
NASA-CR-202435

T

Development of an Intelligent Monitoring and Control System

for a Heterogeneous Numerical Propulsion System Simulation I

John A. Reed

Abdollah A. Afjeh

University of Toledo

Henry Lewandowski

Cleveland State University

Patrick T. Homer

Richard D. Schlichting

University of Arizona

/

Abstract

The NASA Numerical Propulsion System Simulation (NPSS) project is exploring the use

of computer simulation to facilitate the design of new jet engines. Several key issues

raised in this research are being examined in an NPSS-related research project: zooming,

monitoring and control, and support for heterogeneity. The design of a simulation execu-

tive that addresses each of these issues is described. In this work, the strategy of zooming,

which allows codes that model at different levels of fidelity to be integrated within a single

simulation, is applied to the fan component of a turbofan propulsion system. A prototype

monitoring and control system has been designed for this simulation to support experi-

mentation with expert system techniques for active control of the simulation. An intercon-

nection system provides a transparent means of connecting the heterogeneous systems that

comprise the prototype.

1. Introduction

Designing and implementing new propulsion technologies can be an expensive and time-consum-

ing process. The Numerical Propulsion System Simulation project, sponsored by NASA Lewis

Research Center, is bringing new computer simulation techniques and parallel hardware to bear

on this problem [Claus92, Claus91]. Specifically, it is fostering the development of parallel simu-

lations to improve both the execution time and accuracy of the simulations. A simulation execu-

tive will be developed that will support complete engine simulations made up from improved

component simulations. Research on the simulation executive includes developing the monitoring

and control techniques needed to manage the simulation, and exploring the use of expert systems

techniques to assist the user in controlling the simulation.

Several key issues must be addressed in the design of the propulsion system simulation. One

is the integration of simulation codes at different levels of fidelity. Low fidelity modelling requires

empirical data that are not available at the preliminary design stage. On the other hand, high fidel-

1This work has been supported in part by the following grants: NSF grant ASC-9204021, NASA grants
NGT-50966, NAG3-1560, and NCC-3-207.

https://ntrs.nasa.gov/search.jsp?R=19970001352 2020-06-16T03:49:24+00:00Z

ity modellingovercomesthis limitation, but at a substantialcomputationalcost.Zooming allows

selected components to be modelled in detail and integrated into a low-level engine simulation.

Additionally, during a low fidelity simulation, zooming provides a means of selectively examin-

ing in detail the physical processes within components of the engine.

A second issue is the use of a monitoring and control system. A monitoring tool will allow the

user to observe the progress of the simulation through displays of its key parameters. An expert

system can further improve the simulation by continuously monitoring and actively steering the

simulation. This requires support in two areas: The first area is the collection of knowledge and

the formulation of rules that govern the design and operation of jet engines. The second area is the

integration of expert system software into the simulation executive to assist the user in executing

the simulation.

A third issue is heterogeneity. The engine component codes and the expert system take advan-

tage of a variety of vector and parallel platforms, and employ a variety of programming models

and languages. An interconnection system allows components to execute on the most appropriate

platform with minimum effort on the part of the user and the scientific programmer. The user

should not see individual simulations that execute in isolation, but rather a single integrated simu-

lation.

This paper describes a prototype simulation executive designed to address all three issues:

zooming, a monitoring and control system, and heterogeneity support. The prototype employs a

one-dimensional model of a complete engine. In this model, the operational characteristics of the

individual system components are supplied in the form of performance maps that are constructed

from experimental data. To provide descriptions of the physical processes occurring in an engine

component beyond that supplied by a performance map, a higher fidelity component simulation is

used. The simulation executive uses a monitoring tool that provides information about the engine

simulation to the user and the expert system. Based on this information, the expert system can

provide warnings and errors to the user and will be able to actively steer the engine simulation.

Heterogeneity is addressed in the simulation executive through an interconnection system that

provides the software framework to connect the various tasks.

Section two describes an engine model that demonstrates zooming on the fan component of

NASA's Energy Efficient Engine [Davis85]. Section three describes the design of a monitoring

tool and expert system that assists the user in executing the simulation and will be used to explore

techniquesfor intelligentcontrol.Thelastsectiongivesthecurrentstatusof theprojectandout-

linessomeof its futuredirections.

2. Simulation Strategy

The simulation strategy utilizes a high-fidelity flow solver in a low-fidelity simulation, and has

been implemented in a prototype zooming framework consisting of the following systems:

• TESS - A propulsion system simulator [Reed93] running with the Application Visualization

System (AVS) [AVS92].

• ADPAC - a fully three-dimensional Navier-Stokes/Euler flow analysis package capable of

providing detailed flow analysis of the fan component in a turbofan engine [Hall93].

This system is depicted in Figure 1. Here the fan component of the one-dimensional "baseline"

engine model has been "zoomed" to a three-dimensional analysis.

2.1 Zooming

Implementation of the zooming concept is difficult, due mainly to the inability to accurately

resolve high-fidelity data fields from a single value as supplied from the low-fidelity system simu-

lator. In order for the zooming to be accurate, the upstream and downstream boundary values

(which are single valued), must be extrapolated to define a suitable three-dimensional distribution

of field variables such that when integrated over, the original single-valued boundary conditions

are recovered.

This process begins with the single inlet boundary values for stagnation pressure, stagnation

temperature, and Mach number, and the exit boundary value of static pressure from the fan com-

ponent of the one-dimensional engine model. These are then extrapolated to appropriate three-

I-D Simulation

I Zooming I Fan

= fluid flow path

Figure 1: System schematic representing zooming on the fan component

Stagnation
Pressure
Ratio

/---- Curve data point
/ created by a single

.._ ADPAC simulation

j- Cons,ant
rotor speed

_ curve

Mass flow Rate, Stagnation Temperature Ratio

Figure 2: Single curve fan map created by zooming

dimensional field distributions and applied as boundary conditions to the fan simulation. The

results of the fan 3-D simulation are then integrated to determine the mass-flow rate, and the

mass-averaged values of outlet/inlet ratios for the stagnation pressure and stagnation temperature.

The averaged stagnation pressure ratio is then compared with the stagnation pressure ratio com-

puted across the engine model. If the values are identical, then the extrapolated field distributions

are proved to be suitable representations and the averaged values of mass-flow rate and stagnation

temperature ratio may be used in the one-dimensional simulation.

Typically, however, the averaged stagnation pressure ratio will not initially match the low-

fidelity simulator value, and the three-dimensional boundary condition representations must be

redefined and the above process repeated until the necessary match is found. An iterative

approach to boundary value matching was found to be computationally unstable, requiring many

iterations to achieve a balance. Worse, in many instances, the iterative approach led to an oscilla-

tory mode where convergence could not be achieved.

A solution is the construction of a performance map from multiple runs of the three-dimen-

sional component. A single-curve performance map, such as that shown in Figure 2, is con-

structed and the appropriate value can then be chosen from the map, interpolating as needed. To

shorten the overall time for the simulation, the multiple runs can be performed in parallel when

the necessary computational resources are available.

2.2 Simulation Tools

This section presents an overview of TESS and ADPAC. Also presented is PVM [Sunderam90], a

message-passing package, that transfers data and control between TESS and the multiple 3-D fan

simulationsneededto implementthezoomingstrategy.

2.2.1Turbofan EngineSystemSimulator (TESS)

The low-fidelity systemsimulatorusedin the currentresearchis the TurbofanEngineSystem

Simulator(TESS).TESSis anobject-based,one-dimensional,transient,thermodynamicaircraft

enginesimulatorwhichrunsunderAVS.This integratedsystemprovidesthegraphicaluserinter-

faceandoperatingenvironmentfor constructionof arbitraryengineconfigurations,selectingand

controlling steady-stateand transientengine operation,and graphicaldisplay of simulation

results.

The Network Editor of AVS providesa visual interfacefor creatingdataflowprograms.For

TESS,thedataflowis usedto modeltheflow of air throughtheengine.Enginecomponents(e.g.,

compressor,turbine,duct,etc.)arerepresentedgraphicallyasAVS moduleicons,or simply mod-

ules. Each module has a control panel where the operational characteristics of the engine compo-

nent are defined by the user (e.g., the mass flow rate, design point performance data). An engine is

created by selecting the modules needed and placing them in the work space of the Network Edi-

tor. The dataflow network is then created by connecting the modules to establish the physical con-

nections of the engine. Figure 3 shows a typical TESS engine network that models a two spool,

two stream turbofan engine.

Once all of the components have been connected and their operational parameters have been

entered, the user selects the length of time for the transient, and defines how the governing equa-

tions are to be solved numerically for both the steady-state and transient portions of the simula-

tion. Currently, for steady-state solutions, the user may choose either Newton-Raphson or Fourth-

order Runge-Kutta methods. For transient solutions, the user may choose either Modified Euler,

Fourth-order Runge-Kutta, Adams, or Gear methods. When simulation execution is begun, TESS

first attempts to balance the engine at the initial operating point using the steady-state balancing

method. Once the engine is balanced, the transient is begun and proceeds up to the number of sim-

ulation seconds defined by the user.

2.2.2 Advanced Ducted Propfan Analysis Code (ADPAC)

The high-fidelity flow solver program used to model the operation of the fan component is the

Advanced Ducted Propfan Analysis Code (ADPAC) [Hall93]. ADPAC is a three-dimensional

Euler/Navier-Stokes numerical analysis tool developed to study high-speed ducted propfan air-

craft propulsion systems. The program utilizes a three-dimensional, time-marching numerical

procedurealongwith aflexible,coupled2-D/3-D multipleblock geometricgrid representationto

predicttheflow field in andaroundthefan.Multiple runsof ADPACareneededto createthesin-

gle-curveperformancemapusedin thezoomingstrategy.

2.2.3Parallel Virtual Machine (PVM)

PVM is amessage-passingsystemthatpermitsa networkof heterogeneousUnix computersto be

usedasa singlelargeparallelcomputer.UsingPVM, a user-definedcollection of different com-

puters,known asthe virtual machine, is used to provide aggregate power for solving large com-

putational problems

The PVM system is composed of a daemon which resides on all of the computers making up

the virtual machine, and a library of PVM interface routines which supply user-callable routines.

These functions, along with the PVM daemon, allow a PVM application on one computer to auto-

t

I -I

[.,---.., 1_

Figure 3: TESS engine model dataflow network

matically start up tasks (computational processes) on other computers in the virtual machine and

communicate data among the tasks by sending and receiving messages.

2.3 Prototype Zooming System

The prototype zooming system is defined by two suites of codes: The first suite, residing on the

user's workstation, runs AVS and TESS. The second suite consists of ADPAC and associated

codes [Reed94]. One instance of this second suite exists for each of the multiple fan simulations

used in the zooming strategy.

A new TESS engine component module, fan Multi-ADPAC, was created to provide the user

interface and functionality for the zooming system. The module

• Handles the basic AVS data transfer for the fan component within TESS,

• Establishes the PVM virtual machine,

• Spawns the remote ADPAC tasks, and

• Controls the data transfer between TESS and the ADPAC simulations.

To utilize the fan Multi-ADPAC module in a TESS engine simulation, the user defines the

ADPAC control parameters and the remote machines on which to spawn the ADPAC simulations.

Figure 4 shows the AVS pop-up windows used to accept this input from the user. PVM daemons

are started on each remote machine specified by the user to create the virtual parallel machine.

Each time TESS needs fan performance data during a simulation, fan Multi-ADPAC creates

the needed remote instances of ADPAC on the virtual machine and sends each its boundary condi-

tion parameters, fan Multi-ADPAC then waits for the simulation results. Each result is matched

with its boundary conditions, then used to create data points on the performance curve (see

Figure 2). Once all the values have been received, the performance curve is interpolated to match

the stagnation pressure ratio across the fan, impressed by the TESS simulation, to determine the

stagnation temperature ratio and mass flow rate. These values are then used by TESS to continue

the complete propulsion system simulation.

The source code for ADPAC is maintained by a separate group at NASA Lewis Research

Center, and has been unavailable for this project. As a result, the operation of each remote

instance of ADPAC requires several codes, illustrated in the flow chart in Figure 5. The first pro-

gram, makeinput, creates the ADPAC input data file from the boundary parameters. Then,

ADPAC executes, reading its grid file and the input data file. The output file produced by ADPAC

is then read by the third program, mbave. This is a multi-block averaging program and integrates

the three-dimensional flow solution to give the single (space-averaged) flow values which are

Figure 4: fan Multi-ADPAC module control panels

I Adpacslave 14

I makeinput

Boundary
Condi tions

ADPAC Inpu t
Da ta

ADPA C fi I e

mbave

ADPAC Ou t
Da ta

Averaged
Resul ts

Figure 5: ADPAC code suite flow chart

needed by TESS. The adpacslave program coordinates the execution of the other three pro-

grams, and handles the PVM communications with fan Multi-ADPAC receiving the input data for

makeinput and returning the results from mbave.

A new performance curve is created by fan Multi-ADPAC each time fan performance data is

needed by TESS. To reduce the overall simulation time, the space-averaged values are retained

and used to create an overall fan performance map. Before running flow solutions, this data is

checked to see if the current operating conditions are within the data range. If so, the data is inter-

polated and used in the system simulation. In this manner, the simulation time may be signifi-

cantly reduced. This also has the added benefit of creating an overall fan performance map which

can be used in subsequent, non-zooming TESS simulations.

3. Intelligent Monitoring and Control

A monitoring tool and expert system have been designed for use with the TESS/ADPAC simula-

tion. It will provide the user with information about the progress of the simulation and allow the

inclusion of rules to steer ADPAC runs and determine when new performance curves are needed.

The design of the system is complete and implementation is underway. The following systems are

being used:

• Monitoring tool constructed using the TAE+ (Transportable Application Environment)

package [TAE]

• Expert system constructed using CLIPS (C-Language Integrated Production System)

package [CLIPS], and

• The Schooner interconnection system [Homer94a, Homer94b]

This section first describes the overall approach to the problem, then gives a description of each

system used, and finally presents some details of the implementation.

3.1 Control Strategy

Intelligent monitoring and control is necessary due to the complexity of engine simulations. A

large number of variables can affect the outcome of a simulation and monitoring them can place a

severe burden on the user. Two types of problems that arise are physically unrealistic boundary

conditions imposed on a component and numerical instabilities that arise within a component.

One simple example is the addition of fuel to a combustor component. This should result in a rise

in temperature through the combustor. As another example, the fan component should produce a

Expert
System

.,/
Momtor, ng Tool Fan_D_AiCtion IPVM

Figure 6: Monitoring and control system

rise in air pressure at the outlet. Both of these cases are relatively easy for an expert system to

check. A more complicated example arises from numerical instabilities in the fan component.

These can produce artificial, numerically-induced vortices in the air flow which reduce the effec-

tive area for flow through the fan and cause pre-mature choked flow. An expert system would

need more complicated rules to detect such a problem and implement the series of corrective steps

needed.

The immediate goal of this research is to build a monitoring and control system that can detect

some of these types of problems and warn the user when they arise. The longer-range goat is the

development of more complex rules and the corresponding controls to allow the expert system to

actively steer the simulation. To realize the immediate goal, the monitoring tool displays informa-

tion about the progress of each of the ADPAC simulations. The expert system receives data from

the monitoring tool and passes back appropriate warnings to be displayed for the user. The inter-

connection system provides a transparent means of connecting the different parts into a single

application. Figure 6 illustrates this system. For clarity, only one ADPAC instance is shown in the

figure. As experience with the system is gained, the expert system will be extended to provide

active control, through the interconnection system, of ADPAC and TESS.

10

3.2 Control System Components

This section presents an overview of the TAE+, CLIPS, and Schooner systems that are used in the

monitoring tool and expert system.

3.2.1 TAE+

TAE+ is a package that supports the rapid prototyping and construction of X-windows graphical

user interfaces. It provides a workbench that facilitates the design and layout of the application's

windows, allowing easy placement of the various objects within each window. A programming

tools package allows the user to add code to the interface to provide program control over the var-

ious objects that make up the interface. Finally, a code generator automatically generates code in a

number of languages for creating the interface and building the main event loop for the applica-

tion.

There are three basic building blocks available for use in designing windows for a TAE+

application. The first is a set of user-entry objects that allow the user to interact with the applica-

tion through buttons, pull-down menus, and text fields. Second, there are data-driven objects that

graphically display information from the application in real time through dials, strip-charts, ther-

mometers, etc. The third category is information objects, such as text displays and help screens

that provide the user with information or instructions about the application. The data-driven

objects are particularly useful in a monitoring tool as they easily support receiving and reporting

of continuous data during execution. A set of pre-defined objects are available that can be used to

create vertical and horizontal scales, rotating dials, strip charts, etc. The user can also build

objects specific to the application by creating a custom-object using the supplied drawing tools in

TAE+ and defining the type of rotational, sliding, stretching, etc. data that will be supplied to the

object. The data-driven object was a major reason for selecting TAE+ for this project, as it easily

supports the type of monitoring needed for ADPAC.

3.2.2 CLIPS

An expert system built with CLIPS begins with a user-defined set of rules. The rules are written in

a functional language and describe actions to take when specified conditions occur in the applica-

tion. Typically, CLIPS supplies a window that displays information to the user about the applica-

tion and shows the progress of the knowledge engine as the package works through the rules. A C

language interface is also available that by-passes the CLIPS window and allows an application to

11

be tied directly to the knowledge engine. This latter feature is being used in this current project.

The C interface consists of function calls that pass data to CLIPS and return results from the rules.

Callbacks through the C interface allow CLIPS to pass control commands to other components in

the system.

3.2.3 Schooner interconnection system

An interconnection system provides a model of computing that connects applications and imple-

ments a configuration management system, thus creating a meta-computation [Khokhar93]. Each

application contains one or several computations that accomplish a specific set of tasks, for exam-

ple, the TESS or monitoring tool applications in Figure 6. An application can be developed using

the combination of programming language, model, or architecture that is most suitable. Thus, the

meta-computation is a heterogeneous, distributed program. At runtime, each application exports

operations that can be invoked from other applications. For example, the monitoring tool exports

operations that can be invoked by instances of ADPAC to report their progress. The interconnec-

tion system transparently handles the transfer of data and control among the applications making

up the meta-computation.

A meta-computation requires configuration tools to assist the user in starting and controlling

the component applications. The configuration management features of the system give the user

both static and dynamic configuration control. Static control allows the user to select the applica-

tions that will be needed, such as the expert system and monitoring tools, and to begin execution.

Dynamic control then allows applications to be added or removed as needed by the user or

through commands issued by the applications themselves. Dynamic control is used by the moni-

toring tool to establish and break connections with instances of ADPAC.

The Schooner interconnection system realizes this model of scientific computing by supplying

a software configuration and control mechanism for executing heterogeneous distributed compu-

tations. There are four, mostly orthogonal, parts to Schooner: a specification language, and inter-

mediate data representation and accompanying data exchange library, a set of stub compilers, and

a runtime support system. The Universal Type System (UTS) provides both the specification lan-

guage and the intermediate data representation [Hayes89]. The specification language is machine-

and language-independent and is used to describe the interface for each component application.

The UTS intermediate data representation provides a medium for exchanging data across machine

architectures and handling data structure differences among languages. The stub compilers, one

12

for each supported language, read the UTS specifications and create the interface. The runtime

system implements application-level remote procedure call (RPC) control transfer between com-

ponents, as well as configuration and control features. It provides the user with a means of config-

uring the various applications in the computation, and provides the underlying communication

and management support.

3.3 Prototype Monitoring and Control System

To accomplish the immediate research goals, a monitoring tool has been constructed that allows

the user to observe the progress of ADPAC runs and provides information to an expert system that

can raise several warning panels. The monitoring tool, designed with TAE+, consists of windows

for each instance of ADPAC. Figure 7 shows a snapshot of one such window taken at the end of

an ADPAC run. The name of the machine executing this instance of ADPAC is shown at the top

center of the window. The chart on the lower-right portion is a strip-chart and plots the residual on

a log scale over the most recent 100 iterations. The residual provides a measure of how well

ADPAC is approaching convergence. Convergence is generally achieved when the residual has

Mus (II:_M©)

Design = 1400

Man In MaB Out

1 471 1 473

1.800 _ luoo
1600 I_ zv.x_
14o0 _ 14oo

tO00 L---. luoo

800 L---- _,_

P_ure Ratio

(Dimen.ionleu)

Dulgn - I_5

1 3_

2.0 _,

1.8 _,

1.6 =l

1.2
1.0

0.8
o.s -
0.4
0.2

0

Latest Fan Solution

lacGOl Jerc .nasa ._ov

Presmre

(Dimensionless)

1

O'

Inlet Leading Trailing
Edge Edge
of Fan of Fan

Axial Location

1

0

-1

R_kt_
-2

(logl0)

-3

-4

Iteration

Figure 7: ADPAC Monitoring Tool

Outlet

100

13

The new omega does not match with the flow file.

........... "" ' ' " :: "" ' ' i:iii h'l'iiiiiiiitii_ iititiiiii_ii_ ' i

Figure 8: Pop-up warning window

dropped four orders of magnitude, while an oscillating residual is a symptom of a problem within

ADPAC. Experience with TESS-ADPAC indicates that convergence is reached in most cases in

500 to 800 iterations. When a computation is finished, the strip-chart on the upper-right shows the

pressure plot at 52 points along a slice through the fan. The vertical scales on the upper left report

the flow rate of air into and out of the fan. The vertical scale on the lower left shows the final pres-

sure ratio (outlet/inlet) computed by ADPAC. Each of the vertical scales also show the design

point provided by the one-dimensional TESS model.

A prototype expert system receives data from the monitoring tool and provides several warn-

ing messages to the user in the form of pop-up windows. One example is shown in Figure 8. The

monitoring tool uses the C language interface to CLIPS to pass data to the expert system. The

pop-up windows, when appropriate, are then triggered by procedure callbacks from CLIPS to the

monitoring tool.

Since the source code for ADPAC was not available for this project, the output data files are

monitored instead. One of the data files is updated by ADPAC on each iteration during a run to

report a number of quantities, including the desired residual, and several types of warnings. One

limitation of this approach is an inability to affect ADPAC once execution has started. Thus, the

expert system is currently limited to displaying warnings and errors in the monitoring tool, rather

than being able to actively steer ADPAC.

To simulate the type of monitoring desired given the constraints, a watch-dog process is cre-

ated on each machine executing ADPAC. This process uses an infinite loop to continuously check

ADPAC's output file for new data. Whenever the file changes, the watch-dog examines the file for

values of interest, specifically the residual values from each iteration and warnings of interest to

14

starting watch-dog

export monitor_files dispatch("filename" val string[40])

residual report

import residual_report prog(

"iteration" val integer,

"residual" val float)

warning reports

import warning_reportl prog(

import warning_report2 prog(

"message" val string[-])

"message" val string[-])

final reports

import mass in report prog("mass_in" val float)

import mass_out_report prog("mass_out" val float)

import pressure_report prog("pressure_ratio" val float)

import pressure_plot report prog("pressure" val array[52]

import last_report prog()

Figure 9: ADPAC Watch-dog UTS Specification

of float)

the expert system. It also reads the average results from the mbave program at the completion of

the ADPAC run.

Schooner connects the watch-dog processes to the monitoring tool through the use of UTS

specification files. The specification file for the watch-dog process is shown in Figure 9. An

import specification indicates a service the watch-dog process will call from another component,

in this case from the monitoring tool. An export is a service the watch-dog process provides to

the monitoring tool. A analogous specification file is used with the monitoring tool. Each proce-

dure specification lists the arguments using a Pascal-like syntax.

Execution of the watch-dog process is started after the monitoring tool receives from TESS

the list of machines on which ADPAC is executing, and the corresponding list of output file

names. Schooner's dynamic configuration library allows watch-dog processes to be started when-

ever needed by the simulation. Once the watch-dog has been started, the monitor_files dis-

patch is called. This tells the watch-dog the name of the output file to monitor, and starts the

infinite monitoring loop. During execution, the watch-dog makes simple procedure calls, for

example

residual_report(iteration, max_err) ;

is called to report the residual from the current iteration. The Schooner system transparently han-

15

diescommunicationsanddataconversionsamongthemachines.

4. Current Status and Future Directions

This is an on-going research project. This section describes the current state of the implementa-

tion and then outlines some of our plans for expansion of the system.

