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LOCAL SYNTHESIS AND TOOTH CONTACT

ANALYSIS OF FACE-MILLED, UNIFORM TOOTH
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ABSTRACT

Face-milled spiral bevel gears with uniform tooth height are considered. An approach

is proposed for the design of low-noise and localized bearing contact of such gears. The

approach is based on the mismatch of contacting surfaces and permits two types of bearing

contact either directed longitudinally or across the surface to be obtained. Conditions to

avoid undercutting were determined. A Tooth Contact Analysis (TCA) was developed. This

analysis was used to determine the influence of misalignment on meshing and contact of the

spiral bevel gears. A numerical example that illustrates the theory developed is provided.
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NOMENCLATURE

Otp

")'1,72

-,/

771

0p

0g

Ap

O'12

¢i (i = 1,2)

_c, (i = 1,2)

0, (i = 1,2)

_, (i = 1,2)

._c,(i = 1,2)

Ei (i = 1,2)

_,, (i = 1,2)

AAp, AAg

AE, A7

Blade angle of gear head cutter (fig. 4)(Table 2)

Profile angle of pinion head cutter (figs. 7, 18)(Table 3)

Angles of pinion and gear pitch cone, respectively (figs. 6, 11, 12)(Table

1)
Shaft angle (Table 1)

Tangent to the path of contact on the pinion surface (Table 3)

Surface parameter of the pinion head cutter

Surface parameter of the gear head cutter

Surface parameter of the pinion head cutter (figs. 7, 18)

Angle formed between principal direction e s and es (fig. 10)

Angle of rotation of the pinion (i = 1) or gear (i = 2) in the process of

meshing (figs. 11, 13, 14, 15)

Angle of rotation of the cradle in the process for generation of the pinion

(i = 1) or gear (i = 2) (fig. 5)

Angle of rotation of the pinion (i = 1) or gear (i = 2) in the process

for generation (figs. 6, 8)

Angular velocity of the pinion (i = 1) or gear (i = 2) (in meshing and

generation)

Angular velocity of the cradle for the generation of the pinion (i = 1)

or gear (i = 2)

Pinion (i = 1) or gear (i = 2) tooth surface (fig. 17)

Pinion (i = 1) or gear (i = 2) generating surface (figs. 1, 2, 3, 16)

Pinion and gear axial displacements, respectively (figs. 11, 13)(Table

4)
Errors the offset and shaft angle, respectively (figs. 12, 13)(Table 4)

V



hd

ky, kh, k_, kq

Lj_

M

Mj_

nk,, Nk,

Ni (i = 1,2)

q, (i = 1,2)

R1

P_, Rg

ri

S,., (i = 1,2)

Function of transmission errors (figs. 14, 15)

Unit vectors of principal directions of pinion and gear tooth surface,

respectively (fig. 10)

Dedendum height of the pinion

Principal curvatures of the pinion and gear tooth surfaces, respectively

Matrix of orientation transformation from system Si to system Sj (3X3)

Derivative of ¢2(¢1) (Table 3)

Mean contact point (figs. 1, 2, 3, 7, 9)(Table 3)

Matrix of coordinate transformation from system Si to system Sj (4X4)

Unit normal and normal to the generating surface Ei represented in

coordinate system Sk

Number of teeth of pinion (i = 1) and gear (i = 2) (Table 1)

Installment angle for the head cutter of the pinion (i = 1) and gear

(i = 2) (fig. 5)(Tables 2, 3)

Radius of the generating surface of revolution for the pinion (figs. 3, 7,

16, 18)(Table 3)

Radius of the head-cutter at mean point for the pinion and gear (figs.

1, 2, 3, 4, 7, 16, 18)(Tables 2, 3)

Position vector in system S_ (i = 1, 2, h, q, t2)

Radial setting of the head cutter of the pinion (i = 1) and gear (i = 2)

(fig. 5)(Tables 2, 3)

Coordinate system

v! t') (i = 1,2)Velocity of contact point in its motion over surface Et,

V (ij) Relative velocity at contact point (i,j = 1, 2, cl, c2, ta, t2)

v_a), v_1) Components of the velocity of the contact point in its motion over E1

vi



1 Introduction

Two models for spiral bevel gears with uniform tooth height were proposed by Litvin et al.

[1]. The generation of tooth surfaces of such gears is based on application: (i) of two cones

that are in tangency along their common generatrix (model 1), and (ii) a cone and a surface

of revolution that are in tangency along a common circle (model 2). The pinion and the

gear are face-milled by head-cutters whose blades by rotation form the generating surfaces.

The generating surfaces provide conjugate pinion-gear tooth surfaces with a localized

bearing contact that is formed by a set of instantaneous contact ellipses. The path of

contact is directed across the surfaces in model 1 (fig. 1), and in the longitudinal direction

in model 2 (fig. 2). The transmission errors are zero but only for aligned gear drives.

It is well known that misalignment of a gear drive causes a shift of the bearing contact

and transmission errors. The transmission errors are one of the main sources of vibration.

Therefore, the direct application of the models discussed above for generating surfaces is

undesirable.

It was discovered that misalignment of a gear drive causes an almost linear but discon-

tinuous transmission function. However, such functions can be absorbed by a predesigned

parabolic function of transmission errors. The interaction of the parabolic function and a

linear function results a parabolic function with the same parabola coefficient [2]. Based on

this consideration, it becomes necessary to modify the process discussed above for generation

to obtain a predesigned parabolic function of transmission errors. It was proposed in the

work [3] to obtain the desired parabolic function of transmission errors by executing proper

nonlinear relations between the motions of the cradle and the gear (or the pinion) being

generated. This approach requires the application of the CNC machines.

