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Abstract

This report documents the statusof the Orbital Debris Radar CalibrationSpheres

(ODERACS) 2 white spheresopticalcalibrationstudy. The purpose of thisstudy is to

determine the spectralreflectivityand scatteringcharacteristicsin the visiblewavelength

regionforthe white spheresthat were added to the projectin the fall,1994. Laboratory

measurements were performed upon theseobjectsand an analysisofthe resultingdata was

conducted.

These measurements are performed by illuminatingthe objectswith a collimatedbeam

oflightand measuring the reflectedlightversusthe phase angle.The phase angleisdefined

as the angle between the lightsource and the sensor,as viewed from the object. By

measuring the reflectedsignalat the variousphase angles,one is able to estimate the

reflectancepropertiesofthe object.

The methodology used intakingthe measurements and reducingthe data are presented.

The resultsofthisstudy willbe used to support the calibrationofground-based optical

instrumentsused in support of space debrisresearch.Visiblemeasurements willbe made

by the GEODDS, NASA and RADOT telescopes.
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Chapter 1

Introduction

This reportdocuments the OrbitalDebris Radar CalibrationSpheres (ODERACS) 2 pre-

flightopticalcalibrationstudy ofthe two supplementalwhite spheresdeliveredto the Uni-

versityof Colorado in fall,1994. The paper presentsthe visibleregionspectralreflectivity

and scatteringcharacteristicsforthe ODEKACS 2 white spheres.The resultsof thisstudy

willbe used to support the calibrationof ground-based opticalinstrumentsin support of

space debrisdetectionresearch.

This reportis organized such that the main body contains the essentialinformation

and the appendixes are used to presenta more detailedanalysis.The basic setup,data

reductionmethods, results,and discussionof the resultsare presented. More information

on the ODERACS project,the testobjects,and the taskingcan be found in Appendix A.



Chapter 2

Methodology

The setup and procedure for the preflight optical calibration of the spheres were driven by

the need to have both scattering and specular measurements sufficient to find the albedo

over the visible region from 450 nm to 950 nm wavelengths. The statement of work specified

that the measurements were to be taken, to the extent possible, at phase angles from ,_0 to

,_180 degrees in 5° intervals. The measurements were taken over all possible angles where

the sensor did not interfere with or enter the light beam.
Measurements were taken for the two white spheres. A spectrometer capable of per-

forming efficiently this large number of measurements was used. The spectrometer uses a

fiber-optic cable to attach the sensor to the processing box. This cable allows the sensor

to be moved easily for the many phase angle measurements. Appendix D cont_dns more

information about the spectrometer. Figure 2.1 shows the basic setup for the experiment.

Appendix B contains more sketches and discussion of the apparatus and setup.

2.1 Procedure

Before the flight hardware was tested, the experimental system was aligned and tested. A

rehearsal of the experimental process wu conducted to assure correct handling of the flight

hardware. Appendix F contains more information on the handling precautions implemented

for the experiment.
Once the equipment was ready, the objects were placed in position and measurements

were taken over the entire phase angle range in a timely manner. Measurements of the

direct light signal were made for use in calculation of the albedo. This process was repeated

for each object. After each object was tested, it was returned to its carrying case.

2.2 Light sources

The objects were illuminated with a 1000 Watt Quartz-Halogen light source reflected

through a planar secondary mirror and a high precision parabolic mirror to form a highly

collimated light beam which closely resembles solar conditions. This high energy light source

was needed to provide enough light for the spectrometer to work accurately and efficiently.

The direct signal spectrum for the 1000 W light is shown in Figure 2.2. It can be seen

that at extreme wavelengths the direct signal is not very strong. Due to the nature of the

2
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Figure 2.1: Basic experiment setup

lightsource and the noiseof the spectrometer,the data is not reliablebelow 450 nm or

above 950 nm.

2.3 Spectrometer

I
I
1

The spectrometerused in thisstudy isa LabSpec Spectrometer,developed by Analytical

SpectralDevices,Inc (ASD) of Boulder,Colorado. The sensor,which feedsthe spectrome-

ter,isattached via s fiber-opticcableto the body of the spectrometer.This made iteasy

to take measurements at vaxiousphase angles.