4.1 Current State

The TESS-ADPAC system has been fully implemented. It has been tested with a subsonic engine

model and compared with experimental data from the Energy Efficient Engine. The machine suite

used for the tests consisted of a Silicon Graphics Iris 4D/440VGX at the University of Toledo for

the TESS system. The ADPAC instances were executed on a variable number of nodes of the

Lace cluster, a network of 32 IBM RS6000 workstations located at the NASA Lewis Research

Center.

The monitoring tool was originally designed to monitor a single ADPAC instance. This was a

result of the original zooming strategy which envisioned a single high-fidelity component simula-

tion used in an iterative approach (see Section 2.1). The monitoring tool has been tested on a Sun

Sparc 10 workstation located at the Lewis Research Center and monitoring an ADPAC run on a

node of the Lace cluster. In this prototype, the expert system executes on the same platform as the

monitoring tool, since the initial number of rules is small. The system is currently being extended

to monitor all instances of ADPAC and allow the user to select all, or a subset, to observe. The

expert system can be moved to a separate platform as soon as the complexity of the rules

increases to the point where this will be necessary.

4.2 Future Directions

One obvious direction is to modify the source code of ADPAC to allow it to communicate directly

with TESS and the monitoring and control system, rather than through its output files. A principal

reason for not modifying the source initially is the desire to prove the feasibility of this approach

and identify the specific changes desired. There is another positive feature to the approach of

using the output files: It would be relatively straight-forward to substitute a different high-fidelity

fan simulation and provide a similar level of monitoring through watching its output file. This

technique allows for easy testing of different fan simulations without the initial need to involve

the authors of the simulation.

16

The ADPAC code is currently beingre-written to take advantageof parallel machinesand

workstationclusters.Oncethis work is completed,the parallel-ADPACwill be testedwith the

TESSsystem.

Anotherzoomingapproachbeingstudiedis to useanintermediatefansimulation,specifically

a two-dimensional,axi-symmetricsimulation.This hasthe advantageof not requiring asmuch

executiontime as the three-dimensionalADPACsimulation whenlessaccuracyis needed.In

addition,it will bepossiblein somecasesto usethesolutionfrom themedium-fidelitysimulation

tojump-startthe three-dimensionalsolution,thusshorteningtheexecutiontimeof thehigh-fidel-

ity simulation.

Fault detectionand fault tolerancetechniquesarebeing studiedfor usewith the multiple

ADPACruns.Currently,thesystemdoesnotgracefullyhandlethefailureof anADPAC instance.

In general,the desiredsinglecurve performancemapcan be createdeven when one or two

ADPACinstancesfail, allowing thesimulationto proceed.This is anareawhererulesareneeded

for theexpert systemsotheuserwill not haveto constantlymonitora long simulationin casea

fault occurs.

Acknowledgments

The NPSS project is managed by the Interdisciplinary Technology Office (ITO) at NASA Lewis

Research Center (LeRC). This work was performed in part on computing resources at the

Advanced Computational Concepts Laboratory (ACCL) and the Computer Services Division at

LeRC. Thanks are due to G. Follen, C. Putt and C. Miller of LeRC.

References

[AVS92]

[Claus92]

[Claus91]

[CLIPS]

[Davis85]

Advanced Visual Systems Inc. AVS Developer's Guide (Release 4.0), Part number:

320-0013-02, Rev B, Advanced Visual Systems Inc., Waltham, Mass., May 1992.

R. W. Claus, A. L. Evans, G. J. Follen. Multidisciplinary propulsion simulation

using NPSS. 4th AIAA/USAF/NASA/OAI Symposium on Multi-disciplinary Anal-

ysis and Optimization, Cleveland, OH (September 1992).

R. W. Claus, A. L. Evans, J. K. Lylte, and L. D. Nichols. Numerical propulsion

system simulation. Computing Systems in Engineering 2, 4 (April 1991), 357-364.

CLIPS Reference Manual, Basic Programming Guide. Software Technology

Branch, Lyndon B. Johnson Space Center. CLIPS Version 5.1, September 10,
1991.

D. Y. Davis and E. M. Stearns. Energy Efficient Engine--Flight propulsion system

17

[Hall93]

[Hayes89]

[Homer94a]

[Homer94b]

[Khokhar03]

[Reed94]

[Reed93]

[Sunderam90]

[TAE]

Final Design and Analysis. NASA CR-168219,contract report prepared by
GeneralElectricCompany,August1985.

E. J.Hall, R. A. Delaney,andJ.L. Bettner.Investigationof AdvancedCounterro-
tation BladeConfigurationConceptsfor High SpeedTurbopropSystems,Task5
-- UnsteadyCounterrotationDuctedPropfanAnalysisComputerProgramUser's
Manual,NASA CR-187125,Jan.1993.

R. Hayes. UTS: A Type Systemfor Facilitating Data Communication,Ph.D.
Dissertation,Departmentof ComputerScience,University of Arizona, August
1989.

R T. HomerandR. D. Schlichting.A softwareplatform for constructingscientific
applicationsfrom heterogeneousresources.Journal of Parallel and Distributed

Computing 21, (June 1994), 301-315.

R T. Homer and R. D. Schlichting. Using Schooner to support distribution and

heterogeneity in the Numerical Propulsion System Simulation project. Concur-

rency--Practice and Experience 6, 4 (June 1994) 271-287.

A. A. Khokhar, V. K. Prasanna, M. E. Shaaban and C. Wang. Heterogeneous

computing: Challenges and opportunities. IEEE Computer 26, 6 (June 1993), 18-
27.

J. A. Reed and A. A. Afjeh. Distributed and parallel programming in support of

zooming in numerical propulsion system simulation, OAI/OSC/NASA Sympo-

sium on Application of Parallel and Distributed Computing, Columbus, Ohio.

April 1994.

J. A. Reed. Development of an Interactive Graphical Aircraft Propulsion System

Simulator. Master of Science Thesis, University of Toledo, August 1993.

V. S. Sunderam. PVM: A framework for parallel distributed computing. Concur-

rency--Practice and Experience 2, 4 (December 1990) 315-339.

Transportable Applications Environment Plus. Programmer's Manual, Version 5.2.

Goddard Space Flight Center, National Aeronautics and Space Administration.
December 1992.

18

Opportunities and Tools for Highly Interactive Distributed and

Parallel Computing

Greg Eisenhauer

Weiming Gu

Thomas h:indler

Karsten Schwan

Dilma Silva

Jeffrey Vetter

Georgia Institute of Technology

Atlanta, Georgia 30332

Abstract

Advances in networking,visualizationand parallelcomputing signalthe end ofthe days of batch-

mode processingforcomputationallyintensiveapplications.The abilityto controland interactwith

theseapplicationsinreal-timeoffersboth opportunitiesand challenges.This paper examines two com-
putationallyintensivescientificapplicationsand discussesthe ways inwhich more interactivityintheir

computationspresentsopportunitiesforgain.Itbrieflyexamines the requirementsforsystemstryingto

exploittheseopportunitiesand discussesFalcon,a system thatattemptsto fulfilltheserequirements.

1 Introduction

The world of computationally intensive computing is moving away from the batch-oriented style of processing.

Users accustomed to spreadsheets and WYSIWYG word processing are not satisfied with the traditional

hands-off, you'll-get-your-data-when-the-batch-queue-empties mode of running parallel programs. At the
same time, high-speed network interfaces and the proliferation of high-end graphics workstations offer an

opportunity to open new windows into application behavior. Falcon, a system developed at Georgia Tech,
provides tools and techniques for exploiting these developments, and it uses them to create new opportunities

for application understanding, debugging and tuning.

Traditional debuggers rely on halting the system in order to examine and modify the program state.
While such debuggers are useful, they are often inadequate to detect the race conditions, synchronization

errors or other problems endemic to parallel and distributed programs. Similarly, traditional uniprocessor

code profilers and analyzers have a role in tuning parallel programs, but they are ineffectual for analyzing

synchronization overheads, bursty computational demands, or other problems more unique to non-sequential

applications. Neither type of tool provides the insight into dynamic program behavior that is often necessary

to debug and tune parallel and distributed programs. Perhaps more importantly in the long term, neither

type of tool encompasses mechanisms for dynamically manipulating running programs.
To address these deficiencies one needs mechanisms for "observing" a running application and "adjusting"

its state or behavior. Collectively, these mechanisms are a monitoring and steering system[GVS94]. The on-

line manipulation or steering of parallel and distributed programs has been shown to result in performance

improvement in many domains. Examples of such improvement include the automatic configuration of
small program fragments for maintaining real-time response in uniprocessor systems[MP89], the on-line

adaptation of functional program components for realizing reliability versus performance tradeoffs in parallel

and real-time applications [BS91, GS89, GS93], and the load balancing or program configuration for enhanced

reliability in distributed systems[SGB87, MW91, Bec94].

Furtherbenefitsaregainedif monitoringandsteeringmechanismsarenot limitedto system-levelcon-
structsbutareinsteadmadeavailableill areasonablewayat theapplicationlevel.In additionto supporting
standardprogramtuningpractices,application-levelmonitoringandsteeringhavethepotentialto produce
realgainsinapplicationproductivitybyallowinguserstoaccomplishmoreusefulworkwiththesamenumber
of computecycles.Howisthispossible?Trulyinteractiveparallelprograms,createdwith application-level
monitoringandsteering,will giveuserssignificantinsightinto the progress of the computation. If users

have access to the computation and the ability to guide or direct the computations at runtime, they have

an unpacalleled power to evaluate and experiment with the program.

Consider the case of scientific computing, where many applications are trying to model or simulate the

real world. A truly interactive program would let users interact with that world as it evolves. Rather than

planning a dozen batch-style simulation runs with a dozen different parameter values, the user can adjust

the application dynamically and examine the response. Rather than discovering at the end of a twenty

hour simulation run that the system wandered into an unreasonable state early on, it can be monitored for

reasonableness as it progresses. These process tumng situations are often neglected because they do not fall

into the traditional realm of program tuning or debugging. However, the advantages of additional high-level

insight into the application in these cases are an important benefit of interactive parallel computing.

This paper first examines two computationally intensive scientific applications and discusses the ways in

which more interactivity in their computations presents opportunities for gain. It then briefly discusses the

requirements and techniques for exploiting these opportunities and examines the aspects of Falcon which

fulfill these requirements. The paper also presents our conclusions and plans for future work.

2 Interaction Opportunities in Selected Applications

Parallel and distributed programming models and applications vary widely, as do the situations in which one

might wish to employ a monitoring and steering system. The utility of a general, low-perturbation monitoring

system in both debugging and performance tuning is widely accepted. Unfortunately, most such systems do

not make their facilities easily accessible at the application level. If we are to realize the application-level

process gains discussed in the introduction we must consider the demands of application-level monitoring and

determine how steering might be used. This section examines two large parallel applications and discusses
ways in which a monitoring and steering system might benefit each.

2.1 MD

MD is an interactive molecular dynamics simulation developed at Georgia Tech in cooperation with a group of

physicists exploring the statistical mechanics of complex liquids [XORL92. EGSM94]. The specific molecular

dynamics systems being simulated are n-hexadecane (C16-H34) films on a crystalline substrate Au(001). In
the simulation, the alkane system is described via intramolecular and intermolecular interactions between

pseudoatoms (CH2 and terminal CHa segments) and the substrate atoms. The calculational cell is a square

cylinder which is periodically repeated in the x-y directions. Temperature is controlled via infrequent scaling

of the particles' velocities. The aikanes remain associated in a chain with very predictable bond lengths
throughout the simulation. A typical small simulation contains 4800 particles in the alkane film and 2700

particles in the crystalline base. A visual representation of this physical" system appears as Figure 1.

For each particle in the MD system, the basic simulation process takes the following steps: (1) obtain
location information from its neighboring particles, (2) calculate forces asserted by particles in the same

molecule (intra-molecular forces), (3) compute forces due to particles in other molecules (inter-molecular
forces), (4) apply the calculated forces to yield new particle position, and (5) publish the particle's new

position. The dominant computational requirement is calculating the long-range forces between particles,

but other required computations with different characteristics also affect the application's structure and

behavior. These computations include finding the bond forces within the hydrocarbon chains, determining

system-wide characteristics such as atomic temperature, and performing analysis and on-line visualization.

The implementation of the MD application attains parallelism by domain decomposition. The simulation

system is divided into regions, and the responsibility for computing forces on the particles in each region is
assigned to a specific processor. In the case of MD, we can assume that the decomposition changes only slowly

over time and that computations in different sub-domains are independent outside some cutoff radius. Inside

Figure1: A visualrepresentation of a sample system for the molecular dynamics simulation. Tile white-

yellow particles are the pseudoatoms of the alkane chains. The red particles represent the gold substrate.

this radius information must be exchanged between neighboring particles, so that different processors must

communicate and synchronize between sinmlation steps. The resulting overheads are moderate for fairly

coarse decompositions (e.g., 100-1000 particles per process) but unacceptable for finer grain decompositions

(e.g., 10 particles per process).
The MD simulation offers many opportunities to improve the performance through both on-line interac-

tions with the end user and program steering by algorithms, including:

• Decomposition geometries could be changed to respond to changes in physical systems. For example,

a slab-based decomposition may be useful for an initial system, but a pyramidal decomposition might
be a better choice if a probe is lowered into the simulated physical system.

• The interactive modification of the cutoff radius could improve solution speed by computing uninter-

esting time steps with some loss of fidelity, if this is desired by the end user.

• The boundaries of spatial decompositions could be shifted for dynamic load balancing among multiple

processes operating on different sub-domains. This can be performed by an algorithm or by end users.

• Global temperature calculations, which are expensive operations requiring a globally consistent state,

could be replaced by less accurate local temperature control. On-line analysis could determine how

often global computations must be performed based on the temperature stability of the system.

From our experience with MD, we believe that these are important opportunities to exploit in order to

increase the usability and efficiency of the application. For example, we have seen that the performance of

the application is extremely sensitive to load balance shifts which can dramatically limit efficiency with even

moderate numbers of processors. The ability to dynamically rebalance and perhaps even reconfigure the

decomposition to match the evolving physical system is essential to performance for a long-running system.

2.2 Atmospheric Modeling

The simulation of complex global natural phenomena is one of the biggest challenges facing computational

science because of its extreme computational and data handling requirements. The ultimate goal in climate

modeling,thesimultaneoussimulationona globalscaleof physicalandchemicalinteractionsin oceanand
atmosphere,isstill far fromreach.It isdifficultto runandtesta modelwith typicalruntimesof hoursfor
eachsimulationday.Onesimplereasonfor this is that changesto a modeloftendonothavethedesired
effectsuponthemodelresults.Thisoccurrenceisparticularlycommonwhenparametersmustbechosento
simulateprocessesthatarenotwellunderstoodorwhoseinfluencecanonlybeapproximatedat thescaleof
thecurrentmodel.Theresultin thesecasesisasetof sometimesarbitrarilychosenparametersthat must
beadjustedindividually.On-linevisualization,interactionandprogramsteeringhavepotentialto simplify
andsignificantlyshortenmodeldevelopmenttimeandimprovemodelresultsaswellasto helpto improve
traditionalmeasuresofsimulationperformance.

Earthandatmosphericscientistsat GeorgiaTechhavedevelopeda globalchemicaltransportmodel
(GCTM)[KSS+94]whichusesassimilatedwindfields[SO93]for the transportcalculations.Thesetypes
of modelsareimportanttoolsto answerscientificquestionsconcerningthestratospheric-troposphericex-
changemechanismorthedistributionofspeciessuchaschlorofluorocarbons(CFC's),hydrochlorofluorocar-
boa(HCFC's)andozone.Thismodelusesa spectralapproachto solvethetransportequationfor each
species.In a spectralmodel,all variablesareexpandedintoa setof orthogonalsphericalbasisfunctions,
calledsphericalharmonics.Derivativeswith respectto the latitudeor the longitudearemoreeasilyand
accuratelycalculatedin thisspectraldomain,thoughthevariablesmustbetransformedbackintoa grid
domainfor thechemistrycalculations.Detailsof thissolutionapproach,whichisquitecommonin global
models,canbefoundin [Hau40],[Si154],[KHYK61],[WP86]or [FW94].Ourmodelcontains37layers,which
representsegmentsof theearth'satmospherefromthesurfaceto approximately50km.with a horizontal
resolutionof 42wavesor 946spectralvalues.In agridsystem,thiscorrespondsto aresolutionof about2.8
degreesby2.8degrees.Thusin eachlayer8192gridpointshaveto beupdatedeverytimestep.A typical
timestepincrementis 15simulatedminutes.Figure2representsavisualsamplefromthisapplication.

Therearemanywaysin whichmoreinteractivityin thisparallelapplicationcouldsignificantlybenefit
endusers.Forexample,a typicalproblemin modeldevelopmentis that therearedramaticdifferencesin
scalebetweensomeglobalphenomenonandthemanyphysicalprocessesthat compriseit. Grossmeasures
suchasverticalwindfieldshavesmallvaluesona globalscale,yetonasmallerscalephenomenonsuchas
thunderstormscauselargeverticalair displacementsandplayimportantrolesin verticalmixingin theat-
mosphere.Computing the entire globe on a scale where all such phenomena could be accurately represented

is far too computationally expensive to consider. One way of approaching this problem is to use parameter-

izations inside models which bear an indirect relationship to the small-scale phenomenon and that attempt

to match observed phenomenon on the global scale. Unfortunately, the construction of these parameterized

models is an exploratory and error-prone process. Section 3.1.1 describes ways in which basic interactive

monitoring and steering can aid in this model construction process.

Other more ambitious approaches to the same problem might involve allowing the user to interactively

identify interesting subareas for simulation at a higher resolution in time and/or space. This differential

focus approach would allow those regions to be modeled with better fidelity without invoking the huge
computational cost of using a higher resolution uniformly over the entire model. In some cases these areas

might be selected algorithmically, but in other cases what constitutes an interesting situation or area could
depend upon a subjective judgment by a human observer.

One can certainly imagine writing a program with a user interface that allows this level of interaction,

but our goal is to achieve this without turning scientists into graphical user interface (GUI) programmers.

The next section presents some tools and techniques that we have developed to further this goal.

3 Requirements and Tools for Interactive Computing

This section examines the general techniques and tools required to support program tuning in general and
specifically to support the user/program interactions presented above. We first examine examples of some

displays that support the interaction goals discussed previously. Then we discuss the monitoring and steering
systems required to create and support these displays.

Temperoture Deviations (K) Sep ,5, 1992
Level 3§, (10.0C, rnbj _ p2OO GMT

+ol
N.O

_lL0

mkO

14,0 •

IkO $i_i
O.@

-Ib.O

-e.o ."V,;/+_;

-IP-O i

- 141.0

-I_.0

-14,.0

00'II +

160

Figure 2: A sample plot of southern hemisphere temperature distribution as used by the global climate

transport model.

3.1 Displays

Displays which are useful for understanding application behavior vary as widely as do applications and

programming models. It is not possible, within the bounds of this paper, to survey all possible displays

or even all useful approaches to display construction. Instead we present sample displays and interactions

so that we can explain the monitoring and steering infrastructure required to support, them. This section

presents two types of displays targeted to different levels of abstraction in a arallel program. The first

example is an application-specific display of the type required to achieve some of the process-oriented gains

in application development discussed above. The second example is a programming-model specific display

useful for program debugging and tuning.

3.1.1 Application Specific Displays

The previous section has indicated that user interactive steering has the potential to improve an application's

performance and functionality. However, many uses of steering are application specific and so are graphical

displays that are used to present the run-time program and performance information to the end user and

to accept the user's steering commands. By examining a sample display used for steering the atmospheric

modeling code, we can explore how these displays are used to understand and control the application and

how they are interfaced with other parts of the monitoring and steering system.

The graphical display discussed in this section is specifically built for interactive steering of an atmospheric

modeling code that simulates the distribution of atmospheric species such as Carbon 14 (C 14) and CFC.

Figure 3 shows a screen display of the distribution of C 14 at a latitude of 70 ° N. The display has two logical

0n-line ControlleE of Atmospheric Modeling

35

30

25

20

15

10

Obeerved Valuee Computed Vakms

' ' '] _ ' ' I ' ' ' I

|

0 200 400 600

Concentrabon of Atn,_pt'_ri_ Species (10 $ at_'_ /gm aor)

8OO

Name of Species- I _ C:,_J-t)'¢ 1

Latitude: I = 7:" '_ I

Current Tii_ne Step: 2 _,,

Vortkml Voloolty (m/o)

L_y_r 37 "r Current Value:

Change To:

Layer 0 9 12.6 5 I

Vertical Eddy Diffusion Ceeffk-lent

2%

I ! I

-I0% +!0_.

Figure 3: An application specific display for on-line control of the atmospheric modeling code.

parts: one for showing both the computed and the observed concentration values of C 14 atoms in air to

the end user, and the other for accepting steering requests from the user. The computed results of the

C 14 distribution is represented by a plotted curve from atmospheric layer 0 to 37, and it. is updated for

every model time step. The observed C 14 concentration at a number of atmospheric layers is represented by

discrete triangular points, and is used to judge whether the current computation is "correct" or "wrong."

When noticeable discrepancies between the calculated values and the observed values are detected, the user

can dynamically modify the application execution to "'correct" the computations. For example, the curve

shown in Figure 3 demonstrates that the computed concentration of C TM is consistently higher than the

observed values from layer 10 to 15, but it is lower from layer 16 to about 23. The simulation may be

adjusted to remove this discrepancy; the end user can alter the vertical wind velocity at these atmospheric

layers. After typing in new vertical wind velocity values, the user needs to click the commit button on the
display to send the steering command to the application. The program will use these new parameters for

computations from the next model time step. The user can also stop the application's execution (by clicking

the 1:3or stop button), change parameters, and restart the execution (by clicking the I> or play button).
Before restart, the user can rollback the computation to a previously checkpointed time step (by clicking

the <3<1 or rewind button). At any point the user can checkpoint the application execution (by pressing the

checkpoint button). The user can also use the application's default checkpointing policy which automatically
saves execution history after a predefined number of time steps.

The above application specific display has a two-way communication link with the application code. In one

direction, it receives computed and observed concentration values of atmospheric species from the application,

and displays these values to the user. In the other direction, the display accepts steering commands and

sends them to the application. A clean interface between the display and the application code is needed.

Our Falcon system provides a flexible mechanism of dynamically connecting and disconnecting displays to

the application. This mechanism will be addressed in Sections 3.2 and 3.3.

3.1.2 Programming Model Specific Displays

Both of the application programs described ill Section 2 have been inlplemented on shared-memory multi-

processors using a threads-based programming model. In this model, independent threads of computation

are created on the various processors, and they co,ltrol access to shared data by using mutex locks and

conditions[CD88]. The amount of time a thread spends waiting to be granted a lock or for a particular

condition to occur directly impacts the amount of useful work it can perform in a given time. Therefore,

understanding the interactions of threads over time is one of the most important aspects in understanding

the behavior of these programs.
This section examines one display that we have found useful in diagnosing performance problems in

threads-based programs• The threads lifetime view depicted in Figure 4 shows thread behavior over time.

In particular, it represents each thread as a horizontal bar which assumes different colors and patterns when

the thread is in different states, such as running, waiting for a mutex, or waiting for a condition. A vertical

line is drawn from the parent thread to the child thread at the time of thread fork event. When a thread

joins another thread after it exits or when a detached thread calls thread_exit, the narrow bar representing

the thread terminates. In the case of thread_join, another vertical line is drawn from the caller thread to the

thread to which it joins• The space after a joined thread can be reused by threads forked later. The display
contains buttons with which one can move around and zoom in on different threads and regions of time.

In addition to this lifetime display, there is another simultaneous display that relates thread colors to their

names. We have excluded this name mapping view for space considerations.

 mmmmmmm

:j+.,._._.,/+_,/+,._., _]: ===
3+:)Z_'Y'.'_._;_:¢ :'.Y'. _',_+'_T+:,.';:'_ :: -:- ",r.e.._•_',,.,,'¢! ..'..:..::::::..::.'....::::....::::::..: ,......::::::::,,=.: _._,,9_...,:
m re_j queue I , i" i • l[[I

++++++:+:+:+:+:+:++:+:+:+:+:++:+:+:+:+:+:+:++:+:++:++:+?+:+++++,+++++++++:::::::I, ii;, i •'... .. :' ".. -.
I• [. • .,.. •. : ..

