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ABSTRACT

For flywheel rotors or other rotors with significant ratios of moments of inertia (.l_/Jx _ 1,

see figure 2), the influence of gyroscopic effects has to be considered. While conservative or
damped systems remain stable even under gyroscopic effects, magnetically suspended rotors

can be destabilized with increasing rotational speed.

The influence of gyroscopic effects on the stability and behaviour of a magnetic bearing system

is analyzed. The analysis is carried out with a rigid body model for the rotor and a nonlinear

model for the magnetic bearing and its amplifier.

Cross feedback control can compensate gyroscopic effects. This compensation leads to better
system performance and can avoid instability. Furthermore, the implementation of this com-

1)ensation is simple. The main structure of a decentralized controller can still be used. It has
only to be expanded by the cross feedback path.

INTRODUCTION

Magnetic bearings are used in a wide field of applications due to their advantages compared

to other bearing types. The main advantages are that they operate contact free, they have low

friction losses, adjustable damping and stiffness characteristics and the fact that no lubricants

are necessary. They are therefore ideally suited for high speed and vacuum applications.

A magnetic bearing system is unstable in nature and therefore a controller is required. In order

to design a controller a mathematical model of the plant is necessary.

The rotor can be described as a MDGK-system (see equation 8). The gyroscopic matrix G
describes the coupling between the rotor axes while rotating.

For rotors with a small ratio of moments of inertia (J_/Jx << 1) the gyroscopic coupling is small

and can be neglected. In this case the system can be divided into two identical subsystems (x-z

and y-z plane) which can be controlled independently. For many magnetic bearing systems,

decentralized controllers are used which control each bearing unit independently. In [Ble84] it

is shown that gyroscopic systems can be controlled with decentralized controllers.

In [MagT1] and [MS76] it is shown that conservative stable systems cannot become unstable
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with gyroscopic effects. Magnetically suspended rotors however, cannot usually be considered

as conservative. There are mainly two reasons that stability cannot be guaranteed for magnetic
bearing systems. In [Her91] it is shown that the plant is no longer positive-real, when digital

controllers are used. In [ME93] it is shown that gyroscopic effects can cause instability when
certain nonlinearities are considered.

For rotors with a ratio of moments of inertia which is not small (Jz/Jx _-. 1) (e.g. pumps,

turbines and especially flywheels) or rotors with extremely high rotational speeds, the influence

of gyroscopic effects has to be considered. In [MH84] it can be seen that centralized control

(using LQR) considering gyroscopic effects can achieve better system performance than decen-

tralized control. This is only valid however for the specified rotational speed. In [Ulb79] it is
shown that a controller designed with LQR at a certain rotational speed can lead to instability
at standstill. In [ONS89] cross feedback control is orooosed. Here, the controller has a cross

coupling which is displacement-proportional and can avoid instability of the precession mode.

In 1992 a project, was started at the ETH Zurich t to develop a flywheel energy storage device

using magnetic bearings. The following analysis was made within the scope of this project.

MODEL

This chapter describes the model structure used for the theoretical analysis of gyroscopic

effects. The model structure is as extensive as necessary to solve tile desired problems.

The authors used MAPLE [Hec93] for an analytical model, MATLAB [GLLT92] for linear

modelling, controller design and transfer functions and ACSL [Mit93] for nonlinear simulations.

Magnetic Bearing

This section defines the nonlinear force and voltage equations of the electromagnets. The

model will include the resistance of the coil R and the leakage inductance Ls. All other effects

are neglected. All magnets (planes a and b, directions x and y, sides 1 and 2) have identical
structures. The following equations are given for the magnets 1 and 2 of plane a and direction

x. The equations for the other magnets are analogous.

Steady state definitions:

x_1,2 : air gap between electromagnet 1 (respectively 2) and the rotor.

x0 : steady state air gap.
xa : deviation from the steady state position.

ixal,2 : current through the coil of electromagnet 1 (respectively 2).
i0 : bias current.

ix, : control current.

Fxal,_ : force of electromagnet 1 (respectively 2) acting on the rotor.

F_a : total force acting on the rotor (including the disturbance force Fs,_).

u_l,2 : voltage across the coil of electromagnet 1 (respectively 2).

