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LOCAL SYNTHESIS AND TOOTH CONTACT
ANALYSIS OF FACE-MILLED, UNIFORM TOOTH
HEIGHT SPIRAL BEVEL GEARS

by

F. L. Litvin! and A. G. Wang?
Department of Mechanical Engineering
University of Illinois at Chicago
Chicago, IL

ABSTRACT

Face-milled spiral bevel gears with uniform tooth height are considered. An approach
1s proposed for the design of low-noise and localized bearing contact of such gears. The
approach is based on the mismatch of contacting surfaces and permits two types of bearing
contact either directed longitudinally or across the surface to be obtained. Conditions to
avoid undercutting were determined. A Tooth Contact Analysis (TCA) was developed. This
analysis was used to determine the influence of misalignment on meshing and contact of the

spiral bevel gears. A numerical example that illustrates the theory developed is provided.
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NOMENCLATURE

Blade angle of gear head cutter (fig. 4)(Table 2)

Profile angle of pinion head cutter (figs. 7, 18)(Table 3)

Angles of pinion and gear pitch cone, respectively (figs. 6, 11, 12)(Table
é%mft angle (Table 1)

Tangent to the path of contact on the pinion surface (Table 3)
Surface parameter of the pinion head cutter

Surface parameter of the gear head cutter

Surface parameter of the pinion head cutter (figs. 7, 18)

Angle formed between principal direction e; and e, (fig. 10)

Angle of rotation of the pinion (¢ = 1) or gear (¢ = 2) in the process of
meshing (figs. 11, 13, 14, 15)

Angle of rotation of the cradle in the process for generation of the pinion
(: =1) or gear (i = 2) (fig. 5)

Angle of rotation of the pinion (: = 1) or gear (i = 2) in the process
for generation (figs. 6, 8)

Angular velocity of the pinion (¢ = 1) or gear (: = 2) (in meshing and
generation)

Angular velocity of the cradle for the generation of the pinion (z = 1)
or gear (1 = 2)

Pinion (z = 1) or gear (z = 2) tooth surface (fig. 17)

Pinion (i = 1) or gear (i = 2) generating surface (figs. 1, 2, 3, 16)
Pinion and gear axial displacements, respectively (figs. 11, 13)(Table

4)
Errors the offset and shaft angle, respectively (figs. 12, 13)(Table 4)
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kg, ki, ks, kq
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S

Function of transmission errors (figs. 14, 15)

Unit vectors of principal directions of pinion and gear tooth surface,
respectively (fig. 10)

Dedendum height of the pinion

Principal curvatures of the pinion and gear tooth surfaces, respectively
Matrix of orientation transformation from system S; to system S; (3X3)
Derivative of ¢,(¢1) (Table 3)

Mean contact point (figs. 1, 2, 3, 7, 9)(Table 3)

Matrix of coordinate transformation from system S; to system S; (4X4)
Unit normal and normal to the generating surface X; represented in
coordinate system Sk

Number of teeth of pinion (¢ = 1) and gear (i = 2) (Table 1)
Installment angle for the head cutter of the pinion (z = 1) and gear
(z = 2) (fig. 5)(Tables 2, 3)

Radius of the generating surface of revolution for the pinion (figs. 3, 7,
16, 18)(Table 3)

Radius of the head-cutter at mean point for the pinion and gear (figs.
1,2,3,4,7,16, 18)(Tables 2, 3)

Position vector in system S; (i = 1,2, h,t,12)

Radial setting of the head cutter of the pinion (i = 1) and gear (i = 2)
(fig. 5)(Tables 2, 3)

Coordinate system

v{t) (i = 1,2) Velocity of contact point in its motion over surface L,

Vi)

o, o)

Relative velocity at contact point (7,7 = 1,2, ¢1,¢2,1,12)

Components of the velocity of the contact point in its motion over ¥,

vi



1 Introduction

Two models for spiral bevel gears with uniform tooth height were proposed by Litvin et al.
[1]- The generation of tooth surfaces of such gears is based on application: (i) of two cones
that are in tangency along their common generatrix (model 1), and (ii) a cone and a surface
of revolution that are in tangency along a common circle (model 2). The pinion and the
gear are face-milled by head-cutters whose blades by rotation form the generating surfaces.

The generating surfaces provide conjugate pinion-gear tooth surfaces with a localized
bearing contact that is formed by a set of instantaneous contact ellipses. The path of
contact is directed across the surfaces in model 1 (fig. 1), and in the longitudinal direction
in model 2 (fig. 2). The transmission errors are zero but only for aligned gear drives.

It is well known that misalignment of a gear drive causes a shift of the bearing contact
and transmission errors. The transmission errors are one of the main sources of vibration.
Therefore, the direct application of the models discussed above for generating surfaces is
undesirable.

It was discovered that misalignment of a gear drive causes an almost linear but discon-
tinuous transmission function. However, such functions can be absorbed by a predesigned
parabolic function of transmission errors. The interaction of the parabolic function and a
linear function results a parabolic function with the same parabola coefficient [2]. Based on
this consideration, it becomes necessary to modify the process discussed above for generation
to obtain a predesigned parabolic function of transmission errors. It was proposed in the
work (3] to obtain the desired parabolic function of transmission errors by executing proper
nonlinear relations between the motions of the cradle and the gear (or the pinion) being
generated. This approach requires the application of the CNC machines.