........................... pll............................."• +..........._tting]'N:_:_':_:_:_:i_:_:'m"r_t_'' """'"i'"' : "'"'"""'"'"'"""" ":"':'":":":'"":'":':':':"'":':":":":":":":'•:":":":":"":j" _'' " '"""'"' "'"""]
t:" • i i .

_ " II _"."."-••.".".".::::':':" '"'
u_itin9 condition _!, !. _L +! !!_ _,,, _!_ !

-+-"_-.......... I i:i l::i _!i

ii:iii:i!i:iii:i!i:i?i:iii:iii:iii:i!i:iii:iito be joined

perturbation

:.:.'._;.::.!:: '..'::_?:_.:_;.:_t..'.:_.'.:_P¢3":._ _'.::.::.'_q_'.'_:'.'::1"..'.3,:::I';'_._:::_1_'.:_.::::_.[,:.'.::•:.'.:t.:.3_'::_l_:.:j.:_.!1'.:.:_.-'..:iP.:.:."._Y.!_'.:_::-_q'..":._.Y_!1.:.:'.:.3_?.?:E,:__:¢:3:..'_t |
.... • _:_:_:_`_:'_+_+_+_ _;_ _;_:_+;_;_+_;_+_+_ _+_:_:_+'_'_+_:_+_++_'_';,:;+'_'_:_ .';.:.:.:..; .;..+.......... :_.+ I.: : :'::::' ":';::. "::":::' '.:":::.'._:::..?: ::.:.;+::..::.._:.:.:;:%";_::..:"_':::.:_.::-.+.._":.>::+:.-:_::i.:!-%.'..::+':._.:-+':+:i::i..",.-::"::i:::i_:':+i:+:!.::+iii_::_:::+?:%_-_..+.::: !i :.._::.++-..::+::;:._: +i: ::.:.:._::.:+_""

Figure 4: A thread life-time display derived from traces of MD program behavior.

The particular set of threads shown in Figure 4 represents a snapshot of the MD application's execution
with the molecules partitioned into five domains. The bottom five threads are threads responsible for

calculating the inter-molecular forces for each domain. These threads live for the duration of the calculation.

The top five positions are held by threads that calculate intra-molecular forces. These threads are forked

bytheinter-molecularthreadonlyfor asingletimestepin thesimulation.At.theendof theircalculations
for that ti,nestep,theyperformajoin operationandexitwhenboththeyandtile threadthat forkedthem
completethecalculationsfor that timestep.Whentile nextiterationbegins,a differentthread(with a
different,color)is forkedandtheprocessrepeats.

Figure4is interestingforMDbecauseit makesclearsomeaspectsofthreadsynchronizationthataredif-
ficult todeterminewithoutsuchadisplay.Eachdomainmustacquireupdatedparticlelocationinformation
fromits neighboringdomainsbeforeit canproceedwith thenextiteration.Thiswaitingtimeappearsas
thegrey"waitingforcondition"statein thedisplay.Ratherthanrequiringall threads to finish before any

thread begins the next iteration, MD domains only synchronize with their immediate neighboring domains.

This allows individual domains to begin the next iteration even before other threads have completed the
current iteration. This flexibility helps MD compensate for the effects of minor variances in load balance

between domains. In the figure one can see that blocks of solid compute time, which occur when a domain

starts a new iteration, occur first in the second thread from the bottom and later in threads of more distant
domains.

To produce displays of this type, the important constructs in the programming model must be instru-

mented. In this case, we have instrumented the Cthreads parallel programming library[Muk91] so that every

operation that can affect the state of a thread produces a record in an event stream. In order to produce a

reasonable display, these events must contain accurate timestamps and they should not excessively disturb

normal execution of the program. The next section will discuss the system requirements and tools in Falcon

that support the sample displays presented above.

3.2 On-line Monitoring

The first step to interactivity is gaining easy access to the applications' run-time information. This infor-

mation ranges from records of the utilization of processors to detailed execution and waiting times spent by

each processor and from values of certain variables (e.g., "temperature" of a simulated molecular system,

"concentration" of an atmospheric species) to complete current program states of the application. There-
fore, the capture, collection, and analysis of on-line program and performance information should be an

integral component of any system which supports interactivity. Instead of focusing on supporting on-line

interactivity, however, past work in program monitoring has focused on helping programmers understand

the performance of their parallel codes, minimizing or correcting program perturbation due to monitoring,

reducing the amounts of monitoring or trace information captured for parallel or distributed program debug-

ging [OSS93, HMC94], and the effective replay [LMC87] or long-term storage of monitoring information. In

comparison, interactivity, in the form of on-line program steering, specifically requires its on-line monitoring

system to be able to: (1) capture application-specific information, (2) impose controlled overheads on the

execution of monitored applications, (3) deliver monitoring information with low latency, and (4) provide

incremental analysis of monitoring information vital for on-line steering.

The monitoring system is required to handle application-specific data because much of program steering

is inherently application-specific. With MD, for example, steering can be used to improve load balance

based on the molecule partitions and boundaries of these partitions. The boundaries can be adjusted by the

user during program execution to obtain a better load balance. In steering the atmospheric modeling code,

parameters concerning certain atmospheric species can be dynamically changed to effect different results on

these atmospheric species. In addition, application-specific monitoring permits non-computer science end

users to view, analyze, and steer their programs in terms of their specific attributes (e.g., "time step size"

or "current energy").

Controlled monitoring overheads are useful for several reasons. First, since one purpose of application

steering is to improve program performance, excessive monitoring overheads can easily offset the performance

gains obtained by steering. Second, steering decisions based on inaccurate information may produce unex-

pected results. In the case of MD steering based on the work load information of each processor, perturbed
information can cause inaccurate, sometimes unnecessary, adjustments of partition boundaries. In the worst

case, thrashing of boundaries can occur and application execution will actually be slowed.

Steering latency is the period of time between the occurrence of a program activity or state and the time

when it is acted upon by a steering agent; monitoring latency is the period of time between the capture of

an activity by the on-line monitor and the passage of that activity to the steering mechanism. Excessive

monitoring and steering latencies can cause steering decisions to be made based on obsolete program and

performance information, which call result ill unpredictable and often negative effects on an application's

execution. In the atmospheric modeling code, if the visualized windfield and values of atmospheric species

are presented to end users several time steps behind the actual application execution, users may adjust

parameters based on "old" information.

Falcon - an integrated system for on-line monitoring and steering of large-scale parallel and distributed

applications - is designed to incorporate tile attributes necessary for effective on-line monitoring and steering.

An overview of the Falcon monitoring system is presented next, followed by discussions of its mechanisms for

code instrumentation, event collection, and on-line trace data analysis 1. Falcons program steering system
will be described in Section 3.3.

3.2.1 System Overview of Falcon

Falcon is a set of tools that collectively support on-line program monitoring and steering of parallel and

distributed applications. There are three major conceptual components of the on-line monitoring component

of Falcon: (1) a monitoring specification and instrumentation mechanism, which consists of a low-level sensor
specification language, a high-level view specification language, and an instrumentation tool, (2) mechanisms

for on-line information capture, collection, filtering, and analysis, and (3) a graphical user interface and some

graphical displays for interfacing with the end user. These components are shown in Figure 5.

User

Sens0r/ViewI t

Specification] / _&_

Probes&

Original L.._Instrumentati0ni ,r & [_ I Trace I

S0urceC0de] -] T001 yzer ["_ Database]

n

Trace

Data

Conflict

lnmaJmented TraceData
Running Collector

Application
TraceData

Analyzer

Figure 5: Conceptual components of Falcon.

The following steps are taken when using Falcon. First, application code is instrumented with sensors

1A more detailed description of the complete Falcon system and its performance can be found in [GEK+94]

andprobes generated from sensor and view specificat.io,m. Such monitoring specifications allow users to

express specific program attributes to be monitored and based on which steering may be performed. During

program execution, program and performance informatio,i of interest to tile user and to steering algorithms
is captured by the inserted sensors and probes, and tile information collected is partially analyzed. Falcon's

runtime facilities consist of monitoring data output queues attaching the monitored user program to a variable

number of additional co,nponents performing low-level processing of monitoring output. Partially processed

monitoring information is then fed to the central monitor and graplfical displays for further analysis and for

display to end users. Trace information can also be stored in a trace data base for postmortem analysis.

The monitoring and user interaction "controllers' in the Falcon runtime system activate and deactivate

sensors, execute probes or collect information generated by sampling sensors, and also react to commands
received from the monitor's user interface. For performance, these controllers are divided into several local

monitors residing on the monitored program's machine so that they are able to rapidly interact with the

running program. In contrast, tile central monttorin9 controller is typically located on a front end workstation

or on a processor providing user interface functionality.

3.2.2 Instrumentation and Monitoring Specification

Instrumentation of a target application and its run-time system is the first step toward application steering.

Hardware monitoring and data collection require instrumentation of the hardware platform on which the tar-

get application is running. Software monitoring and data collection require instrumentation of tile program's

source code. the system libraries, the compiler, or any combination of the above. We do not rely on hard-
ware monitoring due to its cost, inherent inflexibility and inability to provide high-level application-specific

monitoring information.

Software instrumentation points are called sensors in Falcon. Falcon offers three types of sensors: sam-

pling sensors, tracing sensors, and extended sensors. A samplin 9 sensor is associated with a counter or

an accumulator. When a sampling sensor is activated, the associated counter value is updated. A tracing

sensor generates timestamped event records that may be used immediately for program steering or stored for
postmortem analysis. In either case, trace records are stored in trace queues from which they are removed

by local monitors. An extended sensor is similar to a tracing sensor except that it also performs simple

data filtering or processing required for steering before producing output data. Sampling sensors inflict

less overhead on the target application's execution than tracing and extended sensors. However, the more

detailed information collected by tracing sensors may be required for diagnosis of certain performance prob-

lems in parallel codes. Furthermore. the combined use of all three sensor types enables users to balance low

monitoring latency against accuracy requirements concerning the program information required for program
steering.

In order to control monitoring overheads, sensors can be controlled dynamically selectively to monitor

only the information currently being used by the end user or the steering algorithms. First, sensors may

be turned off if events captured by those sensors are not currently used by the end user or the steering

algorithm. 2 Second, sampling and tracing rates can be dynamically reduced or increased depending on

monitoring load and tolerance of inaccuracies in monitored information. For example, a tracing sensor that

monitors a frequently accessed mutex lock can reduce its tracing rate to every five mutex lock accesses,

thereby improving monitoring perturbation at the cost of reducing trace accuracy. A selective monitoring

example can be found in the MD code, where a large amount of execution time is spent in a three-level nested

loop computing forces between particles. At each loop level, distances between closest points of particles and

bounding boxes of molecules are calculated and compared with the cutoff radius to eliminate unnecessary

computations at the next loop level where specific particles are considered. To evaluate the efficiency of this

scheme, at each loop level we use a "cheap" sampling sensor to monitor the hit ratio of distance checks and

a more "expensive" tracing sensor to monitor the correlations between the calculated distance and hit ratio

at the next loop level. To reduce the perturbation, the "expensive" tracing sensor is not turned on until
ineffective distance checks are detected.

Using Falcon's monitoring specification language [Sno87], programmers may define application-specific

sensors for capturing both the program and performance behavior to be monitored and the program attributes

21q.elated work by Hollingsworth and Miller [HMC94] removes instrumentation points completely to reduce the overheads of
these turned-off instrumentation points to zero.

10

basedonwhichsteeringmaybeperformed.Tilespecificationof asampletracingsensorisshownbelow:

sensor work_load {

attributes (

in_ domain_num;

double work_load;

>

};

The sensorwork_loadisused to monitor the work load ofeach molecule domain partitionin MD. Itsimply

describesthe structureofthe applicationdata to be contained in the tracerecordgenerated by thissensor.

This declarationgenerates the followingsensorsubroutine.

user_sensor_.ork_load(int process_hum, double .ork_load)

if (sensor_swi_ch_flag(SENSOR_NUMBF_t_WOFtK_LOAD) == ON) {

sensor_type_work_load data;

da_a.type = SENSOR_NUMBER_WORK_LOAD;

data.perturbation = 0;

dara.times_amp = cthread_timestamp();

data.thread = crhread_self();

data.process_numffi process_num;

da_a.work_load = ,ork_load;

while (write_buffer(ge__buffer(c_hread_self()), _data,
sizeof(sensor_type_work_load)) == FAILED) {

da_a.perturba_ion = c_hread_gimestamp() - da_a.times_amp;
>

Note that there are four implicit fields for any event record that describe the event's sensor type, timestamp,

thread id, and perturbation. The body of this subroutine generates entries for an event data structure, then
writes that structure into a trace buffer. A local monitor later retrieves this structure from the buffer. Each

sensor's code body is also surrounded by an if statement, so that it can be turned on or off" during program
execution.

3.2.3 Event Collection and On-line Trace Analysis

In many monitoring systems, all monitoring activities, including trace data capture, collection, and analysis,

are performed by code inline with the thread of user computation. One problem with this approach is that

the target application's execution is interrupted whenever a monitoring event is generated and processed.
The lengths of such interruptions are arbitrary and unpredictable if complicated on-line trace analysis is

used. This may be acceptable with off-line monitoring mechanisms in which monitoring events are written
into files for postmortem consumption. For on-line monitors, however, this approach can produce unaccept-

able perturbation. Instead of performing monitoring activities in the user's code, Falcon uses concurrent

monitoring, where most monitoring activities are on processors not running application code.

As depicted in Figure 5, local monitors perform trace data collection and processing, concurrently and

asynchronously with the target application's execution. Local monitors and steering controllers typically
execute on the target program's machine, but they may run concurrently on different processors, using a

buffer-based mechanism for communication between the application and the monitoring mechanism. There-

fore, the only direct program perturbation caused by Falcon is the execution of embedded sensors and the

insertion of trace records into monitoring buffers. Such perturbation is generally predictable, and its effects

on the correctness of timing information can be eliminated using straightforward techniques for perturbation

analysis [MRW92].

11

Ill order to control monitoring overheads and latency, Falcon's runtime syslem may itself be contigured

or steered ill several ways. including changing the number of local monitors and communication buffers to

configure the system for parallel programs and machines of differenl sizes. Such changes permit the selection

of suitable monitoring performance for specific monitoring and steering tasks, and they may be used to

adapt tile monitoring system to dynamic changes in workloacl iml)osod 17y the target application. For

example, when heavy monitoring is detected by a simple monitor-monitor mechanism, new local monitoring
threads may be forked. Similarly. when bursty monitoring traffic is expected with moderate requirements

on monitoring latency, then buffer sizes may be increased to accommodate the expected heavy monitoring
load. Such parallelization and configuration of moniloring activities is achieved by partitioning user threads

into groups, each of which is assigned to a specific local monitor. When a new application thread is forked,
it can be added to the local monitor with the least, amount of work.

The amount of trace data generated by inserted sensors and collected by the run-time monitoring mech-

anism is usually too large and the information too low-level to be directly useful to any human user. Trace

data filtering and analysis must be performed to generate inforn,ation that is interesting to end users. Re-

lated research concerning on-line trace analysis inchzdes Snodgra.ss" work on update networks [Sno82] and

our own past. work ou real-time monitoring [OSS93]. In [Sno87], information to be monitored is modeled

by temporal relations in a hierarchical structure with primitive relations at the bottom of the structure and

composed relations at the top. The resulting hierarchy of relations is transformed into an update network

- a directed acyclic graph, in which the tuples of the primitive relations enter the nodes at the bottom and

the tuples of the composed relations flow out of the nodes at the top.
Falcon offers a flexible on-line trace analysis mechanism similar to update networks. However in Falcon's

approach, trace data is processed in different physical components of the monitoring system. At the lowest

level, simple trace data filtering and analysis can be performed by the extended sensors. For example, in

the atmospheric modeling application, values of windfields may be filtered or eliminated since their complete

visualization is expensive. At the local monitor level, trace data is further analyzed to produce higher level
information. As in the steering of the atmospheric modeling code in Section 3.1.1, discrepancies between the

computed values of an atmospheric species and the observed values can be detected by simple algorithms.

Finally, trace data analysis can be performed by separate processes linked with the central monitor. An

example of such an analysis process is presented next, and problems to be dealt with when performing

on-line trace analysis will be discussed in more detail.

3.2.4 On-line Event Ordering

Displays like the thread life-time view of Figure 4 can provide users with insights into program progress

and correctness. However, such displays generally have strict requirements in terms of the accuracy of the

timestamps that they expect and the order in which events are presented to them. Misorderings can both

confuse users and cause failures of the animation itself. For example, natural causal ordering would require
that a thread_fork event precede any event executed by the newly created thread. A display that shows a

child running before it has been forked by its parent does not make any sense. Furthermore, suppose that
the first event for this child thread is a condition_wait event. In the thread life-time view of Figure 4, this

event is represented by a change in the color and fill pattern of that thread's horizontal bar. However, if the
thread_fork event has not been received by the display system, the horizontal bar does not yet exist. When

the display system attempts to perform a color-change action on this non-existent object, it may crash.

The out-of-order events that cause problems for the display system cannot have occurred in the program's

execution. Instead, misorderings existing in the event stream are due to the buffering and processing methods

employed in the monitoring system. The diagnosis and correction of out-of-order events is a common problem

in parallel and distributed monitoring systems. Existing systems (e.g., ParaGraph[HEgl] and SIEVE[SG92])

rely on a sort by timestamp value to impose a total order on all events stored in event files. The on-line nature

of the Falcon monitoring system precludes any use of such a solution, and sorting by timestamp order does

not entirely eliminate the problem of out-of-order events[BS93]. In addition, coarse clock granularities and

poor clock synchronization among different processors may lead to event timestamps that do not accurately

reflect the actual order of program execution.

Falcon offers a general mechanism for approaching this problem. In particular, all events are processed

by an ordering Jilter before they are sent to the display system. This filtering algorithm follows a "minimum-

12

interventionpolicy."Specifically,it examineseachevent,ill thestreamarrivingfromthemonitoringsystem.
checkstile applicableorderingrulesforthiseventtype,andif norulesareviolated,forwardstheeventto
thedisplaysystem.If aruleviolationis indicated,theeventisheldbackuntil therulesaresatisfied.Asan
example,considertheorderingrulethatthe lifetimeviewof Figure4usesto enforceorderingsfora mutex
lockevent..Actually, a mutex lock is recorded as two separate events: a mutex_begin_lock event indicating

that a thread has attempted to obtain the lock and a mutex_end_lock event indicating that a thread has

succeeded in obtaining the lock. The following ordering rule is observed by the filter for a mutex_end_lock:

mu_ex_end_lock _ m n <- ((thread_init t II thread_fork pt t) &&

(mu_ex_ini_ m [I mutex_alloc m) _

(mu_ex_unlock m n-l))

The parameters associated with the event mutex_end_lock are t, the id of the thread attempting to obtain

the lock, m, the id of the mutex variable, and n, the sequence number indicating the number of successful

lock attempts on this particular mutex variable. This rule may then be translated as: "a mutex_end_lock

event with parameters t, m, and n, may be passed on to the display system if thread t has been initialized or

forked by a parent thread, mutex variable m has been initialized or allocated, and the mutex_unlock event

for variable m, sequence number n - I has already been passed on to the display system." Armed with

similar rules for other events, the ordering filter can enforce sufficient ordering to ensure proper functioning

of the thread lifetime display. Note that at present, this system only addresses the issue of event ordering.

This is adequate to compensate for minor clock variations, but perhaps insufficient when the clocks on

different processors vary widely. However this system may provide the basis for more general approach to

the timestamp problem as we extend Falcon to more distributed systems.
This section has examined the basic components of the on-line monitoring system of Falcon. The next

section presents our approach to the other component of interactivity, on-line steering.

3.3 Interactive Steering

As high performance computing applications move away from the batch-oriented style of processing, making

these applications interactive is a daunting task. The challenge exists not only in building new applications

with interactivity, but also in reengineering existing applications to become interactive ones. A few pro-

grammers turn directly to integrated graphical user interfaces to build interactivity into their applications,
but this approach is fraught with difficulties. First, most developers of the high performance computing

applications are non-computer scientists, who may not have the background or the inclination to become

GUI programmers. Second, most high performance computing systems are not known for high performance

graphics support. Increasingly high performance front-end workstations tend to offer better graphics and
visualization support, both in hardware and software, and are therefore a better place for running graphics-

intensive code. However, the construction of such distributed computation and visualization systems is far

from easy.

The interactive steering discussed in this paper offers an alternative way of providing interactivity to

the high-performance applications. This approach separates the interactive activities from the computation-

intensive part of the application and provides a dynamic link between these components. The responsibilities

of such a steering component are to receive the application's run-time information from its coupled on-line

monitoring system, display the information to the end user or submit it to a steering agent, accept steering

commands, and enact changes that affect the application's execution. The application code is not directly

exposed to the interaction with the user or other steering agents, but it needs to be instrumented with
sensors which capture run-time information and provide entries for steering commands which may change

the program's execution behavior. The basic requirement for steering is that the application code should
behave correctly under any valid steering command. Other requirements can be derived by examining its

use.

3.3.1 What is interactive steering?

Interactive steering can be defined as the interactive control and tuning of an application and its resources

to improve application functionality and performance. This control and tuning is interactive in that an

13

externalentityinteractswiththeapplicationto accomplishit..Thatoutsideentitymaybeausersittingat
aworkstation,or it.maybeanotherprogramrespondingto applicationeventsanddrivenbyapreviously-
encodedsteeringalgorithm.

Wecallsteeringhuman-interactwe if a human watching a display is the primary initiator of a steering

action. If instead the initiator is an outside program we call the steering algorzthmic. Algorithmic steering
may not be commonly associated with interactive programs, but it is a natural extension of the facilities

and requirements presented earlier in this paper. For example, to expect a human watch an application

and adjust it to compensate for load imbalances may be reasonable on an occasional basis, bat no one is

likely to babysit a 36-hour simulation that requires adjustments every five minutes. In this situation the

solution is to feed the load information to all algorithm which is capable of balancing the load without

human involvement. Using steering for this instead of embedding the load balancing algorithm into the

application is still beneficial because it allows the algorithm to be expressed separately, where it is more

easily understood, replaced and reused in other applications.

The different goals and types of steering exert different requirements on the steering system. For steering

for performance, low overhead costs in monitoring and steering support are critical, simply because excessive

overheads can easily offset performance gain obtained by on-line steering. Low steering latency may also

be a critical requirement, particularly for algorithmic steering. Program events related to steering must be

captured and processed, and the corresponding steering decision must be made while the decision is still

relevant to the situation. Consider the on-line configuration of mutex locks presented in [MS93], where

on-line algorithms change lock behavior from spin to blocking locks. Lock type is determined at runtime
based on the time a lock call must wait before it obtains the lock. When the waiting time is above a certain

threshold, the lock is a blocking lock. When the waiting time is relatively short, the lock is a spin lock.

Since the reaction times required are on the order of a few tens of processor cycles, this application presents

a formidable challenge for a steering system.

In the case of human-interactive steering, the demands on the steering system are not so extreme, as
human response times will typically dwarf the latency times imposed by the system. However. if human

interaction is to develop basic insight or to experiment with alternative solution methods and experimental

parameters, more cooperation from the application may be necessarily. To accomplish the parameter tuning

described in Section 3.1.1 for example, it is necessary to synchronize the parameter modifications with the

phases of the application to ensure that steering does not invalidate the computations. In some cases the

design of the application makes this easy. The load balancing of the MD application described in [EGSM94]

was facilitated because mechanisms were in place to handle molecules moving from domain to domain. These
worked without modification when the domain boundaries themselves moved. In other cases it is clear that

desired manipulations cannot be carried out without the direct cooperation of the application. A good

example of this is the checkpointing and rollback facility discussed in Section 3.1.1. It is unlikely that such

functionality could be provided without the knowledge of the application. A continuing challenge in steering

is to define the application interface to the steering system.

