
t ¸

Towards Scalable Benchmarks for Mass Storage Systems

Ethan L. Miller

Computer Science and Electrical Engineering Department

University of Maryland Baltimore County

1000 Hilltop Drive

Baltimore, MD 21228'

elm@cs.umbc.edu

Tel: 410-455-3972

Fax: 410-455-3969

Abstract

While mass storage systems have been used for several decades to store large quantities

of scientific data, there has been little work on devising standard ways of measuring

them. Each system is hand-tuned using parameters that seem to work best, but it is diffi-

cult to gauge the potential effect of similar changes on other systems. The proliferatio_

of storage management software and policies has made it difficult for users to make the

best choices for their own systems. The introduction of benchmarks will make it possible

to gather standard performance measurements across disparate systems, allowing users to

make intelligent choices of hardware, software, and algorithms for their mass storage

system.

This paper presents guidelines for the design of a mass storage system benchmark suite.

along with preliminary suggestions for programs to be included. The benchmarks will

measure both peak and sustained performance of the system as well as predicting both

short-term and long-term behavior. These benchmarks should be both portable and scal-

able so they may be used on storage systems from tens of gigabytes to petabytes or more.

By developing a standard set of benchmarks that reflect real user workload, we hope to

encourage system designers and users to publish performance figures that can be com-

pared with those of other systems. This will allow users to choose the system that best

meets their needs best and give designers a tool with which they can measure the per-

formance effects of improvements to their systems.

1. Introduction

Mass storage systems are used by many data centers around the world to store and man-

age terabytes of data. These systems are composed of both hardware from many vendors

and storage management software, often from a different vendor. Each data center builds

its own system, and no two are alike. How can two different mass storage systems be

compared? Additionally, how can users gauge performance of planned systems?

We believe the introduction of a standard benchmark suite for mass storage systems will

enable storage users to plan their systems in the same way that the SPEC and Perfect

benchmarks allow users to compare different computing systems. In such suites, one or

515

https://ntrs.nasa.gov/search.jsp?R=19960052755 2020-06-16T03:16:56+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42776088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


moreof the benchmarksshouldsufficientlyresemblea user'sneedssothat shecanpre-
dict the performanceon herown application. Similarly,datacenterpersonnelshouldbe
ableto pick themetricsthat mostcloselymodeltheir massstorageworkloads,allowing
someprediction of systemperformancewithout the needto experimentallyconfigure
multiple systems.

Massstoragesystembenchmarksmustbeportable,scalable,andreflectiveof realsystem
workloads. Achievingportabilitywill requirelimiting the scopeof changesthat mustbe
madeto the testsfor different systems.Scalabilityis necessarybecausea massstorage
systemcanholdfrom tensor hundredsof gigabytesto petabytes,andaccesspatternsand
file sizeswill bothvary greatlyacrossthisrangeof sizes. Finally, benchmarksmust re-
flect real systemworkloads.Ratherthan rely on a singlemetric, a massstoragesystem
benchmarksuitemusttestbothburstandsustainedtransferratesandgaugetheeffective-
nessof migrationalgorithmsusingseveral"typical workloads.

This paperproposesseveralcandidatebenchmarksfor a scalablemassstoragesystem
benchmarksuite. Theseprogramsaresynthetic;they do not include code from actual
userapplications,but insteadarebasedonaccesspattemsobservedon realmassstorage
systems.Someof thebenchmarksgenerateaccesspatternssimilar to thoseof individual
programs,typically requiring lessthana day to run. Othersmodel long-termaccessby
manyusersto massstorageoverperiodsof manydays. Both typesof benchmarksin-
cludeprogramsthat mimic "real world" accesspatternsaswell asothersthat stressthe
systemto find its limits, sincebothfactorsareimportantto massstoragesystemusers.

While this papercontainsconcretesuggestionsfor massstoragesystemsbenchmarks,
thereis still muchwork to bedone.Usingfeedbackfrom usersof massstoragesystems
aswell asvendors,it is our hopethat this benchmarksuitewill becomea standardthat
will easetheprocessof comparingmanydifferentoptionsin storagesystemdesign.