The purpose of this report is to propose modifications of generating surfaces that will
obtain: (i) a localized bearing contact that may be directed in the longitudinal direction

or across the surface, and (ii) a predesigned parabolic function. These goals, that will be



proven later, are obtained by the proper mismatch of the ideal generating surfaces shpwn in
figs. 1 and 2. The mismatch of surfaces is achieved by application of modified generating
surfaces shown in fig. 3. The modified generating surfaces are in point contact instead of
tangency along a line that the ideal generating surfaces have. The desired parabolic function
of transmission errors, the orientation of the path of contact, and the magnitude of the major
axis of the contact ellipses are obtained by the proper determination of the curvature and
the mean radius of the surface of revolution of the generating tool.

Design of drives with a small number of pinion teeth may be accompanied with pinion
undercutting. Using the approach proposed in (7, 8, 9], it becomes possible to avoid under-
cutting of spiral bevel pinions. The meshing and contact of the tooth surfaces was simulated
by the TCA (Tooth Contact Analysis) computer program developed by the authors.

The contents of the report cover the following topics:

(1) Method for generation of conjugate pinion-gear tooth surfaces.

(2) Derivation of gear and pinion tooth surfaces.

(3) Local synthesis as the tool for the directed mismatch of contacting surfaces.
(4) Simulation of meshing and contact of misaligned drives.

(5) Avoidance of pinion undercutting.

Numerical examples for the illustration of the proposed approach are considered.



2 Method for Generation of Conjugated Pinion-Gear
Tooth Surfaces

Gear Generation:

The head-cutter for gear generation is provided with inner and outer straight-line blades
(fig- 4), that form two cones while the blades are rotated about the Zi,-axis of the head
cutter. These cones will generate the convex and concave sides of the gear profile, respectively
[12].

We apply coordinate systems S.,, S;, S, that are rigidly connected to the cradle of
the generating machine, the gear and the cutting machine, respectively (figs. 5 and 6). The
cradle with coordinate system S, performs rotation about the Z,,-axis, and Y., 1s the current
angle of rotation of the cradle (We take : = 2 in the designations of fig. 5). Coordinate
system S, is rigidly connected to the gear head-cutter that is mounted on the cradle. The
0404 (fig. 5(b).

The gear in the process for generation performs rotation about the Zy-axis of the auxiliary

installment of the head-cutter is determined with angle ¢; and S,, =

fixed coordinate system S that is rigidly connected to the S, coordinate system (fig. 6).
The installment of S, with respect to S, is determined with angle ,, where 7, is the angle
of the gear pitch cone. The current angle of gear rotation is v, (fig. 6). Angles v, and ¥,
are related as
% = % =sin7y, (1)

The observation of this equation guaranties that the X,,-axis is the instantaneous axis
of rotation of the gear in its relative motion with respect to the cradle.
Pinion Generation:

The head-cutters for pinion generation are provided with separate blades that will gen-
erate the convex and concave sides of the pinion profile, respectively (fig. 7). The pinion

generating tool is installed on the cradle similarly to the installment of the gear generating

cone (We take ¢ = 1 in the designations of fig. 5). An auxiliary fixed coordinate system

3



S, is rigidly connected to the S,, coordinate system (fig. 8). An imaginary process for the
pinion generation for the purpose of simplification of the TCA program is considered. The
installment of coordinate system S, with respect to Sy, is determined in the real process of
cutting by the angle v, that is measured clockwise, opposite to the direction shown in fig.
8. The pinion performs rotation about the Z,-axis and 9, is the current angle of rotation.

The angles of rotation of the pinion and the cradle are related as

¢C1 wC1 .
—_— = — = Sln'}' 2
lpl Wy ' ( )

Axis X,, in accordance to equation (2) is the instantaneous axis of rotation of the pinion

in its relative motion with respect to the cradle.



3 Derivation of Gear Tooth Surface

Equations of Gear Generating Surface
We consider that the gear head-cutter surface is represented in S:, (fig. 4) by vector

function ry,(s,,6,)

3)

(Ry — sgsinay)siné,
54COS Qg

(Ry — sgsinay) cos b,
rfz(sg’ay) =

where s, and 6, are the surface coordinates; a4 is the blade angle; R, is the radius of the
head-cutter at the mean point. Equations (3) may also represent the convex side of the
generating cone considering that ¢4 is negative.

Coordinate system S, is rigidly connected to coordinate system S.,, and the unit normal

to the gear generating surface is represented by the equations

_ N, _Or,,  Ory,
ncz(eg) - INc2| I c2 — aag X asg (4)

Equations (3) and (4) yield

()

cos ay cos
n,(6,) = | cosa,siné,

sin ag

Equations of the Family of Generating Surfaces in S;
A family of tool surfaces is generated in gear coordinate system S, while the cradle and
the mounted tool and the gear perform the rotational motions that are shown in figs. 5 and

6. The family of surfaces is represented in S; by the matrix equation

I‘2(Sg, og, "/’2) = M2b(¢2)Mmemcz (d’c; )Mcztz rtz(sg’ gg) (6)
= Moy, (¥2)1, (54, 05)

The product of matrices My, is based on the coordinate transformations from S, to S,