3.3.2 Falcon's Steering System

Falcon's on-line steering component is a natural extension of its monitoring facilities. Figure 6 depicts
some internal features of steering as well as its relationship with other components of Falcon. Similar to

local and central monitors, a steering server on the target machine performs steering, and a steering client

provides the user interface and control facilities remotely. The steering server is typically created as a

separate execution thread to which local monitors forward only those monitoring events that are of interest

to steering activities. Such events tend to represent a small proportion of the total number of monitoring

events, in part because simple event analysis and filtering is done by local monitors rather than by the

steering server. Steering decisions are then made based on specific attributes of those events by human users

or steering algorithms. Therefore, the primary task of each steering server is to read incoming monitoring

events and to take the appropriate action in response. These responses are based on previously encoded

decision routines and actions, which are encoded in an steering event/action repository in the server. This

repository contains entries for each type of steering event, specifying the appropriate action to take in

response. The responses represented here may perform some actual steering action on the application, note

the occurrence of some monitoring event for future reference, or simply forward the event to the client for

14

ApplicationCode

0 Actu,m_

Q Probe

Falcon's Monitoring System

Local monitors and
central monitor

I 1

event/a_'tion repository

and steering controller

el: L_--tion 1
e2: aetiorO.

).°

Steering Server

On-line Display

Steering Client

Figure 6: Overall structure of the steering system.

display or further processing. The secondary task of each steering server is to interact with the remote
steering client. The steering client is used to enable/disable particular steering actions, display and update

the contents of the steering event repository, and input steering commands directly from end users to the
server.

Falcon's steering library introduces several abstractions. The first of these is program attributes. Program

attributes are defined by application developers and they represent values or characteristics in the application

that can be modified by the steering system. They are defined in an object-based fashion, where developers

may associate with each specific program abstraction one or multiple attributes and then export methods for

operating on these attributes. This type of association is called a steerable object and it must be "registered"

with the steering system. The steering repository in the steering server maintains a list of all registered

steerable objects and their associated program attributes. In our initial implementation, we assume that all

attributes correspond to specific variables in the application program.

Steering actions are composite operations to be performed by the steering system in response to moni-
toring events in the program. Steering actions may examine and modify program attributes, perform com-

putation, and even initiate other actions. Falcon defines two mechanisms for modifying program attributes,

steering probes and actuators. A steering probe is the simplest form of steering action. It is used in actions

to query or update a specific program attribute asynchronously to the program's execution. However, if a
program attribute can only be updated synchronously, it must be associated with an actuator.

An actuator is a portion of code that the developer inserts into his code at locations in which it is

"safe" for the steering system to take some action concerning the program attribute. Most of the time

when the application executes the actuator code there are no pending actions and the actuator immediately

returns control to the application. However, if the program attribute is to be synchronously modified by the

steering system, the actuator becomes the instrument of that action. In particular, to update the program

attribute synchronously, the steering system asynchronously sets the actuator so that the next time it is

executed by the application code, it invokes a particular action in the context of the application's thread of

execution. In this way, the responsibility for managing the synchronization of the steering system with the

application rests with the application programmer and depends solely upon the placement of the actuators

in the code. In simple situations, the action programmed into the actuator may just write a new value into
the program attribute. For example, in the implementation of the steering of the atmospheric model as

described in Section 3.1.1, the program variables corresponding to "Vertical Velocity" and "Vertical Eddy

15

Diffusion(:oefliciem" would be idenlified by the apl)lication progranuner as program attribul.es and be

registered with the steering system. The programmer would place ac!uators al points ill his code, perhaps

between iterations, where those values could be changed without invalidating the calculations. When a

human triggered a change at the user interface, an actuator action would be "programnmd'" or "armed" with

an actiol, which would write the changed value into the target program variable al the next opportunity.

However, actuator actions are capable of encoding much more complex operations than this. For example,

they should be capable of the operations necessary to ensure that modifications of program state do not

violate program correctness criteria a.s in [BSgl].

The discussion above presenls a brief overview of the abstractions in the Falcon steering library and

the manner in which they interact with the relnainder of the Falcon system. The implementation aqd

integration of the steering library and other steering facilities is not yet. complete, though proof-of-concept

demonstrations as in [EGSM94] have been quite successful. However, we believe that the steering system,
together with Falcon's monitoring facilities represent a powerful and flexible basis upon which to build

interactive computing and through which users can exploit the opportunities presented in this paper.

4 Conclusions and Future Research

We have discussed the utility and potential of interactive parallel programming in the context of two large-

scale parallel application programs. We have also explaiqed how an on-line program steering and monitoring
system can assist in realizing this potential. At present, ambitious and determined applications programmers
can create their own interactivity by building user interfaces for their applications. These are valid interactive

programs, but they are point solutions. Scientists are interested in computing to the extent that it helps

them do science. Accordingly, the goal of our work on Falcon and monitoring and steering in general is to

make this functionality more easily available to non-expert users.

The MD and atmospheric modeling codes as well as the Falcon system are implemented on a 64-node KSR

shared memory supercomputer. Falcon is also available on several other shared memory platforms, including

SGI and SUN Sparc parallel workstations. A version of Falcon currently being completed also works with

PVM across networked execution platforms. Similar portability is attained for the graphical displays used

with Falcon. Notably, the Polka animation library can be executed on any Unix platform on which Motif is

available [SK93]. Falcon's low-level monitoring mechanisms have been available via the Internet since early

Summer 1994. A version of Falcon offering on-line user interfaces for monitoring and monitor control will
be released in 1995.

Current extensions of Falcon not only address additional platforms (e.g., an IBM SP machine now avail-

able at Georgia Tech and the monitoring of PVM programs running Cthreads, C, or Fortran programs), but

also address several essential additions to its functionality. Currently users can insert, into their code simple

tracing or sampling sensors, where sensor outputs are forwarded to and then analyzed by the local and cen-

tral monitors. We are now generalizing the notion of sensors to permit programmers to specify higher level

'views' of monitoring data like those described in [KSgl, OSS93, Sno88]. Such views will be implemented

with library support resident in both local and central monitors. We are also developing notions of composite

and extended sensors that can perform moderate amounts of data filtering and combining before tracing or

sampling information is actually forwarded to local and central monitors. Such filtering is particularly im-

portant in networked environments, where strong constraints exist on the available bandwidths and latencies
connecting application programs to local and central monitors.

Our future work will address how such customized mechanisms may be used in conjunction with the

remainder of the Falcon system. In addition, work in progress is addressing the monitoring of object-oriented,

parallel programs, including the provision of default monitoring views and performance displays[MSSG95].

An important component of our future research is the use of Falcon with very large-scale parallel pro-

grams, either using thousands of execution threads or exhibiting high rates of monitoring traffic. For these

applications it will be imperative that monitoring mechanisms are dynamically controllable and configurable.

It must be possible for users to focus their monitoring on specific program components, to alter such moni-

toring dynamically, and to process monitoring data with dynamically enabled filtering or analysis algorithms.

Moreover, such changes must be performed so that monitoring overheads are experienced primarily by the

program components being inspected. Dynamic control of monitoring is also important for the efficient

16

on-linesteeringof parallelprogramsofevenmoderatesize.Specifically,programsteeringrequiresthatmon-
itoringoverheadsarecontrolledcontinuouslysothat endusersor algorithmscallperformsteeringactions
in atimelyfashion.

LongertermresearchwithFalconwilladdresstheintegrationofhigherlevelsupportforprogramsteering.
includinggraphicalsteeringinterfaces,andthe embeddingof Falcon'sfunctionalityintoa programming
environmentsupportingtheprocessof developing,tuning,andsteeringthreads-basedparallelprograms,
calledLOOM.In addition,Falconwill bea basisfor thedevelopmentof distributedlaboratoriesin which
scientistscaninspect,control,andinteracton-linewithvirtualorphysicalinstruments(typicallyrepresented
byprograms)spreadacrossphysicallydistributedmachines.Thespecificexamplebeingconstructedbyour
groupisa laboratoryforatmosphericmodelingresearch,wheremultiplemodelsuseinputdatareceivedfrom
satellites,shareandcorrelatetheiroutputs,andgenerateinputsto on-linevisualizations.Moreover,model
outputs(e.g.,datavisualizations),on-lineperformanceinformation,andmodelexecutioncontrolmaybe
performedbymultiplescientistscollaboratingacrossphysicallydistributedmachines.

References

[Bee94] Thomas Becker. Application-transparent fault tolerance in distributed systems. In Proc. of the

Second International Workshop in Configurable Distributed Systems. IEEE Computer Society

Press, May 1994.

[ns91] Thomas E. Bihari and Karsten Schwan. Dynamic adaptation of real-time software. ACM Trans-

actions on Computer Systems, 9(2):143-174, May 1991.

[BS93] Adam Beguelin and Erik Seligman. Causality-preserving timestamps in distributed programs.

Technical Report CMU-CS-93-167, Carnegie Mellon University, Pittsburgh, PA, June 1993.

[CD88] Eric C. Cooper and Richard P. Draves. C threads. Technical report, Computer Science, Carnegie-

Mellon University, CMU-CS-88-154, June 1988.

[EGSM94] Greg Eisenhauer, Weiming Gu, Karsten Schwan, and Niru Mallavarupu. Falcon - toward interac-

tive parallel programs: The on-line steering of a molecular dynamics application. In Proceedings

of The Third International Symposium on High-Performance Distributed Computing (HPDC-3),

pages 26-34, San Francisco, CA, August 1994.

[VW941 I.T. Foster and P.H. Worley. Parallel algorithms for the spectral transform method. Technical

Report ORNL/TM-12507, Oak Ridge National Laboratory, April 1994.

[GEK+94] Weiming Gu, Greg Eisenhauer, Eileen Kraemer, Karsten Schwan, John Stasko, Jeffrey Vetter,
and Nirupama Mallavarupu. Falcon: On-line monitoring and steering of large-scale parallel

programs. Technical Report GIT-CC-94-21, Georgia Institute of Technology, Atlanta, GA 30332-

0280, April 1994.

[GS89] Prabha Gopinath and Karsten Schwan. Chaos: Why one cannot have only an operating system

for real-time applications. SIGOPS Notices, pages 106-125, July 1989.

[GS93] Ahmed Gheith and Karsten Schwan. Chaos-arc - kernel support for multi-weight objects, in-

vocations, and atomicity in real-time applications. ACM Transactions on Computer Systems,

11(1):33-72, April 1993.

[GVS94] Weiming Gu, Jeffrey Vetter, and Karsten Schwan. An annotated bibliography of interactive
program steering. ACM SIGPLAN Notices, 29(9):140-148, September 1994.

[Hau40] B. Haurwitz. The motion of atmospheric disturbances on the spherical earth. Journal of Mar.

Res., 3:254-267, 1940.

[HE91] Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance of parallel programs.

IEEE Software, pages 29-39, September 1991.

17

[ITMC94]

[KHYK61]

[KS91]

[KSS+94]

[LMC87]

[MP89]

[MAW92]

[MS93]

[MSSG95]

[Muk91]

[MW91]

[OSS93]

[SG92]

[SGB87]

[Si154]

[SK93]

[Sno82]

Jeffrey K. Hollingsworth. Barton P. Miller. and Jon Cargille. Dynamic program instrumentation

for scalable performance tools. In Proceedings of SHPC('94, pages 841-850, Knoxville, TN, May
1994.

S. Kubota. M. Hirose, Y.Kichuchi, and Y. Kurihara. Barotropic forecasting with the use of

surface spherical harmonic representation. Pap. Meteorol. Geophys., 12:199-215, 1961.

Carol E. Kilpatrick and Karsten Schwan. ChaosMON - application-specific monitoring and

display of performance information for parallel and distributed systems. In Proceedings of the
ACM/ONR Workshop on Parallel and Distributed Debugging, pages 57-67, Santa Cruz, Califor-

nia, May 20-21 1991.

T. Kindler, K. Schwan. D. Silva, M. Trauner, and F. Alyea. A parallel spectral model for

atmospheric transport processes. Technical report, Georgia Institute of Technology, Atlanta,
30332 GA, 1994.

Thomas J. LeBlanc and John M. Mellor-Crummey. Debugging parallel programs with instant

replay. IEEE Transactzons on Computers. C-36(4):471-481, April 1987.

Henry Massalin and Calton Pu. Threads and input/output in the synthesis kernel. In Proceed.

ings of the 12th Symposium on Operating Systems Principles, pages 191-201. SIGOPS, Assoc.
Comput. Mach.. December 1989.

Allen D. Malony, Daniel A. Reed, and Harry A. G. Wijshoff. Performance measurement intrusion

and perturbation analysis. IEEE Transactions on Parallel and Distributed Systems, 3(4):433-450,
July 1992.

Bodhisattwa Mukherjee and Karsten Schwan. Experimentation with a reconfigurable micro-
kernel. In Proc. of the USENIX Symposium on Microkernels and Other Kernel Architectures,
pages 45-60, September 1993.

Bodhisattwa Mukherjee, Dilma Silva, Karsten Schwan, and Ahmed Gheith. Ktk: kernel support

for configurable objects and invocations. Distributed Systems Engineering Journal, 1995. To
Appear.

Bodhisattwa Mukherjee. A portable and reconfigurable threads package. In Proceedings of Sun

User Group Technical Conference, pages 101-112, June 1991.

Keith Marzullo and Mark Wood. Making real-time reactive systems reliable. ACM Operating

Systems Review, 25(1):45-48, January 1991.

D.M. Ogle, K. Schwan, and R. Snodgrass. Application-dependent dynamic monitoring of dis-

tributed and parallel systems. IEEE Transactions on Parallel and Distributed Systems, 4(7):762-
778, July 1993.

Sekhar R. Sarukkai and Dennis Gannon. Parallel program visualization using SIEVE.1. In
International Conference on Supercomputing. ACM, July 1992.

Karsten Schwan, Prabha Gopinath, and Win Bo. CHAOS - kernel support for objects in the

real-time domain. IEEE Transactions on Computers, C-36(8):904-916, July 1987.

I.S. Siiberman. Planetary waves in the atmosphere. Jr. Meteorol., 11:27-34, 1954.

John T. Stasko and Eileen Kraemer. A methodology for building application-specific visualiza-

tions of parallel programs. Journal of Parallel and Distributed Computing, 18(2):258-264, June
1993.

Richard Snodgrass. Monitoring Distributed Systems: A Relational Approach. PhD thesis,

Carnegie-Mellon University, Department of Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA 15213, December 1982.

18

[Sno87]

[Sno88]

[soos]

[WP86]

[XORL92]

Richard Snodgra-ss. The temporal query language TQuel. ACM Transactions on Database
Systems, 12(2):247-298, June 1987.

Richard Snodgrass. A relational approach to monitoring complex systems. ACM Transactmns

on Computer b'ystems, 6(2):157-196, May 1988.

R. Swinbank and A. O'Neill. A stratosphere - troposphere data assimilation system. Climate

Research Technical Note CRTN 35. Hadley Centre Meteorological Office, London Road Brackneii
Berkshire RG12 2SY. March 1993.

W.M. Washington and C.L. Parkinson. An introduction to three.dimensional climate modeling.
Oxford University Press, 1986.

T. K. Xia, Jian Ouyang, M. W. Ribarsky, and Uzi Landman. Interfacial alkane films. Physical
Review Letters, 69(13):1967-1970, 28 September 1992.

19

Technical Repor_ GIT-CC-94-21

Falcon: On-line Monitoring and Steering

of Large-Scale Parallel Programs 1

Weiming Gu, Greg Eisenhauer, Eileen Kraemer, Karsten Schwan

John Stasko, and Jeffrey Vetter

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332

Abstract - Falcon is a system for on-line monitoring and steering of large-scale parallel programs. The

purpose of such interactive steering is to improve its performance or to affect its execution behavior. The
Falcon system is composed of an application-specific on-line monitoring system, an interactive steering

mechanism, and a graphical display system. In this paper, we present a framework of the Falcon system,
its implementation, and evaluation of the system performance. A complex sample application - a molecular

dynamics simulation program (MD) - is used to motivate the research as well as to evaluate the performance

of the Falcon system.

1 Introduction

The high performance of current parallel supercomputers is permitting users to interact with their applica-

tions during program execution. Such interactive executions of large-scale parallel codes typically make use of

multiple networked machines working in concert on behalf of a single user, as computational engines, display

engines, input/output engines, etc. Our research explores the potential increases in performance and func-

tionality gained by the on.line interaction of end users with their supercomputer applications. Specifically,
we are investigating the interactive steering of parallel programs, which is defined as 'the on-line configura-

tion of a program by algorithms or by human users, with the purpose of affecting the program's performance

or execution behavior'. Interactive program steering does not involve simply the on-line or postmortem ex-

ploration of program trace or output data, as being investigated by researchers in program debugging[28, 18]

or in computer graphics[6]. Instead, program steering targets the parallel code itself, and it can range from

rapid changes made by on-line algorithms to the implementation of single program abstractions (e.g., a mu-

tex lock [35]) to the user-directed improvement of or experimentation with high-level attributes of parallel

codes (e.g., load balancing in a large-scale scientific code - see Section 2.2). In either case, program steering
is based on the on-line capture of information about current program and configuration state [7, 31, 46, 40],

and it assumes that human users and/or algorithms inspect, analyze, and manipulate such information when

making and enacting steering decisions.

1This research was supported in part by NASA grant No. NAGW-3886 and with funding from Kendall Square Research
Corporation.

Falconis a system for tile on-fine monitoring and sleering of t hreads-I)ased parallel programs. This paper
focusses on Falcon's contril)utions to t)rogram monitoring:

Appltcatlon-sl_ctjic momtorm 9- ill addition to providing default program information Falcon permits

users to capture and analyze application-specific program reformation, ranging from information about

single program variables to program states defined by complex expressions involving several program
components distributed across different processors of a single underlying parallel machine. These

capabilities are especially useful for non-('omputer Science end users, who wish to view. analyze, and

steer their programs in terms of program attributes with which they are familiar (e.g., 'time step size'.
'current energy', etc.).

Scalable. dynamzcally controlled monitoring performance - by using concurrency and multiple mecha-

nisms for capturing and analyzing monitoring informatioll, the performance of the monitoring system

itself can be scaled to different application needs, ranging from high-bandwidti, and low-latency event-

based monitoring to lower bandwidth sampling of accumulated values. Moreover, the resulting tradeoffs

betw_n monitoring latency, throughput, overhead, and accuracy may be varied dynamically, so that

monitoring performance may be controlled and adjusted to suit the needs of individual applications

and target machines. In addition, simple mechanisms are provided so that users can evaluate program
perturbation due to monitoring.

On-line analysis, steering, and 9raphzcal display- monitoring information captured with Falcon may be

attached to arbitrary user-provided analysis code and subsequent (if desired) steering algorithms and/or
graphical views. Analyses may employ statistical methods, boolean operators like those described

in [40], or simply reorder the events being received, as described in Section 5.4. Graphical views

may be displayed with multiple media or systems, currently including X windows, Motif, and the

SGI Explorer environment. In addition, Falcon offers default on-line graphical animations of the

performance of threads-based parallel programs. For such Motif-based displays, the Polka system for

program animation provides users with easy-to-use tools for creating application-specific 2D animations

of arbitrary program attributes[49].

Extension to multiple heterogeneous computing platforms - an extension of Falcon addresses both single

parallel computing platforms running threads programs as well as distributed computational engines
using PVM as a software basis.

Falcon runs on several hardware platforms, including the Kendall Square Research KSR-1 and KSR-2

supercomputers, the GP1000 BBN Butterfly multiprocessor, the Sequent multiprocessor. SGI workstations,

and SUN SPARCstations. Falcon is now in routine use at Georgia Tech by non-Computer Science end users,

and it is available for public release for the KSR-1, KSR-2, SGI, and SUN SPARCstation platforms.

In the remainder of this paper, Section 2 presents the motivation for this research by examining the

monitoring and steering needs of a sample parallel application, a molecular dynamics simulation (MD) used

by physicists for exploring the statistical mechanics of complex liquids. Section 3 presents details of the

implementation and performance of the Falcon system itself. The overall performance of the Falcon system
as well as its performance with the MD code is evaluated in Section 4. Section 5 examines the nature and

requirements of Falcon's graphical displays. Related research is described in Section 6. The final section
presents conclusions and future research.

2 Monitoring and Steering a Parallel Code

Program monitoring and steering derive their value from their utilization in understanding and improving
program behavior, and in permitting users to experiment with program characteristics that are not easily

understood. Clearly, it will be hard to prove that promises of enhanced utility or performance of parallel

applications can be fulfilled more easily by steered programs than by non-steered ones. However, it is

inevitablethatprogramsteeringwill beperformedin tile future, in part, because scientists now have available

to them the computational and network power for interactive execution of interesting physical simulations

and the means for interactive data visualization or even for virtual reality imerfaces to their programs. To

further motivate our work, this section briefly describes a particular parallel code, its potential for utilizing

program steering, and the required support for on-line monitoring.

2.1 The MD Application

MD is an interactive molecular dynamics sinmlation developed at Georgia Tech in cooperation with a group

of physicists exploring the statistical mechanics of complex liquids [51, 8]. In this paper, the physical MD

system being simulated contains 4800 particles representing an alkane film and 2700 particles in a crystalline
base on which the film is layered. For each particle in the MD system, the basic simulation process takes the

following steps: (1) obtain location information from its neighboring particles, (2) calculate forces asserted by

particles in the same molecule (turfs-molecular forces), (3) compute forces due to par1 icles in other molecules

(inter-molecular folves), (4) apply the calculated forces to yield new particle posilion, and (5) publish the
particle's new position. The dominant computational requirement is calculating the inter-molecular forces

between particles, and other important computations include finding the bond forces within the hydrocarbon

chains, determining system-wide characteristics such as atomic temperature, and performing on-line data

analysis and visualization.

The implementation of the MD application attains parallelism by domain decomposition. That is, the

simulation system is divided into regions and the responsibility for computing forces on the particles in

each region is assigned to a specific processor. In the case of MD, we can assume that the decomposition

changes only slowly over time and that computations in different sub-domains are independent outside some

cutoff radius. Inside this radius information must be exchanged between neighboring particles, so that

different processes must communicate and synchronize between simulation steps. The resulting overheads

are moderate for fairly coarse decompositions (e.g., 100-1000 particles per process), but unacceptable for
finer grain decompositions (e.g., 10 particles per process).

2.2 Steering MD - Experimentation and Results

The on-line manipulation of parallel and distributed programs has been shown to result in performance

improvement in many domains. Examples include the automatic configuration of small program fragments

for maintaining real-time response in uniprocessor systems[32], the on-line adaptation of functional program

components for realizing reliability versus performance tradeoffs in parallel and real-time applications [5, 14,
12], and the load balancing or program configuration for enhanced reliability in distributed systems[26, 43,

Sl].

The MD simulation offers opportunities for performance improvement through on-line interactions with

end users and with algorithms, including:

• Decomposition geometries can be changed to respond to changes in physical systems. For example,

a slab-based decomposition is useful for an initial system, but a pyramidal decomposition may be a

better choice if a probe is lowered into the simulated physical system.

• The interactive modification of cutoff radius can improve solution speed by computing uninteresting
time steps with some loss of fidelity, which typically requires the involvement of end users.

• The boundaries of spatial decompositions can be shifted for dynamic load balancing among multiple

processes operating on different sub-domains, performed by end users or by a configuration algorithm.

• Global temperature calculations, which are expensive operations requiring a globally consistent state,

can be replaced by less accurate local temperature control. On-line analysis can determine how often

global comput, ations must be performed based on the temperature stability of the system.

To demonstrate the utility of program steering, we next review some results of interactive MD steering
applied to the problem of improving system load balance. In particular, we examine the behavior of the MD

sinmlation when spatial domain of the physical system is decomposed vertically. In this situation, it is quite

difficult to arrive at a suitable load balance when decomposing based on static information (such as counting
tile number of particles assigned to each process, etc.). This is because the complexity of MD computation

depends not only on the number of particles assigned to each process, but also on particle distances (due to
cutoff radius). Furthermore, the portions of the aikane film close to the substrate are denser than those on

the top and therefore require more computation. In fact. fairly detailed modeling of the code's computation

is required to determine a good vertical domain decomposition without experimentation, and there is no

guarantee that an initial 'good' decomposition will not degrade over time due to particle movement or other
changes in the physical system. As a result, it appears easier to simply monitor load balance over time

and then steer the application code to adjust load balance (by adjusting domain boundaries) throughout

the application's execution. In this paper, such steering is performed interactively by end users. Necessary

algorithmic support will be developed in the future; it will enable users to interact with the application only
when automated steering is not successful.

