
Software Component Technologies and Space Applications

Don Batory

Department of Computer Sciences

The University of Texas

Austin, Texas 78712

f

Abstract

In the near future, software systems will be more reconfigurable than hardware. This

will be possible through the advent of software component technologies, which have

been prototyped in universities and research labs. In this paper, we outline the founda-

tions for these technologies and suggest how they might impact software for space

applications.

1 Introduction

Software component technologies will fundamentally change the way complex and customized soft-

ware systems will be designed, developed, and maintained. Well-understood domains of software (e.g.,

avionics software, communication networks, operating systems, etc.) will be standardized as libraries

of plug-compatible and interoperable components. A software system in these domains (e.g., a particu-

lar avionics system, a particular operating system, etc.) will be specified as a composition of compo-

nents. High-performance source code that implements these systems will be generated automatically.

Application developers will purchase component libraries for the domains of interest, and will config-

ure components to build the target systems/platforms that their applications need. The evolution of soft-

ware, once a formidable problem, is radically simplified: an updated version of a system is defined as a

composition of components and its software is generated automatically. It is in this manner that future

software engineers will leverage off of existing componentry to "mass produce" complex and custom-

ized software quickly and cheaply.

For this vision to become a reality requires basic changes in the way we understand and write software.

First and foremost, a software component technology requires us to address the following:

• encapsulation - what should a building block (i.e., component) of software systems encapsulate?

• composition - what does composition mean?

• paradigm - what model of programming supports software component technologies?

• scalability - how can large families of systems be expressed by a small number of components?

• verification - how can one verify that a composition of components is consistent and implements

the specifications of the target system?

Answers to these questions lie at the confluence of a number of independent research areas: transforma-

tion systems, object-oriented programming, parameterizing programming, domain-specific compiler

optimizations, and domain modeling and the design of reusable software. Research on software system

generators lies at the heart of this intersection, where specific and practical answers to these questions

have been found.

https://ntrs.nasa.gov/search.jsp?R=19960054100 2020-06-16T03:44:07+00:00Z



2 A Paradigm Shift

The evolution of customized software is the bane of most projects: it is difficult to achieve and is hor-

rendously costly. There is always the need to develop new variants of existing systems, each variant/

version offers new features that are specific to the class of applications that are to be supported. But

often the effort needed to make even minor changes to a system is far out of proportion to the changes

themselves [Par79].

The problem is that source code is the most detailed and concrete realization of a software design. The

most critical changes (and hence the most important evolutionary changes) to a software system are

modifications to its design. Minimal design changes often require major software rewrites. Rather than

maintaining and evolving source code, an alternative is to maintain and evolve the design and to gener-

ate the corresponding source code automatically. This is the concept of design maintenance [Bax92].

Design maintenance asserts that the designs of software systems are quantized; there are primitive com-

ponents of software design in every domain. A component encapsulates a domain-specific capability

that software systems of that domain can exhibit. The design of a software system is therefore

expressed as a composition of components, where a composition defines the set of capabilities that a

target system is to have. Furthermore, the evolution of a system's design occurs in quantum steps and

these steps correspond to the addition or removal of domain-specific capabilities (i.e., components)

from the target system.

Design maintenance has two important implications. First, conventional methods of software design

must change because they view software systems as one-of-a-kind products. Reusing previous designs

or source code is largely an ad hoc and fortuitous activity. Design maintenance, in contrast, requires the

identification of primitive components of design for a large family (or domain) of software. A primitive

component, by definition, is reusable because it is used in the design of many family members. Domain

modeling is the name given to software design methodologies that identify primitive components of

software designs for a specific domain [Pri91, Gom94, Bat95a].

A second implication is that a primitive component of software design need not correspond to a primi-

tive code module or package in a generated system. In general, the introduction of a component to a

system's design might require incremental modifications to many parts (e.g., object-oriented classes) of

a system's software. Furthermore, the modifications that a component makes to the source code of one

system might be different than that made to another; such differences arise because certain domain-spe-

cific optimizations could be applied to one system, but not in the other. Thus a component must encap-

sulate more than just algorithms: it must also encapsulate reflective computations, i.e., domain-specific

decisions about when to use a particular algorithm and/or when to apply a domain-specific optimiza-

tion. For most domains, reflective computations are critical for generating efficient code [Bat93].