The purpose of this report is to propose modifications of generating surfaces that will

obtain: (i) a localized bearing contact that may be directed in the longitudinal direction

or across the surface, and (ii) a predesigned parabolic function. These goals, that will be



proven later, are obtained by the proper mismatch of the ideal generating surfaces shown in

figs. 1 and 2. The mismatch of surfaces is achieved by application of modified generating

surfaces shown in fig. 3. The modified generating surfaces are in point contact instead of

tangency along a line that the ideal generating surfaces have. The desired parabolic function

of transmission errors, the orientation of the path of contact, and the magnitude of the major

axis of the contact ellipses are obtained by the proper determination of the curvature and

the mean radius of the surface of revolution of the generating tool.

Design of drives with a small number of pinion teeth may be accompanied with pinion

undercutting. Using the approach proposed in [7, 8, 9], it becomes possible to avoid under-

cutting of spiral bevel pinions. The meshing and contact of the tooth surfaces was simulated

by the TCA (Tooth Contact Analysis) computer program developed by the authors.

The contents of the report cover the following topics:

(1) Method for generation of conjugate pinion-gear tooth surfaces.

(2) Derivation of gear and pinion tooth surfaces.

(3) Local synthesis as the tool for the directed mismatch of contacting surfaces.

(4) Simulation of meshing and contact of misaligned drives.

(5) Avoidance of pinion undercutting.

Numerical examples for the illustration of the proposed approach are considered.



2 Method for Generation of Conjugated Pinion-Gear

Tooth Surfaces

Gear Generation:

The head-cutter for gear generation is provided with inner and outer straight-line blades

(fig. 4), that form two cones while the blades are rotated about the Zt2-axis of the head

cutter. These cones will generate the convex and concave sides of the gear profile, respectively

[12].

We apply coordinate systems Sc2, $2, S,_ that are rigidly connected to the cradle of

the generating machine, the gear and the cutting machine, respectively (figs. 5 and 6). The

cradle with coordinate system Sc 2 performs rotation about the Z,_-axis, and ¢_2 is the current

angle of rotation of the cradle (We take i = 2 in the designations of fig. 5). Coordinate

system St2 is rigidly connected to the gear head-cutter that is mounted on the cradle. The

installment of the head-cutter is determined with angle q2 and St2 = [_ (fig. 5(b)).

The gear in the process for generation performs rotation about the Zb-axis of the auxiliary

fixed coordinate system Sb that is rigidly connected to the Sm coordinate system (fig. 6).

The installment of Sb with respect to Sm is determined with angle 72, where 3'2 is the angle

of the gear pitch cone. The current angle of gear rotation is ¢2 (fig. 6). Angles ¢_ and ¢2

are related as

¢_2 _ 03% = sin ")'2 (1)
_2 °32

The observation of this equation guaranties that the X,_-axis is the instantaneous axis

of rotation of the gear in its relative motion with respect to the cradle.

Pinion Generation:

The head-cutters for pinion generation are provided with separate blades that will gen-

erate the convex and concave sides of the pinion profile, respectively (fig. 7). The pinion

generating tool is installed on the cradle similarly to the installment of the gear generating

cone (We take i = 1 in the designations of fig. 5). An auxiliary fixed coordinate system



S_ is rigidly connected to the Sm coordinate system (fig. 8). An imaginary process for the

pinion generation for the purpose of simplification of the TCA program is considered. The

installment of coordinate system S_ with respect to S_ is determined in the real process of

cutting by the angle 3'1 that is measured clockwise, opposite to the direction shown in fig.

8. The pinion performs rotation about the Z_-axis and _bl is the current angle of rotation.

The angles of rotation of the pinion and the cradle are related as

_bc__z,= wc___:= sin'yl (2)

Axis X,_ in accordance to equation (2) is the instantaneous axis of rotation of the pinion

in its relative motion with respect to the cradle.



3 Derivation of Gear Tooth Surface

Equations of Gear Generating Surface

We consider that the gear head-cutter surface is represented in St2 (fig.

function rt2 (sg, 89)

(Rg - sg sin ag) cos #g ]

rt2(s,, Og) = (Rg s, sin%)sinO, ]
"q9 COS O_9

4) by vector

NO2

nc2(0g)- [Nc_[ '

Equations (3) and (4) yield

(3)

where % and 0g are the surface coordinates; ag is the blade angle; Rg isthe radius of the

head-cutter at the mean point. Equations (3) may also represent the convex side of the

generating cone considering that ag isnegative.

Coordinate system St2 isrigidlyconnected to coordinate system Sc2,and the unit normal

to the gear generating surface isrepresented by the equations

Nc_ Ort2 Ort2
= oo-- × (4)

COS _9 COS 0 9 ]

no, (#g) = cos a 9 sin Og

sin a 9

(5)

Equations of the Family of Generating Surfaces in $2

A family of tool surfaces is generated in gear coordinate system 5'2 while the cradle and

the mounted tool and the gear perform the rotational motions that are shown in figs. 5 and

6. The family of surfaces is represented in 5'2 by the matrix equation

r2(sg,0g, ¢2) = M2b(¢2)Mb,_M,_2(¢_)M_2t2rt2(sg, 0g)
= M2t2(¢2)rt2(sg, Og) (6)

The product of matrices M2t2 is based on the coordinate transformations from St_ to S_