IThe project was funded by NEFF (Nationaler Energie Forschungs-Fond).
Project partners are the Institute of Electrical Machines and the Chair of Power Electronics and
Electrometrology.
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Figure 1: Definitions of tile magnetic bearing model.

x.l = x0 - xa, xa_ = xo + xo (1)

i=al =ioTixo, ixa2 -_-io --ixa (2)

and

(4)

The constant K -- poN2A represents electrical and geometrical characteristics of an electro-

magnet. P0 = 41r10-7 (Vs)/(Am), N is the number of turns of the coil and A the area of one

magnetic pole.

= K__ and ki =K_o is given by:The linearized force equation with k, 2 x$

F_ = 2k_xo + 2kii._a + F,,_,, (5)
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Tile voltage across the coil of an electromagnet can be considered to be derived from an

electrical effect which does not depend on x_ and is dependent upon R and L., and a second
electromechanical effect which depends on xo:

di=_l
U=al = Ri=.l + L,--v-:- + ---

fit
K i=_1 r. dix_2 K ix.2

u_: = Ri=_2 +_o dt +----2 Xal' 2 Xa2
(6)

Rotor

In the following calculations a rigid body model is used. The equations of motion for a rotor
can be described in body coordinates q.

Tile equation of motion for the z-direction is independent of the equations of motion for the x-

and y-direction. In the following analysis, the motion in the z-direction is neglected, because
it is independent of gyroscopic effects.

Y.

X b _I{

Figure 2: Definition of the moments of inertia and geometry definitions of the rigid body model,

body coordinates q and bearing coordinates q. S defines the centre of gravity.

Y

The equations of motion can be written as:

M_ + (D + wG)_ + Kq = F (8)

In equation (8), M is the symmetric mass matrix, D tile symmetric damping matrix, G

tile skew-symmetric gyroscopic matrix, K the symmetric stiffness matrix and F the bearing
forces. For the rigid body model the matrices are:
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M

,1_ 0 0 0 )

0 m 0 0

o o & o
0 0 0 m

D=0

(9)

(10)

G

0 0 .1, 0)

0 0 0 0

-J.. 0 0 0
0 0 0 0

K=0

(11)

(12)

F=B.f (13)

la lb 0 0 )

1 1 0 0

B. = 0 0 la Ib

0 0 1 1

F_b
f= Go

r_b

A transformation to bearing coordinates q leads

The bearing coordinates are:

(x°)Xb

q = y.

Yb

The transformation can be written as:

q = Tq

where T is the transformation matrix:

i_ 1 0 O)
T= /b 1 0 0

0 0 l_ 1

0 0 /b 1

to the following equations.

(14)

(15)

(16)

(17)

(18)
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The transformed equations of motions are:

= -TM-ltzGT-]_ 1 + TM-1Bzf

When a linearized bearing model is used, f can be written as:

f = K°q + Kii

In equation (20), Ko is tile force-displacement factor and Ki the force-current factor.

K°

( 2k,., 0 0 0 )

0 2k,.b 0 0

0 0 2k,.a 0

0 0 0 2k,.b

2ki,a 0 0 0

0 2ki,b 0 0

0 0 2ki., 0

0 0 0 2ki,b

In this case K, leads to a non-zero stiffness matrix K.

(19)

(20)

(21)

(22)

For all further analysis, the location of the sensors is assumed to be identical with the location

of the corresponding bearing forces (collocation).

Amplifier

The output voltage amplitude of an amplifier is limited to a lower and an upper boundary

(umi. and urn.x). The output current cannot exceed a maximal value im.x or become negative
(in a two quadrant amplifier).

Uin _ Load

Figure 3: Diagram of the amplifier

and

Umax • Ui n __ Umax
Uo,.,t = ui,, " umi,-, < ui, < Urn,= (23)

Urnin " Uin __ ?lrnin

0 < io,,t <_ im._ (24)
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Voltage saturation of an amplifier leadsto reduceddynamicsof the current. This is shown
in figure 4 and 5 for anexample.Current bandwidth canbe approximatedby a low passof first
order with variable cut-off frequency(dependingon the magnitude of the current bouncing).
A current controller hasa fixed cut-off frequencywhich canbe adjustedwith the feedbackgain
kro (see figure 4).

