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L Introduction

The main objective of this thesis is to identify dynamical models of the Hydraulic

Manipulator Test Bed (HMTB). In particular, system identification techniques will be

used to identify the joint dynamics and to validate the correctness of the HMTB models.

Though dynamic model verification has been studied and performed for the DOSS flight

manipulator, dynamic system identification for the hydraulic kinematically-equivalent

ground-based DOSS manipulator located in the hydraulic manipulator test bed (HMTB)

facility at the NASA Langley Research Center has not been studied in detail. This thesis

will describe, apply, and compare system identification techniques for three joints

(shoulder yaw, shoulder pitch, and elbow pitch) of the seven DOF hydraulic manipulator

for the purpose of obtaining an adequate dynamic model of HMTB during insertion of the

remote power controller module ORU.

To perform the identification, a series of single-input, single-output (SISO) and

multi-input, multi-output (MIMO) experiments will be performed. Nonparametric and

parametric identification techniques will be explored in order to develop representative

models of the selected joints. The identified SISO model estimates will be validated. The

best performing models will be used for a decoupled multivariable state-space model. It

should be noted that each identified model represents an open-loop representation of the

closed-loop implementation for each joint. It is not the purpose of this thesis to determine

the effective inertia or the effective damping coefficients for the HMTB links. The

manipulator is localized about a representative space station orbital replacement unit

(ORU) exchange task allowing the use of linear system identification methods. The

parametric models will be compared to determine the best dynamic model for performing
the ORU task.

System identification techniques have been applied in many different fields. The

purpose of the identified models in this thesis is to use them in a control application. The

thesis concludes by proposing a model reference control system to aid in astronaut ground

tests. This approach would allow the identified models to mimic on-orbit dynamic

characteristics of the actual flight manipulator thus providing astronauts with realistic on-

orbit responses to perform space station tasks in a ground-based environment.

The process of system identification starts by performing an identification

experiment, that is, exciting the system using some sort of input signal and observing the

output over a time interval [9]. Once the experimental data is recorded, parametric or

nonparametric analysis can be performed. In nonparametric analysis, a system's transfer

function, impulse response, or step response is extracted from the experimental data in

order to determine transient or frequency response characteristics of the system. This

method, however, is often sensitive to noise and usually does not give very accurate

results [9]. In parametric analysis, the recorded input and output sequences are fitted to a

parametric model. This process begins by determining an appropriate model form. Next,

some statistically based method is used to estimate the unknown parameters of the model.

The model is then tested or validated to determine if it appropriately represents the

dynamic system.

The remainder of this chapter provides historical background of the DOSS

manipulator, the Hydraulic Manipulator Test Bed (HMTB) housed at the NASA Langley



ResearchCenter, and the orbital replacement unit hardware used by the manipulator.

Most of this information has not been published before. The chapter concludes by

providing a literature search on system identification techniques used in this thesis.

Chapter II will describe the overall experiment design process developed

specifically for the hydraulic manipulator test bed (HMTB). As a precursor to parametric

identification, Chapter III will describe the application of nonparametric methods used to

extract characteristics of the unknown joints. Parametric model estimation techniques

primarily used for control system identification will be applied in Chapter IV. In this

technique, transfer function models describing each joint and its associated disturbances

are analyzed to yield an adequate state-space model approximation. The second

parametric technique, used primarily in modal system identification, will be employed in

Chapter V. This technique uses a minimum realization algorithm to determine a model

with the smallest state-space dimension among all realizable systems. Comparisons of the

parametric models will be shown in Chapter VI. Chapter VII concludes the thesis by

providing suggestions for future work. A model reference control system is proposed to

provide astronauts with realistic on-orbit responses to perform space station tasks on the
ground.

Matlab menu-driven system identification software programs were developed for

this project. One of the programs, a menu-driven script written for nonparametric and

parametric evaluation of the input/output data using functions from the MA TLAB System

Identification Toolbox. Another menu-driven program was used to identify models using

the Observer/Kalman Filter Identification (OKID) technique, provided in the

System�Observer�Controller Identification Toolbox (SOCIT). This last program script

used several toolboxes to perform MIMO comparisons for identified models.

1. Dexterous Orbital Servicing System (DOSS) Background

In 1984 President Reagan directed the National Aeronautics and Space
Administration (NASA) to build a space station. He invited allies of the United States to

join in the challenge of creating a machine that could be manned and operated beyond the

year 2000 [1]. Space Station Freedom shown in Figure 1 was the first major co-operative

program of the governments of the U.S., Japan, the 10 nations of the European Space

Agency (ESA), and Canada for the utilization and operation of a microgravity laboratory

environment in space. Each government was responsible for furnishing specific user

elements of Space Station Freedom. The United States through the direction of the

National Aeronautics and Space Administration (NASA) was responsible for the design,

development, and construction of the truss assembly infrastructure, the crew living

quarters (US Habitat Module), and the US Laboratory Module. Japan would develop and

assemble the Japanese Experiment Module (JEM). The European Space Agency (ESA)

and its member states would develop their own Free-Flying Laboratory named Columbus

and a polar platform. Canada's responsibility involved providing the Mobile Servicing

System (MSS), a complex robotic machine used to assemble, service, and maintain most

of the station. The MSS's major robotic components are the Space Station Remote

Manipulator System (SSRMS) and the Special Purpose Dexterous Manipulator (SPDM)
shown in Figure 2.



Figure1. SpaceStationFreedom

Figure 2. Canada's SSRMS and SPDM working on Freedom's truss.

The U.S. Congress also appropriated a portion of space station money for U.S. supported

space station robotics [ 17]. With these funds, NASA started development of the Flight

Telerobotic Servicer (FTS), a dexterous manipulator shown in Figure 3, for use on both

the Space Transportation System (STS) and the space station. After determining the

requirements for the space servicing manipulator, NASA awarded Martin Marietta

Astronautics Group (MMAG) a contract to design, construct, and test a flight deliverable

FTS system.
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Figure 3. NASA's Flight Telerobotic Servicer (FTS).

When the Advisory Committee on the Future &the U.S. Space Program convened

by Vice President Dan Quayle issued a report in December 1990, NASA's goals,

programs and practices were altered [2]. The NASA program that suffered the most

devastating blow was Space Station Freedom. The report recommended that Space

Station Freedom be utterly recast, reduced in both scale and complexity, which was a

decree previously urged by Congress [3]. Freedom's new primary mission was in the life

sciences, specifically the psychological and physiological effects of microgravity on

humans. In the space station redesign process, many services and capabilities were

reduced while others were halted indefinitely such as NASA's Flight Telerobotic Servicer

(FTS) project. With over 270 million dollars already invested in the development and

fabrication of FTS robotic technologies, NASA initiated a project apart from the space
station to capture the newly developed FTS technologies.

When Canadian politicians pushed to withdraw from the leaner, redesigned space

station, NASA and the Canadian Space Agency (CSA) began talks in March 1994 to

develop a plan which would reduce Canadian space station costs and bolster space science

cooperation [4]. In the new plan, Canada would defer the Special Purpose Dexterous

Manipulator (SPDM) which is a significant portion &Canada's robotic contribution to the

space station. With SPDM, the space station's primary robotic resource, deferred, NASA

decided to continue a stunted version of its robotic program using existing FTS

technology to provide a robotic presence on the shuttle and the space station in the
interim.

The new robotic thrust called the Dexterous Orbiter Servicing System was based

on the previous FTS designed by Martin Marietta. Initially, the new system was to

provide robotic capabilities to space shuttle astronauts. Mission specialists would utilize

and test the system in the shuttle cargo bay as a precursor to space station related tasks

and procedures. The project was later termed the Dexterous Orbital Servicing System

(DOSS) to service both the space shuttle and the redesigned space station.

A ground based trainer system composed of a shuttle ai_ flight deck (AFD)

mockup and one seven-degree-of-freedom hydraulic manipulator mounted on a multi-

4



purpose experimentsupport structure (MPESS) was designed as a form, fit, and

functional laboratory version of the flight system [5]. The kinematically equivalent

hydraulic manipulator was developed by Western Space and Marine (WSM). The ground

based trainer system is referred to as the Hydraulic Manipulator Test Bed (HMTB).

2. Hydraulic Manipulator Test Bed (HMTB)

The DOSS trainer built by Western Space and Marine was first located at Martin

Marietta and then transferred to NASA's Langley Research Center (LaRC). The trainer

was placed in the Hydraulic Manipulator Test Bed (HMTB) facility shown in Figure 4.

The HMTB facility includes a ground test dexterous manipulator driven by Ada flight

prototype software and a shuttle aft flight deck (AFD) mockup.

.ii:

Figure 4. LaRC's Hydraulic Manipulator Test Bed (HMTB).

Specifications were developed to train the flight crew to operate the trainer system

in accomplishing mission tasks, to operate in a 1-G environment, and to develop mission

operation timelines. Layout of the trainer system in the HMTB facility, shown in Figure 5,

was configured to provide the flight crew the same geometry, camera views, and lighting

conditions that would exist during the actual flight for completion of space related tasks.

Mission tasks include the installation and removal of space station truss members, the

exchange of space station orbital replacement units (ORU), mating thermal utility

connectors, and performing inspection tasks.

The trainer manipulator consists of seven hydraulic rack and pinion actuators and

their controlling valves integrated with structure to provide a seven degree of freedom

(DOF) hydraulic manipulator [6] as shown in Figure 6. The hydraulic manipulator

provides the same kinematics as the flight manipulator, that is, six controllable degrees of

freedom (shoulder yaw and pitch, wrist pitch, yaw and roll, and elbow pitch) with a single

indexed roll DOF at the shoulder.



Figure5. The Hydraulic Manipulator Test Bed Setup.

Figure 6. The HMTB Hydraulic Manipulator.



The ai_ flight deck (AFD) mockup, shown in Figure 8, is a replica of the actual

AFD (depicted in Figure 7) and provides some of its functions. It provides the crew with

an interface to control telerobot tasks and operations with or without a direct view of the

worksite. Additional devices within the AFD mockup include a 2x3 DOF hand controller

to teleoperate the trainer arm, closed circuit television monitors to display views of the

hydraulic trainer, and an emergency shutdown (ESD) switch to turn offpower to each arm

servo while maintaining power to the trainer's control computer. Figure 8 displays an

internal view of the AFD mockup.

Figure 7. The Aft Flight Deck (AFD).
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Figure 8. Internal View AFD mockup.

The trainer control station is comprised of a trainer control station computer,

power control panels, a 1553B bus interface, and various other communication devices.



The trainer control station computer provides software for control of training, and setting

up training conditions. The 1553B bus monitors commands and responses between the

control computer, the joint controllers, and the 2x3 DOF hand controller.

According to FTS trainer specifications, the HMTB facility at NASA LaRC is an

adequate, ground based version of the system to be used by shuttle flight crew members in

accomplishing mission tasks. HMTB configuration provides the crew with the same

geometry, similar camera views, identical manipulator kinematic configuration, the same

software control, and lighting conditions that would exist during an actual space shuttle
flight.