(figs. 5 and 6), where _,_ and ¢_2 are related by equation (1) and

cos_2 sin_2 0 0

M2b= -sin_2 cos_2 0 0
0 0 i 0 (7)

0 0 0 1

5



M b rn --

sin 72 0 --cos"/2 0

0 1 0 0

cos 3'2 0 sin"/2 0

0 0 0 1

COS _c2

sin ¢c2
Mrrt c2 "- 0

0

1 0 0

0 1 0
Mc2t2 = 0 0 1

0 0 0

Equation of Meshing

- sin ¢_2 0 0

cos ¢_2 0 0
0 1 0

0 0 1

S,2 cos q2

S,2 sin q2

0

1

We derive the equation of meshing between the generating surface and gear as

nc2 • v (e22} -- f(sg, Og, ¢2) = 0
c2

representing the vectors in S¢2.

where v (c22) is the relative velocity that is represented in the coordinate system S_2.
C2

v(C22)c2= w_ 22} x re 2 = (w!_ 2) -w(2)_2J x re2

(8)

(9)

(lO)

(11)

Here,

(12)

where

rc2 - Mc2t2rt2

-s_ sin ag cos Og + BI ]
= -sgsin% sin0g + B2

3 9 COS 0_9

(13)

[0]= 0 -
wl sin 7:

Using the designations

[0]Lc2._L,_bLb2 0

t.d 2

-N1/N2 cos 3'2 cos ¢_ ]
N1/N2 cos 3'2 sin ¢_2

0

(14)

B1 = Rgcos0g +Sr2cosq2 / (15)
B2 = Rgsin0g + Sr2sinq2 J

and considering that N1/N2 = sin 3,1/sin3'2 and Io.,11- 1, we obtain from equation(12) that

sg cos 72 sin ¢_2 cos agNa/N2 ]v_; 22) = sg cos "Y2cos ¢¢2 coscrgN1/N2 ] (16)N1/N2 cos 3'2(sg sin c_gsin(0g + _/'_2) - B_ sin ¢_ - B2 cos ¢_)

6



The equation of meshing (11) is representedas

s_(0g,¢c2)= sin_g(B1sin¢o2+ S2 cosV;c,)
sin(e_+ ¢°2) (:7)

Equations of Gear Tooth Surface

Equations (6) and (17) represent the gear tooth surface by three related parameters.

Taking into account that these equations are linear with respect to sg, we may eliminate s 9

and represent the gear tooth surface by two independent parameters, Og and _b2, as

r2 = r2(0g,¢2) (18)

7



4 Derivation of Pinion Tooth Surface

Equations of Pinion Generating Surface

The derivations are similar to those that have been described in section 3. The generating

surface of revolution is represented in St1 (fig. 7) as

[ [P_- Rx(coso_p-cos(% + Ap))]cOSOp ]
rq (Ap, 0p)-- [P_- Rl(COS a, - cos((_r + Ap))] sin0p (19)

-Rl(sin ap - sin(ap + Ap))

where Ap and 0p are the generating surface coordinates; ap is the profile angle at point M;/_

is the radius of the head-cutter at mean point; R1 is the radius of the surface of revolution.

Equations (19) can also represent the concave side of the generating surface of revolution if

we substitute a v as 180 ° - ap.

Coordinate system St, is rigidly connected to coordinate system So,, and the unit normal

to the pinion generating surface is represented by the equations

ncl (Ap, Op) - N_I Ort, Ort_
IN,_I' Ncl- OOp x c3Ap

Equations (19) and (20) yield

cosOp cos(% + _p) ]
sin 8p cos(% + A1,)

sin(vLp + Ap)

Equations of the Family of Generating Surface

(figs.

(20)

(21)

The family of generating surfaces is represented in 5'1 by the matrix equation

= Mlq (¢l)rq (_p, Op)
(22)

The product of matrices Mlt: is based on the coordinate transformations from St_ to $1

5 and 8), where _bl and ¢¢_ are related by equation (2). Here,

cos¢l -sin_l 0 0

MI,= sin¢l cos_l 0 0
0 0 1 0

0 0 0 1

(23)



-sin71 0 -cos71 0
0 1 0 0

cosT1 0 -sin71 0
0 0 0 1

(24)

Mmcl

COS _)cl

sin 'kc_

0

0

1 0

0 1
M*ltl = 0 0

0 0

- sin ¢c, 0

cos ¢_ 0
0 1

0 0

0 S,, cosql

0 Srl sin ql

1 0

0 1

(25)

(26)

Equation of Meshing

We derive the equation of meshing between the generating surface and pinion as

no1" v!_ al) = f(Ap, Op, _'1) = 0 (27)

where v_(_'1) is the relative velocity in the coordinate system Sol. The vectors are represented

in Sol. Here,

v_ xl) =w (cx`) x re, = (w (¢') _ w(1))×-0') (28)
C 1 k ¢'I Cl 'tCl

where

rc 1 = Mca,, rtl

= Rx cos(ap + Ap) sin Op + B2

-R_(sin _, - sin(_, + _,)1

(29)

[0](._!7)- _(')_ = 0 -
¢'1 ]

wl sin _'1

Using the designations

[0]L,lmL_L,,a 0

--OJ 1
wl costa cos¢c_ ]

--OJ 1 COS 71 sin _,,_

0
(30)

B1 = R v cos0p + Srl cOSql -- R1 cos_p cos0p 1

B2 = Rp sin 0p + S,1 sin ql - Rx cos c_p sin 8p J
and considering that Iwll = 1, we obtain from equation(28) that

