminant analysis in that it can accept combinations of
categorical and normal or non-normal continuous data. Data is fit to the equation:

1

Y - 1 + exp(-u) (1)
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whereY is the desired outcome, X are the inputs, bn are the coefficients of X and u = bo
+ blX1 + b2X2 + ... + bpXp. Logistic regression has been shown to work well with
categorical and non-normal inputs. Its major disadvantage is that it assumes the data fits a
rigid form of equation that may not reflect the subtle interactions actually present
between factors in the problem.

DATA ANALYSIS

A pilot study, based on an NSF/Whitaker Foundation planning grant, was
conducted to determine the feasibility of developing neural network and rough set
predictive models from CCU data. A total of 118 records from patient who had gone
through the CCU of the University of Arkansas for Medical Sciences' University
Hospital in the past five years was input into a database. Surgery patients, catheterization
patients and people admitted to the CCU because they are in the midst of a potentially
lethal event were excluded. Thirty seven physiologic parameters from the patients charts
were recorded, with 28 model inputs recorded at admission and 9 upon admission to the

CCU (see Table I). Four possible adverse outcomes were noted: 1. Type II 2nd degree
AV block or 3rd degree AV block; 2. More than 15 seconds ventricular tachycardia; 3.
Blood pressure less than 85 with the use of pressors; 4. Death. A total of 44 of the
patients suffered serious events while in the CCU. Due to the small number of total
events, all four adverse outcomes were combined into a single outcome that was positive
if any of the four complications occurred.

Model Input Selection

Data from 118 cases was collected,but only 40 of these had a complete setof

inputs.The type of data collectedcreatesspecialproblems for model development for

severalreasons: I) there are too few trainingcases forthe number of inputspresent;2)
the inputs are correlated;and 3) bad data points probably existin both the inputsand
outputs.A setofpredictivemodel inputswas chosen in a two stepprocess.First,datawas

dividedintotwo groups based on theoutcome (yes = event and no = no event).Studentt-
testsare a method of testingwhether the mean of two groups areequal,t-testswere run to

look for differencesin each variable between the two groups. Afterwards, stepwise

logisticregressionwas run on the variablesselectedby the t-teststo choose the finalset

of model variables.The t-testswere necessarybecause stepwiseregressionisperformed

only on cases thathave a fullsetof allinputs.Ifa singleinputismissing from a example,
then the entirecase isremoved from the procedure. This, when applied over the entire

dataset,then leavesvery few complete cases formodel development. On theother hand,

t-testscan be performed on allcases where the variableunder considerationispresent,

irrespectiveof whether any of the other inputsare missing.This allows each candidate

input to be evaluated over a largersample size,thus giving a more solid basis for

elimination of parameters that show no difference between outcome groups. After

candidateinputsare selectedby the t-tests,stepwise regressionisperformed to eliminate

redundancies intheinputscaused by correlationsbetween variables.

Eighteen variables were chosen by the t-tests (p<0.1 using either the yes and no
groups pooled or separated for calculation of variances) as being possible candidates for
the model inputs. The eighteen were: sex, age, weight, diabetes, chest pain, systolic
pressure, respiration rate, white blood count, ventricular arrhythmias, ST segment
depression, tales, syncopy, $3 heart sound, temperature in CCU, diastolic pressure in
CCU, respiration in CCU, aspirin use, class IH drug use, class IV drug use, and change in
body temperature between ER and CCU. After running stepwise logistic regression,
seven inputs were chosen for model development: sex, age, weight, diabetes, ST segment
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TABLE I. - INPUT PARAMETERS FOR THE PREDICTIVE MODELS.

INPUT# PHYSIOLOGIC PARAMETER
1 sex

2 age
3 weight
4 smoking
5 history of diabetes
6 previous MI

7 chest pain
8 heart rate

9 systolic blood pressure
10 diastolic blood pressure
11 body temperature
12 respiration rate
13 hematocrit
14 serum K
15 white blood count
16 creatine
17 current MI
18 anterior MI

19 atrial arrhythmias
20 ventricular arrhythmias
21 ST segment depression
22 ST segment elevation
23 # of ventricular ectopics in a run
24 rales greater than 1/3 up
25 syncope
26 height
27 $3

28 history of congestive heart failure
29 heart rate in unit

30 systolic blood pressure in unit
31 diastolic blood pressure in unit
32 respiration in unit
33 aspirin
34 class I drugs
35 class II drugs
36 class III drugs
37 class IV drugs

RANGE
male or female

continuous
continuous

yes or no
yes or no
yes or no
yes or no

continuous
continuous
continuous
continuous

conunuous
continuous
contmuous
conunuous
conunuous

yes or no
yes or no
yes or no
yes or no
yes or no
yes or no

continuous

yes or no
yes or no

continuous

yes or no
yes or no

continuous
continuous
continuous
continuous

yes or no
yes or no
yes or no
yes or no
yes or no

depression, respiration rate in CCU and aspirin use. A total of 95 out of the original 118
cases had all seven of these inputs present.