For interactive steering of MD, the Falcon system is used to monitor process loads on-line, the resulting
trace information is analyzed, and workloads are displayed in bar graph form (see Figure 1). In addition,
the MD code performs on-line visualization of particles and of current domain boundaries. The load balance

view of Falcon and the MD system's data displays are depicted in Figures 1 and 2, respectively, for a sample
simulation run with four domains on four processors. Associated with these displays is a textual user interface

(also part of Falcon) that permits the user to change selected program attributes (in this case, shift individual

domain boundaries) while the application is running.

The effects of dynamic steering when used to correct load imbalances can be quite dramatic, as shown

in Figure 3. In this figure, several steering actions significantly improve program performance by successive

adjustment of domain boundaries. These results are important for several reasons. First, they demonstrate

that it is possible to improve program performance by use of on-line steering, rather than degrade performance

due to steering and monitoring costs. Second, it should be apparent that user interactions with the code

can be replaced or assisted by on-line steering algorithms, in effect giving users the ability to migrate their

experiences and experimental knowledge into their application codes, without requiring extensive program

changes. Third, and more broadly, these results indicate the potential of on-line steering for helping end
users experiment with and understand the behavior of complex scientific codes.

2.3 The Requirements of Steering

While the steering of MD code by adjustment of domain boundaries as presented in Section 2.2 is straight-

forward, important to our work are the future opportunities presented by on-line steering and monitoring.

Toward this end, our group is now experimenting with interactive parallel programs in several domains, in-
cluding (1) the interactive simulation of complex systems used in conjunction with some physical system, for

on-line diagnosis of problems or for trying out certain fault containment strategies[13] (e.g., telecommunica-
tion systems), and (2) the on-line experimentation with scientific or engineering applications. For example,

we are developing an interactive global atmospheric modeling code, where scientists can easily experiment

with alternative values for atmospheric quantities to adjust model runs in accordance with actual measured

atmospheric data obtained from satellite observations (e.g., concentrations of certain pollutants or strengths

and directions of wind fields). Similarly, we are using on-line steering to give users the ability to interact with

their large-scale optimization codes, to direct program searches out of local minima, to detect and correct
searches possibly leading to infeasible solutions, etc.

To realize on-line program steering, several assumptions must be made, some of which may be removed or

ameliorated by our future work. First, program steering requires that application builders must write their

code such that steering is possible. Second, users must provide the program and performance information

necessary for making steering decisions. Third, it is imperative that such information can be obtained

with the latency required by the desired rate of steering. Concerning the first requirement, in the MD code,

mine

mine mmm

mmmm

clo*_ I cla_d.n 2 dom_n 3

Figure 1: The load balance view of MD.

(a) Initial Decomposition (b) Balanced Decomposition

Figure 2: Initial and balanced decompositions of the steered system. The horizontal frames mark the
boundaries between processor domains. The dark particles are the fixed substrate while the lighter particles
are the alkane chains.

3.5

n.

®2.5

n,
tn

1.5

Speedup
i i

Speedup

1 f I I I I

0 5 i0 15 20 25 30 35

Time (in iterations)

with 4 Processors

_ _fourth steering

_ third steering evenl

second steering event

J first steering event

_vent

Figure 3: The effect of steering on performance over time with 4 processors.

domains are represented such that their boundaries are easily shifted to make steering for improved workload

balance possible. In general, however, programs can be made steerable only by requiring end users to write

them accordingly, by requiring substantial compiler support[46], or by requiring that the programming
language offer stronger mechanisms of abstraction than those existing in parallel Fortran or in the Cthreads

library used in our work (e.g., the object model [5, 11, 26, 14]). We are currently designing higher level
language primitives for definition of steering actions and for inclusion of such actions with application code.

At this time, however, Falcon relies on user-directed inclusion of actuators with the application code. These

actuators are then stored into a runtime library which serves as a catalogue of names as well as an interface

to the Falcon's on-line monitoring mechanism (see Section 3.4 for a description and brief evaluation of the
steering library).

One of the primary concerns of this paper is the second requirement for on-line steering: the on-line
provision, analysis, and display of information to users about current program behavior and performance,

at rates suitable for program steering. Examples of such information used in graphical displays include the

on-line data visualizations depicting molecular distributions in MD, the associated current values of domain

boundaries (see Figure 2), and performance information about threads depicted in graphical views like the

thread life-time view shown in Figure 13. Examples of such information" used by on-line steering algorithms
include lock contention values, which are used by on-line configuration algorithms to adjust individual mutex
locks (see[35]) based on changes in a program's locking pattern.

A third requirement of on-line steering is that steering is effective only if it can be performed at a rate

higher than the rate of program change. In the case of load balancing by dynamic domain shifting in MD,
human users can detect load imbalances and shift domain boundaries faster than the rate of occurrence of

significant particle movements (which require several minutes for moderate size physical simulations on our

KSR-2 machine). However, when steering is used to dynamically adjust lock waiting strategies, changes in

locking patterns must be detected and reacted upon in every few milliseconds[35]. As a result, any on-line
monitoring support for program steering must permit users to realize suitable tradeoffs in the bandwidth

versus latency of monitoring.

in response to tile requirements lisled above. Falcon gives users the ability to control instrunmntation

by permitting them to explicitly include program-specific st nsors of different types into their applicatiou

codes. A sensor definition language generates sensor implementations for target C and Fortran programs.

and runtime-configurable monitoring libraries capture, analyze, and store/forward or display sensor outputs

as desired by users. In addition. Falcon offers efficient system I/O (for data visualizations) and underlying

communications across computer networks (for all remote mechanisms).

The description and evaluation of on-line monitoring in Falcoo is the primary focus of this paper. However.

to demonstrate the usability of Falcon, we also briefly describe and evaluate Falcon's interfaces to program

animation and graphical data rendering tools.

3 The Design and Implementation of Falcon

3.1 Design Goals

Past work in program monitoring has focussed on helping programmers understand the correctness or

performance of their parallel codes[33, 41], on minimizing or correcting for program perturbation due to

monitoring[30], on reducing the amounts of monitoring or trace information captured for parallel or dis-

tributed program debugging[40], and on the effective replay[28] or long-term storage[47] of monitoring infor-
mation.

Falcon has three important attributes. First, Falcon supports the application-specific monitoring/steering.

analysts, and display of program information, so that users can capture, process, and understand and steer

exactly the program attributes relevant to steering or to the specific performance problems being diagnosed or

investigated. That steering requires application-specific program information is clearly demonstrated by the

MD application steered in Section 2.2, where program variables capturing domain boundaries are adjusted

based on monitoring output describing workload in terms of durations of molecular computations across
different domains. Section 4 will also demonstrate that such specialization of monitoring to capture only

specific program attributes can also significantly improve monitoring system performance and scalability

compared to standard tools like GProf or compared to the default monitoring performed by Falcon.

Second, the primary focus of Falcon is to reduce or at least control monitoring latency throughout the

execution of a parallel program, while maintaining acceptable monitoring workload imposed on the underlying

parallel machine. Dynamic control of monitoring overhead is important because the effectiveness of program

steering can depend on the delay between the time at which a program event happens and the time at which

the event is noted and acted upon. In addition, excessive monitoring overheads not only offset performance

gains achieved by steering, but also alter the order ofoccurances of program events. Finally, for scalability to

large-scale parallel machines and programs, the Falcon system is configurable in its offered total performance

and associated resource usage.

A third attribute of Falcon is its support for scalable monitoring, by varying the resources consumed

by its runtime system in accordance with machine size and program needs. In Section 4, we show that

Falcon can be used to monitor programs of any size running on our 64-node KSR nmltiprocessor, such that

monitoring overheads and latencies can be adjusted in conjunction with program and machine size.

3.2 System Design

Falcon is constructed as a toolkit that collectively supports the on-line program monitoring and steering

of parallel and distributed programs. There are four major conceptual components, as shown in Figure 4:

(1) monitoring specification and instrumentation, which consists of a low-level sensor specification language,
higher level view specification constructs, and an instrumentation tool, (2) runtime libraries for information

capture, collection, filtering, and analysis, (3) mechanisms for program steering, and (4) a graphical user

interface and several graphical displays of program behavior and performance information.

Original ___Source Code

Sensor/View

Specification Graphical

User

Interface

Probes &

InstrumentationTool I lnstruct:ons

N_[lmtmmemed

Running
Application

User

Trace Data

Graphical

Displays

Prosrtm &
Performance
Infc_mauon

Monitoring &
User ln_racuon

Controller

Trace Data
Collector

Trace Data
Analyzer

tg

Steering Commands

Program Steering]Controller

Figure 4: Overall architecture of Falcon.

___ Trace]
Database

The following steps are taken when using Falcon. First, the application code is instrumented with the

sensors and probes generated from sensor and view specifications. Toward this end, monitoring specifications

allow users to expose specific program attributes to be monitored and based on which steering may be

performed. User programs and/or Falcon's user interface or analysis/steering algorithms directly interact
with the runtime system in order to gain access to information about runtime-created sensor and actuator

instances. When the application is running, program and performance information of interest to the user

and to steering algorithms is captured by the inserted sensors and probes, and is collected and partially

analyzed by Falcon's runtime monitoring facilities. These facilities essentially consist of monitoring data
output queues attaching the user program being monitored to a variable number of additional components

performing steering and low-level processing of monitoring output (discussed in detail in Section 3.3 below).

Partially processed monitoring information is then fed to steering mechanisms for effecting on-line changes
to the program or to its execution environment; or it is fed to the central monitor and graphical displays for
further analysis and for display to end users. Trace information can also be stored in a trace data base for
postmortem analyses.

The monitoring, steering, and user interaction 'controllers', as part of the Falcon runtime system, activate

and deactivate sensors, execute probes or collect information generated by sampling sensors, maintain a

directory of program steering attributes, and also react to commands received from the monitor's user

interface. For performance, these controllers are physically divided into several local monitoring controllers

and a steering controller residing on the monitored program's machine so that they are able to rapidly

interact with the program. In contrast, the central monitoring and steering controller is typically located on

a front end workstation or on a processor providing user interface functionality.

Falcon uses tile Polka system for the construction and use of graphical displays of program information[49].

Several performance or functional views (e.g., the aforementioned bargraphs and thread visualizations) have
been built with this tool. However, in order to attain the speeds required for on-line data visualization and to

take advantage of other performance display tools, Falcon also interfaces to custom displays and to systems

for the creation of high-quality 3D visualizations of program output data, like the SGI Explorer tools.

3.3 System Implementation

Falcon's implementation relies on a Math-compatible Cthreads library[36] available on several hardware

platforms, including the Kendall Square Research KSR-1 and KSR-2 supercomputer, the GP1000 BBN

Butterfly nmltiprocessor, the Sequent multiprocessor, and uni- and multi-processor SGI and SUN SPARC

workstations. Figure 5 depicts the system's implementation. It is discussed next in the context of the

....ooo.... °o °o_

Shared Memory

User
Thread I-

I
Thread I

I User 1.._-4_
Thread I

] I....
Thread]

i
TCP/IP sockets

9;

Slun_l Memory. Multiproccssor
_,oo°o°ooH o.o°.H °oo°°o°°oo**oooo°°..

To

User Interface&
Graphical Displays

I
Monitor

High I_fformanoc

I/0 _1

Trace Filter &

Analyzer

Tra_

Dambasc

Figure 5: Implementation of the monitoring mechanism with Cthreads.

basic contributions of Falcon to the monitoring literature: (1) low monitoring latency and varied monitoring

performance, also resulting in system scalability, (2) the ability to control monitoring overheads, and (3)

the ability to perform application-specific monitoring and on-line analyses useful for steering algorithms and

graphical displays.

Applicatlon-speclfic monitoring - sensors and sensor types. Using a simple specification language,
programmers may define application-specific sensors for capturing (a) the program and performance be-

haviors to be monitored and (b) the program attributes based on which steering may be performed. The

specification of a tracing sensor is shown in Figure 6. It simply describes the structure of the application data

to be contained in the trace record generated by this sensor. From this declaration is generated the sensor

subroutine shown in Figure 7. The body of this subroutine generates entries for an event data structure,

then writes that structure into a buffer. A local monitoring threaxi later retrieves this structure from the
buffer. Each sensor's code body is also surrounded by an ±f statement, so that the sensor can be turned on

or off during progra m execution (ie., the monitoring system itself may be dynamically steered).

sensor work_load {
attributes {

int
double

}

domain_nul;
work_load;

Figure 6: Specification of sensor work_load.

int

user_sensor_work_ioad(int procese_nul, double work_load)

if (sensor_switch_flag(SENSOR_NUNBER_WORK_LOAD)-- ON) {

sensor_type_work_load data;

data.type - SENSOR_NUHBER_WORK_LOAD;
data.perturbation - O;

data.timestamp - cthread_timestamp();
data.thread - cthread_self();
data.process_numt procees_num;
data.work_load - work_load;

while (write_buffer(get_buffer(cthread_self()),&data,

sizeof(sensor_type_work_load)) -- FAILED) {

data.perturbation - ¢thread_timestamp() - data.timestamp;
}

Figure T: Generated code of sensor work_load.

Figure 6 shows the specification of the tracing sensor that monitors the workload of each domain partition

in MD, and Figure 7 depicts the generated sensor code. There are four zmplicit fields for any event record that

describe the event's sensor type, timestamp, thread id, and perturbation. The purpose of the perturbation

field is to record the additional time spent by the sensor waiting on a full monitoring buffer, if any. This

'buffer full" information is important for generating comprehensible execution time displays. A more detailed

explanation of this problem appears with the discussion of Figure 13 in Section 5.3.

It is important, to realize that each single sensor specification generates an event type; but its corre-

sponding sensor code may be inerted to many different places within a single parallel program. Moreover,

since new threads can be forked during an application's execution time, sensor instances are dynamic. The

monitoring system identifies such dynamically created sensors using a combination of thread identifier and

sensor type. In addition, users may explicitly register individual instrumentation objects, which correspond

to specific calls to sensor code made by the target program. Such registration gives the monitoring system

the ability to control (e.g., turn on or off) single invocations of sensor code instead of controlling all instances
of a certain type of sensor as a whole.

Controlling monitoring overheads - sensor types and sensor control. The monitoring overheads

experienced with sensor invocations may be controlled by use of different sensor types: sampling sensors,

tracing sensors, or extended sensors. A sampling sensor simply writes its output into a structure located

in shared memory periodically accessed by the monitor's runtime components also resident on the parallel

machine, called local monitoring threads. A tracing sensor generates timestamped event records that may be

used immediately for program steering or stored for postmortem analysis. In either case, trace records are

stored in trace queues from which they are removed by local monitoring threads. Last, an extended sensor

performs simple analyses before producing output data, so that some data filtering or processing required

10

for steering may be performed prior to output data generation. It is evident that sampling sensors inflict

less overhead on the target application's execution than tracing and extended sensors. However. as shown in

Section 4, the more detailed information collected by tracing sensors may be required for diagnosis of certain

performance problems in parallel codes. Furthermore, tile combined use of all three sensor types may enable

users to balance low monitoring latency against accuracy requirements concerning the program information

required for program steering.

Monitoring overheads may be controlled during each program run by direct interaction of user programs

and/or Falcon's user interface and/or analysis/steering algorithms with the monitor's runtime system. First,

sensors can be turned on or off during the application's execution[47]. Second, sensors can dynamically adjust

their own behavior to continously control overall monitoring overhead and latency. For example, a tracing

sensor that monitors a constantly accessed mutex lock can reduce its tracing rate to every five mutex lock

accesses, thereby improving monitoring perturbation at the cost of reducing trace accuracy. In this paper,

we use such dynamic sensor configuration for selective monitoring of a parallel program, where during a

single program run, different monitoring methods are employed at different points in time. This is attained

by enabling or disabling specific sensors, by switching from sampling to tracing sensors, and by changing

the behavior of individual sensors (e.g., sensor sampling rates). Experimentation described in Section 4 will

demonstrate the utility of selective monitoring with the MD code.

Controlling monitoring overheads - concurrent monitoring and steering. As depicted in Figure

5, local monitoring and steering threads perform trace data collection, processing, and steering concurrently

and asynchronoulsy with the target application's execution. Local monitors and steering controllers typically

execute on the target program's machine; but they may run concurrently on different processors, using a

buffer-based mechanism for communication between application and monitoring threads.

An alternative approach performs all monitoring activities, including trace data capture, collection, and
analyses, in the user's code. One problem with this approach is that the target application's execution is

interrupted whenever a monitoring event is generated and processed, and the lengths of such interruptions

are arbitrary and unpredictable if complicated on-line trace analyses are used. In contrast, the only direct

program perturbation caused by Falcon is the execution of embedded sensors and the insertion of trace records

into monitoring buffers. Such perturbation is generally predictable (results on the KSR-2 are presented in

Section 4), and its effects on the correctness of timing information can be eliminated using straightforward

techniques for perturbation analysis [30].

Falcon's runtime system itself may be configured (steered) in several ways, including disabling or enabling

sets of sensors, varying activation rates, etc. One such on-line variation explored in detail in this paper is

changing the number of local monitoring threads and communication buffers to configure the system for

parallel programs and machines of different sizes. Such changes permit selection of suitable monitoring
performance for specific monitoring and steering tasks, and they may be used to adapt the monitoring system

to dynamic changes in workload imposed by the target application. For example, when heavy monitoring is
detected by a simple monitor-monitor mechanism, new local monitors may be forked. Similarly, when bursty

monitoring traffic is expected with moderate requirements on monitoring latency, then buffer sizes may be
increased to accommodate the expected heavy monitoring load. Such parallelization and configuration of

monitoring activities is achieved by partitioning user threads into groups, each of which is assigned to one

local monitor. When a new application thread is forked, it is added to the local monitor with the least
amount of work.

On-line analysis and display. Monitoring information partially processed by local monitors can be fed to

Falcon's steering mechanism to effect on-line changes to the program and its execution environment. It can

be sent to Falcon's central monitor for further analysis and for display of program behavior and application

performance to end users. It can be stored in a trace data base for postmortem analysis. The central
monitor, user interface, graphical displays, and trace database may reside on a different machine to reduce

interference from monitoring activities to the target application's execution, and to capitalize on efficient

graphics hardware and libraries existing on modern workstations. Section 5 describes some on-line analysis
typically required for the on-line display of monitoring information: the need to reorder information produced

by Falcon prior to its presentation to users. Falcon's interfaces to systems for the creation of high-quality

11

3Dvisualizationsof programoutputdataareout ofscopeof thispaper.FortheMDapplication,custom
visualizationswereconstructedin orderto gainthespeedsrequiredfor on-linedataviewingandsteering.

3.4 On-line Steering Mechanisms

As described in Sections 1 and 2, program steering requires functionality in addition to that being offered by

Falcon's monitoring components. Falco_l's on-line steering component is a natural extension of its monitoring

facilities. Similar to local and central monitors, steering is performed by a steering server on the target

machine and a steering client providing user interface and control facilities. The steering server is typically
created as a separate execution thread to which local monitors forward only those monitoring events that are

of interest to steering activities. Such events tend to be a small proportion of the total number of monitoring
events, in part because simple event analysis and filtering is done by local monitors rather than by the

steering server. Steering decisions, the,l, are made based on specific attributes of those events, by human
users (interactively) or by steering algorithms.

Falcon's steering system permits users to implement, on-line control systems that operate on and in

conjunction with the programs being steered. As a result, the primary task of each steering server is to read

incoming monitoring events and then 'decide' what actions to take, based on previously encoded decision

routines and actions, both of which are stored on a steering event database which is part of the server. This

database contains entries for each type of steering event, where each event may either perform some actual

steering action on the parallel program or simply note the occurrence of some monitoring event for future use

in steering or for inspection by users from the client's user interface. Accordingly, the secondary task of each

steering server is to interact with the remote steering client. The steering client is used to enable/disable

particular steering actions, display and update the contents of the steering event database, and input direct

steering commands from end users to the server. The steering client is not addressed by the target (on the
parallel machine) performance measurements shown below. Its functionality and performance are discussed
in more detail elsewhere.

At the lowest level of abstraction, a steering action that modifies an application is either a probe or an

actuator. A probe updates a specific program attribute asynchronously to the program's execution. These

attributes are defined by application programmers in an object-oriented fashion, where each specific program

abstraction can define one or multiple attributes and then export methods for operating on these attributes.

The steering event database lists all steerable objects and their program attributes. Also, actions are stored

in the database with each event type. Actions are defined methods able to operate on the attributes of

these objects. A complete object-oriented framework for defining and operating on program attributes is
defined in [38]. The definition and dynamic adjustment of operating system level attributes is described

in [35]. For purposes of this paper, the reader should assume that such attributes correspond to specific

program variables (ie., to specific locations in the program's data). The steering server uses probes to update

such variables at any time it chooses, and it uses actuators to have the program's execution threads enact

certain steering actions on its behalf. Such actuators may also execute additional functions to ensure that

modifications of program state do not violate program correctness criteria[5].

The performance of steering is assessed in Section 4.5 below.

4 System Evaluation

To understand the performance of the Falcon monitoring system, we evaluate its implementation on a
Kendall Square Research KSR-2 parallel machine 2. This machine has 64 processors interconnected by two

rings. The KSR-2 supercomputer is a NUMA (non-uniform memory access) shared memory, cache-only

2The 64 node KSR*2 machine at Georgia Institute of Technology was upgraded from a 64 node KSI_I during our experimen-
tations. Therefore, some of the results presented in this paper are obtained on the KSR-1 machine, while others are obtained
on the KSR-2. Programs running on the KSR-2 are roughly twice as fast as those running on a KSR-1 due to differences in
machine clock speeds.

12

architecturewith an interconnectionnetworkthat consistsof hierarchicallyinterconnectedrings,eachof
whichcansupportup to 32nodes.Eachnodeconsistsof a 64-bitprocessor,32MBytesof mainmemory
usedasa localcache,a higherperformance0.5Mbytesub-cache,anda ringinterface.CPUclockspeed
is20MHzon theKSR-1and40MHzon theKSR-2,witha peakperformanceof 20and40Mflopsper
nodeforKSR-1andKSR-2,respectively.Accessto non-localmemoryresultsin thecorrespondingcacheline
beingmigratedtothelocalcache,sothat.futureaccessesto that.memoryelementarerelativelycheaper.The
parallelprogrammingmodelimplementedbyKSR'sOSFUnixoperatingsystemisoneofkernel-levelthreads
whichofferconstructsfor threadfork,threadsynchronizationandsharedmemorybetweenthreads.This
kernel-levelthreadfacilityiscalledPthreads.FalconitselfemploysCthreads,a user-levelthreadsfacility
thatisbuilt ontopof Pthreads.

In theremainderof thissection,wefirst evaluatethebasicperformanceof Falcon'smonitoringmecha-
nisms,includingmeasurementsoftheaveragecostsoftracingsensorsandofminimalandexpectedmonitor-
inglatencies.Next,usingtheMDcode,weevaluateFalcon'sabilitytocontrolmonitoringoverheadsandto
scaleto differentperformancerequirements.Theoverheadsincurredbyindividualelementsof theruntime
steeringlibraryareevaluatedlast.

4.1 Sensor Performance

The perturbation, latency, and throughput of sensors depend on three factors: (1) the size of the event data

structure, (2) the cost of event transmission and buffering from sensors to local monitors, and (3) sensor
type. A tracing sensor generating a 'large' event containing many user-defined and implicit attributes will

execute longer than one generating a 'small' event. Event transmission and buffering costs are affected by

a variety of factors, including the number of event queues and local monitor threads, and the actual event

processing demands placed on local monitors. Factor (1) is evaluated in Table 1, which depicts the basic

costs of executing a sensor modulo its size, where basic costs include: (a) accessing the sensor switch flag, (b)

computing the values of sensor attributes, and (c) writing the generated sensor record into an event queue.

The table displays measured execution times on a KSR-2 machine.

Event record length 32 bytes

I Cost (microseconds) 6.8

64 bytes 128 bytes

I 7.9 I 9.6

Table 1: Average cost of generating a sensor record on the KSR-2.

The results in Table 1 indicate that the direct program perturbation caused by inserted sensors should be

acceptable for many applications for moderate amounts and rates of monitoring. Specifically, if an application
can tolerate from 5% to 10% perturbation, then Falcon's monitoring mechanism can produce monitoring

events at a rate from 7,500 to 15,000 events per second on the application's critical execution path. Given

these costs, total perturbation of a parallel program can be derived as the cumulative cost of generating all

of the sensor records in the program's critical path. A more complex perturbation model is required when

considering side effects of such direct program perturbation[30].