[ Rl(sinav-sin(av+Av))c°s71sin¢c' 1
v(c,1) = R1(sin_ - sin(,_ + _.))cos"r,cos_o1

cl COS "_'1(/_1 COS(Otp 2f__p) sin(0p + ¢,1 ) + B_ sin ¢_, + B2 cos ,Pc, )

(31)

(32)



The equation of meshing (27) is representedas

-R1 sin % sin(Op + _c,) (33)
tan(ap + Ap) = Bx sin ¢c, + B2 cos _1

Equations of Pinion Tooth Surface

Equations (22) and (33) represent the pinion tooth surface by three related parame-

ters. After elimination of parameter Ap we may represent the pinion tooth surface by two

independent parameters, t_p and _1-

rl = r1(Sp,91) (34)

10



5 Local Synthesis

The ideas of local synthesis are based on the following considerations [2]:

(1) The pinion and gear tooth surfaces are in tangency at the mean contact point M that

is in the middle of the contacting surface.

(2) The gear ratio is equal to the theoretical one.

(3) We have to provide in the neighborhood of M the following transmission function

(fig. 9)

N1 1 , 2
¢2(¢1) -- _-2¢1- _m21¢, (35)

where 1 /_m21 is the parabola parameter of the predesigned parabolic function of transmission

errors

1 ! "2

= -  m 1¢1 (36)

(4) In addition it is necessary to provide the desired direction of the contact path.

All these goals can be achieved by the proper mismatch of the contacting surfaces of the

pinion-gear tooth surfaces. The solution to this problem requires directions of the contacting

surfaces. However, since the equations of the pinion and gear tooth surfaces are represented

in a complex form, we will represent the principal curvatures and directions of the generated

surfaces in terms of the principal curvatures and directions of the generating surfaces (the

head-cutter surfaces) and the parameters of motion. The procedure of the local synthesis is

as follows:

Step 1: We consider as given the surface of the head-cutter that generates the gear

tooth surface. The head-cutter surface is a cone and is in line contact with the surface of the

gear. One of such contact lines passes through the mean point M of tangency of the pinion

and the gear tooth surfaces. Considering the surface of the gear head-cutter as known, we

determine at point M the principal curvatures and directions of the gear head-cutter.

11



The principal directions of the generating cone are

e_t2) 0rt2 0rt2
-- 08g / 08g = [-sinOg cosOg 0] T

e_") Or,,/Or,_
-- _sg 0sg = [- sin ag cos 0g -sina 9sin0_

The principal curvatures of the generating cone are

k_t2) = -cosag/(Rg - sgsinag)

cos _g]T

(37)

(38)

k(h_2) = 0

Step 2: Our next goal is to determine at M the principal curvature k, and kq and the

principal directions of the gear tooth surface E2. We apply for this purpose the equations that

have been proposed in [2] and represent the direct relations between the principal curvatures

and directions for two surfaces being in line contact.

Surface E,2 and E2 are in line contact when cone E,2 generate the gear tooth surface _2.

The principal curvatures of the gear ks and kq can be obtained from the equations

-2b,_b_3

tan 2ag = b_3 _ b_3 _ (k_t,) _ k(,2))ba 3

-2b,zb2a
kq-ks = b_sin2ag

(39)

kq + ks =

where

_.C,,). Ct,a) rnwC,,a)e(,_ hbl3 = --,_f ,,f + t f J

k_">+k(,,")+ b_3+ b_
b33

b23 b(t2), (t22)_[_ [rlw(t22)e(t2)]= --'_h Vh

The principal directions on the gear tooth surface are represented by unit vectors es and

eq) where

e_2)[::]__[co,. - sin a 9 cos a 9
(41)

12



Step 3: We now consider that the gear and pinion tooth surfaces, E2 and EI, are in

tangency at M. As a reminder, the mismatched gear and pinion tooth surfaces are in point

contact at every instant.

Unit vectors e, and eq represent the known directions of the principal directions on

surface E2. The principal curvatures ks and kq on the gear principal directions are known.

Our goal is to determine angle aa2 that is formed by vectors ef and es (fig. 10) and the

principal curvatures k f and kh of the pinion tooth surface at point M. Unit vectors e s and

eh represent the sought-for principal directions on the pinion tooth surface El.

Step 4: The three unknowns: kf, kh and a12 can be determined using the approach

developed in [2]. We use for this purpose the following system of three linear equations.

Three linear equations that related the velocity v_(1) of the contact point over surface E_ are

derived in reference [2] as:

allY! 1) "4- al2v_ I) = a13

a12_)! I) "I- a22u_ I) : a23 (42)

a13v!1)+ a23v_1) = a33

The augmented matrix formed by the coefficients ail, ai2 and ai3 is a symmetric one [2].

Here, v_ I) and v_1) are the components of the velocity of the contact point that moves in

the process of meshing over the pinion tooth surfaces El. Coefficients ail, ai2 and ai3 are

represented in terms of ks, k_, kf, kh, a12 and the parameters of motion.