3. Remote Power C0ntr011¢r Module

One of the primary mission tasks on the space station will be the maintenance of

orbital replacement units (ORUs). With approximately 70 remote power controller

module (RPCM) ORUs located on various port and starboard clusters of the space

station, extravehicular activities (EVA) performed by the space station crew members

would be difficult, impractical, and potentially hazardous [7]. Robotic servicing of the

RPCM by the DOSS system would minimize the EVA crew time and significantly increase
crew safety.

There are six types of RPCMs each varying in power capacity while maintaining

identical physical dimensions. Each RPCM, (mock-up shown in Figure 9), is responsible

for regulating and distributing secondary power to critical space station components.

Therefore, replacement of failed RPCMs by a dexterous manipulator would provide a

crucial space station maintenance service. Successful completion of an RPCM exchange

procedure lies in the ability of the dexterous manipulator to extract the failed ORU, to

exchange the failed ORU with a new one, and to carefully insert the new ORU. For the

purpose of this thesis, data from the RPCM ORU exchange task will be used to validate

different dynamical models for the HMTB joints.

ii_iiii!:!_:i:i.ii....::_i::-_._,• i:

:iiiiii/._ !:: :!._i

Figure 9. Remote Power Controller Module (RPCM) ORU Mockup.
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4. System Identification Techniques

With a myriad of interrelated approaches, perspectives, methods, techniques and

specializations, the field of system identification has widespread application in many areas

such as communications, geophysical engineering, fault detection, pattern recognition,

adaptive filtering, linear prediction, electric circuits and robotics. With this in mind, the

literature search has been limited to system identification techniques for control purposes.

For thirty years system identification has been an important discipline within the

area of controls. With modern control methods requiring specific accuracies for

mathematical models, the system identification benefit of improving an analytical model is

of noted significance. Two complementary aspects of system identification are frequency

domain and time domain identification.

Frequency domain identification historically dominated system identification

practice in control engineering prior to the 1960s [11]. Frequency domain identification

emphasizing nonparametric identification methods has been used for stability, design and

control purposes. In this thesis, transfer function, correlation, and spectral analysis

techniques will be used for nonparametric identification of the HMTB joints.

Time domain approaches emphasize parametric identification techniques for the

system identification problem. The last two decades have seen a tremendous increase in

the use of parametric time domain identification methods. This has been partly due to

stricter accuracy requirements for mathematical control models as well as the increased

availability of digital computers that can estimate system characteristics much faster than

conventional frequency domain methods. The first parametric identification technique

employed in this thesis will use various black-box transfer function model structures to

determine parametric model estimates for the HM joints [10]. The transfer function

models, found within the MA TLAB System Identification Toolbox by Lennart Ljung [ 10],

use a prediction error method (PEM) to determine parameters for each black-box model.

The PEM is a modification of the least squares (LS) method.

The field of structures has used parameter identification techniques based on

system realization theory. One such technique, Observer/Kalman Filter identification

(OKID), will also be used to identify parametric models for the HMTB joints. This

minimum realization approach to time domain system identification yields a model with the

smallest state space dimension among a set of models having the same input-output

relationship. Ho and Kalman [12] both developed minimum realization theory using

Markov parameters which are simply pulse response functions.

In this thesis, both frequency and time domain techniques will be used to extract

and identify dynamic characteristics of the HMTB manipulator. The particular techniques

used in this thesis will be discussed in more detail atter the following chapter which will

describe the experiment design process and setup.



1I. Experiment Design

This chapter will describe the overall experiment design process developed

specifically for the hydraulic manipulator test bed (HMTB) at the NASA Langley

Research Center. The experiment design has been modularly configured and developed

within physical hardware limitations and temporal constraints.

1. Overall Design Process

The steps of identifying dynamic models of the manipulator joints involve

designing an experiment, selecting a model structure, choosing a criterion to fit, and

devising a procedure to validate the chosen model. With the goal of obtaining a 'good

and reliable' model estimate, Ljung [10] emphasizes the importance of the experiment

design and the selection of its associated variables. Since a good model is not likely to be

obtained from bad experiments, identification experiments should be selected to effectively

characterize all the important modes of the system. This involves selecting persistently

exciting (pc) input signals, that is, input signals which have strictly positive spectral

density functions for all frequencies in the frequency band which is of interest for the

intended application of the model.

Figure 10 displays a pictorial representation of the experiment design segments

starting from the generation of excitation signals to the extraction of useful joint space

data for system identification and parameter estimation. Several physical devices and

software applications were used in the experiment design process. Generation of the

various waveform signals was performed on an IBM compatible 486 personal computer
(PC).

486 386

:::::::::::::::::.::.::..::.... -:i:!:'.':!:_::..!::::.'>.:::::._:

486

_._._:::_:!:_-'.%::i:78_:_;

Waveform Excitation

Generation Control
HMTB Data

Manipulator Conversion

Figure 10. Overall Experiment Design.

A MATLAB waveform generation software program was developed and used to

produce discrete-time versions of selected continuous-time input signals to serve as input

excitations. The input excitations were then transferred to an IBM compatible 386 PC

where another sot_ware algorithm written in the 'C' programming language was used to
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modulatevarious waveform parameters and to channel the input excitations to specified

joints of the HMTB manipulator. While the HMTB manipulator arm responded to the

input excitations, a data acquisition program written in the Ada programming language

was used to extract joint data from the 1553 bus and to record the data to the HMTB

Control Computer. This data includes the actual input/output time history from each joint.

The recorded 1553 data file was then converted to an ASCII flat file format using an

additional algorithm developed using the Matlab language. The ASCII flat file containing

input/output time histories was then used for nonparametric and parametric analysis.

Prior to the identification experiments, assumptions were made as to the model

form and bandwidth of the open-loop dynamics for each joint. First, a PD control model

with feedforward torque was assumed for each joint. This assumption was based on

analytical models of the flight arm and partial documentation for the ground-based

manipulator. Because of the size of the HMTB manipulator as well as its intended

purpose, the bandwidth for each joint was assumed to correspond to astronaut response

times (3 to 5 Hertz). Due to this assumption, all input excitations used in this

identification were limited to 10 Hertz to satisfy the Nyquist requirement. At least a

second order model was expected due to proportional (P) and derivative (D) components

initially assumed for each PD control loop. The following sections will provide more

detail on the experiment design segments.

2. Input Excitations

According to Soderstrom and Stoica [9], the input signal used in an identification

experiment can significantly influence the resulting parameter estimates. Also, certain

system identification methods require special types of inputs depending on the type of

identification to perform. With this in mind, various input signals (excitations) were used

to identify the dynamic parameters of the hydraulic manipulator. Many of the input

excitations used in the system identification experiments were considered 'normal' test

signals such as simple sinusoids, sum of sinusoids, pseudorandom binary sequences, and

chirp input signals. A bipolar ramping pulse test signal was also used. This signal was

used as a means of determining amplitude response characteristics of the joints in

question. All test signals, however, were used as input excitations in determining single-

input, single-output (SISO) as well as multi-input, multi-output (MIMO) black box

models of the selected hydraulic joints. All input excitations were fed through the hand

controller interface. The actual input/output data used for system identification, however,

were extracted from the 1553 bus which recorded the measured and commanded angles at

each joint.

A. Description of Input Excitations

This section will describe the input signals used to excite the HMTB manipulator

for the purpose of system identification. The rationale for selecting the signals will also be

discussed along with a general declaration of properties and characteristics for each input

signal.

As stated previously, several signals (input excitations) were used in determining

the dynamic parameters of the dexterous orbital serving system manipulator arm. These

input excitations include simple sinusoids, sum of sinusoids, pseudorandom binary
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sequences, bipolar ramping pulses, and chirp signals. Each signal was used to excite three

joints (shoulder yaw, shoulder pitch, and elbow pitch) of the HMTB arm. Modulation of

signal parameters will be discussed later.

Good identification experiments provide informative data by which different

models can be discriminated within an intended model set. To provide this informative

data, persistently exciting (pe) input signals must be selected [ 10]. An input signal u(n) is

said to be pe of order m if the spectral density O(w) is not equal to zero for at least m

points in the interval -a" < w < tr for discrete-time systems. With the spectral density

O(w) defined as the discrete Fourier transform of the correlation function, that is,

1 f. )e-*_O(w) = _ R_(r , (2.1)
2/r ,__

it has also been determined that u(n) is pe of order m if the limit of the autocorrelation

function exists, that is,

R,,(r)= lim 1
"-,= N Z u(t + r),, _(t) (2.2)

t=l

and the autocorrelation matrix

I R_(0) g_(1) .. R=(n-1)]

R,,(n)= /R_(.-1) R_(0) " J (2.3)/LRo(i.n) .... g,.io)

is nonsingular [ 10].

exciting of all orders [9].

3

2

The white noise signal e(t), simulated in Figure 11, is persistently

White Noise

1

0

-1

-2

-30
i I I

20 40 60
|

80 100

Figure 11. Simulated White Noise.
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Sinusoidal Input

For the most simple input excitation, a sinusoid was selected to provide frequency

response characteristics at a particular frequency and phase shift. Because of its

simplicity, this signal was selected primarily for test purposes, that is, to determine if the

joint in question was indeed responding to the input signal. Using a sinusoidal input

u(t) = a sin( wt ), (2.4)

the steady state output, assuming the system is linear, will become

Y(O = b sin( wt + _ ) (2.5)

where

b=aIa( )l, and (2.6)

= arg[G(/w)]. (2.7)

The phase # for this signal will be negative, else the system is responding with no input.

It should be noted that this input excitation is rather sensitive to disturbances (noise) and

could be improved by repeating the sinusoid at a number of frequencies to obtain a

graphical representation of the transfer function G(/w) as a function ofw.

Sum of Sinusoids

A sum of sinusoids provides a slight variation from the simple sinusoid by

increasing the number of sinusoidal inputs with distinct frequency components which

yields a greater bandwidth (BW) in the frequency domain. This type of input is used

primarily in transfer function analysis. The discrete-time sum of two sinusoids input

expressed mathematically as

u(n) = al sin( win ) + a2 sin( w_n ) (2.8)

where

0 < w_ < w2 < 2x (2.9)

was used in the identification experiments, though the number of sinusoids need not be

limited to two. As a general rule, the input u(n) will be pe of order 2m where m is the

number ofsinusoids in the sum [9]. Therefore, to identify a fourth order system, only two

sinusoids need be summed. The power spectral density for an infinite sequence of the sum
of sinusoids is

2

[8(w-w,)+8(w+w,)] + a2= T T [a(w- w2)+ + ] (2.10)
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Sincethereare exactly m=4 nonzero points in the interval (-n', n" ], the actual input signal

u(n) is said to be pe of order at least 4. Figure 12 displays a sum of two sinusoids signal

where a_ = 1.0, a2 = 1.0, wz = 0.02a', and w2 = 0.08n-. Figure 13 displays a plot of the

estimated power spectral density of the sum of sinusoids signal. Plots of the actual

excitation signals used for system identification of the HMTB joints are shown in the next

chapter along with their power spectral densities.

For notation purposes, the term 'sum of sinusoids at 10 Hertz' used in this thesis

means that the highest frequency componentJ_ of the given conditionJ_ = 4fi for the sum

of two sinusoids input will be equal to 10 Hz. This also implies that the lower frequency

componentfi is equal to 2.5 Hz. For all sum of two sinusoids experiments performed on

the HMTB joints, the arbitrarily selected condition_ = 4fi will hold.