2. Background

Research into mass storage system benchmarks builds on work in two different areas: the

analysis of mass storage system usage patterns and the development of benchmark suites

for different areas of computer systems. There are many papers that discuss benchmarks

for areas ranging from processors to file systems to disks, providing a good foundation

for deciding what a benchmark should (and shouldn't) do. However, there are relatively

few quantitative papers on the usage patterns seen by mass storage systems; while many

organizations study their systems to help plan for the future, these studies are rarely pub-
lished.

Of the many papers that have been published about benchmarking, the most relevant to

this research are those on file system benchmarks. These benchmarks fall into two broad

categories: those that consist of a single program [1,2] and those that are built from many

programs and are meant to model longer-term usage [3]. Additionally, many papers use

ad hoc benchmarks to compare research file systems to already-existing file systems.

516



The few file system benchmarks that do exist are designed to test workstation-class file

systems, both standalone and in a networked environment. Several of the benchmarks

consist of a single program sending many read and write requests to the file system; such

programs include IOStone [1], iozone [4], and bonnie [5]. These benchmarks are de-

signed to gauge the maximum file system or disk system performance available to a sin-

gle application over a short period of time. However, constant improvements in memory

size and disk performance require scalable benchmarks; Chen's scalable disk benchmark

[2] addresses this problem by scaling the workload to the system used. Still, this scaling

is restricted to a single program.

NFSstone and the Laddis benchmark used by SPEC, on the other hand, are designed to

model the activity of several programs and their effects on the file server. Rather than

present a workload from a single client, these benchmarks can mimic an entire network of

workstations. These benchmarks may be scaled by increasing the file request rate or the

file size or both. Unfortunately, they are very specific in that they test the ability of a file

server to respond to NFS requests. While NFS is a commonly-used file system, it is not

clear that good performance for an NFS workload is necessarily the hallmark of a high-

performance file system.

An even more complex benchmark, the Andrew file system benchmark [3] tests the entire

file system by including operations such as file creation and deletion. However, the An-

drew benchmark is not directly scalable, and still runs for only a few minutes or less.

Clearly', a mass storage system benchmark must measure performance over longer peri-

ods of time as well as gauging the burst rates that the system can attain.

Many researchers gauging the performance of their new file systems create their own

"benchmarks" that involve reading and writing many files. While such ad hoc bench-

marks can provide comparisons between different file systems, they require that the

authors of such benchmarks run them on all of the systems being compared. This burden

is not excessive for researchers because they often compare their research file system to

one or two "real-world" systems that are already running at their site. However, this ap-

proach creates problems for "normal" users because most of them do not have access to

the systems whose performance they wish to measure. While this approach is infeasible

for standardized comparisons of many mass storage systems, the idea behind it is a good

one: use a typical workload to measure performance. This method can be varied to find

both performance under a normal load and the maximum load a system can handle.

Since synthetic benchmarks must mimic actual usage, knowing the access patterns ex-

hibited by users of real systems is crucial. The system at the National Center for Atmos-

pheric Research was studied in [6], and the National Center for Supercomputing

Applications was studied in [7]. Both of these studies suggest that mass storage system

performance must be measured over a period of days or weeks because that is the time

scale over which file migration algorithms operate. Examining shorter periods is similar

to running file system benchmarks that access a file that fits in memory -- it provides a

measure of peak bandwidth but does not give an indication of long-term performance.

517



These papers, along with other studies done for internal use at various organizations,

provide a basis for designing benchmarks that test long-term mass storage system per-
formance.

Short-term performance of large storage systems is also an important metric. Bench-

marks that stress the file system as a single program would can model their I/O after the

single program access patterns such as those reported in [8] and [9], which detail usage

patterns exhibited by supercomputer and parallel computer applications, respectively.

Short-term benchmarks might also include programs that stress the storage hierarchy,

such as one that searches the relatively short file headers of hundreds of multi-megabyte

files for a certain pattern.

3. Benchmark Characteristics

In order for a collection of mass storage system benchmarks to be useful, the benchmarks

must have several features and characteristics. First and foremost, they must provide a

good basis for comparing two systems that may be very different. They must also be

portable and scalable, and should reflect real system workloads.

3.1 Suitability

Perhaps the most important quality for a benchmark suite is suitability. A benchmark

must do two things to be useful. First, its results must bear some relation to the real use

of a system. Typically, this is a predictive relation -- the performance of a benchmark

should be directly related to the performance of a real workload that the user will even-

tually run. Second, a benchmark suite should allow the comparison of two different sys-

tems in a manner more meaningful than "A is faster than B." While this is a good

observation, it is almost always necessary to know how much faster A is relative to B.