Factor analysis by principle component decomposition was performed on these
seven inputs plus an additional input, presence or absence of atrial arrhythmias, to try to
eliminate correlations in the inputs. Three factors were chosen by this method: factor 1
was a combination of sex, respiration rate in the CCU, ST segment depression and
diabetes. Factor 2 combined weight, diabetes and atrial arrhythmias, while factor 3
combined aspirin usage and atrial arrhythmias. The resulting factors were fed into a

stepwise logistic regression model. The logistic model selected only a constant term,
indicating that these three factors have little, if any, predictive power. It was therefore
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concluded thatfactoranalysis was not an effectivemeans of reducing thisparticular

datasct.

Training and Testing Set Selection
Model development and validationwere performed by dividingthe database into

two categories,one formodel trainingand the otherformodel testing.Ideally,a training
setshould capturethe important featuresin thedata.The trainingsetshould normally be

unbiased (i.e.,have an equal number of yes and no outcomes), or be intentionallybiased

tofavor a particularresult.Itisalsodesirableto have the testingsetrepresentativeof the
data as a whole, so as to get a trueideaof model performance. To accomplish these,the

data set was clusteredby cases,using a nearestneighbor algorithm.Six clusterswere

visuallyidentified,with between 2 and 31 members in each cluster.Four cases were far
from allothers,and thesewere placed in the testset.Two trainingsetswere developed,
one with 61 cases and the other with 40. The set with 40 cases was nearly equally

balanced between yes and no answers, while the other one had 24 extra no outcomes.
The testset,which contained 33 cases,had allclustersrepresented and contained 13

positiveand 20 negativeoutcomes.

Neural Network Results
The models created were evaluated by using sensitivity and specificity:

sensitivity - rp
- tp+fn

tn

specificity - m+fp

where tp is true positives, tn is true negatives, f-p is false positives and fn is false
negatives. Sensitivity is a measure of how likely a model will predict a condition if it is
actually present, while specificity indicates how likely a condition is to be present if the
model results are positive. Several neural network architectures were investigated, with
the best results shown in Table 2.

TABLE 2.- NEURAL NETWORK RESULTS FOR 7 INPUT MODELS.

Average % Correct

Sensitivity

Specificity

3

58

0.62

0.50

Number of Hidden Nodes

4

57

3-1

55.5

0.54 0.46

0.60 0.65

In Table 2, average % correct is the average of the sensitivity and specificity x 100, while
3-1 indicates a four layer network with three nodes in the first hidden layer and one node
in the second hidden layer. The results for three hidden nodes used the training set with
40 cases, while the others used the set with 61 cases.

It was thought that the test set results may have suffered from too many inputs for
the number of training cases, so a reduced set of inputs was chosen for further model
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generation.The new inputs were age, weight, ST segment depression and respiration rate
in the CCU. The training set for this network had 61 cases. A network with 2 hidden
nodes had the following results:

Average % Correct = 70.5, sensitivity = 0.46, specificity = 0.95

The results are significant. While the model only correctly predicted about one half of all

the cardiac events, when it did forecast an event the patient was extremely likely to suffer
one (19 out of 20 cases). This network can therefore be used as a screening tool to help
decide to place patients in the CCU or, if they are already in the CCU, to keep them there.

Another technique tried to improve model performance was to combine the
outputs of the best networks for sensitivity and specificity. These were used as the inputs
for a second neural network, with the idea that if each of the original models searched a
different area of the solution space then combining them will produce results better than
either alone. The output from the network that had a sensitivity of 0.62 (see Table 2) and
the one that had a specificity of 0.95 (described above) were combined. The best
architecture had four nodes in a single hidden layer:

Average % Correct = 64.5, sensitivity = 0.54, specificity = 0.75

The results are in between the original networks for sensitivity and specificity, thus
indicating that the networks were probably keying in on the same features.

The f'mal method tried was to add simulated training cases in order to increase the
allowable degrees of freedom in the problem. This procedure also forces the network to
learn relationships between inputs. The procedure is as follows:

1. Calculate an average value over all the cases in the training set for each input.
2. For each case, the number of new exemplars created will equal the number of inputs to

the model.

3. Each new exemplar replaces a single input with its mean, so that the number of
simulated cases created equals the original number of cases times the number of model
inputs.