Step 5: Equation system (42) represents a system of three linear equations in two

unknowns: v_(1) and v_ I). Surface _i and _2 are in point contact, the path of contact has

a definite direction, and the solution of equation system (42) with respect to v! I) and v_1)

must be unique. Therefore, the rank of the augmented matrix formed by gil, ai2 and gi3 is

equal to two. This yields that

gll a12 a13

g12 a22 a23

a13 a23 a33

-._ allg22a33 -_- g12a23a13 --_ a13g12a23 -- a22a123 -- alia23 -- a33a212

= F(ks, k_, ks, kq, ,z12, m'21)= 0
(43)

13



Here,

all : k s - k( cos 2o'12 -- kh sin 20"12

a12 = 0.5(k! - kh) sin20"12

_13 = -k,v_12)+ [n_(12}e.]
a22 = kq - k/sin 20.12 - kh cos20.12 (44)

a23 = -kqv_ TM + [nw(12)eq]

-33 = k,(_!12))2+ k,(_12))2_ [._(,2)v(1_)l
-n.[(_O) × v_)) - (_(2)× v_p)]+ mh(n × k2)-_

0.12 = % - 0"p is the angle between the principal directions of this two contacting surface,

m_l is the derivative of 62(¢1) at the contact point. Coefficient a_3 contains the derivative

d
m_l = --d¢_(m21(¢1)) (45)

where

d¢2 (46)
m21- dCa

From equation (43), we get

a33 = -a12a23a13 - a13a12a23 + a22a_3 + aHa_3 (47)
alla22 -- a22

Substituting equation (47) into equation (44), we can obtain the derivative

, a33 -- ks(vii2)) 2 - kq(y_12)) 2 -_-[D_(12)V (12)1 -_- n.[(cd (1) × V_ 2)) -- (0,; (2) X v_rl))]

77121 (48)

that

(n x k2) • rm

The parabola coefficient of the parabolic function (36) is rn_l/2.

The other relation between the coefficients ail, ai2 and ai3 may be determined considering

-- Vq(1)

tanTh- _ (49)

where rh is the assigned direction at M of the tangent to the path of contact on the pinion

surface El.

Using the relations discussed above between the coefficients of linear equation [2], we are

able to determine the sought-for pinion principal curvatures k/, kh and orientation angle a12.

14



Step 6: We considernow that for surfaceE1 the followings areknown: (i) the principal

directions determined by unit vectorsef and eh (ii) the principal curvatures k I and kh,

and (iii) angle (r12 formed by unit vectors e/ and es (fig. 10). Our goal is to determine

the principal curvatures and directions of the pinion head-cutter generating surface that

is designed as the surface of revolution (fig. 3). The pinion head-cutter surface and the

pinion tooth surface are in line contact at every instant. Using the direct relations between

the principal curvatures and directions for two surfaces being in line contact [2], we may

determine the principal curvatures and principal directions of the pinion head-cutter. Then,

the desired mismatch of the surfaces of the gear and the pinion will be provided by the

generation of the gear and the pinion by the designed head-cutters.

Using the approach discussed above, we obtain the following equations

tan 2% =

kh - k/ =

kh.-I-kf =

I I

-2b13623

¢ !

-2blab23

b_3 sin 2ap

where

bh

(50)

= -k(t,)v!t_ 1) + [nw(t'X)e!t_) ]

= , +

b'33 = -klt')(v!t_)) 2 - k_t_)(v_t_)): + [nw(t'_)v( t_l)] - n.[(w(t_) x v_ )) - (w(') × v_))]

(51)

The principal directions on the pinion and the pinion head-cutter are related as follows

eh -- sin o'p cos trp e_tl) (52)

15



wherethe principal directions of the generatingsurfaceof revolution are

(,,) ar,,i or,,
e, = _-p 08 v = [-sin_p cos0p 0] T

oqrtl [0rtle_',) = b-_/_ = [-sin(_ + _)cos0_ -sin(_ + _p)sin0_

The principal curvatures of the generating surface of revolution are

k!") = -cos(_ + A_)/(P_ + a,(cos(_ + A_)- cos_))

(54)

k_',) = -1/R,

Equations (53) and (54) permit the representation of the principal curvatures and direc-

tions on the pinion head-cutter surface in terms of R1 and/_. We remind that equations

(48) and (49) contain parameters R1 and P_ (figs. 2). Considering as given rn_, and r/_, we

can determine from equation (48) and (49) R1 and P_.

Step 7: At this step we know the principal curvatures and directions on the pinion and

the gear, and the principal curvatures and directions on the pinion and gear head-cutters.

The obtained mismatch of pinion and gear tooth surfaces will provide in the neighborhood of

the mean contact point the desired parabolic function of transmission errors and the direction

of the contact path. The principal curvatures and directions obtained on the pinion and

gear head-cutters will provide the required mismatch of the pinion and gear tooth surface.

Our next goal is to determine the dimensions of the instantaneous contact ellipse and its

orientation, considering as given the elastic approach of the contacting surfaces.The solution

is based on the following procedure [2].

The major axis and minor axis of the contact ellipse can be determined as

(55)

where 5 is the elastic approach obtained from experimental data; A and B are determined
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by

and

A ¼[k(_1)- k(2)- (g_- 2glg_cos2_,_+ g_)_]
B = ¼[k(_')-k(__)+ (g_- 2g,g_cos2_ + gl)_]

k(_1) = kj+kh k(__) = k,+k,
gl = ky-kh g2 = k,-kq

The orientation of the contact ellipse in the tangent plane is determined by

(56)

(57)

cos 2a = gt -- g2 cos a12 2 _- (58)
(g2 _ 2gig2 cos 2a12 + g2)2

Directions for the Computational Procedure of Local Synthesis

Step 1: The parameters of the gear head-cutter and its installment are considered as

known (see, for instance, Table 2).

Step 2: The mean contact point is considered as known as well (It is determined by the

application of the TCA program that provides the tangency of contacting surfaces at the

mean contact point).

Step 3: Using equations (39) and (41), we determine at the mean contact point the

principal curvatures (k,, kq) and the principal directions represented by unit vectors e, and

eq (fig. 10).