0

-30

-40
10 z

1 A
0

_-10

_;-20

-30

-4_02

103 104

wIra,s}

e
7

10:: 104
w [rad/gl

1:

2:

3:

4:

5:

6:
7:

^

b = 10A
b = 5A

b = 2A

}s = 1A

}, = 0.5A

z, = 0.2A
zs = 0.1A

Figure 4: Dynamics of a current controller with saturated amplifier. The upper plot shows the

transfer function IG_(jw)l = _ and the lower plot the transfer function IG2(jw)] = ,,,_,i,(jw)

normalized to maximum current. JG2(jW)Jma. = _ and not 1 (the first spectral fourier coefficient

of a periodic square wave).
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Figure 5: Current i and voltage u at two frequencies.

i., is the desired current and is plotted with dashed line. In the left hand plots _

in the right hand plots i, = 5A. The saturation current i,,,_, = 4A.

= 2.5A and
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Digital Controller

The flmction of a digital controller can be divided into an input signal processing I)loclL
a controller and an output signal processing block. The following diagrams show the model

structure of a state space current controller. Observers for all velocities of the rotor are part of

ttle input block.
The input block models an AD-converter with quantized and sampled output. The (lerivation
of the input signal is made by shifting the input signal N time steps and performing a ba(:kward

integration (see figure 25). Tile purpose of the shifting factor N is to enlarge ttle resolution of

the velocity signal at high sampling frequencies.

Z N -- 1

x,_q- zNTsNX, (25)

The output block models a DA-converter with a quantized and delayed output. Tile delay

is caused by the calculation time of the processor.

Figure 6: Input signal processing.

Ixnl

Ixas2 _..

Figure 7: Output signal processing.

-- Ixas

BEHAVIOUR OF MAGNETICALLY SUSPENDED GYROSCOPES

In this section, the basic behaviour of gyroscopes with magnetic suspension is shown. More

information on the behaviour of gyroscopes in general can be found in [Mag71].

At first, system behaviour is shown for a linearized bearing model (refer to equation 20) using
a decentralized PD-controller. In this case the rotor behaves like an elastically suspended

gyroscope (suspension with a spring and damper). This is a damped mechanical system (M =

M r > 0, K = K T > 0, D = D T > 0) and, therefore, stable ([Mag71],IMS761).
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Figure 9: Campbell diagram of tile rigid

body model,

co = 0 ... 1250 rad/s,

Tile non-rotating system h_s two eigenfrequencies which are equal for the x-z plane and the

y-z plane. For the rotating rotor these eigenfrequencies become coupled and depend on the

rotational speed. The four eigenfrequencies are a nutation, two pendulous and a precession

frequency. The nutation frequency increases with the rotational speed (limo,__WN = to&),I.

while the precession frequency decreases (li,n_o-+oocor, = 0)[MagT1], [SBT94].
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CROSSFEEDBACK CONTROL

It is assumedthat all states (positions and velocities) can be measured or observed. Then

the following feedback law can be used:

u = -K,.x (26)

In equation (26) u is the control input vector, ¢ the state vector and K_ the feedback
matrix.

Figure 11: Decentralized controller with compensation of the gyroscopic cross coupling.

For many magnetic bearing systems, decentralized control is used. In that case, each mag-

netic bearing unit is a subsystem which is controlled independently [Ble84]. The feedback

matrix K,. therefore only consists of diagonal elements. There is no cross coupling between

tile x- and y-direction and respectively the two radial bearing planes. The main advantages
of decentralized control are simple controller structure and reduced computational time. For

a system at standstill, and respectively for a system with weak gyroscopic coupling, decentral-

ized control leads to good system performance which cannot be significantly improved with

centralized control. In the case of a magnetic bearing system with strong gyroscopic coupling,

the situation is different. The plant changes with the rotational speed. As mentioned before,
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gyroscopic coupling leads to a decrease of system performance because the precession mode
becomes limit stable. A consideration of digitization and other nonlinearities (see next section)

shows that gyroscopic effects can cause instability. Therefore, gyroscopic coupling has to be

considered for controller design.
A centralized controller can be designed at a certain rotational speed so that the system has the

same poles as at standstill. In this case gyroscopic effects are compensated. This compensation
leads to additional terms in the feedback matrix K,. which depend on rotor velocities and are

proportional to the rotational speed. Furthermore, these additional terms only occur ontside

tile diagonals of K,.. A decentralized controller designed to operate at standstill therefore re-
mains unaffected by this compensation. Figure 11 shows a simple realisation of a decentralized

controller expanded with a compensation of the gyroscopic cross coupling.