Benchmark suites such as SPECint95, SPECfp95 and Perfect [10] are successful in large

part because they use real programs (or fragments of them) to predict the performance of

a computer system. A combination of several of the benchmark programs from these

suites that closely mirrors the intended use of a system can usually be found, and the per-

formance of the system on the real workload can be approximated by combining the sys-

tem's scores on each individual benchmark program. Thus, benchmark reporting usually

includes both a suite-wide average and a listing of the components' individual scores.

The average is useful for gauging overall performance, while the individual listings allow

the prediction of performance for a specific workload.

A relatively small suite of benchmarks works well for CPU benchmarks, but how will it

work for mass storage systems? A benchmark suite may contain dozens of programs, but

they are of no use if a user cannot assemble some of them into a workload that resembles

her usage patterns. Fortunately, there are some general access patterns for mass storage

518



systemsthat maybegeneratedby abenchmarksuite. Thesepatternswill bediscussedin
Section4.

3.2 Portability

The portability of a benchmark suite is another major concern for mass storage system

benchmarks. CPU benchmarks are often portable because the interface to the system is at

a high-level -- programs are simply written in a high-level language such as C or

FORTRAN. Running the benchmark on a new system requires is largely dependent on

the existence of a compiler for the appropriate language being available for the system

being tested. While there are may be other requirements for a portable CPU benchmark

such as environment or operating system dependencies, building portable benchmark

suits for CPUs is relatively well understood.

Portability of mass storage system benchmarks is another matter altogether. While mass

storage systems tend to have the same functionality, they often have very different inter-

faces. Some systems require a user to explicitly request transfers to and from tertiary

storage, while others do so automatically. Worse, the commands to effect such transfers

are often different from system to system. As a result, mass storage system benchmarks

will likely need to be customized to run on each individual system. To preserve portabil-

ity, this customization should be limited to a few small pieces of code so that porting the

benchmarks to new systems is not a difficult task. Nonetheless, there may need to be

large changes in the benchmarks between systems. While it is straightforward to make a

small change to read and write files via system calls or ftp, it may be more difficult to

adapt a benchmark that assumes explicit transfers of files between tertiary storage and

disk to a system that uses implicit transfers. These tradeoffs will be discussed in Sec-

tion 4.

A second difficulty with portability of mass storage system benchmarks is the existence

of different features on various mass storage systems. This issue is not present in CPU

benchmarks -- while an individual processor may not have a vector coprocessor or

floating point unit, it can emulate those features using other instructions, albeit at a loss

of speed. However, mass storage systems may have features that are simply not present

elsewhere and that greatly improve performance. For example, one mass storage system

might have the ability to compress files before storing them tape, while another lacks this

feature. Should the two systems be compared without compression? The use of com-

pression is likely to slow down the system that uses it, but it will also free up additional

space. The decision of whether to include such features will be left to the benchmarker;

as long as the settings of such relevant features are reported, a user can choose the appro-

priate benchmark results.

519



3.3 Scalability

The second goal of the benchmark suite is scalability. The suite must permit comparisons

of two systems of roughly equivalent size, regardless of whether their capacity is 50 GB

or 500 TB. On the other hand, comparing the performance of two mass storage systems

of very different sizes makes little sense since the two systems will almost certainly have

different workloads -- a 50 GB storage system would not experience many repeated

reads and writes of 1 GB files, though a 50 TB system certainly might.

Scaling the benchmarks can be done by a combination of two methods: increasing the

request rate, and making individual requests larger. Increasing the request size reflects

the larger data sets that necessitate larger storage systems. However, more storage space

can also correspond to a larger user community or faster computers, both of which can

increase request rate as well as allowing larger data sets. The TPC database benchmarks

[10] follow this model, increasing request rate as the capacity of the storage system in-

creases while keeping request size relatively constant.