What programming paradigm supports such componentry? The rallying cry of object-orientation is that

"everything is an object". Object-oriented design methodologies and programming languages are

indeed powerful, but they are insufficient for software components. A programming paradigm that has

been found to encompass object-orientation, in addition to providing the generality needed, is that of

program transformation systems. The rallying cry of transformation systems is "everything is a trans-

formation", or more specifically a forward refinement program transformation (FRPT). The connection

between components and FRPTs is direct: an FRPT elaborates a high-level program by introducing

details (e.g., source code) that efficiently implement a domain-specific capability. Such elaborations can

occur in many parts (e.g., classes) of a system's software. Moreover, an inherent part of an FRPT is the

ability to perform reflective computations, so that only the most efficient algorithms are generated.

Composing components is equivalent to composing transformations [Bax92, Bat92].



Thekey ingredientthat enablescomponentsto becomposedis dueto a disciplineddesignthatstan-
dardizestheabstractions(andtheir programminglanguageinterfaces)of adomain.Simply put,domain
modelingensuresthatcomponentsaredesignedto be interoperable,interchangeable,andplug-compat-
ible andthuscanbeusedassoftwarebuilding blocks;componentswith adhoc interfacesthatarenot
interoperable,interchangeable,andplug-compatiblearenotbuildingblocks.

Amongthebenefitsof softwarecomponentryis thatfew componentsareactuallyneededto assemble
largefamiliesof systems.Weexpectmostdomain-specificlibrariesto haveafew hundredcomponents,
wheredomainexpertscaneasily identify componentsto beused(without requiringelaboratelibrary
classificationandsearchingmethods).Anotherbenefitof softwarecomponentryis thattherearesimple
algorithmsto determineautomaticallyif a composition of components is consistent and that it imple-

ments the specifications of a target system. While demonstrating consistency fails short of formal veri-

fication, it is an major step forward in making software system generation practical [Per89, Bat95b].

Software component technologies and generator technologies have been developed for the domains of

avionics, database systems, file systems, network protocols, and data structures. Related composition/

encapsulation technologies in software architectures are [Gor91, Per92, Gar93]. Readers who are inter-

ested in the technical details of these discussions are urged to consult the cited references.

3 Relevance to Software Development for Space Applications

In the following, I address the community of software developers for space applications. However, I

admit that there is very little in my comments that are specific to space applications; the problems that I

address and the benefits that can be reaped are applicable to software in general.

The main obstacles I foresee in the promulgation of software component technologies and software

system generators are not technical in nature. To be sure, there are plenty of difficult technical problems

ahead, but I am confident that these problems are solvable. My intuition for this not-very-bold state-

ment is that domain modeling takes a retrospective view of software systems that have been built. Thus,

solutions to thorny design problems have already been devised in a multiplicity of contexts. The activi-

ties of domain modeling - the basis of software component technologies - are to show how these spe-

cific solutions fit into a more general (i.e., building blocks) context. It is not the case that entirely new

solutions to domain-specific problems (e.g., space applications) must be invented for software compo-

nent technologies to work. Very little "invention" of new algorithms, etc. is needed. Hence my opti-

mism.

The real challenge will be the acceptance of software component technologies by the space application

community. The primary obstacle is that programmers and system designers are reluctant to change the

way they understand and view problems in software. More specifically, this is the "not-invented-here"

syndrome. If software componentry for space applications were invented in-house, it would have a

much greater chance of being used. But even in-house development would be a major step from con-

ventional approaches.

The reluctance to change has its consequences: researchers will be encouraged to seek a "silver bullet"

that will miraculously solve intractable problems that have been brought on by traditional and estab-

lished methods of software production. The difficulties of software evolution; the infeasibility of imple-

menting competing, possibly radically different, designs for evaluation; the inexpensive development

of product families are examples. Experience has shown that enough (minimal) progress and enough

clever ideas will be demonstrated by researchers to keep the "silver bullet" hopes of software managers

alive for years to come. However, I am skeptical that incremental progress will ever lead to a satisfac-



tory andeconomicalsolution.To addressthemajor problemsof softwaredevelopmenttodaywill ulti-
matelyrequirea paradigmshift.

Paradigmshiftsoccurwhenthereis ageneralperceptionthatmajorbenefitswill ensue.Theshift from
structuredprogrammingandC-likeprogramminglanguagesto object-orienteddesignmethodsandpro-
gramminglanguagesis beingpavedby a widespectrumof realizedbenefitsandgoodsalesmanshipof
object-orientation.Thesamewill beneededfor softwarecomponenttechnologies.Thebenefitsof com-
ponentryarereal andsubstantial,but arenot yet that well understoodor appreciated.Not surprisingly,
numberof advocatesfor softwarecomponentryneedsto beenlarged.