The spectrometerisrun by s PC, which drivesthe spectrometerand storesthe data.

Itwas found that the driftin the noiseof the spectrometerwas noticeablefor the longer

integrationtimes and weak signals.More informationon the spectrometer is found in

Appendix D. Informationon how the driftwu removed from the data isfound inAppendix

G.

I 2.4 Phase angle

|

I

I

I

Measurements at many phase angleswere taken so thatthe albedo and the percentageof

lightscatteredcould be estimated.The phase angle 8,u shown in Figure 2.3,isthe angle

between the linefrom the testobjectto the sourceand the linefrom the testobjectto the

sensor,as viewed from the object. The measured angle 0 and the actualphase angle 2_b

forthe lightmeasured axe somewhat differentbecause of the limitedrange to the sensor.

The differencebetween thesetwo valuescan be easilycalculatedfrom the geometry ofthe

setup,and isdiscussedin Appendix G.

Multiplephase anglemeasurements allow the scatteringand speculaxsignalsto be de-

coupled and givesone the abilityto estimate the totalreflectedlight.This totalreflected

lightisused to obtain the slbedo estimate.There axe severaidefinitionsforslbedo,which

are describedin Appendix G. For thiswork albedo is:

I

|
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Figure 2.2: Direct light signal vs wavelength
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Figure 2.3: Phase angle definition. This is a top view of the sphere-sensor setup (not to

sc_e).



total reflected light (2.1)

AAbedo = total incident light

For a perfect specular reflection, under unobtainable ideal conditions, one would see

a constant intensity from evenly collimated light coming off a sphere at all phase angles.

For a perfectly diffuse surface, which scatters light as a Lambertian surface, one sees a very
distinct falloff in signal with phase angle. Even for the highly polished spheres, the reflection

is not perfectly specular. Both specular and scattering characteristics are observed for the

white spheres.
The following equations illustrate the two parts of the light signal from a perfectly

diffuse and perfectly specular reflection, respectively. These equations represent the ideal

diffuse and specular signals viewed at a far distance such that the source can be treated

as a point source .1 This is discussed more in Appendix G. Figure 2.4 shows the idealized

diffuse, specular and sum of those two signals for albedo equal to one and with 50 percent

of the light scattered diffusely.

Diffuse
2aE_'2 Isin 9 -4-(It - 8) cos 0] (2.2)

E_- 3_R2

aEr (2.3)
Specular E,- 4R 2

where

E, - R.eflectedflux

E - Incidentflux

a =-- Albedo

r -- Radius of sphere

R - Range to sensor

0 _ Phase angle

2.5 Data processing

Due to the largenumber of measurements taken on each object,the data processingwas

the most dii_cultportionof thisstudy.Programs were writtento immediately analyzethe

data from the objectsto determine ifthe albedo and scatteringresultswere reasonable.

Then at a latertime,the data was plottedup and analyzed more carefully.

The above equationsfor the specularand diffusesignalsare idealizedequationswith

the farfieldapproximation. Due to the limitationsofthe spectrometerand setup,the ratio

of R to r was between 5 and 25. For the smaller _ valuesthe far fieldapproximation is

violated.Thereforemodified valuesforthe phase angleand range were used in the albedo

estimation.This isdiscussedmore inAppendix G.

tPeraonalcommunicationwithDr. Jo]auLambert,RockwellInt.,Colo.$pr.,CO
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Chapter 3

Results and Discussion

This section contains the basic results of the study and a discussion of those results. The

aibedo-scattering plots along with the best fit and raw data plots for the two white spheres

are located in Appendix H.

3.1 Spheres

The reflectance properties were obtained using methods described in Appendix G. The

aibedo values presented here are the average values of the most reliable tests run for each

sphere. The basic equation for the spheres is repeated again below, where the term on the

left hand side of the equation is referred to as the normalized signal.