The dominant factor in sensor execution is the cost of accessing the buffer shared between application

and monitoring threads. The use of multiple monitoring buffers (one per user thread) in Falcon reduces

the contention of buffer access by user and monitoring threads, so that the effective cost of buffer access is
the cost of copying a sensor record to the buffer. This latter cost depends on the size of the sensor record,

as clearly evident from the measurements in Table 1. It should be noted that these costs do not include

perturbation that might be caused by bottlenecks in the processing and transmission of the events (which

would result in delays in obtaining buffer space). However, such worst case perturbation may be avoided

by making dynamic monitoring adjustments provided by Falcon's runtime monitoring mechanisms, such as

turning off non-critical sensors, reducing a sensor's tracing rate, forking new local monitoring threads, etc.

13

4.2 Monitoring Latency and Perturbation

Monitoring latency is defined a-s the elapsed time between the time of sensor record generation and the time

of sensor record receipt and (minimal) processing by a local monitoring thread. Low latency implies that

steering algorhhms can rapidly react, to changes i_l a user program's current, state[37]. Monitoring latency
includes the cost of writing a sensor record to a monitoring buffer, the waiting time in the buffer, and the

cost. of reading the sensor record from the monitoring buffer. While the reading and writing times can be

predicted based only on sensor size, the event waiting time in the monitoring buffer depends on the ral.e at
which monitoring events can be processed by local monitors.

Buffer size Record length

(bytes) 32bytes 64 bytes 128 bytes

256 69 73 87

1,024 68 71 84

4,096 68 70 83

16,384 69 73 85

Table 2: Minimum monitoring latency (in microseconds) on the KSR-2.

Buffer size Record length

(bytes) 32 bytes

256 164

1,024 201

4,096 211

16,384 256

64 bytes 128 bytes

181 242

264 294

277 498

347 556

Table 3: Latency at moderate monitoring rates (in microseconds) on the KSR-2.

Tables 2 and 3 depict the results of two experiments with a synthetic workload generator instrumented

to generate sensor records of size 32 bytes at varying rates, using a single local monitoring thread. In Table

2, monitoring latency is evaluated under low loads, resulting in an approximate lower bound on latency.

Results vary with event record sizes, but demonstrate the independence of monitoring latency on the size of
the monitoring buffer at low loads. Table 3 uses higher monitoring loads 3 and experimentally demonstrates

the expected result that larger monitoring buffers reduce program perturbation, but also increase monitoring
latency for buffered events. Specifically, latency is not affected by buffer size at low rates, but increases with

increasing buffer sizes even at moderate monitoring rates. This would indicate the use of smaller buffers.

However, program perturbation can be larger with small buffers since programs must wait until buffer space

is available when attempting to produce an event. Figure 8 demonstrates that the maximum event processing

rate of a single local monitoring thread is about 40,000 to 45,000 events per second on the KSR-2 (assuming

no significant processing of events in the local monitoring thread). However, monitoring latency remains
acceptable when the monitoring rate is less than this saturation point.

The bottleneck due to limitations on the processing ability of single local monitors can be remedied by

use of parallelism. Figure 9 shows that monitoring delay is reduced when multiple local monitors are used

3 The measurements in, Table 3 use a monitoring rate of approximately 40,000 events per second, which almost saturates the

14

8OO

700

c
G
t)

600

500

E

4O0

300

200

c-
O i00
z

0

Latency vs Event Rate

e

!

0 I0000

I I i

20000 30000 40000 50000

Event Rate (events/second)

Figure 8: Monitoring latency versus event rate on the KSR-2.

to monitor the MD application. In this experiment, all procedure calls to the Cthreads library are traced.

As MD runs on more processors, the frequency of calls to the Cthreads library increases, resulting in higher

event rates. It is evident from the results shown in Figure 9 that additional local monitors are effective in
reducing monitoring delay when this delay exceeds some threshold (around 200 microseconds for the MD

code on the KSR-2). Below this threshold, the additional overheads associated with multiple vs. single local

monitoring threads prevents their effectiveness.

In general, the measurements shown in Tables 2 and 3 and in Figures 8 and 9 demonstrate that there

exists no general means of attaining both low monitoring latency and perturbation at arbitrary rates of

monitoring (other than using additional hardware support). The approach taken by Falcon toward addressing

this problem is simply to permit the configuration of the monitoring system itself (buffer sizes, number

of trace buffers, number of local monitoring threads, and attachment of monitoring threads to buffers -

monitoring load distribution) to offer the performance characteristics desired by the application program.

Such configuration can be performed dynamically in a fashion similar to on-line program steering, where the

saturation points for local monitors may be used as triggers for configuring the monitoring system itself.

4.3 Monitoring the MD Code

This section demonstrates the overall performance and utility of Falcon's monitoring mechanisms, again using

the MD application. Measurements in this section are taken on a 64-node Kendall Square Research KSR-1

machine. The specific M D simulation used in these measurements uses a cylindrical domain decomposition;

MD performance and speedups with different decompositions are evaluated in detail elsewhere[9].

Table 4 depicts the results of four different sets of MD runs, normed against a run of MD without
monitoring. These experiments compare the performance and perturbation when using Falcon for five

different cases: (1) when no monitoring performed (Original MD), (2) when tracing only MD calls to the

underlying Cthreads package (Dft Mon Only), (3) when tracing Cthreads events as well as sampling (using

sampling sensors) the 10 most frequently called procedures in MD (Dft Mo, & Sampling), (4) when using the

Unix GProf profiler existing on the KSR-1 machine (MD with Gprof), and (5) when tracing Cthreads events

as well as the 10 most frequently called procedures in MD (Tracing All Mo, Events). The table and figures list
computation times and speedups with different numbers of processors. These measurements do not consider

single local monitoring,thread used in the experiment.

15

1000

9OO

800
C

700

0

u 600

500

400

300

200
>

100

0

0

with 1 local monitor

with 2 local monitors -- /

with 3 local monitors _ /

with 4 local monitors -_---//

i i i i i

4 8 12 16 20 24

Number of domains

Figure 9: Monitoring latency with multiple local monitors on the KSR-2. (Each domain of particles is
assigned to one processor.)

Execution Time of Each Iteration (seconds) & Monitoring Overhead

Number of Original MD Dft Mon Dirt Mon Tracing All MD with

Processors Only & Sampling Mon Events Gprof

1 8.19 8.19(< 1%) 9.61(17%) 114.60(1299%) 22.53(175%)

4 2.65 2.65(< 1%) 3.21(21%) 59.30(2140%) 7.29(175%)

9 1.45 1.45(< 0%) 1.72(19%) 65.33(4406%) 4.28{195%)

16 0.62 0.63(1%) 0.73(17%) 54.29(8628%) 1.71(175%)

25 0.30 0.31(2%) 0.35(16%) 41.56(13776%) 0.82(173%)

36 0.19 0.20(4%) 0.23{16%} 33.65(17245%} 0.54(195%)

Table 4: Average execution time and perturbation of each iteration of MD with different amounts of moni-

toring or profiling on KSR-1.

the costs of either forwarding trace events to a some front end workstation or storing them in a trace data
base, since those costs are not dependent on Falcon's design decisions but rather on the performance of the

networking code and/or file system implementation of the KSR-1 machine. Specifically, measurements with

trace events essentially 'throw away' events at the level of local monitors, whereas the measurements with

sampling sensors actually use local monitors to retrieve and evaluate sampling sensor values stored in shared
memory on the KSR-1 machine.

The MD application's performance with different amounts of monitoring or profiling is depicted in Fig-

ure 10, and the resulting program perturbation due to monitoring is shown in terms of speedup degradation

in Figure 11. Evaluations of each experiment are presented next. The first experiment (Dft Mo, Only

- default monitoring) measures the overhead of monitoring when Falcon traces all calls to the underlying
Cthreads package. Specifically, this is the amount of monitoring required for the thread life-time view

4Super-linear speedups are due to the KSFt-I's ALLCACHE memory architecture. When MD runs on a large number of

processors, it can load all of its code and data into the fast sub-caches or local caches associated with these processors, while

16

10.0

8 0

6.0

4.0

0

× 2.0

0.0

: Original MD -*--

\ :, Dft Mon Only -*--

5 i0 15 20 25 30 35

Number of processors

Figure 10: Comparing average execution time of each iteration of MD on the KSR-1.

_0
ch

0J

&
ca

45.0

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0.0

Original MD-_-- 12

Pft Mon Only //_,_

Dft Mon& Sampling-_-._ /_,.-'"

MD with Gprof .-_-- /_.,-'" .,._

Linear Speedup ,_iii,,,,... .I

0 5 I0 15 20 25 30 35

Number of processors

Figure 11: Comparing speedups of MD on the KSR-14.

17

shown in Figure 13 in Section 5.2. The monitoring information being collected includes tile runtime activi-

ties associated with each thread (such as thread_fork, thread_join and thread_detach events), synchronization

calls, and all other information displayed in the thread life-time view. It is apparent from Figures 10 and

11 that default monitoring does not noticably perturb the execution of MD. However, monitoring overheads

increase slightly with all increasing number of processors, which is caused by an increasing number of events

(more user threads imply more cthreads calls, and hence more monitoring events) generated during a shorter

execution time and beginning to saturate the available local monitoring threads. The creation of additional
local monitors can remedy this problem.

Tile second experiment compares the overhead of Falcon monitoring with that of commonly used program
profiling tools, namely, with Gprof. The KSR implementation of Gprof used in these measurements has been

optimized to take advantage of the machine's memory architecture in several ways, including replicating

counters on each processor to avoid remote accesses. To compare fairly, we exclude the time spent on
writing the results to file from the presented Gprof execution times. Using Falcon, we monitor the 10

most frequently called procedures in MD. These calls constitute about 90% of all procedure calls made

in the program. Each procedure is monitored by a sampling sensor, which increments a counter for each

procedure call being monitored. Counter values are sampled each millisecond by local monitoring threads.

The result of this experiment is the addition of 20% to MD's total execution time. In comparison, with

Gprof, the execution time of MD is increased by approximately 180%. Similar advantages of Falcon to
other profiling tools are demonstrated when using Prof. Experimental results not reported in detail here

show that Prof's overhead is approximately 130% [15]. The results described above are not surprising, since

profiling tools typically maintain large amounts of compiler-derived information about a parallel program's

attributes. In comparison, Falcon only maintains the specific information required for taking certain program
measurements.

While the first two experiments clearly demonstrate the importance of monitoring only the program

attributes of interest to the user, the third experiment shows that it is also important to adjust or select

the techniques being used for information capture. In this experiment, tracing sensors are used in place

of sampling sensors for monitoring the 10 most frequently called procedures in MD, which results in a

very significant increment of monitoring overheads. The excessive performance penalties arising from this

'misuse' of tracing sensors are primarily due to the direct perturbation caused by monitoring tens of millions

of procedures calls and are exacerbated by the saturation of the single local monitoring thread being used

in the experiment. The resulting (lack of) performance clearly demonstrates two points. First, since tracing

sensors are too expensive for procedure profiling, any monitoring system must offer a variety of mechanisms

for information capture and analysis, including both sampling and tracing sensors. Second, since tracing

can help users gain an in-depth understanding of code functionality and performance (see Sections 4.4 and

5), users should be able to both control the rates at which tracing is performed and the specific attributes

of the application that are captured via tracing. We call the user's ability to focus monitoring on specific
system attributes selective monitoring. It is explained in more detail in the next section.

In general, the experiments with MD presented in this section demonstrate that the multiple monitoring

mechanisms (e.g., tracing vs. sampling sensors) supported by Falcon can be employed such that monitoring
overheads remain moderate for realistic parallel application programs.

4.4 An Example of Selective Monitoring Using Falcon

In this experiment, the MD code's most computationally intensive component is monitored using Falcon's

sampling and tracing sensors. Both types of sensors are needed since programmers require both summary

(e.g., total number of invocations) and sequencing or dependency information (e.g., 'b' was done after 'a'

occurred) to understand and evaluate code performance. Such dynamically selective monitoring is useful

since programmers can focus on different phenomena at different times during the performance evaluation

process. The specific purpose of the selective monitoring demonstrated in this section is to understand the

it cannot do so when running on a single processor.

18

effectivenessof certain, commonly used 'short cuts' which are intended to eliminate or reduce unnecessary

computations in codes like MD.

The dominant computation of each domain thread ill the MD code is the calculation of tile pair forces

between particles, subject to distance constraints expressed with a cut-off radius. This calculation is imple-

mented with a four-level, nested loop organized as follows (pseudocode is shown below):

for (each molecule mol_l in my domain) do

for (each molecule mol_2 in domains within cut_off_radius) do

if (within_cutoff_radius(mol_l, mol_2)) then continue;

for (each particle part_1 in molecule mol_1) do

if (within_cutoff_radius(part_l, 1oi_2)) then continue;

for (each particle part_2 in molecule lO1_2) do

if (within_cutoff_radius(part_l, part_2)) then continue;

calculate_pair_forces(part_l, part_2);
end for

end for

end for

end for

The inner three levels of this loop check the distances between molecules and particles to eliminate all

particles outside the cut-off-radius. When the distance between two molecules is checked, three dimensional

bounding boxes are used for each molecule. Each molecule's bounding box includes all of its particles. The

minimum distance between two molecules is defined as the distance between their bounding boxes' closest

points, whereas the minimum distance between a particle and a molecule is the distance from the particle

to the molecule's bounding box' closest point.

The question to be answered with selective monitoring is whether the additional costs arising from the

use of bounding boxes is justified by the saved costs in terms of the resulting reduction in the total number of
pair force calculations. More specifically, does the reduction is total number of pair force calculations justify

the additional computation time consumed by bounding box calculations? A simple selective monitoring

mechanism is used to answer this question, by dynamically monitoring the performance of this four-level

loop. Specifically, a sampling sensor is first used to monitor the hit ratios of the distance checks at all levels.

When a hit ratio at some loop level falls below some threshold, say 10%, a tracing sensor monitoring this loop

level is activated to obtain more detailed information. Tile intent is to correlate the low hit ratio with specific

properties of domains or even of particular molecules. Specifically, for each 'hit' distance check at the 2nd

level loop, we trace the distances between particles and molecules at the 3rd level loop. The motivation is

to understand the relationships of distances between molecules' bounding boxes a,d with distances between

specific particles of a molecule with the bounding boxes of other molecules. In other words, what is the
effectiveness of the second level distance check?

The performance of such dynamically selective monitoring is presented in Table 5. In these measurements,
we use a MD data set that contains 300 molecules with 16 particles each. This relatively small system is then

monitored by insertion of sampling and tracing sensors at one, two, three, or all levels of the nested loop

(the outermost level is numbered zero, while the innermost three). Tracing at all levels results in overheads
that are somewhat unacceptable, especially when the same tracing is performed for larger systems. This is

apparent from the increases in monitoring overheads experienced when tracing at all levels for increasing

system sizes (e.g., 9 vs. 16 domains). On the other hand, when tracing only at lower levels (e.g., levels 1 or
2), overheads are less than 1% for smaller systems and no more than 5% for larger systems, and sampling

overheads remain small for all system sizes.

These results indicate that selective monitoring is quite effective, even when applied to this highest

frequency set of loops in the MD program's execution. Furthermore, the strategy of sampling execution and

only initiating tracing when some problem (e.g., a low hit ratio) is experienced should result in composite

monitoring overheads that approximate the sampling overheads experienced with Falcon for long system

19

ExecutionTimeof eachMDtimestep

No.of No Sampling Tracingat
domains Monitoring Hit-Ratio Level1

4 1.28 1.28(<I%) 1.28(<1%)

9 0.703 0.706(<1%) 0.708(<1%)

16 0.301 0.301(<1%) 0.304(1%)

25 0.147 0.147(<1%) 0.149(1%)

(seconds)& MonitoringOverhead

Tracingat Tracing at Tracing at

Level 2 Level 3 All levels

1.34(5%) 1.38(8%) 1.46(14%)

0.734(4%) 0.742(5%) 0.794(13%)

0.316(5%) 0.323(7%) 0.356(18%)

0.155(5%) 0.158(7%) 0.188(28%)

Table 5: Performance of selective monitoring of the MO's mr.in computation component on the KSR-2.

runs. In conclusion, the on-line 'steering' of Falcon's nmnitoring mechanisms themselves can be used to
control runtime monitoring overheads.

4.5 Performance of On-line Steering

As outlined in Section 3.4, the steering component of Falcon operates in conjunction with its monitoring com-
ponents, by receiving and processing selected monitoring events, then controlling the application's execution

based on such runtime state information. This section presents low-level measurements that highlight the
basic performance and operation of program steering when viewed as a low-level control system. Therefore,

tor these measurements, networking is disabled and, hence, no remote operations are performed with the

steering client. Three processors are used, one running an application thread, a second running a single local

monitoring thread, and a third running the steering server. Algorithmic steering is used in order the evaluate

the basic costs of observing some interesting program state via the (1) local monitor and (2) steering server,

(3) making a simple decision based on that observation, and (4) enacting that decision by taking a steering

action. These costs are evaluated in the first experiment, which measures the latency of actions (1)-(4) for
a lightly loaded system:

Measurement microseconds

Avg. Latency 610

Min. Latency 224

Max. Latency 4483

Table 6: Latency for closed-loop steering.

Table 6 describes the closed-loop latency for steering under the following conditions: a total of 100,000

sensor events are generated by the application program, they are received by local monitors, and they are

then forwarded to the steering server without any additional filtering or processing. (4) The steering server
performs a simple action in response to each event's receipt. This action consists of a write to a variable

in the application program. (1)-(4) are performed for an application program that repeatedly performs the

following tasks. First, it generates a monitoring event using a Falcon sensor. Second, the program waits

on some pre-specified memory Location that will be asynchronously updated by the steering server. Third,
the steering server receives the event from the local monitor, reads the event type, accesses its database of

steering events to determine the actions required for this event type, and then uses a probe to enact this

action. The probe essentially changes the value of the memory location on which the program is waiting.

2O

Forthesenlea.surements,thedataba_seonlycontainsa moderate number of different steering event, types and

their respective actions.

The results depicted in Table 6 demonstrate all average latency of 610 microseconds for algorithmic

program steering using Falcon. This implies that program steering call be performed using Falcon at. rates

approximating the execution times of the set of inner loops in programs like MD. ltowever, it. is not possible to

use Falcon's current mechanisms to perform steering of program abstractions accessed with high frequencies.

like the adaptable locks described in [35]. Such high-rate and low-latency steeriag must be performed by
local monitors themselves, possibly using custom implementations of sampling sensors. Two surprising results

depicted in the table are (1) the high maximum latency for servicing a steering event (4,483 microseconds),

which is due to mismatches in the scheduling of application, monitoring, and steering threads, and (2) the

low minimum latency of 224 microseconds for steering, which is comprised mainly of the costs of event

transmission from the application, to local monitor, to steering thread, respectively (recall that monitoring
latency is approximately 70 microseconds).

The second experiment evaluates more complex steering actions, by forcing the steering thread to take

multiple actions for each received steering event. Specifically, Table 7 depicts the latencies of steering when

for each received steering event, tile steering server takes some variable number (1, 10, 100) of actions

involving both probes and actuators. The purpose of this experiment is to determine the incremental costs
of steering.

Probe write 1 643

Probe write 10 2930

Probe write 100 15418

Actuator

Actuator

Actuator

1 627

10 1207

100 7870

4.6

23.9

1.9

12.6

Table 7: Average closed-loop latency with complex actions.

First, consider the costs of probe-based steering. For each probe, different memory locations have to

be accessed. In this experiment, worst case costs are evaluated by forcing the steering server to access its

database once for each received event. As the complexity of the action increases, the execution time required

by the steering server to execute this action increases. For a complex action, the server must execute this

action before accepting any other events from the monitor. As seen from Table 7, the basic probe write costs

643 microseconds. These costs increase by a factor of 4.6 for a complex action that requires 10 probe writes

(2,930 microseconds), and they increase by a factor of 23.9 for very complex actions (to 15,418 microseconds

for 100 probe writes). These measurements indicate that the steering server's construction is sensible in that

it permits the basic costs of steering to be amortized over the costs of increasingly complex actions.

The second portion of Table 7 addresses actuator costs. These measurements are interesting in their

demonstration of scalability for actuators versus probes in terms of the resulting costs arising for steering

servers. Specifically, 100 actuator activations do not correspond to 100 executions of actuator code by the

steering server. Instead, the server simply enables the actuator once (for 100 executions), and then relies

on the user program to execute steering actions using the enabled actuator. As expected, actuator-based

steering costs do not depend on the number of steering actions taken; they depend only on the number of
times actuators are enabled or disabled! However, in order for the steering server to program the actuators,

the server must write to a buffer shared by the server and the application. A lock must prevent simultaneous

access to this region. Unfortunately, this lock is a point of contention between the server and the application

21

and. as sucil,tileperformance of the serverissomewhat degraded.

From these nleasuremenl,s and in accordance with earlier results presented in this paper and in [2] address-
ing the time required for analyzing monitoring output, it should be apparent that tile steering componenl of

Falcon is sufficiently fast, to (1) keel) up with fairly high rates of monitoring apd (2) steer program,_ at rates

and with overheads enabling medium grain on-line program configuratiou[5] and application steering.

5 The On-line Presentation of Monitoring Information

The process of on-line user interaction with a target application includes (1) obtaining application-specific

information through monitoriug mechanisnls, (2) displaying this information to the user, and (3) controlling
program execution ba.sed on (2). Steps (1) and (3) have been discussed in the previous sections. This section
presents Falcon's methods for presenting monitoring information to end users.

5.1 Falcon's On-line Display System: An Overview

Graphical displays have been shown useful in presenting data structures [39], algorithms [48], runtime pro-
gram behaviors [29], and performance information[17. 41] to human users. However, most. current work deals

primarily with off-line graphical and animated presentations of program and performance information. Fal-

con's specific goals concerning the presentation of information to end users are to evaluate: (1) how on-line

displays of program information can help users understand a target program's performance and runtime

behavior, and (2) how users can use such an understanding to steer their parallel codes. The resulting

necessary attributes of graphical displays used for program steering include:

Application-specific displays - program information should be presented to end users in familiar terms,

that is, by reference to abstractions in their programs rather than by reference to machine or operating
system details with which they may not be familiar.

Behavior-preserving displays - program monitoring and information display cause program perturba-

tion and they exhibit, a lag between the time of information generation and its display to end users.

Programmers and end users must be made aware of both monitoring perturbation and information

delay and should, potentially, be able to control them when performing program steering.

The Falcon information display system offers functionality addressing both attributes. First, the central

monitor in Falcon is able to 'attach' any number of event streams from local monitors to its input ports,

and 'route' events to any number of analysis packages and subsequent displays through its output ports.
Such attachments to either input or output ports may be changed during program execution, if needed. As

a result, event streams may be subjected to multiple analysis packages and then displayed by any method of

display chosen by end users. Attachments are created and dissolved by commands to the central monitor,

and alternative displays may be associated with event streams by use of class hierarchies within the display
process. Figure 12 demonstrates the use of three alternative display methods for a sample event stream. The

first method, built on the X window system and the Athena and Pablo [41] widget sets, uses the we, k_load

events for the display of the application's load balance information. The second method applies statistical
methods to analyze events from the application and then presents the resulting summary information to end

users in a textual format. The third method, built on the Polka animation system and the Motif widget set,
uses specific events from the on-line event stream to animate the program's behavior at the threads level
(also see Figure 13).

In this paper, we focus on 2D graphical displays of program behavior or performance, which have been

shown useful for on-line steering in previous sections, where graphically displayed load balance information is

used to direct the execution of the M D code (e.g., see Figure 1). Our future work is combining event streams
from the monitoring system with program output typically generated via file system calls, so that users can

22

_ Central

evem.t_,_, = _ Monitor tt "1

from tpplicatio_

Proe 0

Proe 21 __

l_r_ 2

Event

Statistics
Analyzer

Reordering
Filter

Load Balance View

Pro¢ I

s_s_cs
teXt

Textual Presentation
of Program Statistics

I

Thread Life-Tin: View

Figure 12: A sample on-line display system for an application.

understand and direct program execution in terms of individual program variables (e.g., 'energy levels' or

'molecular positions' in the MD code). Toward this end, we are now developing and integrating into Falcon

interactive 3D data visualization tools. These tools are being applied to a large-scale atmospheric modeling

application.

