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SUMMARY

A possibility of an effective damping of rotor nutations by modulating the field of the

moment transducers in synchronism with the nutation frequency is considered. The algorithms

for forming the control moments are proposed and their application is discussed.

INTRODUCTION

Practical use ofnoncontact suspensions in gyroscopy is possible if the following

requirements, at least, are fulfilled: the rotor must be stably suspended and stably rotate with

given parameters; information about the angular motion of the body must be available.

The second problem of making the rotor rotate is, in turn, divided into three other problems:

providing a necessary angular momentum for the rotor, which, most frequently, is equivalent to

providing a certain rotation speed f_ for the rotor, providing a small, zero in the limit, nutation

angle O, and maintaining the achieved motion parameters within the given limits in the further

operation of the unit. A way for solving these problems with respect to a gyro with a

magnetoresonance suspension can be found in (ref. 1).

The small dissipative moments in a noncontact gyro leads to the fact that after acceleration

the rotor rotates with a nutation angle defined mainly by the initial conditions. The damping of

the nutation oscillations over a finite time can be achieved if, for the formation of the control

moments (not only for nutation damping), we use modulation or self-modulation methods, when

parameters of the suspension field or of the additional coil field (magnitude, direction, rotation

speed, etc.) vary depending on an angular position of the aspheric rotor (ref. 2, 3, 4), due to

which a nonconservative component appears in the moment effect on the rotor, which also

provides an active damping of nutation. Let us consider one of the possible methods for an

effective damping of the rotor nutation relative to a gyro with magnetic suspension.
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TIlE EQUATIONS OF MOTION

Assuming the gyro rotor to be stably suspended in the suspension fiehl, we represent the

equations of its angular motions in the form of six first order equations with respect to the

following phase variables (ref. 5): the value of angular momentum K , two angles p and er ,

which determine its orientation (trihedron O}_) relative to the suspension (trihedron OZk), and

The Euler angles q0, _b and 0 , which prescribe the position of the rotor (trihedron (OXi))

relative to the angular momentum I( ; qo is the angle of the proper rotation of the rotor about

the axis of dynamic symmetry (OX3) ; _h is the angle of precession of this axis about the

angular momentum I_ ; t9 is the nutation angle or the angle between the angular momentum and

the axis OXa.

Using the main equation of gyroscopy

d -+fix =M

written in the coordinate system OYj anti projecting the vector I_ on the rotor axes OXi

(I_. _i) = K. b_a = & " _i,

where Ii is the rotor's moment of inertia along OXi, and I_i is the projection of the rotor's

al)solute angular velocity on the same axis, for an axisymmetric rotor (12 = I2 = A _ la = C)

and the arbitrary moments we obtain

K dp+[l,_ =All, K sinP-d-/- [_'a =M2, d--t-= '

dO
K

dt
- (312 cos t/, + M_ sin _/,) = -M_o,, ,

(01)

(02)

(0:_)

d--_ - K ( ldtC A) c°s o = M_ c°s _l' - M_ sin _Ksin 0

d4' K M_ cos 4' - h12 sin _/'cotan0
dt A K

where Mj = (l_l-ffj), £/a = Q.,._+ (]tt_/l()cotanp , a,,d Q.,j are the projections onto the

axes 0}'[/ of the absolute angular velocity _, of the coordinate system OZk. This velocity can be

determined by the earth's rotation, by the rotation of an object on which the gyro is installed,

by a forced rotation of the device casing performed to make its interaction with t.he rotor

symmetric, etc.

The presence of different time-scale motions in real gyros, such as a "slow" precession m<>tion

of the angular momentum and a "fast" rotor rotation allows us to use, fi)r studying the gyro

dynamics, the averaging method in which even the first al>proximation reveals the basic laws of

gyro behavior (ref. 5).
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Omitting the standard procedure for normalizing the equations anti finding in the latter a

small parameter e,. which characterizes the ratio of the work of external forces per one rotation

of tile rotor to the kinetic energy accumulated by tile gyro rotor, we write their standard form,

which allows the asymptotic methods to be applied:

('k' ) tr'sinp = e (-_ +wo,), k" =¢,n3, (01)p* = E -- Ods2

k0" = -e (m, cos ¢ + 7.,2Sill¢) ,

m2 cos ¢ - ml sin 4,)qo*+TkcosO=e ksiuO '

(m2 c°s _b - mt sin ¢cotanO _ w3) .tl," - k = -_ K

It is evident from the equations that free motion of tile rotor (generating solution) rel)resents

a regular precession or the Euler-Poinsot motion with the constant angular velocities of the

proper rotation _,g and precession tb_ for a constant nutation angle 0, such that

( C- A) (05)_,; = k0, _; = - _kocos00, 7 - _ ,

where k0 is the constant value of the angular momentum if: which is immobile in the inertial

space. For the periodic dependence of the right-hand sides of the equations of motion on the fast

variables ¢ and _, , to obtain the first approximation over the small parameter e , the right-hand

sides of the equations for the slow variables are averaged over the variables _/, and _, , whose

dependences on r are assumed to be the same as those in the unperturbed motion.

Let us now specify the requirements to be met by the moment controlling the rotor motion

to perform the damping of the rotor's nutation oscillations over a finite period of time.

After the averaging of the equations of motion over the fast variables ¢ and q0 , the nutation

angle varies according to

kO ° = -e,n_o, (p, a, O, k) . (06)

Since the initial values of the nutation angle 0 are closer to 0 rather than 7r/2 , and this

angle must still decrease with time, we introduce variable x = sin 0 and linearize Eq. (06) with

respect to this variable

= +

wh,-re ,,,0(p,_, 0, _-)= ,._o.(p,_,, o, k), ,,,' = O,._o./O.rl.=o.

Therefore, a monotonic decrease of the nutation angle 0 to zero over a finite period of time is

possible only if the condition m ° > Im'l is fidfilled. In this case, there is no equilibrium state for

the angle 0 or x , and their variation rates are always negative, which allows the required effect

to be achieved.
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TIlE FORMATION OF THE CONTROl. MOMENT

Let us discussa possibility for dampingthe rotor nutationsthro,gh its interactionwith tile

field of a transducer for the angular position of the rotor. II1 a gyro with a magnetoresonance

suspension, this transducer is embodied as a system of two four-leg magnetic circ,tits located on
the same axis but on the different sides of the rotor with a coil (ref. 1) at each leg. An axial

opening in the rotor leads to the fact that from the moment standpoint, the rotor will behave as

anaspheric body, whose surface is described by a set of even harmonics (even Legendre

polynomials), the first of which is the second harmonic responsible for the ellipsoidality or the

uniaxial anisotropy. The moment defined by this harmonic will be considered below.

This moment is described by

= - 2a (E. 171)[ff × hi, (07)

where a > 0 is the interaction amplitude determined, in particular, by the field amplitude: _"and

la are the unit vectors of the symmetry axes of the ellipsoid and the field. (Since we allow for the

anisotropic properties of the rotor determined by its opening, from the magnetic viewpoint it
should be considered as an oblate ellipsoid tending to position itself with its axis perpendicular

to the field's axis, which is reflected by the minus sign in Eq. (07).)

It can be assumed that the unit vector ff coincides with the unit vector of the dynamic

symmetry axis OX3 of the rotor, and, thus,

ff = K3 = 371sin O cos tl, + _2 sin 0 sin _, + 373cos O .

Using the spherical angles or, and 3. , we prescribe the position of the unit vector 1_ . which

deternfines the symmetry axis of the magnetic field generated by the n-th pair of the coils

belonging to different magnetic circuits but located on the same axis that passes through the
center of the rotor

la = fit sin ¢_. cos/3,, + if2 sin ,_. sin/t_ + _'n cos o. ,

where c_,_= c_ is the same for all n and 13. =/3o + rn/2.

Let us substitute these unit vectors into the expression for the moment (07) and find its

component m_o, = rnt cos _/, + m2 sin r/, responsible for the variation of the uutation angle ,)

where

M_o. = 2a,, (hi sin _, - h2 cos _,) h3 cos ,)-

,1

(_1. 2_j) , ht = cospsinctcos(cr -/3,_)- sin pcos cr .hj

h2 = - sin osin (cy -3,), h3 = sinpsin c_cos (cy -,3,) + cos pcos c_ .