2

1.5

1

0.5

0

-0.5

-1

-1.5

WaveformPlot

20 40 60 80 100

Figure 12. Sum ofSinusoids.
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Figure 13. PSD of Sum of Sinusoids.

Pseudorandom Binary_ Sequences

Due to their easy generation, the pseudorandom binary sequence (PRBS) has been

a convenient input signal for many identification methods. The PRBS signal shifts

between two levels in a certain pattern such that its first- and second-order characteristics,

the mean value _ and the correlation function 1%(r), are very similar to those of a white

noise process e(t) provided that the number of samples used in the PRBS calculation is

large. Interpretations vary as to the actual number of samples used, but is usually
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experimentdependent.Therefore,this type of input signal applies itself well to determine

correlation effects of various system parameters. Since the PRBS is band-limited and is

periodic, it differs from a true white noise process. The PRBS is said to be pe of order

equal to its period. Soderstrom and Stoica [9] indicate that in most cases the period of a

PRBS is chosen to be of the same order as the number of samples in the experiment, or

larger. Figure 14(a) depicts the PRBS signal. Its mathematical expression can be realized

as

u(O = (Cl + C2) + (C1 - C_)sign(R(r ) u(t-l) + w(t) ) (2.11)

where

C_ and C2 are permissible binary levels,

R( r ) is the covariance function, and

w(t) is a simulated white noise process.

Figure 14(b) displays the power spectral density of the PRBS input signal.

1.5 W_v_.fnrm pint

1

0.5

0

-0.5

-1

-1_50

L_

4'o do 8'0 100
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5o ......... i...................
.iii.!!.. iii ii

Power 40
Spect

Mag ii I il

(dB)

,

100 5 1Q_ 15 20 25
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Figure ]4. (a) Pseudorandom Binary Sequence (b) PSD of PRBS.
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Chirp_ Signal

Chirp is a technique invented by B. M. Oliver at Bell Labs in which signals are

represented by a rapid up or down sweep in frequency [13]. Chirp signals (sine sweeps)

have been used for both radar and communication applications. This waveform was

chosen as an input signal because of its selectable frequency range. Chirp signals have

been known to produce regions with low power spectrum [14]. For this reason, Franklin,

Powell, and Workman [14] describe an expression for a chirp signal that does not have

low power spectrum in the desired bandwidth. Their chirp waveform is expressed as

rk = Ao+aksin2n'j_k, (2.12)

ak=a,,,,= sat (p---_l sat[-_-I, and (2.13)

where

=Y,,or,+ -A.. ),

N = number of points in the data window,

Ao = constant reference offset adjustment,

a,,,_,= maximum amplitude,

p = fraction of window length for amplitude ramps,

./',t,,,, = starting frequency of chirp, and

./',top = stopping frequency of chirp.

(2.14)

The chirp expression used in the identification experiments of this thesis, however, can be

characterized with the following equation:

u(t) = cos( 2a'(f I +tA) + 2nfot ) (2.15)

where

35 is the starting frequency,

is the ending frequency,

fo is the center frequency, and

A .35.

A chirp waveform is shown in Figure 15(a) having values35 = 1 Hz, fo= 4 Hz, andfh = 2

Hz. The power spectral density of the chirp is shown in Figure 15(b).

Bipolar Ramping Pulse

The bipolar ramping pulse shown in Figure 16 has been included primarily to test

the amplitude response characteristics of the manipulator joints. This input signal

produces a series of periodic, alternating, ramping pulses. The user defined pulse width

remains constant throughout the pulse sequence. In system identification literature, the

impulse and step inputs have been used for transient analysis for several nonparametric
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identification experiments. This sequence of alternating, ramping pulses will serve as a

test signal for parametric model estimation.

B. Generation 0fInput Excitations

All input excitations were generated by a program written using MATLAB. The

program allows a user to graphically display the generated waveform aiter selecting its

appropriate parameters, such as its frequency and amplitude. The soitwar¢ then outputs a

100-point waveform data file representing a discrete-time version of the continuous-time

signal. Most data files contained one complete cycle of the waveform in order to allow

the excitation control computer to accurately control the frequency of the selected

discrete-time waveform. The length of the actual excitation is a periodic version of the

100 samples. In this way, each excitation was allowed to reach steady-state conditions.

Figure 17 shows the initial user interface for the waveform generation sottwar¢.

Figure 17. Waveform Generation Soi_ware User Interface.

3. Input Excitations and Control

As seen in the overall experiment design depicted in Figure 10, the generated

waveform is controlled and channeled to various joints of the HMTB manipulator by the

excitation control computer. This section will describe the hardware, procedures, and

algorithms used to channel the generated excitation signals to specific joints of the HMTB

manipulator for the purpose of conducting single-input, single-output (SISO) and multi-

input, multi-output (MIMO) system identification tests.
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A. Single Joint Excitation

The excitation control computer, an IBM 386 PC, was used to perform all system

identification tests. This PC contained the AT-MIO-16 National Instruments data

acquisition board [15]. The AT-MIO-16 applies itself well to various multifunction

analog, digital, and timing applications. In the experiment design, the AT-MIO-16 was

used to convert the discrete-time input waveform to an equivalent frequency modulated

analog signal. This was accomplished by forming a periodic version of each 100-sample

waveform and then outputting the new frequency modulated signal through the digital-to-

analog converter.

Since the purpose of the identification experiment was to identify a dynamic model

localized about an RPCM trajectory vector, the excitation control computer was

interfaced to the HMTB manipulator at the exact location astronauts would be interfaced,

that is, at the interface for the 2x3 DOF hand controller. Figure 18 shows the wiring

implementation used to interface the AT-MIO-16 data acquisition board to the 2x3 DOF

hand controller processor for SISO identification tests.

AT-MIO- 16 board

Dig Out 24 o

Dig Out 25 o

DAC0 20 o

HC GND

HC Activation

Single Axis Input

2x3 DOF HC processor

o pin 8

o pin 20

o pinl6

Figure 18. Single Axis Interface Configuration.

Each single axis test consisted of moving the HMTB arm autonomously to the

RPCM initial trajectory called the RPCM HOLSTER OUT APPROACH POINT. Next,

the HMTB manipulator was placed in single joint mode allowing only the selected joint to

accept input while all other joints were actively servoing. With the RPCM ORU (Figure

9) loaded in the HMTB end effector, input control was transferred to the excitation

control computer to perform the SISO tests in Table 1. All SISO tests were performed in

position mode with direct input to each joint variable.

Code written in the 'C' language was used to modify the control frequency and

number of waveform iterations of the AT-MIO-16 board. For safety reasons, all AT-

MIO-16 single axis input excitations were first tested on an oscilloscope.
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Single Input/Single Output Tests

Test

No.

1

2

3

4

5

6

7

Input Excitation

single sinusoid

sum of two sinusoids

sum of two sinusoids

sum of two sinusoids

pseudorandom binary sequence

pseudorandom binary sequence

bipolar ramping pulse

chirp signal

Maximum

Amplitude

1

Time/Frequency Characteristics

freq=5 Hz

1

2 order<100

4

freql=1.25 Hz, freq2=5 Hz

freql=l.25 Hz, freq2=5 Hz

freql=2.5 Hz, freq2=10 Hz
order< 100

freq=l I-Iz, pulse width=0.1 sec

freqstart=5 Hz, freqend=10 Hz

Table 1. Single-Input, Single-Output Tests.

B. Multiple Joint Excitation with Bias Compensation

Multi-input, multi-output (MIMO) tests, shown in Table 2, were used to identify

the dynamical characteristics of the HM joints as well as to verify the models obtained

using the SlSO identification tests. The excitation control computer to HMTB

manipulator wiring interface used in the SlSO experiments was modified for the MIMO

Multiple Input/Multiple Output Tests

Test

No.

1

2

3

4

5

6

7

10

11

12

13

Input Excitation

sinsle sinusoid

single sinusoid

sinl_le sinusoid

sum of two sinusoids

Maximum

Amplitude
1

pseudorandom binary sequence

pseudorandom binary sequence

bipolar ramping pulse

chirp signal

2

2

1

sum of two sinusoids 2

sum of two sinusoids 2

1

chirp signal

chirp signal

chirp signal

Time/Frequency Characteristics

freq=5 Hz

freq=5 Hz

freq=l 0 Hz

freql=1.25 Hz, freq2=5 Hz

freql=1.25 Hz, freq2=5 Hz

freq !=2.5 Hz, freq2 = 10 Hz

order<100

order<100

freq=l FIz, pulse width=O. 1 sec

freqstart=O Hz, freqend=l Hz

freqstart=0 Hz, freqencl=5 Hz

freqstart=5 Hz, freqend=l 0 Hz

freqstart=5 Hz, freqend=l 5 Hz

Table 2. Multi-Input, Multi-Output Tests.
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tests. This modification involved designing and implementing a bias compensator to offset

the 2x3 DOF hand controller biases in the X, Y, and Z translational axes. Figure 19 shows

the bias compensating wiring scheme used to interface the AT-MIO-16 data acquisition

board to the 2x3 DOF hand controller processor for MIMO identification tests.

AT-MIO- 16 board

Dig Out 24 o

Dig Out 25 o

DAC0 20 o

HC GND

HC Activation

Bias Circuitry

X, Y, and Z

Translations

2x3 DOF HC processor

o pin 8

o pin 20

o pinl8 (X)

• o pin 6 (Y)

o pinl9 (Z)

Figure 19. Multiple Axes Interface with Bias Compensation.

Preliminary procedures for MIMO testing involved moving the HMTB arm

autonomously to the RPCM HOLSTER OUT APPROACH POINT and then transferring

input control to the excitation control computer. The HMTB manipulator was then placed

in Cartesian mode allowing only the translational inputs to accept values with respect to

the end effector control frame. All rotational inputs (Euler angles) were held as constant

as possible. With the RPCM ORU loaded in the HMTB end effector, the excitation

control computer performed the MIMO tests in Table 2. All MIMO tests were performed

in position mode.

4. 1553 Bus Data Acquisition

As each identification test was performed on the HMTB manipulator, an Ada

software program recorded various joint parameters. The 1553 data acquisition program

recorded, measured, and commanded joint angles from sensors located at the manipulator

actuators as well as force and moment data from the force-torque sensor located at the

end effector. Data was recorded at 50 Hz, which is the fixed position loop transfer rate.

This rate served to provide the Nyquist sampling frequency (25 Hz) for the input

excitations used. In the identification experiments, the excitations were well below the

Nyquist frequency. The Nyquist rate, however, was not as important as the bandwidth of
the excitations.

Another constraint imposed on the experiment design was the limited available

memory storage for recording the joint data. Approximately twenty minutes of recording

time was allotted on the control station computer. This equates to recording a total of
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five experiment tests per run. After each set of five tests, the recorded files would have to

be transferred to another computer to provide memory for another set of tests.