Not all of the benchmarks need be scalable in order to provide a scalable benchmark

suite, though. Clearly, some of the benchmarks must place a higher demand on the sys-

tem as it becomes larger, but individual benchmarks need not. For example, a benchmark

that mimics the behavior of a single program requesting a single gigabyte file might not

change from a 50 GB system to a 50 TB system. Since this benchmark measures peak

transfer bandwidth and nothing else, it does not have to scale up as the system becomes

larger. However, other benchmarks must measure the performance of the system as a

whole instead of focusing on short-term performance issues such as peak transfer rate. It

is these benchmarks that must take parameters governing their behavior to allow them to

model various workload levels. A benchmark measuring a storage system's ability to

service clients, for example, must take the number of users as an input. For small sys-

tems, this number might be three or four. For larger systems, though, it could be several

hundred. Similarly, average request size and an individual user's request rate will be dif-

ferent for different systems; these parameters must be customizable between benchmarks.

3.4 Feasibility

While mass storage system benchmarks share many characteristics with CPU and disk

benchmarks, they also have limitations not suffered by CPU and file system benchmarks.

CPU benchmarks usually have running times of a few hours or less, with many needing

only a few hundred seconds to complete. Disk benchmarks may take longer, but still

complete in well less a day for even the longest benchmarks. These time scales are too

short for mass storage system benchmarks, however. Individual programs using a mass

storage system may complete in a few hours or less, but long-term performance is just as

important, and much more difficult to measure. The effects of a poorly-chosen file mi-

gration algorithm may not be apparent until several weeks have passed because the stor-

age system's disk is not filled until then. Worse, policies governing file placement on

tape may have little effect on overall performance until files are migrated from disk to

520



tape and back, a process which could take several months before a significant number of

files have taken the path.

Additionally, long-running benchmarks are difficult to use for tuning purposes. Seeing

the effect of a faster CPU on a benchmark suite requires only an hour or two, while add-

ing one more tape drive may not show performance improvement on a benchmark suite

for days. This lack of responsiveness makes it likely that mass storage system bench-

marks will be run on simulators rather than on real equipment at least some of the time:

this requires the development of good simulators that model sotiware systems and their

quirks as well as hardware.

A second issue for mass storage system benchmarks is the existence of a system on which

the benchmarks can be run. This is typically a simple matter for CPU benchmarks be-

cause the manufacturer usually has a system on which the benchmarks can be run. For

expensive supercomputer systems, the manufacturer need only run the suite as part of the

development process or even during the testing period for a new system. Since the

benchmark suites take less than a day, the equipment cost is minimal. For mass storage

systems, however, equipment cost is not as low. A system is usually built from compo-

nents from several vendors, and the installation of the software to manage the storage is

hardly trivial. The difficulty of assembling a storage system for benchmarks is another

factor that makes it likely that a benchmark suite used for its predictive ability will be run

on simulated rather than real hardware.

4. Proposed Benchmark Programs

Based on the analyses presented in several studies of mass storage systems [6,7] and the

behavior of individual programs [8,9], we propose a collection of mass storage system

benchmark programs. To assure their portability, the benchmarks use few file system

features beyond reading, writing, file creation, file deletion and directory listings. Rather,

they focus on the ability of the mass storage system to supply and store data. The}, are

not restricted to reading and writing whole files, however; some of the benchmarks per-

form operations that model workstation file usage of large scientific files including partial

file reads. Although such operations may not be supported efficiently by many mass

storage systems today, our experience has shown that users viewing large data files often

do not view the entire file.

The benchmarks in this collection fall into two broad categories: short-running bench-

marks that highly stress the system to gauge its maximum performance, and long-running

benchmarks that model long-term user behavior, allowing the testing of file migration

algorithms and other long-term processes that cannot be measured by a single program

that only runs for a few hours. It is our expectation that the long-running benchmarks

will be primarily run on a simulation model of the mass storage system rather than on an

actual system because of the time and expense involved in dedicating a storage system to

a benchmark suite for more than a month.

521



4.1 Short-Running Benchmarks

One aim of the benchmark suite is to measure short-term performance of mass storage

systems. Since these systems consist of both disks and tertiary storage devices such as

tapes and optical disks, any benchmark suite must be capable of measuring the sustained

performance of each of these parts of the system. Measuring the peak performance of the

disk is straightforward, but measurements of tertiary storage device performance may be

more difficult, particularly in systems that do not require explicit commands to move files

between disk and tertiary storage.

The first program in the benchmark suite merely writes several large files and then reads

them back. The number of files to be written and the size of the files is configurable, al-

lowing users to scale up the benchmark to larger systems. This benchmark only tests

peak sequential read and write performance; it does not attempt to gather any other file

system metrics. Nonetheless, the peak performance of a file system on large sequential

reads is of great interest to many users, necessitating the inclusion of such a benchmark.