'_ (3.1)
_,_' _ _"_ •2__[sin0+ (_ - e)cos0]+ (1 - .)'_
Er 3 31r

E

= Keflected flux

= Incident flux

a = Albedo

r = Kadius of sphere

R = Range to sensor

0 _- Phase angle

.y __ Percentage of light scattered

= Proportion of Sphere Viewed (Due to limited sensor range)

The aibedo and scattering values for the spheres from this experiment are presented

in Tables 3.2. The results for these surfaces appear consistent within themselves and with

visual inspection of the surfaces.
The main errors in reducing the data seem to be the drift of the spectrometer and a

small range-to-radius ratio. The drift rate problem is discussed in detail in Appendixes D

and G, but is outlined here. The spectrometer has a certain background noise which changes

with temperature. As the temperature of the room fluctuates the background noise drifts.

This is a problem because the drift rate over the cycle of measurements can be of the same



Material Nature of surface Coefficient

Aluminum, Polished Specular 0.69

Steel,Polished Specular 0.55

Chromium Specular 0.62

Platinum Specular 0.62
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Table 3.1:CRC valuesfor reflectioncoefficients

magnitude as the actualmeasurements. In additionto the drift,thereissome random noise

in the signal.

Many measurements were made of the driftrateforthe spectrometer. This driftrate

can be effectivelyremoved forthe wavelengthswith the strongersignals.Due to the much

smaller Lightstrength at the extreme wavelengths,the errorsat these wavelengths are

expected to be higher.

The low signal-to-noiseratioforthe spectrometerunder the lightingconditionsforthis

experiment forcethe sensorto be placedcloseto the spheres. This in turn createda low

range to sensoroverradiusofsphereratio,R The equationsshown forthe expected fluxes_-.

from the diffuseand specularcomponents were derived for a sensorat a large R ratio.

These equations are stillreasonableapproximations for thisstudy,but modificationsto

theseequationsaxe being studied.

A low valueforthisratioalsomeant that the range to the specularreflectionpoint was

not constantoverthe measured phase angles.Correctingforthisvaryingvalueofthe range

was performed for the white spheres. The same range correctionwas used for the white

spheresas for the specularreflectingspheresin previousODERACS tests.The correction

isdiscussedin Appendix G.

Sincethereisa falloffin signalwhen the sensorisnot pointed directlyat the incoming

lightand the white spheresreflecta portionof lightdiffusely,the measured signalwillbe

somewhat lower than itstrue value.This errorwas not compensated for and willreduce

the measured signalan amount depending on the ratio,R

Attempts were made to compensate forallthe above mentioned errors.

3.1.1 Albedo and scattering

The albedo and scatteringvaluesfor the white spheresare presentedin Table 3.2. These

valuesrepresentthe average and standard deviationfor the best measurements on the

individualspheres. Itshould be noted that the estimatesfor the scatteringhave much

largererrorsthan the standard deviationindicates.

The albedo valuesfrom both estimationmethods agree well with each other for the

spheres.

The estimatesof the scatteringforthe sphereswere very sensitiveto small changes in

the signaland should be treatedwith caution. The scatteringcomponent of the spheres

comes from the off-boresightdirections,which sufferfrom signaldegradation. This will

cause the scatteringcomponent to be underestimated.Unfortunately,onlyone method was

used toestimatethe scatteringcomponent forthe spheres,so thereisnot a backup method

with which to compare the scatteringestimates.
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ID

SNI008

SNI012

Size of

Sphere

Type of

Sphere Albedo

White .7794

White .7654

Deviation

.041

.031

I Scattering Deviation

.8168 .014

.8216 .054

Table 3.2: Scattering and albedo values for white spheres
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Chapter 4

Conclusions

The methodology and resultsforthe ODERACS 2 white spherespreflightopticalcalibration

study have been presented.The calculatedalbedo and gamma coefficientsforboth white

spheresaxe consistentbetween tests.
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Appendix A

ODERACS Project, Spheres and

Tasking
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A.1 ODERACS project

This report is an important part of the NASA Orbital Debris Radar Calibration Spheres

(ODEKACS) 2 project. The overall goal of this project is to provide reference targets for

the calibration of both radar and optical sensors for small orbital debris objects.