(figs. 5 and 6), where 9, and ., are related by equation (1) and

cosy, sinyy 0 0

| —siny,; cosyp, 0 0O

Mz = 0 0 10
1

0 0 0



siny, 0 —cosvy, 0

0 1 0 0
Mom = cosy, 0 sinyp O (®)
0 O 0 1
costp, —sint, 0 0
_ | siny, cosyp, 0 0
0 0 01
1 0 0 S,ycosq
_ 10 1 0 Sigsing,
Ma, = 0 01 0 (10)
0 0O 1
Equation of Meshing
We derive the equation of meshing between the generating surface and gear as
N, _v((::ﬂ) =f(59’097¢2) =0 (11)

representing the vectors in S, .

where vﬁ;’z) is the relative velocity that is represented in the coordinate system S.,. Here,

vied) = ol x ., = (W) — W) x r, (12)
where
rcz = MCQtzrtz
—$gsinay cosfy + By (13)
= | —sgsinaysinfy, + B,
S4COS 0y
0 0 —N; /N, cos y; cos ¢,
(W) — @) = 0 —LemLmsLsz | 0 | = | Ni/Nzcosvzsin, (14)
w; sin v wy 0

Using the designations
B, = R,cosb, + S;zcosqy } (15)

B; = Rysinf, + S;2sing,
and considering that N;/N, = siny,/sinv; and |w;| = 1, we obtain from equation(12) that

Sg COS Y2 Sin Y, cos ag Ny /N,
(16)

vie2) =

p Sg COS Y2 COS P, cos ay N1 /N2

N1/N; cos ¥2(sg sin g sin(8y + ¢, ) — Bisinye, — Bz cos ¥,)

6



The equation of meshing (11) is represented as

sin ay( B, sint, + By cos ¢, )
Oy, ;) = —2 2 :
Sg( 9aw2) Sin(gg'f'd)cz) (17)

Equations of Gear Tooth Surface

Equations (6) and (17) represent the gear tooth surface by three related parameters.
Taking into account that these equations are linear with respect to Sg, Wwe may eliminate s,

and represent the gear tooth surface by two independent parameters, 0y and t),, as

rz =150y, %) (18)



4 Derivation of Pinion Tooth Surface

Equations of Pinion Generating Surface
The derivations are similar to those that have been described in section 3. The generating

surface of revolution is represented in S;, (fig. 7) as

[R, — Ry(cosa, — cos(ay, + /\,,))] cosf,
r, (Ap, 0,) = | [Rp — Ri(cosa, — cos(ay, + Ap))]sind, (19)
—Ry(sina, — sin(a, + Ap))

where A, and 0, are the generating surface coordinates; a, is the profile angle at point M; R,
is the radius of the head-cutter at mean point; R; is the radius of the surface of revolution.
Equations (19) can also represent the concave side of the generating surface of revolution if
we substitute o, as 180° — «.

Coordinate system Sy, is rigidly connected to coordinate system S, and the unit normal

to the pinion generating surface is represented by the equations

N,

_ Oy Oy
NG, |

c A 79 = bl ca
nl( P P) N aop X aAp

Equations (19) and (20) yield

cos 8, cos(ap + Ap)
N, (Ap, 0p) = | sinf,cos(a, + Ap)
sin(ap + Ap)
Equations of the Family of Generating Surface

The family of generating surfaces is represented in S; by the matrix equation

rl(Apv epy 1»Z’l) = Mla(wl)MamMmcx (wq )Mcltlrtl (’\P’ gp)
= Mlil(t/)l)rh(kpvep)

The product of matrices My, is based on the coordinate transformations from S, to S,

(22)

(figs. 5 and 8), where 1, and %, are related by equation (2). Here,

cosy, —siny; 0 O
_ | sinyy cosyy 0 O

M. = 0 0 10 (23)
0 0 01



—siny; 0 —cosy; 0]
0 1 0 0
M. = cosy; 0 —siny; 0 (24)
0 0 0 1]
costp, =—sint, 0 0]
_ | siny, cosyp,, 0 O
Mne =1 g 0 10 (25)
0 0 0 1]
1 0 0 Sycosqy
_ 010 S,-l sin 41
Man = 0 01 0 (26)
0 00 1
Equation of Meshing
We derive the equation of meshing between the generating surface and pinion as
N - ngll) = f(’\map’ Y1) =0 (27)

where v((;fll) is the relative velocity in the coordinate system S,. The vectors are represented
in S, . Here,

vgfll) = wg‘c”) X Ty = (wgf‘) - wg’) X rg’) (28)

where

r., = Mc;tl Iy,
R, cos(ap + Ap) cosb, + By
Ry cos(ay + Ap)sinb, + B,
—Ri(sinap — sin(a, + Ap))

0 0 Wy €COS 7Y COS Py,
(wgfl) —_ wg‘)) = O — LclmLmaLal 0 = —wj COSMN sin ¢c1 (30)

wy sin Ty —wy 0

Using the designations

B, = Rycosl,+ S, cosq — ercos o, cos b, (31)
B; = Rpsinf,+ S,1sing; — Rycosa,siné,
and considering that |w;| = 1, we obtain from equation(28) that
R, (sin ap — sin(a, + A,)) cosv; sin ¥,
vgf‘l) = Ry (sina, — sin{a, + A,)) cosy cos ¢, (32)
cos 11( Ry cos(ap + Ap)sin(6, + ¥, ) + Bysiny,, + Bz cosyy,)