The procedure described above allows a network to be trained with a larger number of
hidden nodes without overtraining the network. The inputs for this model were: sex, age,
weight, diabetes, ST segment depression, respiration rate in CCU and aspirin use. The
original training set had 41 cases, 19 of which were positive outcomes and 22 negative.
The new training set had 328 cases with 152 positive outcomes and 176 negative ones.
The best network had a single hidden layer with four hidden nodes:

Average % Correct = 66, sensitivity - 0.57, specificity = 0.75

The results improve upon those shown in Table 2, but are slightly worse (66% vs. 70.5%
average correct) and not as useful as those from the network with a reduced set of inputs.
The limited number of training cases and the combining of four disparate events into a
single outcome probably preclude better model performance on this dataset.

Logistic Regression and Rough Set Results

A logistic model was also developed from the same dataset. The training set with
61 inputs was used for coefficient determination (see Equation 1), and the standard 33
case test set was used for model validation. The best validation results were obtained
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with the following inputs: age, weight, ST segment depression, respiration rate in CCU
plus the interactions age x ST segment depression, and weight x respiration rate in CCU:

Average % Correct = 64.5, sensitivity = 0.54, specificity = 0.75

The results axe not as good as the best neural networks, but better than many of the
networks developed. The logistic model therefore is probably a good benchmark to
compare the neural network models to, because it gives an indication if the optimal neural
network architecture has been developed for a given problem.

A rough set model was developed from four inputs: age, weight, ST segment
depression and respiration rate in the CCU. Continuous inputs were divided into four
equally spaced categories that spanned their range. Twelve rules were extracted from the
61 case training set, five for negative decisions and seven for positive decisions. The rule
certainty was 100% for eleven rules, and 96% for the twelfth. Each negative rule had
between four and twenty-five cases supporting it, with positive rules having between one
and six cases supporting them. Decisions were made in 31 of 33 cases in the test set.
Model results were:

Average % Correct = 73.5, sensitivity = 0..58, specificity = 0.89

These results are excellent compared to logistic regression and neural network
techniques. Although the specificity was slightly less than the best neural network model,
its overall performance was better. Moreover, the rough set model made no decision in
cases that were not similar to those it was developed on, whereas neural networks will

always give an output for all cases.

CONCLUSIONS

Rough sets, neural networks and logistic regression have all proven to be effective
tools for predicting the outcome of cardiac patients in a CCU. The rough set model gave
the best overall results, and has the advantage of being able to explain how a decision was

made. Also, roug h set models will not make decisions on cases that are far from the ones
they were developed on, adding a degree of confidence to the results. The best neural
network model proved to be the most practical, with a specificity of 0.95, although
overall results were not quite as good as with rough sets. Logistic regression proved
useful as a benchmark against which other methods could be tested.

The key to developing these prognostic models is to choose a good set of

predictor variables. This was done in a two step process, using student t-tests and
stepwise logistic regression. Selection of cases for training and testing models is also
crucial for model creation and validation. A clustering algorithm that measures the
distance between cases, while requiring subjective decisions, has shown itself to be
useful.

Future work invcludes applying the data analysis techniques described above to
the Contextual Alarms Management System (CALMS) project. The goal of CALMS is to
develop sophisticated models to predict the onset of clinical cardiac ischemia before it
occurs. The system will continuously monitor cardiac patients and set off an alarm when
they appear about to suffer an ischemic episode. The models take as inputs information
from patient history and combine it with continuously updated information extracted
from blood pressure readings, oxygen saturation measurements and five ECG leads. Data
is now being collected on twenty patients at the cardiac catheterization laboratory at
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CooperHospital in New Jersey. Raw datais read into specializedanalysissoftware
developedby Po-Ne-Mah.A totalof 110physiologicparametersarewrittento atext file,
which is updatedevery1 second.Episodesof ischemiaareannotatedby physicianduring
the procedure. Sincethereare too manyparametersfor the numberof patients,each
patient will be comparedwith themselves,with data taken during ischemic episodes
comparedwith datatakenwhenthepatientis notsufferingischemia. Studentt-testsand
logistic regressionwill beusedto chooseindicatorsof ischemia.Thesewill beinput into
logistic regression,neuralnetwork,rough setandexpertsystemmodelsto diagnoseand
predict future onsetof ischemicconditions.Oneproblemthat needsto beaddressedis
drift in thesephysiologic conditions with time. One possibility for addressingthis
problemis to look atchangesin parameterswhenischemiabegins,asopposedto absolute
readings.Another possibility is to look at inputsin the frequencydomain to examine
parameterssuchasheartratevariability andQRSfrequencycomponents.
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