The compensation factor kc is:

Co,t_d, (27)
k¢ = ki(la - lb)2

Further analysis shows that a system with complete compensation of gyroscopic effects is

not robllst to a delay time (see next section). An attenuation factor Cart is used to improve

robustness. The structure of the compensator remains the same.

Figure 12 shows tile behaviour of a rotor at a rotational speed of 1000 rad/s with a decen-
tralized controller. The increase of system performance with cross feedback can be clearly seen
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Figure 12: Decentralized controller and transient motion of the excited rotor (dashed line:
retainer bearing), w = 1000 rad/s
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transient motion of the excited rotor (dashed line: retainer bearing), ¢u = 1000 rad/s

It should be noted, that the expansion is small and, therefore, computation time will not

increase much. Compared to a full centralized feedback matrix, computation time is nearly

four times less. Furthermore, the implementation of this compensation is simple. The lnain
structure of the decentralized controller can still be used. It only has to be expanded by the

cross feedback path.

NONLINEARITIES AND SYSTEM PERFORMANCE

As mentioned before, a conservative or damped system cannot be destabilized by gyroscopic

effects. A passive (positive-real) continous time controller would therefore be sufficient for

stability. In [Her91] it is pointed out that the plant is no longer positive-real when digital
controllers are used. Stability cannot therefore be guaranteed for a real nonlinear magnetic

bearing with a digital controller.

Sampling Time

The choice of the sampling rate depends on the control of the fastest pole of the closed-loop

system. The lowest sampling rate is given by Shannon's law and must be 2 times faster (in

practice 5 ... 10 times) than the fastest closed-loop pole.
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Typically the open-loop poles of a plant are slower than the closed-loop poles. The system

"rotating rotor with gyroscopic coupling", however, behaves differently. At high rotational

speed, tile fastest open-loop pole can become faster than the closed-loop poles.

Sampling of a digital controller can be modelled with a ZOtt (zero order hold) element. The
transfer function is:

1 - e"w'""È 1 - e -j_°1'"'''"
Gzoh(S) = ; Gzoh(jW) =

S joJ _)

= 2 smt_) e-J_'_"_ (28)

It. can be seen in equation (28) that a ZOtt element introduces a ph_e shift of _2 At

the sampling frequency f.,o,,p = 1/T_,,,np the phase shift is -180 °. Therefore, the stability

margin for the nutation mode decreases. When the open-loop pha.se is under -180 ° due to the
phase shift caused by digitization, delay time, etc., instability can occur for the nutation mode

(open-looI) gain > 1).

The delay time is normally caused by computational time. Similarly to the smnpling time,

the delay time can be represented as a linear phase shift. This additional phase shifting leads

to further reduction of the stability margin.

Current Controller and Amplifier Saturation

The dynamics of a current controller should be as fast ms possible. Current controllers with

slow dynamics have a phase shift of -90 ° at the cut-off frequency. This phase shift leads to the

same instability problems as mentioned before.

Saturation of the amplifier, i.e. limitation of voltage, leads to a delayed start of the current

mid, therefore, to an additional pha_se shift.
Current limitation mainly decreases the magnitude. The pha._e is unaffected (see also [Unb93b])

and, therefore, instability problems do not occur. A nonlinear simulation shows that the rotor
is stable even with high current saturation (see figure 14).
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Figure 14: Transient motion of the rotor with an external disturbance force (dashed line:

retainer bearing). The current is limited to 4 A.
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Robustness of the Compensation

Nonlinearities such as digitization, delay time and amplifier saturation which lead to a de-

layed reaction of a compensator can cause instability of the system. The smaller these delays

are, the better the compensation will work.

For systems with strong gyroscopic coupling, a controller with compensation has to be pro-

posed to improve system performance. Complete compensation has been shown to be possible
in linear simulations with MATLAB, but still leads to instability in practice. Nonlinear simu-

lations (with ACSL) show that complete compensation is not robust to delay time effects. An
attenuation factor Cau is therefore used. It gives the ratio of the implemented compensation

compared to a complete compensation. The structure of the cross coupling remains the same,
but robustness is much higher. A sufficient and robust solution can be found with an attenu-

ation factor of 75%. With complete compensation, the syste m has the same behaviour as at

standstill. With reduced compensation (e.g. 75%) the system behaviour is the same ms for a

reduced rotational speed (25% of the nominal rotational speed).