9



The equation of meshing (27) is represented as

— Ry sin e, sin(6, + ¢, )
t A —_ P p 1
an(ap + ) B sin ., + B, cos v,

(33)

Equations of Pinion Tooth Surface

Equations (22) and (33) represent the pinion tooth surface by three related parame-
ters. After elimination of parameter A, we may represent the pinion tooth surface by two

independent parameters, 8, and ;.

rp = rl(apywl) (34)

10



5 Local Synthesis

The ideas of local synthesis are based on the following considerations {2]:
(1) The pinion and gear tooth surfaces are in tangency at the mean contact point M that
is in the middle of the contacting surface.
(2) The gear ratio is equal to the theoretical one.
(3) We have to provide in the neighborhood of M the following transmission function
(fig- 9)
Ba(1) = b — ymind? (35)

where 1m}, is the parabola parameter of the predesigned parabolic function of transmission

€ITOrIS
Aga($) = —5mind? (36)

(4) In addition it is necessary to provide the desired direction of the contact path.

All these goals can be achieved by the proper mismatch of the contacting surfaces of the
pinion-gear tooth surfaces. The solution to this problem requires directions of the contacting
surfaces. However, since the equations of the pinion and gear tooth surfaces are represented
in a complex form, we will represent the principal curvatures and directions of the generated
surfaces in terms of the principal curvatures and directions of the generating surfaces (the
head-cutter surfaces) and the parameters of motion. The procedure of the local synthesis is
as follows:

Step 1: We consider as given the surface of the head-cutter that generates the gear
tooth surface. The head-cutter surface is a cone and is in line contact with the surface of the
gear. One of such contact lines passes through the mean point M of tangency of the pinion
and the gear tooth surfaces. Considering the surface of the gear head-cutter as known, we

determine at point M the principal curvatures and directions of the gear head-cutter.

11



The principal directions of the generating cone are

dry, |Or :
el 80:2/ 60;2 = [-sind, cosf, 0T
(37)
or,, |0 . . .
el? = aI:: / 61.:: = [—sinogcosf, —sinagsind, cosay)?
The principal curvatures of the generating cone are
k?’) = —cosay/(Ry — sysinay)
(38)
kP =0

Step 2: Our next goal is to determine at M the principal curvature &, and k; and the
principal directions of the gear tooth surface ¥,. We apply for this purpose the equations that
have been proposed in [2] and represent the direct relations between the principal curvatures
and directions for two surfaces being in line contact.

Surface ¥,, and Z; are in line contact when cone ¥,, generate the gear tooth surface Z,.
The principal curvatures of the gear k, and k, can be obtained from the equations

—2b13by
tan2c, = 13723
? by — b2, — (kY — k{?)bas

_  =2bib
b=k = luam (39)

2 2
kot ke = K 4 k(D 40 +3b
where
b13 = '—k‘(;z)v}tzz) + [nw(’zz)e(;’)]
b23 = _k}(:?)v’(:22) + [nw(tzz)egb)]
byy = _k‘(ftz)(v‘(ftﬂ))Z _ k}(;m)(vl(:ﬂ))z + [nw(tgz)v(tﬂ)] _ n_[(w(tg) x vg)) _ (w(z) x vg’))]

(40)

The principal directions on the gear tooth surface are represented by unit vectors e, and

e | | coso, sinog e(f") (41)
e, | | —sino, cosg, el

12
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Step 3: We now consider that the gear and pinion tooth surfaces, ¥; and ¥, are in
tangency at M. As a reminder, the mismatched gear and pinion tooth surfaces are in point
contact at every instant.

Unit vectors e, and e, represent the known directions of the principal directions on
surface ;. The principal curvatures k; and k, on the gear principal directions are known.
Our goal is to determine angle o,; that is formed by vectors e; and e, (fig. 10) and the
principal curvatures ks and k; of the pinion tooth surface at point M. Unit vectors e; and
e, represent the sought-for principal directions on the pinion tooth surface ;.

Step 4: The three unknowns: ks, ks, and oy, can be determined using the approach
developed in [2]. We use for this purpose the following system of three linear equations.
Three linear equations that related the velocity v{!) of the contact point over surface I, are

derived in reference [2] as:

anvV + a0l = a3
a12v{V) + agv) = ay (42)
azv{!) + azqul) = a3z

The augmented matrix formed by the coeflicients a;;, ai; and a;3 is a symmetric one [2].
Here, v(!) and vgl) are the components of the velocity of the contact point that moves in
the process of meshing over the pinion tooth surfaces ¥;. Coeflicients a;;, a;; and a;3 are
represented in terms of k,, kg, ks, ki, 012 and the parameters of motion.