(0_)

From Eq. (0,q) it follows that 31,._,_ is a periodic function of the precession an_le ,." without
,Othe constant component M_o,_ (p,_r, 0, K) , which can appear only in the case of a pulsed
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switching-on of the field over the time periods, during which tile moment does not change its

sign. As it is evident from Eq. (08), the moment has a harmonic component with frequency _/,"

proportional to cos 2 O and a component with double frequency 2_b° proportional to sin 20. For

O = 0 this results in

Alco,_ = 2a, (hi sin _b - h2 cos _b) h3 .

Apparently, for the effective damping of nutation, i.e., dropping the angle 0 down to zero

over a finite period of time, the coil field with frequency r/, ° must be changed. (The speed of the

rotor rotation about the symmetry axis OX3 is equal to _0 = K/C , the nutation frequency

4, ° = K]A , and, consequently, _h" = _oC/A ). It should be noted that nutation oscillations of a

cryogenic gyro can be damped in a similar manner (ref. 3).

Let us write hi sin _, - h2 cos _, in the form:

hi sin _ - h2 cos _/, = - sin pcos a sin _/, +

1
+ z[(1 + cos p) sin (_ + a-/3,)- (1 - cos p) sin (_]; - cr + fl,)] sin _.

Z

From the above expression it follows that the optimal switching-on of the field should follow

the algorithm

{°,_(_,) = (09)
O,

i.e., the field is switched on over half the period of the nutation oscillations with frequency _,°.

2kr < _/,+ o -/L < (2k + 1)Tr

(2k + l)rr < _/, + or- fl,, _< 2(k + 1)rr,

For this operation mode, two pairs of the control coils are switched on at any instant, which

greatly improves the efficiency but leading, however, to a higher heat release that can be reduced

due to a decrease in either the field amplitude, or the switching-on duration.

(_--- _'<q,+cr--gn<_ _ 2k+ r+_

outside the intervals

(1o)

Ilere r < rr is the switching-on duration. Apparently, the algorithm (09) is a particular case of

(10) for r = re.

If all the coil pairs and their switching-on algorithms are identical, they create a total control

lll()Fllellt,
7"

(M_o,,) = 2a-(lr + cos p) (2 cos p - 1) sin 2o sin _ cos 2 O, (11)

which leads to equation

7"

K9"=-2-a(lr + cos p) (2 cos p - l)sin2osin_cos29. (12)
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Apart from the variable 0 , this equation also incorporates other quantities K(t) and p(t)

that do not remain constant. If we write tile rotor-affecting moments via the force function IV

(ref. 5), then, instead of the corresponding equations in (03), we can obtain

l(,W ,..)K sin p- - --0--_-c°sp -_a '

dK OW

dt O_b '

,lo (ow ow
a--/= It" sin6 \-_- cosO O_ )

Since tile rotor opening is symmetric about its dynamic axis, then, consequently, O|,l"/O_ = 0

The summation of the moments from all tile pairs of tile symmetric coils also results in

OIV/Oa = 0 . These conditions yield the equations

_t 1 OW dK OW dO 1 OIVK
sill p Orb dt 0_[, dt K sin 1_ 0_,

from which we obtain two integrals

K_3 = K cos p = Const , K_.3 = K cos 0 = Const , (13)

the physical meaning of which is evident, i.e., on the strength of the control system and rotor

symmetries, the projections of the angular momentum onto the symmetry axes of the suspension

(K.,._) and tile rotor (It'_3) remain constant. Representing K and cos p from Eq.(13) and

sul)stituting them into Eq. (12), we can find the law of the nulalion angle _ variation with time.

To simplify the solution, let us use the smallness of the misalignment angle p , which, along with

the use of the second integral, yields

( 4a sin 2a sin 2) (l,1)_e = _ vcos 3 _ , v -- 7lit'z3

from which it is evident that the time of the nutation angle decrease from the initial value 00 to

0 is given by

,( ,,,,,0 [ (: ;_0)]/T(Oo)= _ 2cos_O o+_ln tan + . (15)

At least up to 0o _ 200 , the dependence T (0o) is insignificantly different from the linear

dependence T(,_o) = Oo/v , which simplifies the calculations.