In this paper cross feedback control is analyzed for current control and voltage control with
a fast current controller. Here, the rotor poles are independent of the poles of the current

controller. For voltage control with a slow current controller, the relationship between the
coefficients and the rotational speed is not obvious. In this case all system poles including the

poles of the current controller depend on the rotational speed. Further analysis is therefore

necessary for voltage controlled systems.
Simulations show that current errors caused by a current observer can ea._ily cause instability.

Current observers should therefore not be used for systems with a compensation of gyroscopic

effects.

Nonlinear Force Characteristics

The nonlinear force characteristics of magnetic bearings is not crucial for an analysis of

gyroscopic effects. Simulations show that this nonlinearity is negligible in the air gap region
due to the differential setup of the magnets and the use of a bias current.

CONCLUSIONS

A theoretical analysis has shown that, for rotors with strong gyroscopic coupling, all nonlin-

earities which decrease the phase (digital control, delay time, slow current controller) can lead

to instability at very high rotational speed.

The proposed compensation improves the transient behaviour of the rotor and, therefore, sys-

tem performace. It can avoid the precession mode to become limit stable. The implementation
of this compensation is simple. The structure of a decentralized control can still be used.

With analogue control which introduces no phase shift,, stability problems can be reduced. The

flexibility of digital control has however certain advantages (e.g. unbalance compensation).

In the next step, these theoretical results will be tested on the flywheel energy storage device.



REFERENCES

[Ack88]

[Ble84]

[GLLT92]

[tlec93]

[tier91]

[Mag71]

[ME93]

[MH841

[Mit93]

[MS76]

[ONS891

[SBT94]

[Ulb79]

[Unb93a]

[Unb93b]

J/irgen Ackermann. Abtastregelung. Springer-Verlag, Berlin, 1988.

Hannes Bleuler. Decentralized Control of Magnetic Rotor Bearing Systems. PhD

thesis, ETH Swiss Federal Institute of Technology, Zurich, 1984.

Grace, Laub, Little, and Thompson. MATLAB Control System Toolbox, User's
Guide. Natick, 1992.

Andre Heck. hztroduction to Maple. Springer-Verlag, Berlin, 1993.

Raoul Herzog. Ein Beitrag zur Regelung yon magnetgelagerten Systemen mittels

positiv reeller Funktionen und 7-l°_-Optimierun9 . PhD thesis, ETH EidgenSssische
Tectmische Hochschule, Ziirich, 1991.

Kurt Magnus. Kreisel, Theorie und Anwendungen. Springer-Verlag, Berlin, 1971.

A.M. Mohamed and F.P. Emad. Nonlinear Oscillations in Magnetic Bearing Systems.
Transactions on Automatic Control, 38, August 1993.

Takeshi Mizuno and Toshiro Higuchi. Design of the Control System of Totally Active

Magnetic Bearings. In International Symposium on Design and Synthesis, Tokyo,
1984.

Mitchell and Gauthier, Concord. A CSL Reference Manual, 1993.

Peter C. Mfiller and Werner O. Schiehlen. Lineare Schwingungen.
Verlagsgesellschaft, Wiesbaden, 1976.

Akademische

Y. Okada, B. Nagai, and T. Shimane. Cross Feedback Stabilization of tile Digitally

Controlled Magnetic Bearing. In Conference on Mechanical Vibration and Noise,
Montreal, 1989. ASME.

G. Schweitzer, H. Bleuler, and A. Traxler. Active Magnetic Bearings. vdf, Zurich,
1994.

Heinz Ulbrich. Entwurf und Lagerun9 einer beriihrungsfreien Magnetlagerun9 fiir
ein Rotorsystem. PhD thesis, TU Miinchen, 1979.

Rolf Unbehauen. Regelungstechnik L Vieweg, Braunschweig, 1993.

Rolf Unbehauen. Regelungstechnik II. Vieweg, Braunschweig, 1993.

191





Session 6 -- Space Applications

Chairman: Nelson J. Groom

NASA Langley Research Center

193