Step 5: Equation system (42) represents a system of three linear equations in two
unknowns: v{!) and vgl). Surface £; and X, are in point contact, the path of contact has
a definite direction, and the solution of equation system (42) with respect to v{!) and v{!
must be unique. Therefore, the rank of the augmented matrix formed by a;;, a;» and a;3 is

equal to two. This yields that

an a2 as

_ 2 2 2
a2 a2 az3 =  @11422a33 + @12a23¢13 + @13a12023 — G22a73 — @11Q33 — G33A7;
a13 a23 ass

= F(kf, ]Ch, k_,, kq, 012, m’n) =0
(43)

13



Here,

an = k,—kyscos?oyz — kpsin?oy,

ajz = O.S(kf - kh) sin 2072

a3 = —k,v(1?) + [nwlte,]

a2 = ky—kgsin 2015 — kp cos?o12 (44)
ax = —ku'® + [nwle,]

ass = k,(v{'9)? + kq(”egn))2 — [nw(Dv(2)]

—n[(w® x v{?) — (W x vI)] + my(n x ky) -
012 = 04 — 0, is the angle between the principal directions of this two contacting surface,

m), is the derivative of ¢,(¢1) at the contact point. Coefficient ass contains the derivative

d
my, = M(mn(ﬁﬁl)) (45)
where
mo = Z—z—j— (46)

From equation (43), we get

2 2
—@a12023G13 — G13Q12G23 + A22G73 T A11a33

asz = 47
- anaz — af, (47)
Substituting equation (47) into equation (44), we can obtain the derivative
, as = k(0f1)? — k(o) + [nw(2vE2] 4 n (@) x vT) — (W@ x vi)]
my = (48)

(n xkg) rm

The parabola coefficient of the parabolic function (36) is m5, /2.
The other relation between the coefficients a;;, a;; and a3 may be determined considering

that
)

tann; = % (49)
Us

where 7, is the assigned direction at M of the tangent to the path of contact on the pinion
surface ;.
Using the relations discussed above between the coefficients of linear equation [2], we are

able to determine the sought-for pinion principal curvatures &y, ki and orientation angle 012.

14



Step 6: We consider now that for surface £, the followings are known: (i) the principal
directions determined by unit vectors e; and e, (ii) the principal curvatures k; and ki,
and (iii) angle 0,2 formed by unit vectors e; and e, (fig. 10). Our goal is to determine
the principal curvatures and directions of the pinion head-cutter generating surface that
is designed as the surface of revolution (fig. 3). The pinion head-cutter surface and the
pinion tooth surface are in line contact at every instant. Using the direct relations between
the principal curvatures and directions for two surfaces being in line contact [2], we may
determine the principal curvatures and principal directions of the pinion head-cutter. Then,
the desired mismatch of the surfaces of the gear and the pinion will be provided by the
generation of the gear and the pinion by the designed head-cutters.

Using the approach discussed above, we obtain the following equations

tan 2¢ —2b13b;
P b — b — (kW) — E{t)yel,
Y

bl2 +bl2
kp+kf = kgt‘) + kétl) + _13_52:23.

where
b = —kMo(D) 4 [nwtbelt)]
by = —k{v{) + [nw(te()]
By = —k{M(pH)? — k) (o{nD)2 4 [nwEDvD)] - pf(w®) x viD) - (0 x vi)]

(51)

The principal directions on the pinion and the pinion head-cutter are related as follows

ef | _| coso, sino, e(t)
[ €h ] B [ —sinog, COsOy ] [ egtl) (52)

15



where the principal directions of the generating surface of revolution are

or,, |Or .
elt) = 60:/ 30: = [—sin@, cosf, 0]7
(t1) — Ory, [(Ore| _ . . . T
elt) = / = [—sin(a, + Ap)cosb, —sin(a, + Ap)sind, cos(a, + Ap))
? 0X, " |0,
(53)
The principal curvatures of the generating surface of revolution are
K0 = —cos(a + Ap)/(Ry + Ra(cos(a, + ) — 03 )
(54)
kgtl) = —l/Rl

Equations (53) and (54) permit the representation of the principal curvatures and direc-
tions on the pinion head-cutter surface in terms of Ry and R,. We remind that equations
(48) and (49) contain parameters R, and R, (figs. 2). Considering as given mj, and 7,, we
can determine from equation (48) and (49) R; and R,.

Step 7: At this step we know the principal curvatures and directions on the pinion and
the gear, and the principal curvatures and directions on the pinion and gear head-cutters.
The obtained mismatch of pinion and gear tooth surfaces will provide in the neighborhood of
the mean contact point the desired parabolic function of transmission errors and the direction
of the contact path. The principal curvatures and directions obtained on the pinion and
gear head-cutters will provide the required mismatch of the pinion and gear tooth surface.
Our next goal is to determine the dimensions of the instantaneous contact ellipse and its
orientation, considering as given the elastic approach of the contacting surfaces.The solution
is based on the following procedure [2].

The major axis and minor axis of the contact ellipse can be determined as

(55)

where § is the elastic approach obtained from experimental data; A and B are determined
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A = KD — kD — (g7 - 2919, cos 201 + g3) ]

(56)
B = ik -k + (g7 — 20102 cos 201, + 3) 1]
and
kD = kp+ ks D = k,+k, (57)
g1 = kj—k g2 = ki—k,
The orientation of the contact ellipse in the tangent plane is determined by
cos2a = JL — 9208 91z (58)

1
2

(91 — 29192 cos 2012 + ¢3)
Directions for the Computational Procedure of Local Synthesis

Step 1: The parameters of the gear head-cutter and its installment are considered as
known (see, for instance, Table 2).

Step 2: The mean contact point is considered as known as well (It is determined by the
application of the TCA program that provides the tangency of contacting surfaces at the
mean contact point).

Step 3: Using equations (39) and (41), we determine at the mean contact point the
principal curvatures (k,, k,) and the principal directions represented by unit vectors e, and
e, (fig. 10).