Falcon attempts to preserve the original behavior of the parallel program when displaying program
performance. Two issues arise: (1) monitoring can perturb program execution, and (2) the monitoring

system's method of event collection via buffers does not preserve the actual time ordering of events being

produced and displayed. Specifically, since monitoring events are first buffered on the parallel machine

and local monitoring threads are not perfectly synchronized, events received by the central monitor and

ultimately, by analysis and display packages are not guaranteed to be in order. For off-line monitoring,

event files can be sorted. For on-line monitoring, event reordering must be performed on-line and with

suitable efficiency. Furthermore, in order to preserve the behavior of the original program when presenting

such information to users, reordering must be performed so that the causal order of events exhibited by the

executing program is preserved and enforced.

The remainder of this section describes how Falcon displays address both program perturbation and

monitoring delay, by providing on-line perturbation information displayed as perturbation events, and by
reordering and displaying monitoring events according to known information about a program's causal exe-

cution order. In both cases, the system-level default information about threads available in Falcon is utilized.

5.2 The Thread Life-Time View: Performance of Threaded Programs

The graphical thread life-time view described next is one contribution of the Falcon project toward un-

derstanding the dynamic behavior of threads-based parallel programs. Available with Cthreads programs

running on SGI and SPARC workstations and on KSR machines, this view uses the default sensors embedded

in Cthreads. The view is implemented with the Polka animation library [49]. Since Polka provides a vari-
ety of graphical objects, animation primitives, and user interface facilities, the program defining the thread

23

life-timeviewonly consists of roughly 200 lines of application-level Polka code. Polka runtinw libraries pro-
vide a flexible animal ion scheduling policy, permit different temporal mal_piugs of program Pvouts to their
animations, and therefore facilitates the construction of on-line displays. Polka is described and evaluated

in detail in [49].

The thread life-time view shows the different states of threads over time. 'Fhe state information depicted
in the view includes thread execution time, blocking time, waiting time in ready queues, the identifiers
of conditions or mutex locks on which threads are blocked, and thread identifiers. From thi._ information.

users can easily discern the time a thread spends doing usefid computation versus waiting for other threads,

the degree to which different threads' executions are synchronized, processor utilization, and other useful

program and performance information. Figure 13 shows a snapshot of the MD program's execution on four

processors (ie., molecules are partitioned into four domains) on the KSR-1. When a new thread is forked,

In_'aMolecularCalculation
threadsstart IntraMolecularCalculation

- threads end

B
• n / \ II': ii IF::::::

 i:ii i ilil iii

Immmml ne n mnmmammnunn m
m n mnmm

I

' ": ")?"'.._;_;;i/'_':';,'".'.:_:.:_:";,_:,':"."_:'::'::'.:'_";: :"_"/¢;::f':',:_':'::_':': :.:::'?:':;':';i,:,_:';:¢v',?:':;':',','.'.,: "'''':''" .,._;v...,w. :.,,:.,.;,,,_.:,.'...,., .,':,. ,',.,,,,.:_:': ,,_ : ::...'::_,..:,.::, ;.:.._:.',:',.:: ..'.:" ..;;..:,.:..,... :_
;' : ._':_ :_._._".: .,.'..:_,. :__'_._.:::_-._ _... ,:_.'.:-' '....':..:e...: :.:::" ".._ • •_'...-'...,' :. ::2_._::_ _:.'_-.'.....'.:. "..:.'....: ... '.-_.'..: .'-'..'.....:: _:.:.: ".-'-'.'. _'..:.- "._.'.':':'........'.:'_'_..".'".: ". :.:.$_'.,..:_,

? .!!.' .. "_:.'....... _.__ :...... L.._ ..: ...i ! ...:

Figure 13: An annotated thread life-time view of MD. The actual display uses colors to represent different
threads and different thread states.

a narrow horizontal bar is created to represent the new thread's life-time, and a vertical line is drawn from

the parent thread to the child thread at the time of the fork event. A narrow bar terminates when the

thread, which the narrow bar represents, joins another thread after it exits or when a detached thread calls
thread_exit. In the case of thread_join, another vertical line is drawn from the caller thread to the thread it

is joining. The resulting empty space in the display can be reused for depiction of a new thread, if there
is any. Since the color display has to be rendered into monochrome for this presentation, some annotations

are added to compensate for lost information. Specifically, the thread life-time view uses different colors and

patterns to represent thread states. In Figure 13, the solid black pattern represents a thread in a running

state, while the dark gray pattern represents a thread waiting for a condition. The lightly dotted pattern

indicates that a thread has called thread_exit and is waiting to join to another thread. The heavily dotted

pattern indicates that a thread is in a processor's ready queue; it is waiting for another thread using the
processor to complete its execution.

24

The bottom four bars in Figure 13 represent four threads each computing properties of the molecules
in their respective domains (numbered 0, 1, 2, and 3 from bottom to top). Each such 'domain' thread

forks a second 'helper' thread in every iteration. These 'helper' threads are shown as short bars above

the 'domain" threads (they may not be in the same order as the 'domain' threads). They calculate intra-

molecular forces while domain threads wait for information from neighboring domains. At the end of each

iteration, domain threads perform neighbor-to-neighbor synchronization. As apparent from tile figure, the
intramolecular calculations of domain 3 proceed and perform useful computations while the domain thread

is waiting for completion of the computations of neighboring domains' threads. However, domain thread 3

experiences significant wait time since its domain computation is finished quickly, whereupon it must wait

for completion of neighboring threads' computation (it needs their data from the current iteration before

starting the next iteration). Therefore, it is also clear from this view that work load is imbalanced: domain
3 has little work to do, while domain 0 is almost always busy. This illustrates a problem with the slab-based

domain decomposition strategy used in this run of the MD program: Domain 0 is responsible for additional

molecules in the substrate on which the liquid being modeled is layered; this substrate is much denser than

the liquid and therefore, contains many more molecules.

5.3 Perturbation Events

The thread life-time view shown in Figure 13 can help users understand program performance problems

only if the thread running and waiting time shown is due to application's execution and synchronization

rather than monitoring perturbation caused by executing extra code and additional synchronization between

application threads and monitoring threads. Section 4.1 shows that the basic perturbation due to sensor code

execution is quite small, provided that monitoring buffers are sufficiently large and local monitoring threads

can process events fast enough to keep monitoring buffers from being completely full. Furthermore, the direct

perturbation due to the execution of a sensor is easily predicted from the sensor's type. As a result, such
perturbation can be removed from the event trace by application of simple perturbation analysis. However,

if local monitoring threads cannot keep up with the rate of event generation, then monitoring buffers will

eventually become full, and application threads will have to wait for some time until events have been

removed from such full buffers. Since such waiting time caused by filled monitoring buffers is not due to the

program's code or data, the resulting thread life-time view can be incomprehensible or misleading to end
users.

Figure 14 depicts a potentially misleading thread life-time view constructed with an event trace cap-

tured from a large-scale atmospheric modeling code. Tile problems in this view are due to an unsuitable

configuration of the monitoring system (a single local monitoring thread), which is quickly overwhelmed by

events from a large number of computational threads. Without perturbation events, it would appear to

programmers that their computational threads execute for different amounts of time. This is misleading

since in this program, each of the computational threads have the same amount of work. In fact, when first

using Falcon, one of the atmospheric code's implementors spent several hours chasing a non-existing load

imbalance indicated by the life-time view (without perturbation events). A more precise inspection of the
view in Figure 14 shows pure black bars that represent 'worker' threads, each responsible for a partition of

the computation space. The three bars below each 'worker' thread are 'helper' threads, which are employed

by the 'worker' thread to help calculate separate terms in its computation. The iterative algorithm performs
barrier synchronization after threads finish their work and before the next iteration starts. The figure in-

dicates that the third 'helper' thread of the top 'worker' thread and the first 'helper' thread of the bottom

'worker' thread waited a very long time for mutex locks. In addition, the second and third 'helper' threads of

the bottom 'worker' thread have significantly longer computation times than other 'helper' threads. These

superficial observations imply that the program has unbalanced work loads and improper synchronizations.

However, the improved threads life-time view with perturbation events presents a different picture.

Figure 15 shows the same execution of the atmospheric modeling code, with special perturbation events

depicting the total blocking times experienced by its threads on the monitor's event buffers. It is clear

from this 'correct' view that the 'helper' threads have balanced work loads, but that their execution times

are extended due to monitoring perturbation experienced by the 'helper' threads of the bottom 'worker'.

25

thr041Cl rtJ_nin 9

m r*_ _

m
,_l_|n 9 tO Join

Figure 14: A thread life-time view that shows perturbation events.

Specifically, the extremely long blocking times for mutex locks apparently experienced by the third 'helper'

thread for the top 'worker" and the first 'helper' thread for the bottom 'worker' (shown in Figure 14) are

not due to mutex locking. They are due to additional thread waiting times experienced when writing mu-
tex_end_lock events to the monitoring buffers. From this example, it should be evident that perturbation
events help users understand the monitoring system's contribution to total thread execution and wait times.

Our current work is generalizing this straightforward notion of perturbation events to apply more sophis-

ticated sequential perturbation analyses (e.g., see [30]). Another type of monitoring perturbation, causing
misordered event streams, is discussed next.

5.4 On-line Event Reordering

Event orderings and program animation. Displays likethe thread life-timeview of Figure 13 can

provide users with insightsinto program progress and correctness. However, the perturbation example

described above already demonstrates that graphicalviews can be quite misleading and confusing ifthe

information being displayeddoes not correspond to the program's actualexecution.This sectionfocusseson

another issuewith on-linegraphicalviews,namely, on the factthat the graphicalanimation order determined

by the receiptand displayof monitoring events does not correspond to the actualor causalorder in which

program events occur! Such misorderingscan both confuse users and more critically,cause failuresof the

animation itself.For example, causal ordering would requirethat the thread_forkevent creating a thread

precede any event executed by the new thread. A displaythat shows a childrunning before ithas been

forkedby itsparent does not make any sense.Furthermore,suppose that the firstevent forthischildthread

isa condition_waitevent. In the thread life-timeview of Figure 13, thisevent isrepresentedby a change

in the colorand fillpattern of that thread'shorizontalbar. However, ifthe thread_forkevent has not been

receivedby the displaysystem, the horizontalbar does not yet exist.When the displaysystem attempts to

perform a color-changeactionon thisnon-existentobject,itcrashes.Some ofthesecrashescould be avoided

by adding a layerof error-checkingcode to the displaysystem, but thisadds execution overhead, makes

displaysmore difficultto design,and stillleavesthe viewer with displaysthat may not be useful.

The out-of-ordereventsthat cause problems forthe displaysystem cannot have occurred inthe program's

execution,sincethey would violatecausalevent orderingsdetermined by program and language semantics.

26

Figure 15: A thread life-time view that shows perturbation events.

Instead, misorderings existing in the event stream are due to the buffering and processing methods employed

in the monitoring system. Specifically, high monitoring performance (i.e., low perturbation) requires that
events for each thread be buffered until a local monitor is ready to process them. Furthermore, different

local monitors send events to the central monitor at their own speeds, in part because the number of events

to be processed and the processing requirements of individual events may differ among local monitors. As a

result, while the event stream reaching the display system is in-order with respect to each individual thread

(recall that each thread uses only a single event buffer), it may be out of order with respect to thread events
from different threads.

On-line event reordering. The diagnosis and correction of out-of-order events is a common problem in

parallel and distributed monitoring systems. Existing systems (e.g., ParaGraph[17] and SIEVE[42]) rely on

a sort by timestamp value to impose a total order on all events stored in event files. The on-line nature
of the Falcon monitoring system precludes using such a solution, and sorting by timestamp order does not

entirely eliminate the problem of out-of-order events[4]. In addition, coarse clock granularities and poor clock
synchronization among different processors may lead to event timestamps that do not accurately reflect the

actual order of program execution. For example, if the system clock changes only every 10 milliseconds,

and if two events occur within this time frame, then the ordering of these two events cannot be determined

within this period. A more realistic concern on the KSR supercomputer used in our work is poor clock
synchronization, where one processor's clock can be sufficiently ahead of another processor's clock so that

the elapsed time between a thread fork and the first event executed by the child appears to be negative.

This problem is exacerbated when threads are allowed to migrate across processors, something we avoid in

Cthreads but is permitted in the Pthreads parallel programming library on the KSR machine.

Ordering rules. The previous discussion of out-of-order events makes apparent that the use of timestamps

is not sufficient for determining and enforcing suitable, global event orderings. Falcon addresses this issue

by employing an ordering filter between the central monitor and the display system (see Figure 12). This

filter ensures that the event stream reaching the display system adheres to a pre-specified, known causal

ordering among thread events. This ordering filter has knowledge of all execution threads, mutex locks,

and conditions identified occurring in the event stream. The algorithm employed by the filter follows a

"minimum-intervention policy". Namely, it examines each event in the stream arriving from the monitoring

system, checks the applicable ordering rules for this event type, and if no rules are violated, forwards the

27

eventtotiledisplaysystem.If aruleviolationisindicated,theeventisheldbackuntil tile rulesaresatisfied.

Asanexample,consider the ordering rule for a nmtex lock event. Actually. a mutex lock is recorded as

two separate events - the mutex_begin_lock event indicating that a thread has attempted to obtain the lock.

and tile mutex_end.lock event indicating that a thread has succeeded in obtaining the lock. The following
ordering rule is observed by the filter for a mutex.end_lock:

mutex_end_lock ¢ m n <- ((thread_init ¢ J[thread_fork p_ t) R_

(mutex_init m]I mutex_allo¢ m) _&

(muZex_unlock m n-l))

This rule may be translated as: "The rnutex_end_lock event with parameters t, ra, and n, may be passed on
to the display system if thread t has been initialized or forked by a parent thread, mutex variable rn has been

initialized or allocated, and the rnutex_unlock event for variable ra, sequence number r, - I has already been

passed on to the display system." Accordingly, the parameters associated with the event rnutex_end_lock are

t, the id of the thread attempting to obtain the lock. m, the id of the mutex variable, and n, the sequence

number indicating the number of successful lock attempts on this particular mutex variable. Among these
parameters, the most interesting parameter is n, since it required an unforeseen augmentation of the Falcon

system and since it enables the efficient implementation of on-line event ordering discussed below.

Tile rule applied to a mutex lock is one of many rules implemented by the reordering filter (see Appendix
A for a complete listing of these rules). Moreover, even for this single rule, with each of its expressions is

associated another set of ordering rules that must be met. The rules appearing in Appendix A are written

to reflect tile logic of the current filtering code. Our future work is addressing the automatic generation of
filtering code from formal rule specifications like the one shown above.

Implementation of on-line reordering. Figure 16 outlines the implementation of the event reordering

filter. The event stream at the left arriving from the central monitor is only partly ordered with respect to

/
/

thread 0

thread 1

out-<g-order events ue hekl back

in per-thread queues before being
sent to the display system

thread 2 tit

",,,
per-dtread quet_s threadn *t_

event stream from nwnitoring system
h3-ocder events are pasted
on to the display system
inunediately

evem stream todisplay system

Figure 16: Architecture of the on-line trace reordering filter.

each thread_id. The event stream forwarded to the display system shown at the right hand side of the figure

is ordered according to the specified ordering rules. To attain this ordering, the filter maintains an ordered
queue for all events with the same thread_id encountered in the event stream, shown at the center of the

figure. This queue only contains events that are not ready to be processed (that do not yet satisfy the rules),

whereas other events are immediately forwarded to the display system. The ordering filter then continues

to examine new events, checking the head of each active queue in every round to see if it is now possible to

28

place the event in the stream going to the display system. Note that these queues are not activated until

a thread_init event (in the case of tile program's initial thread), or a thread_fork event (all olher threads) is

processed for that threadid. Processing of tile queue is turned "off" again when a thread_exit is encountered.

Straightforward generalizations of this code would entail dynamic queue creation and deletion at, some cost

in runtime performance.

Additional data structures in the ordering filter are assigned to mutex_ids and conditionids, each of which

is represented by a data structure that keeps track of the sequence numbers a._sociated with this abstraction

that have been processed thus far. An example of these data structures is shown in Figure 17, where threads

are waiting on both condition variables. These data structures are dynamically allocated as the events are

Mutexes

I

] mutex_id 77

Imax_seq_nurn 4 mutex_id 99 Imax_seq_num 12

Conditions-------,=-

cond_num 101

max_seq_waiting 3

signalled

v

cond_num 67
m

max_seq_waiting 2

Figure 17: Detail.

observed in the stream. A mutex_init or mutex_alloc event causes data structure allocation for this mutex_id,

and the sequence number for the nmtex is initialized to 0. No event associated with this mutex_id may be

processed until after the rnutex.init or mutex_alloc events have occurred. In addition, mutex_end_lock and

mutex_unlock events have a sequence number, and are required to be processed in sequence number order.

Similar data structures exist for events concerning condition variables, again requiring that conditlon_init or

condition_alloc events precede each condition's use and using sequence numbers initialized to 0. Specifically,

a condltion_end_wait event for sequence number n must be preceded by a condition_slgnal on sequence number

n or a condition_broadcast on a range of sequence numbers containing n. In turn, a condition_signal on n
must be preceded by a condition_begin_wait on n. A condition_broadcast on nl ... n2 must be preceded

by a condition_begin_wait on n2. The condition_begin_wait on sequence number n must be preceded by

condition_begin_walt on sequence number n.l.

Evaluation. Meaningful performance numbers for the efficiency of the ordering filter are difficult to obtain.

Because online monitoring requires the ordering filter to prevent display crashes, it is not possible to compare

the appearance and execution of the display with the ordering filter versus without the ordering filter. Instead,
we have attempted to evaluate the effects of the ordering filter on the appearance and speed of the displays

under three offline conditions. The degree to which the events are misordered may also have an effect on the

delay or "drag" that the reordering filter may impose on the display. Accordingly, we have produced trace

29

files with varying degrees of misordering and have developed a metric to describe the degree of misordering
in an event stream or file. Traces were collected from four executions of tile MD application. For each

run the buffer size of the local monitor was varied in order to produce trace files with varying ratios of

out-of-order events. The use of large buffers should produce more out-of-order events in the trace file (but
less perturbation in the program), and smaller buffers should cause fewer out-of-order events (but more
perturbation in the program).

As a measure of the misordering of the events, we calculated a hold.back ratio. Recall that the reordering
code will temporarily hold back any event that violates causal ordering. If a misordered event is held back

for multiple times, it will be counted for a.s many times. Ill our experiments, the hold-back ratios for the

four trace files range from 0.60 (9,020 events held back in a file of 14,970 records) for the smallest size local

buffer to 2.81 (40,903 events held back in a file of 14,552 records) for the larger local monitor buffer. The

results clearly confirms the hypothesis that smaller event buffers cause more out-of-order events and larger
buffers causes less out-of-order events.

For each trace file, we run a sorting program to produce another version of the trace file with all event

records totally ordered by their timestamps. The thread life-time display code is then executed, observed,

and timed for each of four trace files under the following three conditions: (1) the thread life-time view

reading directly from the sorted file, (2) the reordering filter reading from the sorted trace file, passing event
records to the thread life-time display through a socket, (3) and the reordering filter reading from the ortgmal

trace file, passing event records to the thread life-time display through a socket.

Not surprisingly, the total running time of the display under the second condition exceeds the first in

every case, ranging from a 3% increase to a 6% increase in display time. We attribute this delay primarily

to CPU contention between the display and reordering code (they run on the same machine). However, the

running times of the thread life-time display under the second and the third conditions are not significantly

different. The degree of misordering does not significantly affect display execution time simply because the

reordering code is much faster, from 10 to 30 times, than the display code itself, which relies on relatively

more expensive X-windows call to show events to end users. In other words, the reordering filter is sufficiently
fast to supply the display code with a steady stream of events.

6 Related Research

Interactive program steering. The concept of steering can be found in many interactive scientific visu-

alization and animation applications which allow users to directly manipulate the objects to be visualized

or animated [22, 21]. For example, in a wind tunnel simulation, users can interactively change shapes and
boundaries of objects in the wind tunnel in order to see the effects on the air flow. Research has also addressed

the provision of programming models and environments to support the interactive steering of scientific visu-

alization. In [22], DYNA3D and AVS (Application Visualization System from AVS Inc.) are combined with

customized interactive steering code to produce a time-accurate, unsteady finite-element simulation. The
VASE system [21] offers tools that create and manage collections of steerable Fortran codes.

The idea of steering has also been used in parallel and distributed programming to dynamically change

program states or execution environment for improving program performance or reliability [5, 35, 8]. Early
work in this research area focusses on the dynamic tuning of parallel applications in order to adapt them to

different execution environments [44, 45]. Recent experiments demonstrate that changes to specific program

states or program components, such as locks [35] and problem partition boundaries [8], can significantly
improve overall performance. Our research interests are to provide a mechanism for programmers easily

take advantage of this dynamic tuning capability as well as supporting the on-line capture of program and
performance information necessary for efficient program steering. While we can base some of our work on

past research on the monitoring of parallel and distributed programs for correctness and/or performance

debugging, on-line and dynamic monitoring are relatively new topics[40]. We refer the reader to [16] for a
brief survey of current research on interactive steering and on-line monitoring.

3O

Program monitoring. PtLstworkin monitoringof parallel and distributed programs focuses on perfor-

mance understanding and debugging. These performance monitoring sysl.ems (e.g. Miller's 1PS[34] and

IPS-2133], Reed's Pablo[41]) provides programmers with execution information about their parallel codes.
and leads their attention to those program components on which most execution time is spent. A variety

of performance metrics, such as normalized processor time[l], execulion time on the critical execution path

[33], etc., are employed to describe the program's runtime performance. One limitation of these performance
metrics is the difficulty to relate measured performance numbers to specific program details. Instead, most

such research measures program execution times at the procedure level. However, program steering can

depend on program information derived from specific program variables or statements, such as the analyses

of the workloads of each domain when steering the MD application.

Some recent work has addressed application-specific program monitoring[47, 40]. In these systems, users

can explicitly specify what. variables or program states to monitor using specification languages [40, 23], some

of which are based on the Entity-Relational model[4_. The W s search model described in [20] addresses this

problem in a different fashion: performance data is collected using hooks either inserted by the compiler or

by programmers: based on this data, potential performance bottlenecks are identified and resources causing

these bottlenecks are found and then, corrected by application programmers.

Data and perturbation analysis. Monitoring information may be refined with trace data analysis tech-

niques, such as the Critical Path Analysis and Phase Behavior Analysis described in [33], often in an off-line

manner. More sophisticated analysis techniques may be used to reduce and correct perturbation to the

measured program performance due to monitoring [30]. In addition, performance data may be subjected to
various statistical filtering techniques prior to its display to users. All such techniques may be applied to

Falcon's monitoring data, as well.

A number of systems have addressed the problem of "out-of-order" events, events that violate causality.

These events violate the "happened-before" relationship described in [27] and [10]. Post-mortem display

systems such as ParaGraph[17] and SIEVE[42] may sort the trace files by timestamp. Instant Replay[28],

Makbilan[52], TraceViewer[19], the Animation Choreographer[25], and Xab[3] have all used a causality graph

as on ordering tool for the post-mortem display of the execution of parallel programs. These methods are

not effective for run-time performance display because they rely on fully available trace files that may be

sorted prior to their display. In contrast, Xab[3], a tool for monitoring PVM programs, uses a timestamp
adjustment approach. Each processor calculates time as the sum of its local clock and an "offset" value.

This offset value is adjusted whenever a process a message with a a later timestamp than the receiving

process's current time. However, it was found that lower-level changes to PVM were required to eliminate

some "out-of-order" events. These changes are in part analogous to the Cthread-based support provided for

on-line event reordering in the Falcon system.

On-line program steering utilizes current and past efforts concerning the efficient linkage of multiple

supercomputer engines, which is being addressed by several Gigabit testbeds efforts in the United States.
Systems like PVM[50] and Express offer software support for constructing large-scale distributed and parallel
codes.