Despitemy enthusiasmfor softwarecomponentry,I don't believesoftwarecomponenttechnologiesare
silverbullets.Thesetechnologiesdonot solveproblems,butonly simplify someproblems(e.g.,evolu-
tion). For example,there are thereare many performance-relatedparametersin avionicssoftware
whosevaluesmustbedeterminedthroughextensivetestingandsimulation.Avionicssourcecodewith
suchperformance-relatedparametersis typically easyto generate.However,how onedeterminesthe
valuesto beassignedto theseparameters(e.g.,aircraft-specificparameters)doesnot seemto be fully
automatable,andthetried-and-trueprocessesof testingandsimulationstill needto beperformed.Thus,
manyof theexistingactivitiesof softwaredevelopmentwill still remain.

Anotherpoint to bemadeis thatmost"new" systemsalwaysincludenewandunprecedentedfunction-
ality. It hasbeenestimatedthatupwardsof 80%of a "new" systemcanbebuilt from availablecompo-
nents.Thismeansthat20%of the"new" systemwill needto beadded.While afactorof five reduction
in theamountof softwaretobewrittenis asubstantialsavings,softwaredevelopmentwill certainlynot
cease.

But therewill alsobeuniqueopportunitiesthat softwarecomponenttechnologiesprovide that would
otherwisebedifficult or impractical.For example,synthesisfrom specificationsmakesit feasibleto
evaluateradically different softwaredesigns.As anotherexample,self-tuningand self-reorganizing
softwareis possible:componentscanbeaddedto systemsto monitor their performance.Periodically,
thesystemcanreconfigureitself automatically,basedonknown usagepatterns,to enhanceits perfor-
mance.

In conclusion,if softwareevolution,thecost-effectivecreationof productfamilies,theneedto experi-
mentandretrofit systemdesigns,andimprovingprogrammerproductivityarecritical to futuresoftware
for spaceapplications,thenthedesignandusesoftwarecomponenttechnologiesshouldbemadea top
priority.

4 References

[Bax92]

[Bat92]

[Bat93]

[Bat95a]

I. Baxter, "Design Maintenance Systems", CACM April 1992, 73-89.

D. Batory and S. O'MaUey, 'q'he Design and Implementation of Hierarchical Software

Systems with Reusable Components", ACM TOSEM, October 1992.

D. Batory, V. Singhal, M. Sirkin, and J. Thomas, "Scalable Software Libraries", ACM
SIGSOFT 1993.

D. Batory, L. Coglianese, M. Goodwin, and S. Shafer, "Creating Reference Architectures:

An Example From Avionics", ACM SIGSOFT Symposium on Software Reusability, Seattle,

1995, 27-37.



[Bat95b]

[Gar93]

[Gom94]

[Gor91]

[Par79]

t-Per89]

[Per92]

[Pri911

D. Batory and B.J. Geraci, "Validating Component Compositions in Software System

Generators", Department of Computer Sciences, University of Texas at Austin, TR-93-03,

February 1995.

D. Garlan and M. Shaw, "An Introduction to Software Architecture", in Advances in

Software Engineering and Knowledge Engineering, Volume I, World Scientific Publishing

Company, 1993.

H. Gomaa, L. Kerschberg, V. Sugumaran, C. Bosch, and I. Tavakoli, "A Prototype Domain

Modeling Environment for Reusable Software Architectures", Third International

Conference on Software Reuse, Rio de Janeiro, November 1-4, 1994, 74-83.

M.M. Gorlick and R.R. Razouk, "Using Weaves for Software Construction and Analysis",

Proc. 1CSE 1991, 23-34.

D.L. Parnas, "Designing Software for Ease of Extension and Contraction", IEEE

Transactions on Software Engineering, March 1979.

D.E. Perry, "The Logic of Propagation in The Inscape Environment", ACM SIGSOFT 1989,
114-121.

D.E. Perry and A.L. Wolf, "Foundations for the Study of Software Architecture", ACM

SIGSOFT Software Engineering Notes, October 1992, 40-52.

R. Prieto-Diaz and G. Arango (ed.), Domain Analysis and Software Systems Modeling,

IEEE Computer Society Press 1991.