Since on the right side of Eq. (14) there are no terms that are linear in sin0 , the interaction

amplitude a (or the coil field value) can be any value other than zero, which affects only the time

of the nutation damping rather than its character.
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POSSIBLE REALIZATIONS

To conchlde the study of the nutation damping, let us make some final remarks relative to

the application of the method proposed:

a) As it is evident, the working part of the control moment of the TT-th coil pair

sin (d' + a - _/,). At the same time, the projection of the rotor symmetry axis onto the

direction if,, = _'1 cos B, + z_ sin fin , that corresponds to this pair is

(if- F,) = l_ cos (q, + cl - ft,) + p cos (a -/7,) for small 17and p . Since the moment transducer in

the gyro incorporates four coil pairs, it is apparent that. the control moment of any pair can be

formed based on the signal taken from an adjacent pair.

lh>wever, this mode of operation, in which the signal is taken from one pair and there are

switchings-over in the other pair, can lead to an electrical engagement of both channels

disrupting thereby their normal operation. In this respect, we need to obtain a signal with

frequency _/," by another method, for example, using a transducer to ot)tain a. signal on one side

of the rotor and a transducer to ensure control on the other side of the rotor. In this case,

however, along with the moment effect, there will also be a force effect on the rotor or tension.

b) Another method is the switching-over mode of operation, in which, for a certain period

of time, the transducers are used for obtaining the information and then for control with

periodic repetitions of the process. There is no input signal in the control mode, and it results in

a decrease of K. Consequently, the control signal can be formed by a device of an underexcited

oscillator type to the input of which an external signal with frequency _/," is initially applied. In

this case, control will be efficient only over the time period until the phase difference between

the real signal from the rotor with frequency _," and the signal from the oscillator achieves the

critical value (A_0 = z/2) .

If at the initial time it was the frequency _v0 , anti the rotor deceleration could l>e simulated

l>y the viscous friction when _v (t) = w0 exp (-At) , the phase difference between the signals from

the rotor and from the oscillator can be calculated as

If 7_ = 2_'/_o , T:_ = A-I , then

,_/_o. = T_ (16)

Let us consider the following example: if the rotor speed is ll = 1000 r.p.s.

(g.,° = 2_" • 1200 sec -t) , and the damping is such that Tx = 1 hr , the nutation can be damped

during T_o, _ 1.22 sec until the phase difference becomes A_ = r/2 , after which we again need

to switch over to the regime of signal reception and control moment formation.

c) The proposed mechanism of nutation damping is active for both constant and variable

magnetic fiehts generated by the coils, but the constant field efficiency is greater. The maximum
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gain in efficiency of the effect on the rotor can be obtained, provided the transducer coils are

used for control alone and the input signal with frequency _/,° for the control moment formation

is taken from other devices.

REFERENCES

1. Odintsov, A. A.: Magnetic Gyroscope and Inertial System on it.s Basis. Sudoslroitcl'naya

promyshlennost', set. Navigatsiya i giroscopiya, no. 1, 1991, pp. 51-58 (in Russian).

2. Komarov, V.N.: On the Influence of the Self-Modulation on Nutation of a Noncontact

Gyroscope. Prikladnaya mekhanika, vol. 20, no. 5, 1984, pp.104-109 (ill Russian).

3. Komarov, V.N.; Urman, Yu. M.: Active Damping of Noncontact Gyroscope Rotor

Nutation. lzv. vuzov. PriboTwstroyeniye, vol. 25, no.12, 1982, pp.- 44-47 (in Russian).

,t. Komarov, V.N.: Regulating the Magnetic Gyroscope's Motion. The Fourth International

Symposium on Magnetic Bearings. Zurich. [Iochschulverlag AG an ETN,199,1, pp.19-22.

5. Beletskiy, V.V.: I)ynamics of Fast Rotations. Proc. lDs. Inst. for Mechanics. Moscow

University, no. 29, 1973, pp.97-118 (in Russian).

334



Session 10 -- Bearing/Actuator Design

Chairman: James Downer

Satcon Technology Corporation

335