5. 1553 Bus Format to ASCII Conversion

The final segment of the experiment design involved converting the 1553 recorded

data file to an ASCII flat file format. This task was performed by a MATLAB conversion

program. The conversion program extracted measured and commanded joint data from
the 1553 formatted data file to be identified and saved this data in an ASCII flat file format

to be used for nonparametric and parametric analysis.
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Ill. Nonparametric Model Estimation

As a precursor to parametric identification, nonparametric methods are used first

to extract characteristics of the unknown system which provides information in how to

apply various parametric techniques. This chapter will show results of applying frequency,

correlation, and spectral analysis techniques to the shoulder yaw, shoulder pitch, and

elbow pitch joints of the HMTB manipulator. The results will help determine appropriate

parametric model structures for the next chapter.

1. Procedure Description and Rationale

Nonparametric model estimation involves determining a system's characteristics

from Bode plots and plots of input/output cross-correlation. Though sufficient,

nonparametric methods give only moderately accurate models. For time domain

nonparametric analysis, the impulse response and the step response are both useful in

determining some basic control related characteristics of a system such as delay time,

static gain and dominating time constants. Frequency domain techniques provide

information such as the estimated transfer function, the bandwidth of a system, and a

system's phase characteristics. The techniques employed in this investigation include

transfer function analysis, correlation analysis, and spectral analysis.

Transfer function analysis was used to determine the frequency response of the yet

to be identified system. This information helped to determine the frequency range of the

input excitations to be used in the identification experiments. The frequency response

approach was performed by applying a sum of sinusoidal inputs to the system and then

recording the input/output time histories for each joint. Autocorrelation and cross-

correlation functions were first computed from the data and then transformed to power

spectral density and cross-power spectral density estimates, respectively. Spectral

estimates were smoothed and averaged by using a Hamming window with the lag length

approximately equal to a tenth of the number of data points. The estimated transfer

function for each joint was computed as the ratio of the cross-power spectrum to the input

power spectrum. Each joint's transfer function estimate was represented in the form of

Bode plots.

Correlation analysis techniques were employed to provide information on the

degree of linear dependence of a system's parameters, that is, how well future values of

the data can be predicted based on past observations. Correlation analysis is usually based

on white noise or any input signal that is independent of the disturbances. A distinct

advantage of correlation techniques is its insensitivity to additive noise on the output [9].

Spectral analysis, a very versatile nonparametric technique, used various

persistently exciting input signals to yield spectral estimates of the system. The spectral

density or spectrum is a frequency domain function used to measure the frequency

distribution of the mean square value of the data. Spectral estimates for each joint were

computed using a Hamming window with the lag length approximately equal to a tenth of

the number of data points.
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2. Shoulder Yaw Joint

A. Transfer Function Analysis

Since astronauts will use the hand controller to operate the manipulator joints and

the input signals for this identification were introduced through the same interface, the

frequency range of the input signals were selected to coincide with astronaut response

times (3 to 5 Hz) [16]. To perform transfer function analysis of the shoulder yaw joint, a

sum of two sinusoids input whose frequency content ranged from 2.5 Hz to 10 Hz was

introduced into the shoulder yaw position loop. The upper frequency (10 Hz) was

selected because it was at least twice the average frequency response for astronauts.

Deductively, if the identified model is valid for twice the intended bandwidth then it is

reasonable to assume that the actual model will be well behaved within the intended 3 to 5

Hz bandwidth. Figure 20 shows both sum of sinusoids input and output discrete time

sequences recorded for the shoulder yaw joint during the identification experiment. As

seen in Figure 20, considerable noise is present on the input signal. From the actual

output sequence in this same figure, it is clear that the data is affected by disturbances.

This is perhaps due to background interference being carded through the hardware

interface. Figure 21 shows a magnified version of the shoulder yaw joint waveforms. This

version of the input sequence shows the effect of the sample-and-hold and quantization

functions being implemented by the HMTB control computer on the hand controller
signal.
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Figure 20. Shoulder Yaw Sum of Sinusoids I/O at 10 Hertz.
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Figure 21. Shoulder Yaw Sum of Sinusoids Activity.

If the dynamics of the shoulder yaw joint is assumed to be linear in a small

localized region, then the output y(t) can be seen as a weighted sequence of the form

where

y(t) = _ h(k) u(t-k) + v(t) (3.1)
k=0

h(k) is the weighting sequence, and

v(t) is the disturbance.

The autocorrelation function may be estimated from the input data sequence as follows:

R.(r)= lim --1 N,,-_ N _"(t + _).T(t). (3.2)
t=l

Note that the cross-correlation function R_(r) may be computed in the same manner.

Taking the Fourier transform of

Ry,(r ) = _ h(k)I_(r -k) (3.3)
k=0

yields

_.,(w) = H( e"i* ) O.(w). (3.4)
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The estimated transfer function is computed as

H(e "i*) = t_,(w) / t_=(w). (3.5)

The discrete-time transfer function estimate for the sum of sinusoids data sequence is
shown in Figure 22.
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Figure 22. Shoulder Yaw Transfer Function Estimate.

Graphical interpretation of this transfer function yields a gain less than one for the

entire bandwidth with a low frequency cutoff at approximately w= 6 rad/sec. The

negative slope slightly above the break frequency indicates a second-order system until

approximately 10 rad/sec. The rest of the graph shows additional resonances and

disturbances of the system above 10 rad/sec.

B. Correlation Analy_;is

Correlation analysis techniques were applied to the shoulder yaw joint to provide

information on the degree of linear dependence of the input and output of the joint.

Correlation analysis is usually based on white noise or any input signal that is independent

of the disturbances. For this reason, a pseudorandom binary sequence (PRBS) was used

to excite the joint. PRBS signals simulate white noise statistical properties for the purpose
of nonparametric identification. The one difference between PRBS and white noise is its

periodicity. The mathematical PRBS expression has already been shown (2.11). Figure

23 shows the entire input/output sequence of the PRBS input signal applied to the

shoulder yaw joint during the identification experiment. Figure 24 shows a magnified

version of the PRBS shoulder yaw joint activity.
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Explanation of correlation analysis can be discussed by using the definition of the

covariance function, that is,

C_(t ) = E[{x(t)- lZx}{y(t+ t )- lZy}] (3.6)

where

IS[] is the expectation operator,

/z m is the expected value (mean) of sequence m.

It can be shown that the covariance function and the correlation function are related

through the following relationship,

Cxy(r ) = R_v(r ) - ltx/.ty. (3.7)

Since the PRBS has zero mean, the covariance and correlation functions are equivalent.

Figure 25 shows three graphical representations of the output covariance (the

autocorrelation of the output), the autocorrelation of the input, and the cross-correlation

from the input to the output. The first graph in Figure 25 shows how the output signal is

correlated with the transfer function. The autocorrelation of the input shows a signal that

is white in nature but exhibits some periodicity as can be seen by the small graphical peaks

which is expected for a PRBS. The autocorrelation graph of the input is typical since the
autocorrelation function is an even function. The autocorrelation function evaluated at

zero yields the mean square value of the input. The cross-correlation graph displays

propagation characteristics of the joint such as the distance and/or the velocity of an input

through the system. Cross-correlation also gives an estimate of the order of the system.

The peaks of the cross-correlation graph indicate the contribution of each of several

independent sources of excitation found in the output measurement.
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Figure 23. Shoulder Yaw PRBS Data.
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C. Spectral Analysis

Spectral analysis, the Fourier transform of the autocorrelation function, was used

to measure the frequency distribution of the mean square value of the data. Two input

excitations were used to determine the spectra of the joint. The bipolar ramping pulse

(BRP) whose energy focused around 1 Hz was used while a sum of two sinusoids input

was used with frequency components at 2.5 and 10 Hz.

The bipolar ramping pulse signal was used to determine several spectral estimates

of the shoulder yaw joint (Figure 26). Each spectral estimate was computed using a

Hamming window.
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Figure 26. Shoulder Yaw Bipolar Ramping Pulse Data.

Plots of the estimated disturbance spectrum, the output spectrum, the input power

spectrum, and the cross-spectrum are shown in Figures 27 through 30, respectively. The

plots indicate that disturbance phenomena are predominantly focused in the lower

frequencies around one hertz. The output spectrum and the input power spectral density

(PSD) both show higher amplitudes in the one to five hertz range. Various higher

frequency lobes indicate that other modes of the system are being excited by the input

signal. The estimated cross-spectrum reveals the same information.

The small spectral amplitudes are attributed to the very small hand controller gains

used in the HMTB control computer. That is, the HMTB computer system scaled the HC

signals to a very small range before allowing the input signals to enter the position control

loop. Since the experiment control computer, used to perform the system identification

tests, was interfaced through the hand controller hardware, it was subject to the same

input scaling resulting in small spectral amplitudes.
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Figure 29. Shoulder Yaw Estimated Input Power Spectrum.
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Figure 30. Shoulder Yaw Estimated Cross-Spectrum.

The sum of sinusoids input signal was used to determine several spectral estimates

for frequencies less than 10 Hertz (62.8 rad/sec). Each spectral estimate was computed

using a Hamming window. Figure 31 shows the entire I/O data record for the shoulder

yaw joint. Figure 32 shows the sum of sinusoids activity.
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Spectral estimates, Figures 33 through 36, reveal that the disturbances are at least

two orders of magnitude lower for frequencies less than 10 Hertz (62.8 rad/sec). The

estimated cross-spectrum reveals that other modes of the system are being excited.
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Figure 32. Shoulder Yaw Sum of Sinusoids Activity.
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3. Shoulder Pitch and Elbow Pitch Joints

Identical nonparametric procedures performed for the shoulder yaw joint were also

performed for the shoulder pitch and elbow pitch joints. Transfer function analysis for

both joints yielded break frequencies at approximately seven radians per second.

Correlation analysis as applied to both joints yielded two to five delay units from the input

to the output of each joint implying possible system orders. Results from spectral analysis

for each joint indicated that the disturbances were at least an order of magnitude lower

than the output spectrums. Plots and graphs from the nonparametric procedures described

above are displayed in Appendix A. 1 for both shoulder pitch and elbow pitch joints.

4. Nonparametric Conclusions

Transfer function analysis, correlation analysis, and spectral analysis techniques

have been used to determine a crude nonparametric estimation of three HMTB

manipulator joints (shoulder yaw, shoulder pitch, and elbow pitch). The nonparametric

model estimation techniques used in this chapter suggest that parametric models should be

selected to properly model the noise dynamics as well the system's dynamics.

Nonparametric analysis described each joint with minor to moderate process and

measurement disturbances. The plots reveal greater measurement disturbances than

process disturbances. Transfer function analysis of each joint indicates that models need

to be constructed within a 1 to 5 Hz bandwidth.

Errors in the nonparametric estimations may be attributed to several sources:

random errors, bias errors, quantization errors in the experiment design, and choice of

input signal. Random errors are caused by nonlinearities in the system. Bias errors are

due to resolution errors in the spectral density estimates as well as unmeasured inputs that

contribute to the output. Quantization errors are caused by the sample-and-hold function

used in the HMTB control computer when accepting the hand controller input signal.

Velocity limits in the control system also contributed to errors in the estimations. The

experiment design introduced errors on the input measurements with improperly shielded

wires in the experiment control computer interface. When these errors are introduced into

an experiment design, the likelihood of obtaining accurate estimates decreases.
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IV. Parametric Model Estimation:

Transfer Function and State-Space System Identification

The parametric identification procedures employed in this chapter use various

black-box transfer function model structures to determine model estimates for the HMTB

joints. The transfer function models, found within the MATIMB System Identification

Toolbox by Lennart Ljung, use prediction error techniques to determine parameters for

each black-box model. Residual analysis and cross-validation procedures will be primarily

used to choose the best model estimate for each joint.