The purpose of this study is to determine the spectral reflectivity and scattering charac-

teristics in the visible wavelength region for various objects. These measurements are used

to determine an approximate albedo and phase angle scattering as a function of wavelength

for the spheres.

ODERACS is a project of the Solar System Exploration Division at JSC, and is a

joint effort between JSC, GSFC, NCSU, DoD, Phillips Lab, the USAF, the University of

Colorado, and others.

A.2 Tasking

The statement of work for the preflight optical calibration is summarized below.

A.2.1 Task : Flight Spheres Calibration

Using unpolarizedlight,the absolutevisiblespectralreflectivityand scatteringcharacteris-

ticsof allflightspheresare to be determined between 4500 and 9500 Angstroms. The data

isto be sufficienttoobtainalbedo,and to generatephase anglescatteringplotsasa function

of wavelength. Spectralmeasurements are to be made withinbands of 800 Angstroms, or

less,and at intervalsof 500 Angstroms, or less.Scatteringmeasurements are to be made

at phase anglesfrom near-zerodegreesto near 180 at 5 degreeor smallersteps.Plots and

tabularlistingofthe spectralreflectivityasa functionofscatteringangleaxe to be prepared

foreach sphere.

Ifitmay be reasonablyassumed that the spheresare uniform,there willbe not need

to examine more than one portionof the sphere.However, sincethisisnot Likelyto be the

case,the spheresshould be measured at fiveindividualorientations.

13



Appendix B

Experimental Setup

B.1 Experimental Setup

The purpose of this experimental setup was to simulate as closely as possible the solar radi-

ation incident upon an object in orbit about the Earth in order to estimate the reflectance

characteristics for several objects. The light that was used had to be collimated (parallel

light rays) and controlled to fall only on the object that the spectrometer was measuring.

All other light was blocked out by means of baffles, see sketches. The primary light source

used was a 1000-watt light bulb with a constant power supply, see Appendix E.

Figure 1 details the basic equipment setup used in this experiment. The sphere mount

and parabolic mirror were placed at opposite ends of the table, primarily because of space
constraints. The light source was placed at a distance of 90 inches from the center of the

parabolic mirror, the focal length. Figure 2 details the 4 inch flat mirror was used to reflect

the initial light beam into the parabolic mirror. The distance from the bulb to the fiat

mirror and from the flat mirror to the parabolic mirror was 13 and 77 inches respectively.

Several measures were taken to absorb or block extraneous light. The experiment was

conducted in a black painted room and all light from outside was sealed out. The baffles

used were fitted carefully together and covered over the top with black felt, forming a large

black box in which the light source was placed. This allowed only a simple beam of light to

emerge past the baffles. However, the parabolic mirror was not contained in this enclosed

region because it had to be placed some seven feet away at one end of the table. This was

the primary source of extraneous light. Another source of unwanted light was from the

mount on which the objects were placed. Even though the collimated beam illuminated

only the target, secondary reiiectance was produced from the light reflected down from the
target and onto the mount.

Figure 3 details the sphere mount used in this testing. The mount itself had a built in

angular protractor which made angle measurements easy and accurate. The mount stood

11 in. high and was covered with black felt. Additionally, an extended platform (arm) was

connected to the side of the mount which was used to attach the spectrometer's sensor.

14



FigureB.I: Basicexperimentsetup- sideview

The sphereswereplacedonto a ring to prevent them from rolling off the horizontal

surface. Figure 4 shows a diagram of the sphere mount. Ag a result a very small portion of

each sphere dipped below the rim of the ring and was hidden from the light beam. It was

felt that this was a logical step so that the safety of the spheres could be insured.
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Figure B.2: Main light source configuration
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Appendix C

Procedure

Each day before testing, the laboratory equipment used in this experiment was set up and

aligned. The sphere mount was centered on the test stand and the foam pads were aligned
to insure that the test object would not be damaged if it happened to fall of[ the stsad.