Step 4: We use the values R, and R, (fig. 3) as the first guess for the pinion head
cutter. Then, we determine at the mean contact point the principal curvatures k{!), k{),
and principal directions represented by e{"), e{1) applying for this purpose equation (53)
and (54).

Step 5: We compute the principal curvatures k;, ki of the pinion tooth surface and
principal directions represented by unit vectors e; and e, applying for this purpose equations
(50) and (52).

Step 6: Choosing m), and 7, and then applying equations (48) and (49), we determine
the final values of R; and R,. The process of computation is an iterative one and requires

for the solution a first guess of parameters R; and R,.
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6 Tooth Contact Analysis

The purpose of TCA is to determine the influence of misalignment on the shift of the bearing
contact and the transmission errors. This goal is to be obtained by simulation of meshing
and contact of the pinion and gear tooth surfaces of a misaligned gear drive.

We consider that the pinion and gear tooth surfaces are analytically represented in co-
ordinate systems S; and S; (see sections 3 and 4, respectively). The meshing of pinion and
gear tooth surfaces is considered in fixed coordinate system S (figs. 11 and 12). Auxiliary
fixed coordinate system S, and S, are applied to describe the installment of the pinion with
respect to Sy, (fig. 11). The pinion alignment error A A, is the pinion axial displacement. The
misaligned pinion in the process of meshing with the gear performs rotation about Z.-axis.
The current angle of rotation of the pinion is designated by ¢; (fig. 11).

Auxiliary coordinate systems S;, S. and S; are applied to describe the installment of
misaligned gear with respect to S,. The errors of alignment are: the change A~y of the shaft
angle (fig. 12), the offset AE and the gear axial displacement AA, (fig. 13). The misaligned
gear performs rotation about the Z;-axis, and ¢, is the current angle of the gear rotation.

A TCA computer program was developed to simulate the meshing of pinion-gear tooth
surfaces of the misaligned gear drive. The development of the TCA program is based on the
following ideas:

Step 1: We consider that the pinion and gear tooth surfaces and the surface unit normals

are represented in coordinate system S; and S; by vector functions

r1 (85, ¥1) and ry(8,,2) (59)

n,(0p, ¥1) and ny(f,, ¥,) (60)

where (0,,v,) and (8,,v2) are the surface parameters.
Step 2: We represent now the pinion-gear tooth surfaces and their surface unit normals

in coordinate system Sp, and take into account that the surfaces are in continuous tangency.
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Then we obtain the following equations

v (8p, %1, 61) — 15 (85, %3, 62) = 0 (61)
{6, %1, 1) — nP (8, Y2, 62) = 0 (62)
where
(85, %1, 61) = My (61)r1(85, 1) (63)
) (8g, 92, 62) = Maa(b2)r2(65, %2) (64)
n{)(8,, %1, 1) = L (¢1)01(6,,%1) (65)
n{?(6,, %2, 62) = Laa(2)n2(6;, 12) (66)
cos¢y sing; 0 O
—sin¢g; cos, 0 O
M = 67
m(¢1) 0 0 1 AA, (67)
0 0 0 1
Miz(¢2) = MpsM,,
—sinAy 0 ~cosAy 0 cosgp, —sing, 0 O
_ 0 1 0 AFE sing, cosg, 0 0 (68)
" | cosAy 0 —sinAy 0 0 0 1 AA,
0 0 0 1 0 0 0 1

Equations (61) and (62) represent the conditions that the contacting surfaces at the point
of tangency have a common position vector and a common surface unit normal. Equations

(61) and (62) yield a system of five independent scalar equations of the following structure

filOp, %1, 61,05, 02,02) =0  fie C' (i =1..5) (69)

As a reminder, vector equation (62) yields only two independent scalar equations, and
not three, since [n{"| = In{?| =1.

Step 3: System (69) of five nonlinear equations contains six unknowns, but one of the

unknowns, say ¢;, may be considered as the input parameter. Our goal is the numerical

solution of nonlinear equations (69) by functions

{6,(61),1(61),0,(n), Ba(d1), da(d1)} € C* (70)
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The sought-for numerical solution is an iterative process that requires on each iteration
the observation of the following conditions [2, 4, 5, 11]:

(i) There is a set of parameters (the first guess)

P8, (7, 65,60, {7 40y (71)

that satisfies the equation system (69).

(ii) The Jacobian taken at P differs from zero. Thus, we have

Ac D(fla f21 f31f4’f5)
5= D(Op, Y1, 09, 1, ¢2)

#0 (72)

Then, as it follows from the Theorem of Implicit Function System Existence, equation
system (69) can be solved in the neighborhood of P by functions (70).

Using the obtained solution, we can determine the path of contact on the pinion-gear
tooth surface, and the transmission errors caused by misalignment. The path of contact on

surface Z; (z = 1,2) is determined by the expressions

rl(op,¢1)7 9?(¢1)7 ¢l(¢l) (73)

r2(093 11[)2)’ 09(¢1), 1/)2(¢1) (74)
The transmission errors are determined by the equation

Dda = da(dr) - %qsl (75)

The dimensions and orientation of the instantaneous contact ellipse at the contact point
may be determined considering that the principal curvatures and directions of the contacting

surfaces, and the elastic approach of the surface [2] are known (see step 7 in section 5).