1. Parametric Procedures

Though sufficient, nonparametric methods as discussed in the previous chapter

give only moderately accurate models from observed input/output data. To obtain more

accurate model estimates, parametric identification techniques are used. The basic

requirements for parametric identification are the observed input/output data, a set of

candidate model structures, and a criterion to select the best model in the set [10]. The

system identification process as described by Ljung is shown in Figure 37, that is, after

data has been collected from an experiment, a model structure is chosen, the criterion to

identify a particular model in the structure is selected, the model is then calculated and

validated. If the model is not satisfactory, another criterion is selected or another

structure is chosen. Ljung's parametric identification process is quite iterative [ 10].

Obtain I/O Data

I   ooso o oISotI

I   oo oC to onto  tJ

¢
[ Validate Model [

Figure 3 7. System Identification Process.

Model structures tested for the identification of the shoulder yaw, shoulder pitch,

and elbow pitch joints include the autoregressive with extra input (ARX) model, the

autoregressive moving average with extra input (ARMAX) model, the output error (OE)

model, and the four-stage instrument variable (IV4) model forms. These model structures

were selected to produce the best approximation for each joint's dynamic characteristics.

During the parameter estimation and analysis procedures, the ARX and IV4 structures did
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not produce consistent results, therefore, only results from the ARMAX and OE model

structures will be shown. These results are consistent with the results obtained from the

nonparametric tests performed earlier. The nonparametric estimation yielded considerable

information about the noise dynamics of each joint which coincides with the fact that both

ARX and IV4 model structures do not sufficiently characterize the noise dynamics.

For each HMTB joint, parametric techniques will be employed to determine the

best model that fits several data sets. To perform this task, a transfer function that

corresponds to the model will be obtained, residual analysis will be performed to

determine the whiteness and independence of the model estimate's equation errors, and

pole-zero plots will be shown to determine if the model estimate is stable. The model will

be compared to the I/O data to determine if the estimate produces a proper fit. Next,
cross-validation will be shown to determine if the model estimate can fit other data sets.

The state-space representation of the best model estimate will be obtained. And finally,

the linear combination of state-space representations will be determined to produce a

multivariable state-space estimate of all three

joints.

Figure 38 shows the operator interface developed specifically for this thesis to

perform nonparametric estimation and parametric evaluation of the HMTB joints. The

algorithms used in the evaluation code utilize functions from the MATLAB System

Identification Toolbox (version 3).

Figure 38. System Identification Operator Interface.
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2. Parametric Black-Box Models

Most n-th order systems can be described with a simple, linear difference equation

y(t) + aty(t- 1) +... + a,,y(t-no) =

blu(t-1) +... + b,bu(t-nb) + _(t). (4.1)

The disturbance term ,5"( t ) serves as a direct error in the difference equation. This

general model is generally referred to as an equation error model. The linear block-box

models used in this section serve to estimate the general equation error model. The

equation error dynamical model may also be described as

where
y(t) = G(q, 0 )u(t) + H(q, 0 ) oc(t)

G(q) is the system transfer function,

H(q) is the disturbance transfer function,

_(t) is the disturbance,

0 is the parameter vector, and

q is the delay operator.

(4.2)

The ARMAX linear block-box model structure corresponds to setting

G(q) = q"* B(q) and H(q)- C(q) (4.3)
A(q) A(q)

where

C(q) = l+c_q "i +c2q "2 +...+c_q "_.

The ARMAX structure gives considerable freedom in describing the properties of the

disturbance term by estimating the error equation as a moving average of white noise.

This structure describes the system that has a common factor in the denominators of the

G( q ) and H( q ) polynomials.

The output error (OE) model structure allows the transfer functions, G( q ) and

H(q), to be independently determined. That is, neither transfer function has a common

polynomial description. The OE structure has the model form

y(t)- B(q) u(t) + oc'(t). (4.4)
F(q)

Both ARMAX and OE models structures are estimated using a prediction error

method (PEM). The PEM is a modification of the least squares (LS) method. In the

general LS method, the estimation procedure is performed by selecting the parameter

vector 0 that minimizes the loss function,
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1 N

V(O )- N__62(t). (4.5)
t=l

The PEM enhances the LS approach by forming the residual oe( t ) as a difference
A

between the measured output y(t) and a prefiltered output prediction y ( tit-l; 0), that

is,
A

C(t) = y(t) - y (tlt-1;O) (4.6)

where

A

y (tit-l; 0) = IT'(q'_; 0) G'_(q"; O)u(O + { I - H'_(q'l; 8)}y(t).

For a model estimate to correctly describe an unknown system, the residuals (equation

errors) must be ideally white and independent of the input.

3. Identification of Shoulder Yaw Joint

A. Preliminary_ Model Estimates

Several ARX, ARMAX, IV4, and OE model structures were used to identify the

dynamical characteristics of the shoulder yaw joint. Among these model structures, only

the ARMAX and OE estimates exhibited a better fit among many data sets. Therefore,

only ARMAX and OE estimates will be discussed. From the experiment tests, the

shoulder yaw appeared to exhibit a more nonlinear response. This information quickly

implies perhaps a higher order design to estimate this joint's response. Throughout the

identification process, models selected have been those that were the simplest to obtain

while yet maintaining stability and the best approximation to many data sets.

ARMAX

After several iterations, an ARMAX model containing five poles, two zeros, and

two delays on the input was found to sufficiently characterize the shoulder yaw joint. The

transfer function is expressed as

0.003804 z3+ 0.003504 z2- 0.004285 z

H(z) ..................................................................... .
z 5- 2.542 z4+ 2.367 z 3- 0.8523 z2- 0.08044 z + 0.1103

(4.7)

Prediction error analysis of the ARMAX estimate yielded residuals that were white and

with a high degree of independence. Figure 39 shows the residuals of the ARMAX model

estimate using the PRBS input signal. The first plot in Figure 40 shows the whiteness of

the model's residuals (the autocorrelation of the residual) while the second (lower) plot

shows the residual independence (the cross-correlation of the residual and the input) as a

function of lag (delay). The dashed lines in each plot represent 99% confidence intervals.

That is, if the curve in each plot goes significantly outside the confidence intervals, the

model is not accepted as a good estimate.
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The pole-zero plot (Figure 41) displays the poles and zeros of the ARMAX model

estimate. Since the poles of the discrete-time system are in the unit circle, the model is

stable. The close pole and zero in the graph indicate a near pole-zero cancellation possibly

indicating that the model order selected was too high. The other models tested without

the close pole and zero produced estimates that did not sufficiently characterize the

dynamics.
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Figure 41. Shoulder Yaw ARMAX Pole-Zero Plot.

The ARMAX model estimate was then compared to the data set that produces the

model. Figure 42 shows a comparison of the estimated model output to the measured

output. Even though the model didn't follow the PRBS data set very well, it showed the

best flexibility in following many other data sets. Figure 43 shows the cross-validation of

the ARMAX model estimate to the sum of sinusoids ten hertz input signal. Since cross-

validation of a model estimate is a much harder task, the cross-validation of the model to

various data sets weighed heavily in determining the best model estimate.
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OE

An OE model containing two poles, one zero, and two delays on the input also

produced good results for the shoulder yaw joint. The transfer function for this OE

estimate is

0.0464 z + 0.06144

H(z) .................................... .
z3- 0.7501 z2- 0.1815 z

(4.8)

Prediction error analysis of this OE estimate yielded residuals that were not very white.

This might be attributed to the fact that the OE structure focuses more on the dynamics G

and less on the noise properties H. Figure 44 shows the residuals of the OE model

estimate using the PRBS input signal. The first plot in Figure 45 shows the whiteness of

the model's residuals (the autocorrelation of the residual) while the second (lower) plot

shows the residual independence as a function of lag (delay). The cross-correlation of the

OE residuals to the input signal shows slight independence for small positive and negative

lags. Since the residual independence does not go significantly outside the confidence

intervals, the OE model is accepted as a possible shoulder yaw estimate.

0.005

-0.005

-0.01

-0.015 0

Residuals of Current Estimate

I I I I I I I

20 40 60 80 100 120 140 160

Figure 44. Shoulder Yaw OE Residuals.

The pole-zero plot (Figure 46) displays the poles and zeros of the OE model

estimate. Since the poles of the discrete-time system are inside the unit circle, the model is

stable. Various tests using a higher number of OE poles yielded an unstable system.
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Figure 45. Shoulder Yaw OE Residual Whiteness and Independence.
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Figure 47. Shoulder Yaw OE Output Comparison.
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Figure 48. Shoulder Yaw OE Cross-Validation.

The OE model estimate was then compared to the data set that produces the

model (Figure 47). The OE model estimate only fitted the mean of the PRBS data rather

than the peaks of the sequence. This fit is perhaps better than the ARMAX comparison,

however, the OE showed poor flexibility in following other data sets. Figure 48 shows the

cross-validation of the OE model estimate to the sum of sinusoids ten hertz input signal.
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The OE estimate exhibited the correct frequency response, as seen by the zero crossing in

Figure 48, but failed to match the peaks of the sequence. This response is due to the

magnitude of the OE estimate being less than unity at the frequency of the input data.

This OE response was typical to other data files.

B. Determination of B¢s¢ Mode! Eetimate

The ARMAX structure with five poles, two zeros, and two delays on the input

was selected as the best linear approximation for the shoulder yaw dynamics in a localized

region. Since the bode plots of the ARMAX estimate (Figure 49) showed comparable

results to the OE and ARX estimates shown, the ARMAX model exhibited some of the

true characteristics of the unknown system. The ARMAX estimate was selected because

of the whiteness and independence of its residuals. Also, the cross-validation of the model

to several data sets described a more flexible estimate. For these reasons, the ARMAX

model was selected as the best estimate of the shoulder yaw joint.
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Figure 49. Bode Plots of the ARMAX, AEX, and OE Estimates.

C. SISO State-Space Estimate

The SISO state-space estimate for the ARMAX shoulder yaw joint is:

x(k + 1) = As x(k) + Bt u(k) + KI e(k)

y(k) = Ct x(k) + Dj u(k) + e(k)

where

(4.9)
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4. Identification of Shoulder and Elbow Pitch Joints

The same model structures (ARX, ARMAX, IV4, and OE) and procedures used to

identify the dynamical characteristics of the shoulder yaw joint were also used to identify

parametric dynamic models for the shoulder pitch and elbow pitch joints. Plots and graphs

from the shoulder pitch and elbow pitch joints are shown in Appendix A.2. Summary of

the best model estimate for each joint follows:

Shoulder Pitch

The OE model containing two poles, one zero, and one delay on the input was

selected as the best linear approximation for the shoulder pitch dynamics in a localized

region. The transfer function for this OE estimate is

0.03459 z + 0.07584

H( z ) .................................... . (4.10)
z 2- 0.9776 z + 0.07922

There are two primary reasons for selecting the OE estimate as the best dynamic

approximation. First, the residuals were truly independent of the input which implies that

the model is a very good approximation to the real joint dynamics. And second, the cross-

validation of the model to several data sets described a more flexible model estimate. The

SISO state-space estimate for the OE shoulder pitch joint is:

x(k + l) = A2x(k) + B2u(k) + K2e(k) (4.11)

y(k) = C2 x(k) + D2 u(k) + e(k)
where
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Elbow Pitch

An ARMAX model containing two poles, one zero, and two delays on the input

was found to sufficiently characterize the dynamics of the elbow pitch joint. The transfer
function for this model estimate is expressed as

0.01237 z + 0.0426

H(z) .......................................... .
z3- 1.488 z2+ 0.5435 z

(4.12)

There are two primary reasons for selecting the ARMAX estimate as the best dynamic

approximation. First, the residuals were whiter than the OE estimate indicating that the

ARMAX appropriately modeled the noise characteristics of the joint. And second, the

cross-validation of the model to several data sets described a more flexible model estimate.