After all of the lab equipment was set up sad properly aligned, the sphere to be tested was

removed from its storage compartment. To protect the surface of the sphere, lint-free _oves

over talc-free rubber _oves were worn whenever say of the spheres were handled.
After placing the object on its mount sad rechecking the set-up, all the lights in the

room were extinguished, sad sa appropriate integration time was chosen for the set of

measurementS. Measurements were then taken in 5 degree incrementS, starting as close

to zero degrees as was possible without letting the sensor interfere with the light stream.

Several dark readings were taken so that the spectrometer's drift could be measured. Typ-
asurements were taken until about 165 degrees. The an_le of the sensor could

ically, me . --_-- down to fractions of a degree. After the object was measured, a

be measurea accura_eay
measurement of the direct light si sphere was returned to the carrying case.

Then a quick analysis of the data was performed to make sure the data looked reasonable-

The data was then transferred to a uNIX platform via a _oppY disk for future analysis.

18
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Appendix D

Spectrometer

The spectrometer used for this laboratory experiment was a LabSpec, designed and built by

Analytical Spectral Devices, Inc. (ASD) of Boulder. It has 512 channels for data sampling,

utilizing a plasma coupled photodiode array, with spectral range of 347.7 to 1056.6 nm. It

has integration times ranging from 17 milliseconds up to 9 minutes. The spectrometer's
noise can be removed either manually or automaticaUy. The sensor utilizes fiber optics, and

ithas a two meter cableso that the sensorcan be easilymoved. The sensoritselfconsists

of a fiberopticsbundle that isroughly .6mm in diameter at itsterminus.

Although on the whole the spectrometer was weU suitedfor thisexperiment, italso

had a significantamount of driftin itsdark signalover time,partiallydue to temperature

fluctuationswithin the room. While thisdriftwould be relativelyinsignificantfor mea-

surements being taken under sunlight,with thislaboratoryexperiment the amount ofnoise

in the signalwas significant,especiallywhen viewing the testarticlewith long integration

times and small reflectedsignals.

Since the signalhad a significantdriftin it,the driftwas subtractedfrom the signal

by assuming that the driftbetween two successivedark measurements was approximately

Linear.This provides an acceptableestimationof the signalfor the wavelengths with a

strong signal,but causesthe extreme wavelength calculationsto be unreliable.For this

reasonthe extreme wavelengthshave not been used in the calculations.

This spectrometercomes with a laserpointingdeviceso that the sensoriseasilypointed

at the specularpoint.The laserpointingdeviceisnecessaryto correctlyalignthe bore sight

of the sensor.This isnecessarydue to the signalfalloffat anglesoffsetfrom the bore sight.

This signalfalloffas s functionof off-axisangle isshown in Figure D.I. For the specular

spheresanalyzed in previousexperiments thisdoes not introducesignificanterrorsdue to

the specularnature of these objects. However, for the more diffuseobjectsa significant

signalcomes from the off-boresightdirections.For thisreason,theseobjectswere viewed

from as great s range as possibleto reduce the maximum off-axisangle.Nevertheless,the

estimatedalbedosof the diffuseobjectsare most likelyunderestimated in thisexperiment.

19
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Appendix E

Light Source

All the objectswere illuminatedwith a i000 Watt Quaxtz-Halogen fightsource reflected

through a high precisionparabolicmirror to form a highly collimatedlightbeam which

closelyresemblesactualsolarconditions.The lamp was a commercial GE type FEL 1000-

watt lamp having a tungsten coiled-coilfilamentenclosedin a small quaxtz envelope.The

focallength of the Paxabolicmirror was 90 inches. The resultingbeam has divergences

rangingbetween 0.5and 0.7degrees,based on and limitedtothe accuraxyofthe axtualbeam

projectiondimension measurements. This compaxes wellwith the actualsun conditionsof

0.53degrees.See Appendix B where FiguresB.I and B.2 show the setup ofthe tightsource.