20



7 Avoidance of Pinion Undercutting

In most cases undercutting can be avoided, if the appearance of singular points on the
generated surface is avoided. Singularities on the surface occur when the normal to the
surface becomes equal to zero. To avoid undercutting of the pinion by the generating tool,
the approach developed in {7, 8, 9] is applied:

Step 1: Consider that the surface of the generating tool is represented as
Iy, =Ty (’\P‘) op) (76)

The equation of meshing is represented as
fi(Xp,6p,91) =0 (77)
Step 2: It is proven in [7, 8, 9] that singular points occur if
vit) 4yt = 0 (78)

where v{") is the velocity of the contact point in its motion over the tool surface, and v(tl)

is the relative velocity. This yields that a matrix

Ory, % (t11)
ax, 96, u
A= (79)
3f 8fi _0f O
ax, 06, 0y, ot

has the rank r = 2 and therefore three determinants A; (i = 1,2, 3) of the third order must

be equal to zero. Then we obtain that
Fl(Ap,Gp,¢1)=Af+A§+A§=O (80)

Equations (77) and (80) permit the function A,(f,) to be determined for the limiting
line on the tool surface. Then, we are able to determine the limiting line on the generating

surface by the equation
ry, = Ty, (05, Ap(67)) (81)
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Fig. 14 shows the limiting line on the pinion tool surface.

Step 3: Using coordinate transformation, we may determine the line of singular points
on the pinion tooth surface. (fig. 15)

Step 4: To avoid undercutting, we have to limit the dimension of the dedendum of the

pinion tooth.
Fig. 16 shows the axial section of the pinion head-cutter. Parameter h represents the

distance of a point of the axial section from the reference circle determined as
Rysina, — Rysin(ap, + Ap) = A (82)
To verify that undercutting has been avoided the following inequality must be observed
Ry[sina, — sin(a, + Ap(6;))] > ke (83)

where hy is the dedendum height of the pinion, and ),(6,) represents the function that
corresponds to the points of the limiting line.
The design of spiral bevel gears is based on application of special tooth element propor-

tions for the avoidanceof undercutting: small pinion dedendums and long pinion addendums.
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8 Numerical Example

As a numerical example the blank data is given in Table 1.
The gear head-cutter is a cone (figs. 2, 3 and 4), the cutter radius is designated by R,

(fig. 1), the radial setting of the head-cutter is IOC2 O.,| (fig. 5(b)), and the installment angle

is g2 (fig. 5). The data for the gear head-cutter that generates the gear concave side are
presented in Table 2.

The parameters of the pinion head-cutter were determined by application of the method
of the local synthesis (section 5). The data for the pinion head-cutter that generates the
pinion convex side are represented in Table 3. We considered in the numerical examples
the meshing of the gear tooth concave side with the pinion tooth convex side. Case 1
corresponds to the orientation of the bearing contact across the surface, case 2 corresponds
to the orientation of the bearing contact in the longitudinal direction.

The application of TCA for the simulation of meshing and contact permits the deter-
mination of misalignment effects on the transmission errors and the shift of the bearing
contact. It has been shown that in the case of application of ideal generating surfaces (with-
out mismatch, figs. 1 and 2) the errors of misalignment cause indeed discontinuous almost
linear transmission errors as shown in fig. 17 for shaft angle error A%y. Similar functions of
transmission errors are caused by errors AA4,, AA; and AE. Table 4 shows the maximum
transmission errors caused by misalignment.

The results of TCA for the properly mismatched generating surfaces (see section 5) con-
firmed that a predesigned parabolic function indeed absorbs the transmission errors caused
by misalignment, and the resulting function of transmission is a parabolic one (fig. 18). The
absorption of linear function of transmission errors is carried out as well in other cases of
misalignment: AA,, AA,; and AE. The bearing contact of the drive is stable, and its shift
is permissible (fig. 19). Model 2 of the gear drive (with longitudinal direction of the bearing

contact) is preferable due to the lower level of transmission errors caused by misalignment.
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9 Conclusion

From the conducted study the following general conclusions can be drawn:

(1) An approach has been developed for the synthesis of spiral bevel gears that provides
(i) localized bearing contact, and (ii) low level of transmission errors of a parabolic type.
The developed approach permits two possible directions of the bearing contact: across the
tooth surface or in the longitudinal direction.

(2) A Tooth Contact Analysis (TCA) computer program for the investigation of the
influence of misalignment on the shift of the bearing contact was developed.

(3) A low level of transmission errors, the parabolic type of the function of transmission
errors, and the localization of the bearing contact are achieved by the proper mismatch of
contacting surfaces.

(4) The influence of the following errors of alignment was investigated: (i) for axial
displacement of the pinion, (ii) axial displacement of the gear, (iii) offset, and (iv) change
of the shaft angle. These types of misalignment were proven to cause discontinuous almost
linear functions of transmission errors, but they are absorbed by the predesigned parabolic
function of transmission errors.

(5) Conditions of nonundercutting of the pinion were determined.

The results of this investigation show that a predesigned parabolic function can indeed
absorb the linear functions of transmission errors caused by misalignment. The design of
gears with a longitudinal bearing contact (in comparison with the bearing contact across the

surface) is preferable since a lower level of transmission errors can be obtained.
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10 Manual for Computer Program

Program Names and Purpose of the Programs
There are three programs
1. Program for Local Synthesis: Localsyn.for

2. Program for TCA: Tca.for

3. Program for Undercutting: Undercut.for

These programs are directed at the synthesis of the spiral bevel gear with uniform tooth
height by using mismatched generating surfaces. The programs cover the local synthesis,
tooth contact analysis and nonundercutting conditions. Using the programs, one can obtain
the tooth surfaces, the contact lines on the tooth surface, the contact path on the tooth
surface, the transmission errors and the bearing contact caused by misalignment of the gear

drive, and the limiting lines on the generating tool surface and the pinion tooth surface.