A similar program can be used to measure the ability of a mass storage system to create

and delete small files. As with the first program, the number and size of files are speci-

fied as parameters. Rather than merely create all of the files, though, this benchmark

creates the files, lists the directory in which they were created, reads them in, and then

deletes them. These operations stress other aspects of the mass storage system software,

showing its performance on small file operations.

Another variation on the first program creates several large files and then reads only the

first few blocks of each file, "searching" for a particular piece of data. This benchmark is

similar to the access pattern exhibited by a user when she is looking through the headers

of large data files.

The remaining "micro-benchmarks" model two types of real user behavior: workstation

users accessing the mass storage system, and scientific programs using the storage system

for input and output. Human users typically read a group of files over the span of several

hours, perhaps performing a few writes during that time. While some files are read in

their entirety, many are partially read as users look at slices through their data. Since this

program is designed for measuring short-term performance, it only models a user's access

to a single set of data over a relatively short period of time. Longer-term benchmarks that

model user behavior are mentioned in Section 4.2. While this program only generates the

workload for a single user, it is possible to run multiple copies of the program, generating

a workload resembling that from multiple users.

Batch jobs using the storage system behave quite differently from human users. They

almost always read entire files and perform more and larger writes than do humans [6],

stressing the storage system in a different way. Programs such as out-of-core matrix de-

composition and global climate modeling make excellent benchmarks because their I/O

access patterns can easily be captured without the need to actually perform the computa-

tions called for in the programs [12]. Rather than actually factor a large matrix, the

522



benchmarksimply readsandwrites thefiles in the samepatternasthe real application.
Similarly, the benchmarksimulatingglobal climate modeling doesnot do any actual
modeling,but ratherfollows thesameaccesspatternastherealprogram. This allows the
benchmarkingof ahigh-performancestoragesystemwithout theneedfor ahigh-powered
CPUto run applications.This is particularlyimportantfor planningpurposes,sincethere
may not yet be a computerthat can run the programsufficiently fast -- given the rate
with which computersincreasein processingpower,a storagesystemthat will become
operationalin eighteenmonthsmust dealwith programstwice asfast asthoserunning
today.

Thebenchmarkslisted in this sectionaregenerallyusefulfor determiningpeakperform-
ancefor bandwidth,requestrate,or both. Combiningthevariousbenchmarksandrun-
ning severalcopiesof each allows usersto customizethe benchmarkto their needs,
matchingthepresentedworkloadto whattheir installationwill eventuallysupport. How-
ever,thesebenchmarksareonly goodfor measuringpeakratessuchasmaximumband-
width for readingfiles from tertiarystorageor disk or themaximumrateat which a user
may createsmall files. They do not measureany long-termstatisticssuchasthe effi-
ciencyof the file migrationalgorithmsor the efficacy of tertiary storagemediaalloca-
tion.

4.2 Long-Running Benchmarks

A second class of benchmarks are those that generate multi-week workloads. Unlike

CPUs and disks, mass storage systems exhibit activity with cycles considerably longer

than a day. To measure the effects of file migration and differing sizes of disk cache for

tertiary storage, benchmarks must run sufficiently long so that the disk fills up. Merely

filling the disks is not sufficient, though, since the benchmark must also exhibit other user

behaviors such as occasional file reuse after a long period of inactivity.

Fortunately, long-term benchmarks can be built from the short-term benchmarks men-

tioned in Section 4.1. Rather than running the benchmark programs alone or in small

groups, though, long-term benchmarks run hundreds or thousands of instances of the

same programs, possibly supplying different parameters for each run. This is done by a

"master" program that controls the execution of all of the micro-benchmarks.

In addition to the usual issues of setting parameters appropriately, the master program

may also need to throttle the execution of the benchmark suite. For example, a batch job

that normally takes 200 minutes might take only 180 minutes because of improvements

in the mass storage system. Rather than leave the machine idle for that period of time,

the master benchmark coordinator should run the next benchmark "job." Of course, not

all benchmarks need such throttling -- it is unlikely that a human being will want to

come to work earlier just because she finished a few minutes early the night before.