The SISO state-space estimate for the ARMAX elbow pitch joint is:

x(k + l) = A3x(k) + B3u(k) + K3e(k) (4.13)

y(k) = C_ x(k) + D3 u(k) + e(k)

where

1.4877

Aa = -0.5435

0

1.0000

0

0

c, = [1.0o0oo o],

1.4698 1

0

1.0000 ,

0

93 = 0,

given X0 =

B3 =
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5. State-Space Multivariable Representation

Each SISO state-space estimate previously determined was identified about an

operating point. For the purpose of this identification, the operating point was chosen to

coincide with the insertion point trajectory vector for the RPCM ORU exchange task.

With each input signal producing only small deviations around the operating point, a local

neighborhood was defined about the RPCM insertion point for which each identified SISO

model is valid. This is the essence of linear approximation of a nonlinear model [18].

The following three-joint, linear, multivariable state-space estimate was formed

using each joint's best dynamic SISO representation:

x(k + l) = Ax(k) + Bu(k) + Ke(k) (4.14)

y(k) = Cx(k) + D u(k) + e(k)

where

A l 0 0 B I 0 0

A = A 2 0 , B = B 2 0 ,

0 A 3 0 B 3

j [00]C l 0 0 D I 0 0

C = C: 0 , D = D 2 0 ,

0 C 3 0 D 3

K

Ii I 0 0
K 2 0

0 K 3

The matrices A,, B., C,, D,, and K. where n = 1, 2, or 3 refer to matrices previously

determined in equations 4.9, 4.11, and 4.13. This multivariable state-space estimate will

be used for comparison purposes. The actual RPCM data set along with several MIMO
data sets will be used to cross-validate this multivariable estimate.
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V. Parametric Model Estimation:

Observer/Kalman Filter Identification

Among alternate system identification procedures are the ones based on system

realization theory. One such technique, used in the identification of space structures, is

Observer/Kalman Filter Identification (OKID). This technique computes Markov

parameters from pulse system response histories using an asymptotically stable observer to

form a stable discrete state-space model. This chapter will briefly discuss the OKID

technique provided in the System/Observer/Controller Identification Toolbox (SOCIT) by

Jer-Nan Juang, Lucas G• Horta, and Mirth Phan [19]. Residual analysis and cross-

validation procedures will be used to identify the best state-space models for the HMTB
joints•

1. OKID Background and Procedure

When a pulse sequence is used as input into the discrete-time state-space dynamic
equation

x(k + 1) = A x(k) + B u(k) (5.1)

y(k) = C x(k) + D u(k),

the resulting series of equations can be formed into a pulse-response matrix Y, that is,

V = [ D CB CAB ..... C AkIB ]. (5.2)

The elements of the matrix Y are known as the system Markov parameters. System

realization involves determining the matrices A, B, C, and D from the system Markov

parameters to satisfy the state and measurement equations (5.1) [8]. Minimum realization

theory, attributed to Ho and Kalman [12], determines a model with the smallest state-

space dimension among all realizable systems. The procedure starts by forming the

generalized Hankel matrix composed of Markov parameters in the following manner:

H(k-1) =

Yk+l Yk+2 .. Yk÷_ J .

(5.3)

If the number of rows a and the number of columns fl are greater than the order of the

system, then the Hankel matrix is of rank n. This realization algorithm extracts linear

state-space matrix components from noise-free data.

For noisy input/output sequences, the Eigensystem Realization Algorithm (ERA)

produces better results [8]. By deleting specific rows and columns of the Hankel matrix,

ERA forms a block data matrix composed of strongly measured Markov sequence

components. A minimum realization may be obtained by factorization of the block data
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matrix using singular value decomposition. The order of the identified system is

determined by selecting the number of significant singular values.

Observer/Kalman Filter Identification is determined by inserting an observer into

the discrete-time state-space dynamic equation (5.1) to form the discrete-time state-space

observer model

x(k + l) = A x(k) + B v(k) (5.4)

y(k) = Cx(k) + D u(k),

where

A = A+GC,

D

B = [ B+GD -G], and

v(k)= Iu(k) 1.

Ly(k)_J

When a pulse sequence is used as input into the observer model (5.4), the following

observer Markov parameters may be computed:

= [D CB CAB ..... C'_k"_ l. (5.5)

The OKID technique then computes the system Markov parameters from the observer

Markov parameters for minimum realization of a state-space model estimate. It is obvious

from (5.5) that the matrices A, B, C, and D are embedded in the observer Markov

parameters. Since the observer gain G may be arbitrarily chosen, the OKID routine

creates a deadbeat observer by simply placing all the eigenvalues of A at the origin

producing an asymptotically stable observer. Setting G to be the deadbeat observer gain

allows for a minimum number of Markov parameters to describe the input/output

relationship of a system [8].

Juang [8] describes the relationship between the state-space observer model and

the Kalman filter equation

X(k+ l) = AX(k)+Bu(k)+K_r(k) (5.6)

where

(k}

¢¢(k}
K

= c (k} + Du(k),

is the estimated state,

is the estimated measurement,

is the Kalman filter gain, and
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ocr (k) is the residual defined as the difference y(k) -y (k).

The observer gain is said to be the steady-state Kalman filter gain

g=-a (5.7)

in theory if the residuals are identically zero, C r (k) = 0, and the data length is

sufficiently long to produce negligible truncation error. Theoretical background of the

OKID technique is found in the text Applied System Identification by Jer-Nan Juang [8].

For each joint, system and observer parameters will first be determined. Next, the
associated prediction errors will be computed. The Hankel matrix will be shown for

proper order selection. After selecting the system order from the Hankel singular values,

the state-space estimate will be realized. This realization will also yield the Kalman filter

gain which for the purposes of this investigation will be approximated to the observer gain

since each estimate will be selected to minimize the residuals and the arm will be operated
in a localized region to minimize system nonlinearities. Each model estimate will be

compared to the data set that produced the model as well as cross-validated to another

data set. A three-joint multivariable state-space model will be determined from the three
SISO state-space estimates.

2. Identification of Shoulder Yaw Joint

A. Determine Markov Parameter Set

An upper bound for the OKID model order must first be specified to compute an

estimate. Using a fifth order system as the upper bound, five independent observer

parameters were initially computed to identify the shoulder yaw state-space model using

the PRBS input/output data. The system and observer Markov parameters for the

shoulder yaw joint are shown in Figure 50. As seen in Figure 50, the rate of decay for the

observer parameters is much larger than that for the system Markov parameters. This

demonstrates the advantage of the deadbeat observer in minimizing the number of pulse

response samples used to realize the state-space equation [8]. The relatively high number

of independent Markov parameters shown in the plot indicates that the shoulder yaw joint
exhibits relatively significant nonlinear characteristics.
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Figure 50. Shoulder Yaw System and Observer Markov Parameters.

B. OKID State-Space Estimate

The normalized prediction errors associated with the independent observer

parameters and the input data file are shown in Figure 51. The lower plot in Figure 51

shows the variance of each observer parameter with the measured data. A smoothing

error is also plotted next to each variance. Using the Hankel matrix of singular values

(Figure 52), a system order of two was selected for minimum realization of the shoulder

yaw joint, that is, the second-order model obtained described 99.8691% of the test data.
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10

The following discrete-time state-space observer model has been realized for the
shoulder yaw joint:

x(k + 1) = (AI + GICI) x(k) + [ B1+GIDI - Gt ] v(k) (5.8)

y(k) = Clx(k) + DI u(k),
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where

__r.9948,.0=8961
A, L-.15355 55941J' B, = L12.366j,

C, = [.004706 -.001125], D, = 0.000714,

r.<,,,l
G, = -123.20J' and v(k)= Iy(k)- 1.

C. Analysis

The bode plots of the discrete-time state-space model estimate is shown in Figure

53. The frequency range of this estimate seems to be valid for extremely low frequencies

less than 1 Hz.

Response due to input= 1 output= 1
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Figure 53. Shoulder Yaw Bode Plots of State-Space Estimate.

To validate the state-space model estimate, the model output was compared to the

data set that produced the model. Figure 54 shows the predicted state-space output

compared to the measured output. As seen in the graph, the second-order model estimate

predicts the measured output extremely well.
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Cross-validating the shoulder yaw model OKID estimate with the five to ten Hertz

linearly swept chirp signal (Figure 55) produced good results. Residuals for the cross-

validation were very low. This implies that the deadbeat

considered the Kalman Filter gain according to 5.7.
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It should be noted that numerous iterations were performed to obtain this state-

space model estimate. In the iterations where the data was not detrended, the best

estimate for minimum realization was a fourth-order system. This higher-order system

produced extremely poor residuals and therefore was rejected as the shoulder yaw

estimate. The only advantage of the fourth-order system was the minimum number of

independent observer Markov parameters needed to realize the state-space dynamic

equation.

3. Identification of Shoulder and Elbow Pitch Joints

The same OKID procedures used to identify the dynamic characteristics of the

shoulder yaw joint were also used to identify parametric dynamic models for the shoulder

pitch and elbow pitch joints. Plots and graphs from the shoulder pitch and elbow pitch

joints are shown in Appendix A.3. Summary of both model estimates follows:

Shoulder Pitch

A system order of two was selected for minimum realization of the shoulder pitch

joint. More specifically, the second-order model obtained described 96.1075 % of the test

data. The following discrete-time state-space observer model has been realized for the

shoulder pitch joint:

x(k + 1) = (A_ + G2C_)x(k) + [ B_+G_D2 -G_lv(k) (5.9)

y(k) = C2x(k) + u(k),

where

= [.90891 .I0801 ] B2= [ 688'IA_ L-.35206 .33925 ' L11.762J'

c2 = [.014742 -.0065875], /92 = 0.010405,

62 = and v(k) = ["(k)l.
Ly(k)J

Elbow Pitch

A system order of two was selected for minimum realization of the elbow pitch

joint. More specifically, the second-order model obtained described 98.8832 % of the test

data. The following discrete-time state-space observer model has been realized for the

elbow pitch joint:

x(k + 1) = (A.3 + G3C._)x(k) + [ B3+G.,_D3 -G3]v(k) (5.10)

y(k) = C3x(k) + D3 u(k),

where
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= .o  4,sI lA_ I_-.27646 .517280J' B_ = I 1.0670I'

C3 = [.013258 -.0059914], D_ = 0.0032941,

F-77.o491 F,(k)].
G_ = L 11.586 .]' and v(k) = LY(k)J

Though higher order models may have produced better fits in reducing the residuals, it

was more advantageous to minimize the system order thus reducing the complexity of
both state-space dynamic estimates.