Step 4: We use the values R1 and Rp (fig. 3) as the first guess for the pinion head

cutter. Then, we determine at the mean contact point the principal curvatures k_ tl), k_ .I),

and principal directions represented by e_ h), e_ '1) applying for this purpose equation (53)

and (54).

Step 5: We compute the principal curvatures kl, kh of the pinion tooth surface and

principal directions represented by unit vectors e I and eh applying for this purpose equations

(50) and (52).

Step 6: Choosing m_ and T]I and then applying equations (48) and (49), we determine

the final values of R1 and/_. The process of computation is an iterative one and requires

for the solution a first guess of parameters R1 and P_.
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6 Tooth Contact Analysis

The purpose of TCA is to determine the influence of misalignment on the shift of the bearing

contact and the transmission errors. This goal is to be obtained by simulation of meshing

and contact of the pinion and gear tooth surfaces of a misaligned gear drive.

We consider that the pinion and gear tooth surfaces are analytically represented in co-

ordinate systems S1 and $2 (see sections 3 and 4, respectively). The meshing of pinion and

gear tooth surfaces is considered in fixed coordinate system Sh (figs. 11 and 12). Auxiliary

fixed coordinate system S_ and S, are applied to describe the installment of the pinion with

respect to Sh (fig. 11 ). The pinion alignment error AAp is the pinion axial displacement. The

misaligned pinion in the process of meshing with the gear performs rotation about Z,-axis.

The current angle of rotation of the pinion is designated by 81 (fig. 11).

Auxiliary coordinate systems Ss, Sc and Sd are applied to describe the installment of

misaligned gear with respect to Sh. The errors of alignment are: the change A_, of the shaft

angle (fig. 12), the offset AE and the gear axial displacement AAg (fig. 13). The misaligned

gear performs rotation about the Za-axis, and _b2 is the current angle of the gear rotation.

A TCA computer program was developed to simulate the meshing of pinion-gear tooth

surfaces of the misaligned gear drive. The development of the TCA program is based on the

following ideas:

Step 1: We consider that the pinion and gear tooth surfaces and the surface unit normals

are represented in coordinate system Sx and $2 by vector functions

rl(Pp,_bl ) and r2(0g, _b2) (59)

nl(Op, _b_) and n2(Og , 'P2) (60)

where (Op,_bt) and (Og,_P2)are the surface parameters.

Step 2: We represent now the pinion-gear tooth surfaces and their surface unit normals

in coordinate system Sh, and take into account that the surfaces are in continuous tangency.
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Then weobtain the following equations

r_'>(0p,¢,, ¢1)- r?_(09,¢2,¢2)= 0 (61)

n_l)(ep,¢,, ¢1)- -_2)(e9,¢2,¢2)= 0 (62)

where

r(hl)(0p, ¢1, ¢1) = Mhx(¢l)rl(Op, ¢1) (63)

r(h2)(0g, ¢2, ¢2) = Mh2(¢2)r2(09, ¢2) (64)

n_hl)(Sp, ¢1, ¢1)= Lh,(¢a)nl(Sp,¢l) (65)

n(h2)(0g, ¢2, ¢2) = Lh2(¢2)n2(0g, ¢2)

Mhl (¢1) =
cos¢l sin ¢1 0 0

--sin¢x cos¢l 0 0

0 0 1 AAp
0 0 0 1

Mh2(¢2) - MhbMb2

--sinA 7 0 --cosA 7

0 1 0

cosA7 0 --sinA 7
0 0 0

0

AE

0

1

cos ¢2 -sin¢2 0 0

sin ¢2 cos ¢2 0 0

0 0 1 AAg
0 0 0 1

(66)

(67)

(68)

Equations (61) and (62) represent the conditions that the contacting surfaces at the point

of tangency have a common position vector and a common surface unit normal. Equations

(61) and (62) yield a system of five independent scalar equations of the following structure

k(0p,¢l,¢l,09,¢2,¢2) "-- 0 fi e C 1 (i _" 1..5) (69)

As a reminder, vector equation (62) yields only two independent scalar equations, and

not thr_, since I"_'1= 1"_2_1= 1.

Step 3: System (69) of five nonlinear equations contains six unknowns, but one of the

unknowns, say ¢1, may be considered as the input parameter. Our goal is the numerical

solution of nonlinear equations (69) by functions

{0_(¢1),¢1(¢1),0,(¢1),¢_(¢1),¢2(¢1)}_ c 1 (70)

19



The sought-for numerical solution is an iterative processthat requireson eachiteration

the observationof the following conditions [2, 4, 5, 11]:

(i) There is a set of parameters(the first guess)

P(O (°), _b[°), _(°)_1, O(°)g, ¢(°), ¢(°)) (71)

that satisfies the equation system (69).

(ii) The Jacobian taken at P differs from zero. Thus, we have

D(f_,£,A, f4,£)

As=D(0v,_bl,0g,¢2, ¢2 ) # 0 (72)

Then, as it follows from the Theorem of Implicit Function System Existence, equation

system (69) can be solved in the neighborhood of P by functions (70).

Using the obtained solution, we can determine the path of contact on the pinion-gear

tooth surface, and the transmission errors caused by misalignment. The path of contact on

surface E; (i = 1,2) is determined by the expressions

rl(0p,¢l), 0p((_l), _)1((_1) (73)

e9(¢1), (74)

The transmission errors are determined by the equation

Yl
= (75)

The dimensions and orientation of the instantaneous contact ellipse at the contact point

may be determined considering that the principal curvatures and directions of the contacting

surfaces, and the elastic approach of the surface [2] are known (see step 7 in section 5).