This lamp was powered by a constantpower supply sourcewhich providesa constant 8

amperes ofcurrenttothe light.Figure2.2shows the raw data from a directmeasurement of

the light.This signalshows the spectrum ofthe lightsourceas sensedby the spectrometer.

This can be compared withthe calibrationofanotherlightbulb ofthe same model performed

by Optronic Laboratories,Inc.The spectralirradianceisgivenin microwatts at a distance
,2?l,t3 _t_l

of 50 cm when the lightisoperated at 8.0 amperes. I The differencesbetween Figs. 2.2

and E.1 axe most likelydue to spectrometercharacteristicsand some vaxaincein the signal

produced by each bulb.

tLettez from Optronic Lab dated 19 March, 195fl
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Figure E.I: Light calibration results
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Appendix F

Object Handling

Alltestedobjectswere handled with equalcaution.The shippingcaseswhich containedthe

sphereswere fastenedwith padlocks.At the end ofeach day the sphereswere placedin the

controlledinventoryroom at the Laboratory for Atmospheric and Space Physics (LASP)

and secured.

Once an objectwas taken out of the caseitwas placedimmediately upon the dust-free

rubber ring-mount on the main mount (seeAppendix B) which was surrounded by high-

densityfoam similarto the foam insidethe spheres3cases.Speciallint-freeglovesoverlatex

gloveswere used when handling the objects.

All of thesehandling procedures were rehearsedbeforethe sphereswere removed from

the protectivecases. As a resultof the rehearsal,the experiments proceeded smoothly

without incident.
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Appendix G

Data Processing

This section deals with the methodology used in the data processing and handling. The

following is a listing of the basic steps which were taken in analyzing the reflectance data.

Several programs were written to analyze the data for each different type of object being

tested. The following sections discuss the analysis of the spheres.

Data Processing Procedure

1. Take measurements.

2. Quick analysis of results.

3. Transfer data to floppy disks for more analysis and plotting.

4. Analyze the information.

G.1 Measurements

As mentioned before, the spectrometer stores information for each of is 512 channels at each

phase angle. Measurements are taken at 5 degree intervals for all possible phase angles.
These measurements are stored, the data is analyzed, and then the f-des are transferred to

floppy disk for storage. This was very straightforward in the PC operating environment.

G.2 Spheres

This section discusses the data analysis for the spheres. The albedo for the spheres was

calculated using two different methods. The scattering was estimated with only one method.

The following paragraphs discuss some of the corrections made to the sphere data and the

methods of estimating the reflectance properties.

The phase angle and range corrections discussed below come about because limitations

with the setup do not allow the spheres to be viewed from a far distance. This means

that the spheres do not act as a point source and will not follow the simplified reflectance

equations perfectly. The corrections attempt to rectify this problem.
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G.2.1 Phase angle correction

The geometry of the phase angle problem is given in Figure 2.3. Though this drawing is

not to scale, it can be seen that the actual phase angle of the light off" the sphere is 2¢

instead of 9. Therefore the measured values of the phase angle are corrected to take this

into account. The following equations give the relationships between the sides and angles

in Figure 2.3. From the law of cosines

b2 = r2+ R 2 - 2rRcos(O- ¢)

From the sum of anglesin a triangle.

(Gi)

= 2¢-o (G.2)

From the law of sinesand previousequation.

r sin ¢
0 = 2¢ - sin-1 (_)

r - Radius of sphere

R - Range to sensor

b = Modified range to sensor

0 - Measured Phase angle

2¢ - Modified Phase angle

7 = Off-setangle

where

(G.3)

G.2.2 Range correction

The shortrange to the sensorcausesother problems because the ratio_ isnot closeto 1.

This means that the spherecannot be considereda point and the distanceto the reflection

point changes with changing phase angle. The range from the reflectingsurfaceto the

sensorisgiven as b in the phase angle correctionsection.

There isa severeproblem at thispointwhen talkingabout the diffusecase.The diffuse

scatteringof a sphere actuallywould have many ranges,itisnot a trivialproblem. This

problem isnot taken intoaccountinour formulation,but isanothersourceofpossibleerror.