4. State-Space Multivariable Representation

Each SISO state-space estimate previously determined was identified about the

insertion point for the RPCM ORU exchange task. With each input signal producing only
small deviations around the operating point, a local neighborhood was defined about the

RPCM insertion point for which each identified SISO model is valid. The following three-

joint, linear, multivariable state-space estimate was formed using the dynamic SISO state-
space representation for each joint:

x(k + l) = Ax(k) + Bu(k) + Ke(k) (5.11)

y(k) = Cx(k) + D u(k) + e(k)

where

i!,0o] o0A = A 2 0 , B = B 2 0

0 A3 0 B3

i!00] ii001 i!0ojC = C 2 0 , D = D 2 0 , K = K 2 0 .

0 C 3 0 D 3 0 K 3

The matrices A,, B,, C,, D,, and K_ where n = 1, 2, or 3 refer to matrices previously

determined in equations 5.8, 5.9, and 5.10. This multivariable state-space estimate will be

used for comparison purposes. The actual RPCM data set along with several MIMO data

sets will be used to cross-validate this multivariable estimate.
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VI. Comparison of Identified Models

This chapter will compare the multivariable state-space model estimate obtained

using prediction error techniques within Lennart Ljung's System Identification Toolbox

and the multivariable state-space model estimate obtained using the Observer/Kalman

Filter identification (OKID) technique provided in the System�Observer/Controller

Identification Toolbox (SOCIT) by Jer-Nan Juang, Lucas G. Horta, and Minh Phan.

Frequency plots and pole/zero maps for each estimate will be shown. Both multivariable

estimates will be compared to data sets obtained from an RPCM experiment and a MIMO

experiment using the chirp signal. Fit comparisons and residual analysis will be performed

for each state-space estimate.

1. Identified Model Forms

The identification techniques investigated and described in the previous chapters

represent parametric models of the form

y(t) = G(q) u(t) + v(t) (6.1)

where

G(q) is the open-loop transfer function, and

v(t) represents the disturbances.

This linear equation attempts to describe the open-loop dynamic characteristics of each of

the three HMTB joints with additive disturbances. It should be noted that this dynamic

equation is, in essence, an open-loop representation of the actual closed-loop dynamical

implementation for each joint. This implies that the actual closed-loop dynamics will be

embedded within the open-loop description of each joint. For high noise-to-signal ratios in

the I/O time histories of each joint, the disturbances may be represented as

v(t) : H(q) e(t) (6.2)

where

H(q) is the disturbance dynamics, and

e(t) represents white noise.

In the System Identification Toolbox, prediction error techniques were used to

determine ARMAX and OE black-box model structures for each joint. The ARMAX

structure forms the joint dynamics according to the block diagram shown in Figure 56.

The OE structure differs from the ARMAX structure by allowing the disturbances (noise)

to go unfiltered as shown in Figure 57. The parametric black-box model developed for

each joint was then converted to a SISO state-space estimate.
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Figure 56. ARMAX Structure Block Diagram.
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Figure 57. OE Structure Block Diagram.

A linear combination of the SISO state-space estimates were used to develop the

multivariable state-space model. Linearization of the HMTB arm was performed by

allowing only small perturbations in each joint's input signal to produce a localized region.

The multivariable estimate obtained using prediction error techniques described the

dynamics in the flexible innovations discrete-time state-space model form

x(k + 1) = A x(k) + B u(k) + Ke(k) (6.3)

y(k) = Cx(k) + D u(k) + e(k).

The Observer/Kalman Filter Identification (OKID) technique identifies the dynamic
characteristics of each joint using a discrete-time observer model of the form

._(k + 1) = A ._(k) + Bu(k) - Gg (k) (6.4)

where
y(k) = C X(k) + Du(k) + oc (k).

(k) is the estimate of state x (k), and

c (k)= y(k) - f_(k).

It should be noted that the observer G can only be equated to the steady-state

Kalman Filter gain K if and only if the residuals g' (k) are white, zero mean and Gaussian

[8]. In the following comparisons, the identified observer is not the Kalman Filter gain.
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The computedobserverG simply minimizes the residuals due to nonlinearities in each

joint, non-whiteness of the noise processes, and correlation effects between the residual

and the input signal.

Both multivariable model estimates will be compared using equivalent state-space

representations, that is K = -G where K in this case is simply a residual filter. For

notation purposes, the multivariable model identified using prediction error techniques will

be called the SysID model and the model identified using the Observer/Kalman Filter

Identification (OKID) technique will be called the OKID model.

2. Transfer Function Analysis

The transfer function G(q) from equation 6.1 may expressed in terms of the state-

space matrices A, B, C, and D as

G( q ) = C ( q I - A )I B + D. (6.5)

Bode plots for the SysID MIMO model shown in Figures 58 - 60 describe the frequency

and phase response characteristics of the shoulder yaw, shoulder pitch, and elbow pitch

joints, respectively.
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Bode plots for the OKID MIMO model shown in Figures 6] - 63 describe the

frequency and phase response characteristics of the shoulder yaw, shoulder pitch, and

elbow pitch joints, respectively. As seen in the bode plots (Figures 58 - 63), the OKID

model and the SysID model produced comparable results indicating that both techniques

captured true frequency characteristics of each HMTB joint.
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3. Pole/Zero Map

Figure 64 shows the eigenvalues and transmission zeros of the SysID multivariable

model. The eigenvalues (roots of the characteristic equation) represent the poles of the

discrete-time MIMO estimate. Since the magnitude of the eigenvalues are less than unity,

the discrete-time model is considered stable. The eigenvalue-transmission zero

combination near the origin indicates that the SyslD model may be unnecessarily complex
to describe the HMTB joints.
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The pole/zero map showing the eigenvalues and transmission zeros of the OKID

multivariable model is shown in Figure 65. Since the magnitude of the eigenvalues in

Figure 65 are less than unity, this model is considered stable. The OKID MIMO model

differs from the SyslD MIMO model in that the eigenvalues of the OKID model are all

real, all transmission zeros are complex conjugates, and a minimum number of eigenvalues

are used to describe the system.
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Figure 65. OKID Multivariable Model Pole/Zero Map.
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4. RPCM Fit Comparison

Both multivariable state-space model estimates were compared to shoulder yaw,

shoulder pitch, and elbow pitch data obtained from an RPCM experiment (joint angles

shown in Figure 66) performed in the hydraulic manipulator test bed at NASA LaRC.

Both estimates will be evaluated on the how well each model fits the data set as well as the

whiteness and independence of each model's residuals. Ideally, all residuals should be

white and independent of the input for the model to perfectly identify the dynamic
characteristics of the joints.

Output of Compare Data File

0.5

0

-0._

0 200 400 600
I
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-10
I I I I
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Figure 66. Multivariable RPCM Experiment Data.

SyslD RPCM Model Fit

Figures 67 - 69 show outputs of the multivariable SyslD model compared to actual

outputs from the RPCM experiment. As seen in the Figures 67 and 69, the SysID model

matches both the shoulder yaw and elbow pitch responses quite well. The shoulder pitch

model output shown in Figure 68 is adequate but doesn't quite match the peaks of the

RPCM data set. This implies that the SyslD model may not sufficiently characterize the

true dynamic characteristics of the shoulder pitch joint.

66



0.2

0.15

0.1

0.05

Est'd
0

output

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

_j

:V
I-
!
t

Output Number = 1
=

, ¼
I I

I I I
I !

I ,I ,, _I_j

I r , V

I I

0 5 15 20

f_
11
/i
II
111
ta
II t

l!

u

!
t
!

I

10

Time (sec) [ (.) Measured Output, (--) Estimated Output ]

Figure 67. SysID RPCM Shoulder Yaw Comparison.

0.6

0.4

0.2

Est'd
output 0

-0.2

-0.4

-0.6

Output Number = 2

• h J

• _l t

"1
,I

.I
!

"1
.!
.I
I

"1

il

222

t ;I
• I r :1

}1 -I "1

"1
.|
.t

.t

-0.8 ' ' '
0 5 10 15 20

Figure 68.

Time (sec) [ (.) Measured Output, (--) Estimated Output ]

SyslD RPCM Shoulder Pitch Comparison.

67



Output Number = 3
0.8

0.6

0.4

0.2

Est'd 0
output

-0.2

-0.4

-0.6

-0.80

A

I'
I

I I

!J
t!

i

%. !

l I |
I )I[
If

1'0 1_5 20
Time (sec) [ (.) Measured Output, (-) Estimated Output ]

Figure 69. SysID RPCM Elbow Pitch Comparison.

The residuals associated with the RPCM data and the SysID multivariable model

estimate are shown in Figure 70. For the SysID model to correctly describe the dynamics

of each joint, residuals must be ideally white and independent of the input. Figures 71 and
72 show the whiteness of the SysID residuals associated with the RPCM data set. As

seen in the figures, the shoulder yaw and elbow pitch residuals are fairly white. Residuals

for the shoulder pitch joint, however, were not white. This is partially due to the use of

the OE structure which focuses more on the dynamics than the noise properties of the
shoulder pitch joint.
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Figure 70. SysID RPCM MIMO Residuals.

68



0

-0.5

0.5

-o.so

Figure 72.

Correlation function of residuals. Output # 1

Figure 71.

I I I I

0 5 10 15 20
lag

Correlation function of residuals. Output # 2

25

i I I I

5 10 15 20 25

lag

SysID Shoulder Yaw and Pitch Residual Whiteness.

Correlation function of residuals. Output # 3
1

0.50'

-0.5 I I I I

5 10 15 20 25

0.1

0.0_=

0

-0.05

-0.1

-0.1_0

a
Cross corr. function between np'tJt1 and residuals from output 1

.........................................................

I I l I l

-20 -10 0 10 20 30
lag

SysID Elbow Pitch Whiteness and Shoulder Yaw Independence.

To determine residual independence for the multivariable SysID model estimate,

the cross-correlation of the residual and the input for each joint was determined. The

lower plot in Figure 72 shows the independence of the shoulder yaw residuals. For small

positive lags, the shoulder yaw residuals are correlated. For lags greater than fifteen, the
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SysID estimate correctly models the dynamics of the shoulder yaw joint for the RPCM
data set.

OKID RPCM Model Fit

Figures 73 - 75 show outputs of the multivariable OKID model compared to actual

outputs from the RPCM experiment. As seen in the comparison plots, the OKID model

matches the shoulder yaw, shoulder pitch, and elbow pitch outputs very well.
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The residuals associated with the RPCM data and the OKID multivariable model

estimate are shown in Figure 76. The computed residuals for the shoulder yaw and

shoulder pitch joints are fairly white as seen in Figures 77. Residuals for the elbow pitch

joint (Figure 78, top plot) are not as white as the other joints. Overall, the OKID

produces good residual whiteness for the RPCM experiment.
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Figure 78. OKID Elbow Pitch Whiteness and Shoulder Yaw Independence.

The lower plot in Figure 78 shows the independence of the shoulder yaw residuals.