Environment for Running the Programs

These programs were developed by application on an IBM PC and can be run using the

software "Power Fortran”.
An application of the subroutine HYBRD1 [11] for solving a system of nonlinear equations

and several other subroutines that was called by HYBRD1 are required and included.

Input Data
1. Blank data

TN1—Pinion number of teeth
TN2—Gear number of teeth

TW—Face width of gear (mm)
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GAMA—Shaft angle (degree)
Betal—Pinion spiral angle (degree)
Beta2—Gear spiral angle (degree)
EllipseDelta—Elastic approach (mm)

2. Gear cutter specification

RU2—Gear nominal cutter radius (mm)
PW2—Point width of gear cutter (mm)

AFA _g—Blade angle of gear cutter (degree)
Rg—Cutter radius (mm)

3. Gear machine-tool settings
GAMA2—Gear machine pitch angle (degree)
Sr2—Radial setting (mm)

q2—Installment angle (degree)

4. Pinion machine-tool settings
GAMA1—Pinion machine pitch angle (degree)
Sr1—Radial setting (mm)

ql—Installment angle (degree)

5. Pinion cutter specification
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Rp—Cutter radius (mm)
R1— Radius of surface of revolution(mm)

AFA_p—Proﬁle angle of gear cutter (degree)
6. Misalignments

H—Axial displacement of the pinion (mm)
Q—Axial displacement of the gear (mm)
V—OfIset displacement (mm)

Delta—Change of shaft angle (arc min.)
7. Local synthesis

Etal— Tangent to the contact path on pinion surface at the mean contact point({degree)

plantm21— Coefficient of the parabolic function

Output data files

File phiiphi2.k1: Transmission errors A¢-

File sgthetag.k1: Contact line on gear generating surface

File spthetap.k1: Contact line on pinion generating surface

File contactp.kl: Contact path on pinion tooth surface

File contactg.kl: Contact path on gear tooth surface

File ellipse.k1: Bearing contact on the pinion surface

File undercut.kZ: The limiting line on pinion tooth surface (for avoidance of undercutting)
Procedure of using the programs

Step 1: Run program Tca.for for the condition of no misalignment by supplying the first
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guess of R1 and Rp.
Step 2: In the output file contactg.k! we will get from the first line the x, y and z
coordinates of the first contact point.

Step 3: Run program Localsyn.for for the desired plantm21 and etal. Then we can get
Rl and Rp.

Step 4: Check if R1 and Rp at Step 1 and Step 4 are the same or not. If both are the

same then go to Step 6.
Step 5: Use the new values that we got from Step 4, recalculate the first contact point
by running program Tca.for, and go to Step 3.

Step 6: Run program Tca.for with misalignment to obtain the transmission errors in the

output file philphi2.k1.

Step 7: Run the program Undercut.for to check up the undercutting in the output file

underp.k1.
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Table 1: Blank Data

Pinion | Gear
Ny,N,, Number of teeth | 11 41
v, Shaft angle 90°
Mean spiral angle 35° 35°
Hand of spiral RH LH
Whole depth (mm) 6.5 6.5
Tooth module (mm) 4.33
Face width (mm) 27.25 |27.25
1, 72, Pitch angles 15°1" | 74°59

Table 2: Parameters and Installment of Gear Head-Cutter on gear concave side

a,, Blade angle 20°

Ry, Cutter radius at mean point (mm) | 78.52
S-2, Radial setting (mm) 70.53
g2, Installment angle —62°14'

Table 3: Parameters and Installment of the Pinion Head-Cutter on pinion convex side

Case 1 Case 2
a,, Profile angle 20° 20°
INPUT
m, Tangent direction of the contact path 171° 92°
m$,, Derivative of ¢,(¢;) -1.3e-3 -1.2e-3
A¢y=0.5m),(/N;)?, Theoretical Max. () |-10.94 -10.09

OUTPUT

M, Mean contact point in S,, (mm)

(79.88, 0.39, 0.17)

(77.83, 1.64, 0.72)

R,, Cutter radius at mean point (mm)

78.0

64.7

R,, Radius of the surface of revolution (mm) | 235.0 765.0
Sry (mm) 70.30 65.38
q1, Installment angle —61°51 —51°24'
Length of major axis of contact ellipse (mm) | 12.54 4.5
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Table 4: Maximum Transmission Errors for Generating Surfaces with Mismatch

Ad, in arc sec.
Case 1 | Case 2
AA,=0.1lmm | 8.8 16.2
AA, =0.1mm | 11.5 12.5
AF =01mm |11 15

Ay =13 10.7 13.5
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Fig. 10: Unit vectors of principal directions of surfaces Xz and X,
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Fig. 11: Simulation of pinion misalignment AA,
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Fig. 13: Simulation of gear misalignment AE and AA,
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Fig. 19: Longitudinal bearing contact for a misaligned gear drive (Ay = 3 arc min.)
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