This changing range isimportant to takeintoaccountwhen fittingthe data to the equation

for a combination of specularand diffusesignals.The range correctionisnot needed for

the albedo estimationwhich isobtained by directintegrationofthe reflectedlight.

G.2.3 Estimating albedo

The most crucialtaskof thisexperiment was to findthe reflectancecharacteristicsof the

spheressothat the albedoscouldbe found.The Albedo, sometimes referredto as the Bond

Albedo (AB), isa measure ofthe reflectivityofa surface,thatis,thepercentageoflightthat

the surfacereflectsin alldirections.I Another type of albedo isthe Geometric Albedo,

:From Hartmann, MoonJ and Planetl
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the percentage of lightreflectedat zero phase angle,compared to a perfectLaznbertian

surfacewith equal projectedarea. _ The Bond Albedo definitionfor albedo of Eqn. 4 is

used inthisstudy.The totalreflectedlightisfound by integratingthe measurements over

the measured phase angles,Eqns. 5-8.The totalreflectedlightisthen used to obtainthe

albedoestimate,Eqn. 9.

totalreflectedlight (G.4)
Albedo = totalincidentlight

ReflectedLight-/0 '_E,(0)' A(O)dO (G.5)

A(O) = Area at thisphase angle

A(O) --2r. R2(cos01 - cos02)for02 > 0i

A0 for A0 > 0
ACe ) = 41¢ . R 2. sin O_,,. sin -_-

(G.6)

(G.7)

(G.8)

Incident Light = _rr 2 • E (G.9)

These equations are implemented by numerically integrating the reflected flux over the

measured phase angles. Since not all the phase angles are measured, the reflected light from
the measured area is estimated. In the numerical procedure, the light intensity directed back

towards the light source is assumed to be close the the values measured at small phase angles.

A similar assumption is made for very large phase angles, except that the area shaded by

the sphere is known not to have any reflected light. Figure G.1 shows the geometry of this

problem.

G.2.4 Reflectance characteristics

The multiple phase angle measurements allow the scatteringand specularsignalsto be

decoupled for the spheres. For a perfectlyspecularreflection,under unobtainable ideal

conditions,one would see a constant intensityfrom even collimatedlightcoming offa

sphere at allphase angles. For a perfectlydiffusesurfaceone seesa very distinctfalloff

in signalwith phase angle. Both specularand scatteringcharacteristicsare seen forthe

spheresin thisexperiment.
The surfaceand material propertiesof an objectdetermine what type of reflectance

characteristicsitwillhave. The lightreflectedoffan objectcan be thought of as either

specularor scatteredlight.For a highlypolishedsurfacesuch as a mirror almost allthe

lightreflectedisspecular.On the other hand, a Lambertian surfacereflects(scatters)the

lightequallyinalldirections.In thisexperiment,ithas been assumed that the sphereswill

reflectwith a linearcombinationof the idealizedspecularand diffusereflections.

Equations G.10 and G.II givethe idealreflectedfluxof a diffuseand specularsphere

viewed at a largedistance.These equationscome out ofnotes from Dr. John Lambert of

Rockwell. s

_From Veverka,_ Satellites
SPersonalcommunicationwithDr.JohnLambert,RockwellInt.,Colo.Spr.,CO
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Figure G.I: Albedo calculationgeometry

Diffusesphere

2aEr 2

3_rR a [sin0 + (a- - 0) cos0] (G.IO)

where

Specularsphere

aEr 2

E,= 4a---_- (S._)

Er - Reflectedflux

E = Incidentflux

a _ Albedo

r - Radius of sphere

R - Range to sensor

0 - Phase angle

The equationsforthe specularand diffuseconditionsassume thatthe objectiseithera

perfectdiffuseor specularobject.This isnot a realisticconditionbecause to some extent
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objectswill havea combinationof diffuseand specularreflection.Equation G.12 combines

the diffuseand specularequationsusing the variable_ to representthe percentage oflight

scattereddiffusely.This assumes that the reflectedlightcan be representedby the linear

combination ofthesetwo idealizedsignals.The term on the lefthand sideof the equation

isreferredto as the normalized flux ratio forthe spheres.The normalized fluxratiofor

an idealizedsphere with an albedo equal to one which scatters50 percent of the lightis

shown in Fig.2.4.This figureshows the diffuse,specularand totalsignalsreflected.