Thus, the benchmark coordinator only throttles batch jobs, leaving the programs model-

ing human behavior unaffected. While this may not accurately reflect reality (people may

523



actually do more work with a more responsive system), the question of gauging the

changes in human response time are beyond the scope of this work.

Because of the length of time necessary to run a long-term benchmark and the expense of

setting up and maintaining a system for the weeks necessary to complete its run, it is

likely that most long-term benchmarks will be run on simulations of a mass storage sys-
tem rather than on real hardware, as will be discussed in Section 4.3.

4.3 Running the Benchmarks

A major concern with a benchmark suite is the method used to run it. CPU benchmarks

are simply run as programs, either individually in or in a group. The results of running
the benchmark are the time taken to complete it and the amount of work the benchmark

program did. A similar principle applies to file system and disk benchmarks because

their behavior can be encapsulated in either one or a small group of programs.

Mass storage system benchmarks follow the same general guidelines but on a different

time scale. Certainly, some benchmarks will consist of a single program or a small group
of programs that finishes within a few hours. Since these benchmarks will model indi-

vidual programs, they must intersperse "computation" with requests for file data. This

presents a problem, however -- a mass storage system's performance should not be de-

pendent on the computation speed of its clients. To address this problem, benchmarks

will avoid computation as much as possible, focusing on file I/O. Benchmarks will thus

often be of the form "transfer all of this data, and then do nothing with it." While this

format removes the effect of a slower CPU, it allows the file system to perform

"optimizations" by not actually fetching or storing the requested data. This can be pre-

vented by writing files with pseudo-randomly generated data, reading them back in, and

checking the results by either using the same generator or computing the digital signature

for the file and ensuring that it matches that computed lbr the original.

Workload generators that may run for many days present a different set of problems. If a

system crashes in the middle of a one hour benchmark, the program can just be rerun

from the start. This is not practical for benchmarks that may run for more than a month

(though it may encourage mass storage system software vendors to improve the quality of

their code...). Instead, the workload generator may be restarted so it begins with the next

request after the last one that completed successfully. Of course, such an outage will ad-

versely affect overall performance, since the time spent fixing the system counts towards

the total time necessary to run the benchmark.

4.4 Benchmark Customization

Running the benchmark programs may require customization in the form of providing the

appropriate calls to open, read, write, close, and perform other operations on files and di-

rectories. To facilitate customization, the benchmark suite uses a standard library across

524



all programs to access the mass storage system. This library can contain real calls to a

storage manager, as would be required for short-running benchmarks, or it can contain

calls to a model of the storage system that returns appropriate delays. Since the interface

to the storage system is localized to a single file, the benchmark suite can easily be ported

to new architectures by modifying that library file.

Localizing the interface to a single file allows benchmarks to be widely distributed, and

lessens the ability of manufacturers to "cheat" on the benchmarks by reducing the

changes they may make to the benchmarks. It also facilitates the development of new

benchmarks, since the programs may call a standard interface rather than requiring a

custom interface for each system. It also encourages the development of a standard set of

capabilities for mass storage systems because "special" functions are not exercised by the

benchmarks and will not improve their performance. While this may sound restrictive, it

will actually benefit users by ensuring that they will not need to modify their programs to

run efficiently on different mass storage systems.

5. Evaluating the Benchmark Programs

The true test of benchmarks is their ability to predict system behavior: thus, we plan to

test our benchmark suite on several systems to gauge how well its results match the actual

performance of working systems. Because the designs presented in this paper are very

preliminary, we expect that several rounds of benchmark tuning will be necessary before

the suite is ready for wider distribution.

The basic testing method is similar to that of benchmarks in other areas: obtain perform-

ance measures from the benchmark by running it on several systems, and compare the

results with the actual performance of the systems. This exercise is not as simple as it

may seem, however, because no two mass storage systems have the sarne workload pat-

tern. For a fair test, it will be necessary to select the most appropriate benchmark mix lk_r

a system without knowing in advance what performance to expect. Thus, our final test

will be to run the benchmark on one or more systems before measuring performance and

looking for correlation between predicted performance and real performance.

6. Future Work

The work on mass storage system benchmarks presented in this paper is still in its very

early stages. By presenting these ideas to the mass storage system community at this

point, we hope to get valuable feedback and direction for the construction of this bench-

mark suite. In particular, we hope that mass storage system users will contribute repre-

sentative codes to be added to the collection.