20



7 Avoidance of Pinion Undercutting

In most cases undercutting can be avoided, if the appearance of singular points on the

generated surface is avoided. Singularities on the surface occur when the normal to the

surface becomes equal to zero. To avoid undercutting of the pinion by the generating tool,

the approach developed in [7, 8, 9] is applied:

Step 1: Consider that the surface of the generating tool is represented as

rtl = rt,(Ap, Sp) (76)

The equation of meshing is represented as

f1()% Ov, _1 ) =0 (77)

Step 2: It is proven in [7, 8, 9] that singular points occur if

vT,) + v(,m = 0 (78)

where v (tl) is the velocity of the contact point in its motion over the tool surface, and v ('11)

is the relative velocity. This yields that a matrix

A

Ort_ c_rt_ , (t_l)
O._v bop --t_

Ok ok of 1o¢_
O /_p bop 9¢1 C_t

(79)

has the rank r = 2 and therefore three determinants Ai (i = 1,2, 3) of the third order must

be equal to zero. Then we obtain that

F_(Ap,0p, ¢_)= A_ + A_ + A_ = 0 (80)

Equations (77) and (80) permit the function Av(Ov) to be determined for the limiting

line on the tool surface. Then, we are able to determine the limiting line on the generating

surface by the equation

r, 1 = rtl(ep, _p(ep)) (81)
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Fig. 14showsthe limiting line on the pinion tool surface.

Step 3: Using coordinate transformation, we may determine the line of singular points

on the pinion tooth surface. (fig. 15)

Step 4: To avoid undercutting, we have to limit the dimension of the dedendum of the

pinion tooth.

Fig. 16 shows the axial section of the pinion head-cutter. Parameter h represents the

distance of a point of the axial section from the reference circle determined as

R1 sin ap - nl sin(ap + Ap) = h (82)

To verify that undercutting has been avoided the following inequality must be observed

Ra[sinap- sin(ap + ,_p(Op))] > h_ (83)

where ha is the dedendum height of the pinion, and )_p(Sp) represents the function that

corresponds to the points of the limiting line.

The design of spiral bevel gears is based on application of special tooth element propor-

tions for the avoidance of undercutting: small pinion dedendums and long pinion addendums.

22



8 Numerical Example

As a numerical example the blank data is given in Table 1.

The gear head-cutter is a cone (figs. 2, 3 and 4), the cutter radius is designated by Rg

(fig. 1), the radial setting of the head-cutter is _ (fig. 5(b)), and the installment angle

is q2 (fig. 5). The data for the gear head-cutter that generates the gear concave side are

presented in Table 2.

The parameters of the pinion head-cutter were determined by application of the method

of the local synthesis (section 5). The data for the pinion head-cutter that generates the

pinion convex side are represented in Table 3. We considered in the numerical examples

the meshing of the gear tooth concave side with the pinion tooth convex side. Case 1

corresponds to the orientation of the bearing contact across the surface, case 2 corresponds

to the orientation of the bearing contact in the longitudinal direction.

The application of TCA for the simulation of meshing and contact permits the deter-

mination of misalignment effects on the transmission errors and the shift of the bearing

contact. It has been shown that in the case of application of ideal generating surfaces (with-

out mismatch, figs. 1 and 2) the errors of misalignment cause indeed discontinuous almost

linear transmission errors as shown in fig. 17 for shaft angle error A'r. Similar functions of

transmission errors are caused by errors AAv, AAg and AE. Table 4 shows the maximum

transmission errors caused by misalignment.

The results of TCA for the properly mismatched generating surfaces (see section 5) con-

firmed that a predesigned parabolic function indeed absorbs the transmission errors caused

by misalignment, and the resulting function of transmission is a parabolic one (fig. 18). The

absorption of linear function of transmission errors is carried out as well in other cases of

misalignment: AAp, AAg and AE. The bearing contact of the drive is stable, and its shift

is permissible (fig. 19). Model 2 of the gear drive (with longitudinal direction of the bearing

contact) is preferable due to the lower level of transmission errors caused by misalignment.
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9 Conclusion

From the conducted study the following general conclusions can be drawn:

(1) An approach has been developed for the synthesis of spiral bevel gears that provides

(i) localized bearing contact, and (ii) low level of transmission errors of a parabolic type.

The developed approach permits two possible directions of the bearing contact: across the

tooth surface or in the longitudinal direction.

(2) A Tooth Contact Analysis (TCA) computer program for the investigation of the

influence of misalignment on the shift of the bearing contact was developed.

(3) A low level of transmission errors, the parabolic type of the function of transmission

errors, and the localization of the bearing contact are achieved by the proper mismatch of

contacting surfaces.

(4) The influence of the following errors of alignment was investigated: (i) for axial

displacement of the pinion, (ii) axial displacement of the gear, (iii) offset, and (iv) change

of the shaft angle. These types of misalignment were proven to cause discontinuous almost

linear functions of transmission errors, but they are absorbed by the predesigned parabolic

function of transmission errors.

(5) Conditions of nonundercutting of the pinion were determined.