where

E_ • R 2

E • T 2
"2"[sin0+ - e)cos0]+ (I- (G.12)

Percentage of light scattered

Factor for not viewing

the entire sphere

Values for the percentageof specularand diffuselyreflectedlightmay be obtained by

estimatingthe valuesof "yand a in Eqn 12. This techniqueisable to estimate the albedo

and scatteringeven with a limitedsetof data,though sometimes the fitdoes not followthe

data trendsaccurately.In Eqn. 12,the reflectedlightsignaldepends non-linearlyupon the

phase angle and linearlyon the albedo.Numerical non-linearfittingtechniquesare used to

estimatethe valuesforthe albedoand percentoflightscattered,_. 4

Equations G.10 - G.12 use the farfieldapproximation - that the objectisfar enough

away to treatitas a pointsource.Due to limitationswithinthisexperiment,thisapproxi-

mation was violated.The equationforthe specularreflectionoffa sphereiseasilymodified

forthe closerange measurements. The derivationwithout the faxfieldapproximation was

done by modifying notes from Dr. John Lambert of Rockwell Int.,Colo. Spr.,CO. Figure

G.2 shows the geometry forthe specularcase.The incoming lighthas an intensityE which

isincidentupon a small area defineda_ _ The reflectedtighthas an intensityE_4 "

_(,._i+2.b.a,)=The totalreflectedlightequalsthe totalincidentwhich is even over the area 4 •

light times the albedo. This yields:

aEr 2

Specular Er = (462 + 4br + r 2) (G.13)

It can be seen that in the limit as b approaches zero, and for values ofb much greater than

r, this equation converges to the previous specular equation. This derivation is obtained

by assuming area of the incoming light can be approximated by the the area given above.

This derivation is not strictly correct, but should model the range correction much better

than the idealized equations.

The derivation of the equations for the spheres was not integrable in the modified form.

The equation can be numerically integrated for specific sphere sizes and ranges to the sensor.

Due to the non-integrability of the diffuse equations, the spheres were evaluated using this

range correction.

4Numerical Recipes
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Figure G.2: Geometry for specular sphere reflection
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G.2.5 Analysis and presentation of the sphere information

The informationfrom thisstudyispresentedin both tabularand graphic format toillustrate

the propertiesofeach sphere.A PC FORTRAN program has been writtento analyze the

data afterthe measurements axe taken to verifythatthe data looksreasonable.The basic

program flowisoutlinedbelow.

Sphere albedo analysis

1. Read in the lightsignal.

2. Read in the measurements at differentphase angles.

3. Correctforthe spectrometerdrift.

4. Calculatethe albedo by the directintegrationmethod.

5. Correctfor the phase angleand range to sphere.

6. Calculatethe albedo and scatteringby non-linearparameter fit.

7. Utilizea UNIX platform forprintingand plottingresults.

G.3 Data organization

The data forthisprojectwas organizedaccordingto the naming conventionused by Lock-

heed. Additionalinformationregardingthe testnumber was alsoincludedin the data file

names. An example ofthe naming conventionused is:SNI008T1.035, which indicatesthe

data filein questionisthe 35th data file(.035)of the firsttest(TI) on the SNI008 white

sphere.
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Appendix H

Flight Sphere Results

The plots generated from the flight sphere data are presented in this appendix. Table H.1

summarizes which figures correspond to which Right sphere. Five tests were performed on

each sphere. The first two figures show the albedo-scattering plots for each white sphere,

while the second two figures show the best fit and raw data for each of the two spheres.

Sphere Size of Type of

ID Sphere Sphere Albedo Deviation Scattering Deviation

SN1008 4 White .7794 .041 .8168 .014

SN1012 4 White .7654 .031 .8216 .054

Table tI.l: Scattering and albedo values for white spheres
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