For positive lags between five and fifteen, the shoulder yaw residuals were moderately

correlated. This can possible be attributed to the significant nonlinearities previously

found in the shoulder yaw joint.

5. MIMO Chirp Fit Comparison

Besides the RPCM experiment data, both multivariable state-space estimates were

compared to various MIMO data sets to determine the constraints of each identified

model. Results of comparing both model estimates to various MIMO data sets will be

provided in the next section. This section will describe comparisons of the model

estimates to the five to ten hertz linearly swept MIMO chirp data set (Figure 79). Output

comparisons of each joint will be shown for both model estimates as well as the magnitude

of each model's residuals to the MIMO chirp data set.
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Figure 79. Multivariable Chirp Experiment Data.

SyslD MIMO Chirp Fit

Figures 80 - 82 show outputs of the multivariable SysID model compared to actual

outputs from the M]MO chirp experiment. The SyslD model effectively matched both the

shoulder yaw and elbow pitch responses. The shoulder pitch model output (Figure 81)
deviated slightly from the shoulder pitch chirp output. This characteristic was also found

when the shoulder pitch model output was compared to the RPCM data set. This implies

that the multivariable SysID model, though adequate, may not sufficiently characterize the

true dynamics of the shoulder pitch joint.
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The residuals associated with the MIMO chirp data set and the SysID multivariable

model estimate are shown in Figure 83. The largest residual in the plot is attributed to the

model errors of the shoulder pitch joint. Residual analysis for the MIMO chirp data set

(not shown), were comparable to the results obtained using the RPCM experiment data.

In other words, shoulder yaw and elbow pitch residuals are fairly white. Residuals for the

shoulder pitch joint, however, were not white.
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Figure 83. SysID MIMO Chirp Residuals.
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Results of residual independence for the multivariable SysID model estimate

yielded slight dependence for the shoulder yaw joint at small lags indicating that the SysID

model may not adequately characterize shoulder yaw characteristics in the ten hertz range.

A small amount of coupling was also found to exist between the shoulder yaw residuals

and shoulder pitch input at this frequency range.

OKID MIMO Chirp Fit

Figures 84 - 86 show outputs of the multivariable OKID model compared to actual

outputs from the MIMO chirp data set. The OKID model output matched the shoulder

yaw, shoulder pitch, and elbow pitch outputs very well.
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Figure 85. OKID Chirp Shoulder Pitch Comparison.
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Figure 86. OKID Chirp Elbow Pitch Comparison.

The residuals associated with the MIMO chirp data set and the OKID

multivariable model estimate are shown in Figure 87. The OKID model estimate produced

good residual whiteness for the shoulder pitch and the elbow pitch joints (not shown).

However, shoulder yaw residuals showed only marginal whiteness.
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Results of residual independence for the multivariable OKID model estimate

produced significant correlation for the shoulder yaw joint at small lags indicating that the

OKID model may not adequately characterize shoulder yaw dynamics in the ten hertz

range. A small amount of coupling was found to exist between the shoulder yaw

residuals and shoulder pitch input and between the shoulder yaw residuals and the elbow

pitch input in the ten hertz frequency range.

6. Comparison Results

This section will compare both the SysID and OKID multivariable model estimates

for several performance categories. For each category, the strengths and weaknesses of

each model will be evaluated as well as the technique used to identify the model estimate.

Performance categories will include frequency bandwidth, model stability, flexibility,

parsimony, robustness, RPCM experiment fit, and various MIMO data fits.

Frequency Bandwidth

The SyslD and OKID models both produced comparable Bode plots indicating

that both techniques captured true frequency content of each HMTB joint. Both model

estimates were able to follow data sets containing frequency content in the range of 3 to 5

Hz though the identified cutoff frequency for each joint was found to be approximately 1

Hz. Initially, this 1 Hz cutoff result was considered questionably low. Later, however,

this low frequency cutoff was verified by a report conducted by the STX Corporation for

NASA [16]. The STX report found that Martin Marietta's 1 Hz bandwidth was

significantly lower than bandwidths recommended by prior research and by other research

engineers [16]. The uncertainty in proper bandwidth selection lies in the fact that an

optimum bandwidth for space telerobot applications is unknown.
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When compared to data sets containing a greater than 5 Hz frequency content, the

OKID estimate slightly outperformed the SyslD estimate for each joint. This may have

been attributed to inadequate modeling of the SyslD estimate.

Stability

Since the magnitude of the eigenvalues for both multivariable model estimates

were less than unity, both models were found to be stable.

Flexibility

In terms of flexibility, the prediction error techniques used to determine the SysID

model estimate provided numerous approaches to model both the dynamics of the system

as well as the noise properties of the HMTB joints. The OKID technique, though more
accurate, was less flexible.

Parsimony

The Observer/Kalman filter identification (OKID) technique was more

parsimonious in its attempt to describe the dynamic characteristics of the HMTB joints.

Information extracting using this technique produced a minimum realization in allowing

each joint to be described by a second-order system. In contrast, the SysID model used a

fifth-order model to describe the shoulder yaw dynamics, a second-order model to

describe the shoulder pitch dynamics, and a third-order model to describe the elbow pitch
dynamics.

Robustness of estimates

The SyslD model proved to be more robust when compared to the OKID model

estimate. Comparable SysID models were obtained even in the presence of bias errors and

outliners in the data set. For instance, data detrending and/or filtering reduced a particular

SyslD model from a third-order system to a second-order system. In contrast, the OKID

estimate was more sensitive to bias errors and outliners in the data set. One OKID model

required a fourth-order system to describe the dynamics of a joint. However, a second-
order model was sufficient when the data set was detrended.

RPCM Experiment Fit

The OKID multivariable model estimate provided a much better fit when

compared to data obtained from the RPCM experiment. The OKID estimate obtained a

more accurate fit by effectively minimizing the residuals for each joint model. The

identified model showed minimal coupling between the joints in the localized region. The

SyslD model estimate consistently showed high residuals for the shoulder pitch SISO

estimate. This can be attributed to the OE model structure used to characterize the joint.

MIMO Data Fits

The OKID estimate produced a better fit when compared to a majority of MIMO

data sets. For low frequency data sets, the SysID estimate modeled the dynamics of the

shoulder yaw joint much better than the OKID estimate. This would imply perhaps a

hybrid model between the OKID estimate (shoulder pitch and elbow pitch) and the SysID
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estimate(shoulderyaw) to providean overallbettermultivariablemodelestimatefor low
frequencies.

Overall, the Observer/Kalmanfilter identification(OKID) techniqueproduced a better
multivariableestimatewhencomparedto the SysIDmultivariablemodelestimate. Menu-
driven sottwarewas developedandusedto evaluatethe OKID model and to compare
bothmultivariablemodels.
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Vll Conclusions

Linear, dynamic models for three joints of the hydraulic manipulator test bed

(HMTB) at the NASA Langley Research Center have been identified using nonparametric

and parametric system identification techniques. Nonparametric techniques yielded an

approximate 1 Hz bandwidth for each joint using transfer function analysis, an expected
order for each joint using correlation analysis, and the degree of process and measurement

disturbances for each joint using spectral analysis. Two different parametric identification

techniques were used and compared in developing dynamic models of the joints. The first

parametric technique, used primarily for control system identification, employed a
prediction-error method to produce a stable model estimate. The bandwidth for this

estimate proved adequate when compared to several data sets. An advantage of this
technique is its flexibility of use. The user has several options, alternatives, and methods

from which to conduct an identification investigation. When compared to the RPCM

experiment data, this technique yielded adequate results. The second parametric
technique, used primarily in modal system identification, employed a minimum realization

algorithm to produce a stable model estimate using only second-order systems to describe

the characteristics of each joint. This technique was extremely simple to use while yet

providing an adequate bandwidth for the identified models among many data sets. The
models identified using this technique produced an accurate fit to both the RPCM
experiment data and various MIMO data sets.

Matlab menu-driven system identification software scripts were developed for this

thesis. One program, using functions from the MA TI__B System Identification Toolbox,

was used to perform nonparametric and parametric analysis of the manipulator data. The

other program identified models using the Observer/Kalman Filter Identification (OKID)
technique, provided in the System/Obse_er/Controller Identification Toolbox (SOCIT).

The latter program used several toolboxes to perform MIMO comparisons for the

identified multivariable models. Both programs were found to be extremely useful

especially in minimizing the time required to perform nonparametric and parametric

analysis of the data. The programs, modular in design, are easily expandable. Though

written to use data from the manipulator joints, the programs may be easily adapted to
incorporate data from any dynamic system for the purpose of identification.

1. Suggestions for Future Work

With the identified models in this investigation valid only in a localized region with
a specific loading, additional identification tests should be performed. Recursive

identification methods, in particular, should be performed with several different loading

configurations for the manipulator. Also, a more complete model should be identified by
determining the dynamic parameters of the shoulder roll, wrist pitch, wrist yaw, and wrist
roll joints (which were not identified in this thesis).

2. Model Reference Control

A model reference control system is proposed for the previously identified

multivariable dynamic HMTB model. In this controls approach, the behavior of the

ground-based model would closely resemble the behavior of the on-orbit flight model for
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each joint. This capability would allow astronauts to perform crucial mission training

tasks with a ground-based hydraulic manipulator that would be kinematically and

dynamically equivalent to the flight manipulator. Figure 88 shows a block diagram of the

model reference control system proposed for the DOSS manipulator. A distinct advantage

of this control system is its ability to perform acceptably in the presence of nonlinearities,

uncertainties, and variations in the identified system parameters [18]. This service would

de-emphasize errors developed in the dynamic parameters during the model identification

process.

Using the previously identified linear, dynamic HMTB model (equation 5.1), a

linear model reference system can be described by the state equation

xa(k + l) = Axa(k) + Bv(k) (7.1)

where

xd(k) is the state vector of the on-orbit dynamic model,

v(k) is the input vector,

A is the model reference state matrix, and

B is the model reference state matrix.

The model reference control system will have a stable equilibrium state if the magnitude of

the discrete-time eigenvalues of A are less than unity. The primary task of the controller in

Figure 88 will be to adjust the actuating signal of the identified HMTB model for the

purpose of driving the state error between both models to zero [18].

input v

P[ On-orbitDOSS model

+ _ __ _ Ground-based

Controller

+

- _()

error

Figure 88. Model Reference Control System for DOSS.
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Appendix A. Plots and Graphs

This appendix contains plots and graphs for the shoulder pitch and elbow pitch

joints. Explanation of the graphs are discussed in the main text. The graphs and plots are

divided into three subdivisions as follows:

A.1

A.2

A.3

Nonparametric Plots
Classical Parametric Plots

OKID Parametric Plots.
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A.2 Classical Parametric Plots
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Figure A31. Shoulder Pitch ARMAX Residual Whiteness and Independence.
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Figure A37. Shoulder Pitch OE Pole-Zero Plot.

104



Output # 1 Fit: 0.00411
0.025

0.02

0.015

0.01

0.005

0

-0.005
0 20 40 60 80 100 120 140 160

Solid (-) • Model output, Dot (.) • Measured output
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A.3 OKID Parametric Plots
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Figure A52. Shoulder Pitch System and Observer Markov Parameters.
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Figure A54. Shoulder Pitch Hankel Matrix.
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