The results of this investigation show that a predesigned parabolic function can indeed

absorb the linear functions of transmission errors caused by misalignment. The design of

gears with a longitudinal bearing contact (in comparison with the bearing contact across the

surface) is preferable since a lower level of transmission errors can be obtained.
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10 Manual for Computer Program

Program Names and Purpose of the Programs

There are three programs

1. Program for Local Synthesis: Localsyn.for

2. Program for TCA: Tca.for

3. Program for Undercutting: Undercut.for

These programs are directed at the synthesis of the spiral bevel gear with uniform tooth

height by using mismatched generating surfaces. The programs cover the local synthesis,

tooth contact analysis and nonundercutting conditions. Using the programs, one can obtain

the tooth surfaces, the contact lines on the tooth surface, the contact path on the tooth

surface, the transmission errors and the bearing contact caused by misalignment of the gear

drive, and the limiting lines on the generating tool surface and the pinion tooth surface.

Environment for Running the Programs

These programs were developed by application on an IBM PC and can be run using the

software "Power Fortran".

An application of the subroutine HYBRD 1 [11] for solving a system of nonlinear equations

and several other subroutines that was called by HYBRD1 are required and included.

Input Data

1. Blank data

TN1--Pinion number of teeth

TN2--Gear number of teeth

TW--Face width of gear (mm)
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GAMA--Shaft angle (degree)

Betal--Pinion spiral angle (degree)

Beta2mGear spiral angle (degree)

EllipseDelta--Elastic approach (mm)

2. Gear cutter specification

RU2--Gear nominal cutter radius (mm)

PW2--Point width of gear cutter (mm)

AFA.g--Blade angle of gear cutter (degree)

Rg--Cutter radius (mm)

3. Gear machine-tool settings

GAMA2--Gear machine pitch angle (degree)

Sr2--Radial setting (mm)

q2--Installment angle (degree)

4. Pinion machine-tool settings

GAMA1--Pinion machine pitch angle (degree)

Srl--Radial setting (mm)

ql--Installment angle (degree)

5. Pinion cutter specification
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Rp--Cutter radius (mm)

R1-- Radius of surface of revolution(mm)

AFA_p--Profile angle of gear cutter (degree)

6. Misalignments

H--Axial displacement of the pinion (mm)

Q--Axial displacement of the gear (mm)

V--Offset displacement (mm)

Delta--Change of shaft angle (arc min.)

7. Local synthesis

Etal-- Tangent to the contact path on pinion surface at the mean contact point(degree)

plantm21--Coefficient of the parabolic function

Output data files

File philphi2.kl: Transmission errors A¢2

File sgthetag.kl: Contact line on gear generating surface

File spthetap.kl: Contact line on pinion generating surface

File contactp.kl: Contact path on pinion tooth surface

File contactg.kl: Contact path on gear tooth surface

File ellipse.k1: Bearing contact on the pinion surface

File undercut.k/: The limiting line on pinion tooth surface (for avoidanceof undercutting)

Procedure of using the programs

Step 1: Run program Tca.for for the condition of no misalignment by supplying the first
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guessof R1 and Rp.

Step 2: In the output file contactg.kI we will get from the first line the x, y and z

coordinatesof the first contact point.

Step 3: Run program Localsyn.for for the desired plantm21 and etal. Then we can get

R1 and Rp.

Step 4: Check if R1 and Rp at Step 1 and Step 4 are the same or not. If both are the

same then go to Step 6.

Step 5: Use the new values that we got from Step 4, recalculate the first contact point

by running program Tca.for, and go to Step 3.

Step 6: Run program Tca.for with misalignment to obtain the transmission errors in the

output file philphi2.kl.

Step 7: Run the program Undercut.for to check up the undercutting in the output file

underp.kI.
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Table 1: Blank Data

Pinion Gear
N1,N2, Number of teeth 11 41

3', Shaft angle 90 °

Mean spiral angle 35 o 35 °

Hand of spiral RH LH

Whole depth (mm) 6.5 6.5

Tooth module (mm) 4.33

Face width (mm) 27.25 27.25

3'1, 3'2, Pitch angles 15°1 ' 74o59 '

Table 2: Parameters and Installment of Gear Head-Cutter on gear concave side

ag, Blade angle 20 °
78.52R_, Cutter radius at mean point (mm)

S_2, Radial setting (ram) 70.53

q2, Installment angle - 62 ° 14'

Table 3: Parameters and Installment of the Pinion Head-Cutter on pinion convex side

Case 1 Case 2

av, Profile angle 20 ° 20 °
INPUT

,71, Tangent direction of the contact path 171 ° 92 °

m_x , Derivative of ¢2(¢1) -1.3e-3 -1.2e-3

A¢_=O.5m'21(_r/N1) 2, Theoretical Max. (") -10.94 -10.09

OUTPUT

M, Mean contact point in S,, (mm) (79.88, 0.39, 0.17) (77.83, 1.64, 0.72)

Rv, Cutter radius at mean point (mm) 78.0 64.7

R1, Radius of the surface of revolution (mm) 235.0 765.0

S_, (ram) 70.30 65.38

qx, Installment angle -61°5 I' -51°24 '

Length of major axis of contact ellipse (mm) 12.54 4.5
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Table 4: Maximum Transmission Errors for Generating Surfaces with Mismatch

AA_ = 0.1ram

AAg = O.lmm

A¢2 in arc sec.

Case 1 Case 2

8.8 16.2

11.5 12.5

11 15

10.7 13.5
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Fig. 8: Coordinate systems S,,,, S_ and $1
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Ideal transmission function

Fig. 9: Transmission function and predesigned parabolic function of transmission errors,

¢l-pinion rotation angle; ¢2-gear rotation angle; Ad2-transmission error
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Fig. 11: Simulation of pinion misalignment AAp
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Fig. 13: Simulation of gear misalignment AE and AAg
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Fig. 19: Longitudinal bearing contact for a misaligned gear drive (A 7 = 3 arc rain.)
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