Our first goal is to produce source code for several of the benchmarks mentioned in the

paper and run them on different storage systems including workstation file servers as well

as multi-terabyte tertiary storage-backed storage systems. Using the results, we plan to

525



refine our benchmarks,producinga set of a dozenor fewer programsthat generate
workloadsrepresentativeof thoseseenin productionmassstoragesystems.

Wearealsobuilding asimulationmodelof massstoragesystemsto allow therunning of
long-termbenchmarks.Whenthis model is complete,wewill beableto examinelong-
term effectssuchasthe tradeoffsbetweendifferent file migrationalgorithmsand per-
formancegainsfrom different sizesof disk cachefor tertiary storage.Usingthe bench-
mark suite rather than a particularworkload will allow us to come up with general
guidelinesfor buildingmassstoragesystemsratherthanthesite-specificadvicecommon
in thefield today.

7. Conclusions

This paperpresenteddesignprinciplesfor buildinga benchmarksuitefor a massstorage
systemswith capacitiesrangingfrom tensof gigabytesto petabytes.Thebenchmarkpro-
gramswill be synthetic;while they will be basedon accesspatternsobservedon real
massstoragesystems,they will not include real codefrom actual user. Someof the
benchmarkswill generateaccesspatternssimilar to thoseof individual programs,typi-
cally requiring lessthana day to run. Otherswill modellong-termaccessby manyusers
to massstorageoverperiodsof manydays. Both typesof benchmarkswill includepro-
gramsthat mimic "real world" accesspatternsaswell asothersthat stressthe systemto
find its limits, sinceboth factorsareimportantto massstoragesystemusers.Using feed-
back from usersof massstoragesystemsas well as vendors,it is our hope that this
benchmarksuitewill becomea standardthat will easethe processof comparingmany
differentoptionsin storagesystemdesign.

References

1. A. ParkandJ. C. Becker,"IOStone:A syntheticfile systembenchmark,"Computer

Architecture News 18(2), June 1990, pages 45-52.

. P. M. Chen, and D. A. Patterson, "A New Approach to I/O Performance Evaluation -

Self-Scaling I/O Benchmarks, Predicted I/O Performance," Proceedings of the 1993

SIGMETRICS Conference on Measurement and Modeling of Computer Systems,

Santa Clara, CA, May 1993, pages 1-12.

. J. H. Howard, M. L. Kazar, S. G. Menes, D. A. Nichols, M. Satyanarayanan, R. N.

Sidebotham and M. J. West, "Scale and Performance in a Distributed File System,"

ACM Transactions on Computer Systems 6(1), February 1988, pages 51-81.

° W. Norcott, IOzone benchmark source code, version 2.01, posted to

comp.sources.misc, October 30, 1994. Available from

ftp : //www. cs. umbc. edu/pub/elm/iobenchmarks/iozoneOl.

526



5. T. Bray, Bonniebenchmarksourcecode,1990.Availablefrom
ftp ://www. cs. umbc. edu/pub/elm/iobenchmarks/bonnie, sh.

. E. L. Miller and R. H. Katz, "An Analysis of File Migration in a UNIX Supercomput-

ing Environment," USENIX- Winter 1993, San Diego, CA, January 1993, pages 421-

434.

.

.

D. W. Jensen and D. A. Reed, "File Archive Activity in a Supercomputer Environ-

ment," Technical Report UIUCDCS-R-91-1672, University of Illinois at Urbana-

Champaign, April 1991.

E. L. Miller and R. H. Katz, "Input/Output Behavior of Supercomputer Applications,"

Proceedings of Supercomputing "91, Albuquerque, NM, November 1991, pages 567-

576.

9. D. Kotz and N. Nieuwejaar, "File-System Workload on a Scientific Multiprocessor."

IEEE Parallel and Distributed Technology 3(1), Spring 1995, pages 51-60.

10. M. Berry, et. al, "The PERFECT Club Benchmarks: Effective Performance Evalua-

tion of Supercomputers," International Journal of Supercomputer Applications 3(3),

1989, pages 5 - 40..

I 1. Transaction Processing Perf. Council. Details available from http://www.tpe.org

12. E. L. Miller, Storage Hierarchy Management for Scientific Computing, Ph.D. disser-

tation, University of California at Berkeley, April 1995. Also available as technical

report UCB/CSD 95/872.

527