7 Conclusions and Future Work

The Falcon monitoring system enables programmers to capture and view precisely the program attributes

of interest to them. Such monitoring may be performed on-line (during the program's execution) with

low latency and more importantly, with dynamically controlled monitoring overheads. To attain such con-

trols, Falcon's monitoring mechanisms themselves may be configured on-line to realize suitable tradeoffs in

monitoring latency, overhead, and perturbation.

Falcon performs program monitoring on-line, namely, monitoring information is captured, analyzed, and

stored or displayed during the target program's execution. This permits programmers to view their long-

running parallel codes interactively, and then steer their execution into more appropriate data domains or

31

simply, to play 'what if' games with alternative parameter settings. Toward this end, Falcon also offers an

integrated library for interactive program steering, as well as support for the on-line provision of monitoring
information both to algorithms controlling program configuration and to graphical displays based on which
users can perform program steering.

This paper demonstrates the utility and potentials of on-line program steering and monitoring with a
large-scale parallel application program, a molecular dynamics simulation used by physicists to study the

interracial properties of lubricants. Additional measurements are based on an atmospheric modeling code

used by scientists to study global atmospheric pheuomena. When Falcon is used with these programs, it

becomes apparent that programmers should be permitted to perform monitoring and steering at multiple

levels of abstraction within a single parallel program, ranging from inspecting and steering individual pro-
gram variables to steering at the threads or process level. The evaluation of Falcon's performance with these

applications also demonstrates the importance of supporting multiple degrees of granularity (and accom-
panying overheads) with which monitoring may be performed. Detailed performance studies on a 64-node

KSR shared memory muitiprocessor show how changes in the methods of capturing program information

can result in distinct differences in monitoring performance. In other publications, we also also demonstrate

some limitations on applying Falcon's functionality, notably when using it for the steering of individual

operating system abstractions used by parallel programs (e.g., mutex locks[35]). To support the monitoring
and steering rates required for such fine grain program control, monitoring mechanisms must be customized.

Our future work will address how such customized mechanisms may be used in conjunction with the remain-

der of the Falcon system. In addition, future work is addressing the monitoring of object-oriented, parallel

programs, including the provision of default monitoring views and performance displays[38].

The MD and atmospheric modeling codes as well as the Falcon system are implemented and evaluated on

a 64-node KSR shared memory supercomputer. However, the Falcon system is available on several shared

memory platforms, including SGI and SUN Sparc parallel workstations. A version of Falcon currently being
completed also works with PVM across networked execution platforms. Similar portability is attained for

the graphical displays used with Falcon. Notably, the Polka animation library can be executed on any Unix

platform on which Motif is available [49]. The Falcon system has been in routine use at the Georgia Institute
of Technology by non-Computer Science end users. Its low-level mechanisms are available via the Internet

since early Summer 1994. A version of Falcon offering on-line user interfaces for monitoring and monitor
control will be released in 1995.

Current extensions of Falcon not only address additional platforms (e.g., an IBM SP machine now avail-

able at Georgia Tech and the monitoring of PVM programs running Cthreads, C, or Fortran programs), but
also concern several essential additions to its functionality. First, currently, users can insert into their code

simple tracing or sampling sensors, where sensor outputs are forwarded to and then analyzed by the local

and central monitors. We are now generalizing the notion of sensors to permit programmers to specify higher

level 'views' of monitoring data like those described in [24, 40, 47]. Such views will be implemented with

library support resident in both local and central monitors. Second, we are developing notions of composite

and extended sensors that can perform moderate amounts of data filtering and combining before tracing or

sampling information is actually forwarded to local and central monitors. Such filtering is particularly im-
portant in networked environments, where strong constraints exist on the available bandwidths and latencies

connecting application programs to local and central monitors.

An important component of our future research is the use of Falcon with very large-scale parallel pro-

grams, either using thousands of execution threads or exhibiting high rates of monitoring traffic. For these

applications, it will be imperative that monitoring mechanisms are dynamically controllable and configurable.

Namely, it must be possible for users to focus their monitoring on specific program components, to alter

such monitoring dynamically, and to process monitoring data with dynamically enabled filtering or analysis

algorithms. Moreover, such changes must be performed so that monitoring overheads are experienced pri-

marily by the program components being inspected. Dynamic control of monitoring is also important for

the efficient on-line steering of parallel programs of moderate size. Specifically. program steering requires

that monitoring overheads are controlled continuously, so that end users or algorithms can perform steering
actions in a timely fashion.

32

On-line control of monitoring performance will be performed in Falcon by affecting tile rates of data
collection by individual or sets of sensors, tile degrees of parallelism used by local monitors, and the amounts

of filtering done by local monitors prior to information transfers to central monitors. In addition, we are

developing on-line control algorithms that permit Falcon's use with real-time applications.

Longer term research with Falcon addresses the integration of higher level support for program steering,
including graphical steering interfaces, and the embedding of Falcon's functionality into a programming

environment supporting the process of developing, tuning, and steering threads-based parallel programs,

called LOOM. In addition, Falcon will be a basis for tile development of distributed laboratories in which

scientists can inspect, control, and interact on-line with virtual or physical instruments (typically represented

by programs) spread across physically distributed machines. The specific example being constructed by our

group is a laboratory for atmospheric modeling research, where multiple models use input data received from

satellites, share and correlate their outputs, and generate inputs to on-line visualizations. Moreover, model

outputs (e.g., data visualizations), on-line performance information, and model execution control may be
performed by multiple scientists collaborating across physically distributed machines.

Acknowledgements. We thank Niru Mallavarupu for contributing to early implementations of Falcon

components. Thomas Kindler is responsible for the parallel implementation of the atmospheric modeling
code.

References

[1] Thomas E. Anderson and Edward D. Lazowska. Quartz: A tool for tuning parallel program performance.

In Proc. of the 1990 SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
pages 115-125, Boston, May 1990.

[2] Peter Bates. Debugging heterogeneous distributed systems using event-based models of behavior. In

Proceedings of the Workshop on Parallel and Distributed Debugging, pages 11-22, Madison, Wisconsin,
May 1988.

[3] Adam Beguelin, Jack Dongarra, A1 Geist, and Vaidy Sunderam. Visualization and debugging in a
heterogeneous environment. Computer, 26(6):88-95, June 1993.

[4] Adam Beguelin and Erik Seligman. Causality-preserving timestamps in distributed programs. Technical

Report CMU-CS-93-167, Carnegie Mellon University, Pittsburgh, PA, June 1993.

[5] Thomas E. Bihari and Karsten Schwan. Dynamic adaptation of real-time software. A CM Transactions

on Computer Systems, 9(2):143-174, May 1991.

[6] Gretchen P. Brown, Richard T. Carling, Christopher F. Herot, David A. Kramlich, and Paul Souza.

Program visualization: Graphical support for software development. IEEE Computer, 18(8):27-35,

August 1985.

[7] Bernd Bruegge. A portable platform for distributed event environments. In Proceedings of the

ACM/ONR Workshop on Parallel and Distributed Debugging, pages 184-193, Santa Cruz, California,

May 20-21 1991. ACM Press. ACM SIGPLAN NOTICES 26(12), December 1991.

[8] Grey Eisenhauer, Weiming Gu, Karsten Schwan, and Niru Mallavarupu. Falcon- toward interactive
parallel programs: The on-line steering of a molecular dynamics application. In Proceedings of The

Third International Symposium on High-Performance Distributed Computing (HPDC-3), pages 26-34,
San Francisco, CA, August 1994. IEEE, IEEE Computer Society.

[9] Grey Eisenhauer and Karsten Schwan. Md - a flexible framework for high-speed parallel molecular

dynamics. In Adrian Tentner, editor, High Performance Computing - 199_, pages 70-75, P.O. Box

17900, San Diego, CA 92177, April 1994. Society for Computer Simulation, Society for Computer
Simulation. Proceedings of the 1994 SCS Simulation Multiconference.

33

[10]ColinFidge.Logicaltimein distributedcomputingsystems.Computer, 24(8):28-33, August, 1991.

[11] Ahmed Gheith, Bodhi Mukherjee, Dilma Silva, and Karsten Schwan. Ktk: Kernel support for config-

urable objects and invocations. In Proceedings of the Second International Workshop on Configurable

Distributed Systems, pages 92-103, Pittsburgh, Pennsylvania, March 1994. The IEEE Computer Society
Press.

[12] Ahmed Gheith and Karsten Schwan. Chaos-arc - kernel support for multi-weight objects, invocations,

and atomicity in real-time applications. ACM Transactions on Computer Systems, 11(1):33-72, April
1993.

[13] Kaushik Ghosh, Kiran Panesar, Richard M. Fujimoto. and Karsten Schwan. PORTS: A parallel, opti-

mistic, real-time simulator. In Proceedings of the 8th Workshop on Parallel and Distributed Simulation,

Edinburgh, July 1994. College of Computing, Georgia Institute of Technology. to appear.

[14] Prabha Gopinath and Karsten Schwan. Chaos: Why one cannot have only an operating system for

real-time applications. SIGOPS Notices, pages 106-125, July 1989. Also available as Philips Technical
Note TN-89-006.

[15] Weiming Gu, Greg Eisenhauer, Eileen Kraemer, Karsten Schwan, John Stasko, Jeffrey Vetter, and

Nirupama Mallavarupu. Falcon: On-line monitoring and steering of large-scale parallel programs. In

Proceedings of FRONTIERS'95, February 1995. To appear. Also available as Technical Report GIT-

CC-94-21, College of Computing, Georgia Institute of Technology.

[16] Weiming Gu, Jeffrey Vetter, and Karsten Schwan. An annotated bibliography of interactive program
steering. ACM SIGPLAN Notices, 29(9):140-148, September 1994.

[17] Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance of parallel programs. 1EEE
Software, 8(5):29-39, September 1991.

[18] David P. Helmbold, Charles E. McDowell, and Jian-Zhong Wang. Determining possible event orders

by analyzing sequential traces. IEEE Transactions on Parallel and Distrzbuted Systems, 4(7):827-840,
July 1993.

[19] David P. Helmbold, Charlie E. McDoweli, and Jian-ZhongWang. Traceviewer: A graphical browser for
trace analysis. Technical Report UCSC-CRL*90-59, Univ. of California at Santa Cruz, Santa Cruz, CA,
October 1990.

[20] Jeffrey K. Hollingsworth and Barton P. Miller. Dynamic control of performance monitoring on large

scale parallel systems. In Proceedings of the 7th ACM lnternatwnal Conference on Supercomputing,
pages 185-194, Tokyo, Japan, July 1993.

[21] David Jablonowski, John Bruner, Brian Bliss, and Robert Haber. VASE: The visualization and appli-

cation steering environment. In Proceedings of Supercomputing'93, pages 560-569, November 1993.

[22] David Kerlick and Elisabeth Kirby. Towards interactive steering, visualization and animation of un-

steady finite element simulations. In Proceedings of Visualization'93, 1993.

[23] Carol Kilpatrick, Karsten Schwan, and David Ogle. Using languages for describing capture, analysis, and

display of performance information for parallel and distributed applications. In International Conference

on Computer Languages '90, New Orleans, pages 180-189. IEEE, March 1990.

[24] Carol E. Kilpatrick and Karsten Schwan. ChaosMON - application-specific monitoring and display

of performance information for parallel and distributed systems. In Proceedings of the A CM/ONR
Workshop on Parallel and Distributed Debugging, pages 57-67, Santa Cruz, California, May 20-21 1991.

ACM Press. ACM SIGPLAN NOTICES 26(12), December 1991.

[25] Eileen Kraemer and John T. Stasko. Toward flexible control of the temporal mapping from concurrent

program events to animations. In Proceedings Eighth International Parallel Processing Symposium,
pages 902-908, 1994.

34

[26]JeffKramerandJeff Magee. Dynamic conliguration for distributed systems. IEEE Transactions on
Softwal_" Enqineeri1_g, SI'-I I(4):424 4:_6, April 1985.

[27] Leslie Lamport. Time, clocks and tile ordering of events in a distributed system. Communication of the

Association for Computing Machinery, 21(7):558-565, July 1978.

[28] Thomas J. LeBlanc and John M. Mellor-(_rummey. Debugging parallel programs with instant replay.

IEEE Transactzons on Computers, C-36(4):471-481, April 1987.

[29] Allen D. Malony, David H. Hammerslag, and David J. Jablonowski. Traceview: A trace visualization.

IEEE Software, pages 19-28, September 1991.

[30] Allen D. Malony, Daniel A. Reed, and Harry A. G. Wijshoff. Performance measurement intrusion and

perturbation analysis. IEEE Transactions on Parallel and Distributed Systems, 3(4):433-450, July 1992.

[31] Keith Marzullo and Mark Wood. Making real-time reactive systems reliable. ACM Operating Systems

Review, 25(1):45-48, January 1991.

[32] Henry Massalin and Calton Pu. Threads and input/output in the synthesis kernel. In Proceedings of

the 12th Symposium on Operating Systems Principles, pages 191-201. SIGOPS, Assoc. Comput. Mach.,
December 1989.

[33] Barton P. Miller, Morgan Clark, Jeff Hollingsworth, Steven Kierstead, Sek-See Lim, and Timothy

Torzewski. IPS-2: The second generation of a parallel program measurement system. IEEE Transactions

on Parallel and Distributed Systems, 1(2):206-217, April 1990.

[34] Barton P. Miller and Cui-Qing Yang. IPS: An interactive and automatic performance measurement tool

for parallel and distributed programs. In Proceedings of the 7th International Conference on Distributed
Computing Systems, pages 482-489, Berlin, West Germany, September 1987. IEEE.

[35] Bodhi Mukherjee and Karsten Schwan. Experiments with a configurable lock for multiprocessors. In

Proceedings of the International Conference on Parallel Processing, Michigan, pages 205-208. IEEE,
Aug. 1993.

[36] Bodhisattwa Mukherjee. A portable and reconfigurable threads package. In Proceedings of Sun User

Group Technical Conference, pages 101-112, June 1991.

[37] Bodhisattwa Mukherjee and Karsten Schwan. Improving performance by use of adaptive objects: Ex-

perimentation with a configurable multiprocessor thread package. In Proc. of Second International

Symposium on High Performance Distributed Computing (HPDC-2), pages 59-66, July 1993. Also
TR# GIT-CC-93/17.

[38] Bodhisattwa Mukherjee, Dilma Silva, Narsten Schwan, and Ahmed Gheith. Ktk: kernel support for

configurable objects and invocations. Distributed Systems Engineering Journal. Expected to be out
early 95.

[39] Brad A. Myers. INCENSE: A system for displaying data structures. Computer Graphics, 17(3):113,

July 1983.

[40] D.M. Ogle, K. Schwan, and R. Snodgrass. Application-dependent dynamic monitoring of distributed

and parallel systems. IEEE Transactions on Parallel and Distributed Systems, 4(7):762-778, July 1993.

[41] Daniel A. Reed, Ruth A. Aydt, Roger J. Noe, Keith A. Shields, and Bradley W. Schwartz. An Overview

of the Pablo Performance Analysis Environment. Department of Computer Science, University of Illinois,
1304 West Springfield Avenue, Urbana, Illinois 61801, November 1992.

[42] Sekhar R. Sarukkai and Dennis Gannon. Parallel program visualization using SIEVE.1. In International

Conference on Supercomputing. ACM, July 1992.

35

[43]KarstenSchwan,Prabha(;ol)inath,andWin Bo. CHAOS - kernel support for objects ill tile real-time
domain. IEEE Transactzons o, Computers, C-36(8):904-91(J, July 1987.

[44] Karsten Schwan and Anita K. Jones. Flexible software development for multiple computer systems.
IEEE Tl_ansactzons on Software Engineering, SE-12(3):385-401, March 1986.

[45] Karsten Schwan, Rajiv Ramnath, Sridhar V_sudevan. and Dave Ogle. A system for parallel program-

ruing. In 9th International Confe_vnce on ,S'oftu, a_v Engineering, Monterey. CA, pages 270-282. IEEE,
ACM, March 1987. Awarded best paper.

[46] Karsten Schwan, Rajiv Ramnath, Sridhar Va.sudevan. and David Ogle. A language and system for the

construction and tinting of parallel programs. IEEE Transactions on Software Engineering, 14(4):455-
471, April 1988.

[47] Richard Snodgrass. A relational approach to monitoring complex systems. ACM Transactions on

Computer Systems, 6(2): 157-196, May 1988.

[48] John T. Stasko. TANGO: A framework and system for algorithm animation. IEEE Computer, 23(9):27-
39, September 1990.

[49] John T. Stasko and Eileen Kraemer. A methodology for building application-specific visualizations of

parallel programs. Journal of Parallel and Distributed Comput,ng. 18(2):258-264, June 1993.

[50] V. S. Sunderam. PVM: A framework for parallel distributed computing. Concurrency: Practice and

Experience, 2(4):315-339, 1900.

[51] T. K. Xia, Jian Ouyang, M. W. Ribarsky, and Uzi Landman. Interfacial alkane films. Physical Review

Letters, 69(13): 1967-1970, 28 September 1992.

[52] Dror Zernik and Larry Rudolph. Animating work and time for debugging parallel programs - foundation

and experience. In Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging,

pages 46-56, Santa Cruz, California, May 20-21 1991. ACM Press. ACM SIGPLAN NOTICES 26(12),
December 1991.

36

Appendix A: A Complete List of Cthreads Events Reordering

Rules

Here is the terminology used in describing the orderi,_g rules:

<-- Z

t =

C =

m =

n =

pt =

Ct =

jt =
bn =

en =

p =
X =

"is allowable if preceded by"

thread number

condition number

mutex number

sequences number

parent thread

child thread

join_to thread number

beginning sequence number

ending sequence number

processor number

don't care value

The ordering rules _r all events _om de_ult monitoring of Cthreads programs are listed below. A brief

explanation _r each rule is provided. For each mutex number m and condition number c. it is initially set
to 0.

thread_init t <- ();

Thisistheinitialevent _rthreadt. All priorevents pertaining to thisthread areignored. An internal

bufferis created _rthis thread number, and itis turned "on".

thread_fork pt ct <- ((thread_init pt) 66 ((pt == 0) 66 (thread_fork t pt)));

The parent thread must be "on" _r this eventto be processed. An internal buffer is created for the

child thread and iris turned "on".Itisrequired that the parent thread isinitialized be_re this event.

thread_exit t <- ((thread_init t) 66 (thread_fork pt t));

The internal bufferis de-allocated and the thread is turned "off". Any succeeding events recorded by

this thread are ignored.

thread_begin_join t jt <- (thread_init t);

thread_end_join tjt <- ((thread init t) 66 (thread_exit jr));

The thread_exit jt event _rthejoinAo thread jr must have occurred before this event.

thread_detach t <- (thread_ini_ _);

thread_yield t <- (thread_init t);

thread_set_name t <- (thread_init t);

mutex_init t m <- ((thread_init t)

66 !((mutex_init x m) II (mu_ex_alloc x m)));

No prior mutex_init x m or mu_ex_alloe x m event may have occurred.

mutex_alloc t m <- ((_hread_init t)

66 !((mu_ex_init m) [[(mutex_alloc m)));

No prior mutex_init x m or mutex_alloc x m event may have occurred.

mutex_begin_lock t m n <- ((thread_ini_ t)

66 ((mutex_init x m) II (mutex_alloc x m)));

A mutex_ini¢ x m or mutex_alloc x m must precede this event.

37

mutex_end_lock t m n <- ((thread_ini_ t)

&_ ((mutex_ini_ x m) [[(mu_ex_allo¢ x m))

_k (mutex_end_lock x m n-l))

A mutex_ini% x m or mu%ex_alloc m must precede this event. The mu%ex_end_lock m, n-I must

have occurred. Th¢ initial value of this i.erm is mu%ex_end_lock x m O, which is always true.

mu_ex_unlo%k t m n <- ((%hread_ini% %)

_& ((mutex_ini% x m) [[(mu%ex allot x m))

_& ! (mu_ex_end_lock x m n+l)) ;

A mutex_init x m or mu%ex_allo¢ x m must precede this event. Tile mu%ex_end_lock m, n+l may

not have occurred.

mutax_free % m <- (thread_ini% %);

mu_ex_elear % m <- (%hrea__init %);

mutex_set_name % m <- (%hread_ini% %);

condition_allot I: c <- ((thread_ini% %)

_ !(¢ondi%ion_ini% x ¢ II condition_allot x ¢));

No prior condition_ini% x c or ¢ondi%ion_alloc x c event may have occurred before this one.

condition_ini% % c <- ((%hread_inir t)

_& !((condition_ini% c) 11 (condition_alloc c)));

No prior condition_ini% x c or ¢ondi%ion_allo¢ x ¢ event may have occurred before this one.

condition_free % c <- (thread_init %) ;

condition_clear ¢ c <- (thread_init %);

condi%ion_begin_.ai% % c n m <- ((thread_ini% %)

_ ((condition_alloc x c) Im (condition_init x ¢))

_ (¢ondi%ion_begin_wai% % c n-1 m));

A condi%ion_init x c or condition_alloc x c event must have occurred, and so do the preceding

condition_begin_wai% t c n-1 m event.

38

Progress: a Toolkit for Interactive Program Steering 1

Jeffrey Vetter =

Karsten Schwan

Technica/ Report GI T-CC-95-16, August 1995

Col/ege of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280

vetter@cc.gatech.edu, 404/853-9389, Fax: 404/853-9378
schwan@cc.gatech.edu, 404/894-2589

Abstract

Interactive program steering permits researchers to monitor and guide their applications
during runtime. Interactive steering can help make end users more effective in addressing
the scientific or engineering questions being solved with these programs, and it may be used
to improve the performance of complex parallel and distributed codes. Progress is a toolkit
for developing steerable applications. Users instrument their applications with library calls
and then steer parallel applications with Progress' runtime system. Progress provides
steerable objects which encapsulate program abstractions for monitoring and steering during
program execution. Once created, steering objects are known to and manipulated by
Progress' two components: (1) a server executing in the same memory space as the target
program and capable of inspecting and manipulating program state, and (2) a potentially
remote client providing command and graphical interfaces. Developers instrument their
applications with the Progress toolkit library to create and maintain these steering objects.
The server maintains information about the steering objects and performs steering actions on
the application. This toolkit provides sensors, probes, actuators, function hooks, complex
actions, and synchronization points. Progress' server is built on a Mach-compatible Cthreads
library; it is a general toolkit for use with a variety of multithreaded, C programs executing
on multiprocessors. Progress has been applied to several large-scale parallel application
programs, including a molecular dynamics code and an N bodies simulation. It is currently
being used with a complex global atmospheric modeling code.

Keywords: steering,dynamic, visualization,monitoring,environments.

1. Introduction

Ifhigh performance computing continues to remain 'non-interactive'[McCormick88], end-users and

program developersalikewillnot capitalizeon new techniquesforinteractivedata visualizationand program

animation [Jablonowski93,Stasko90],remote and collaborativework, interactivedebugging and monitoring

[Gu95,Ogle93], and on-lineprogram adaptation [Mukherjee93]. For example, when run in 'batch mode',

erroneous or uninterestingresultsproduced by large-scalescientificor engineering simulations are not

apparent untilafterthe computations complete,sometimes days or weeks afterprogram initiation.Program

IThis reportwas originallysubmitted tothe 24th InternationalConference on ParallelProcessing1995 (ICPP
95).Itwas acceptedand publishedas a shorterversion.

2Vetterisfinanciallysupported by a NASA Graduate Student ResearchersProgram (GSRP) grant.

steering provides end-users with the capability to monitor and guide their applications during runtime. The

goal of our research in program steering is the exploration of the opportunities, limitations, and challenges

inherent in the development and use of interactive high performance programs, on parallel and distributed

execution platforms. More specifically, the Progress toolkit _resented and evaluated in this paper provides

facilities through which existing high performance multiprocessor programs are extended for increased

interactivity [McCormick88, Jablanowski93, Eisenhauer94]. Once these extensions have been performed on a

target application, a user can 'connect' to her high performance program, extract application-specific data

regarding the program's execution state, perform steering actions, if desired, and then 'disconnect' from the

program. The runtime overheads of these tasks depend only on the desired degrees of interactivity, ranging

from minimally perturbing program execution in the absence of steering to being highly intrusive when

Progress calls explicitly stop and restart programs.

High performance of Progress-instrumented programs is attained by use of sebective and application-

dependent runtime monitoring and program steering. Namely, programmers encapsulate program

abstractions in steering objects that explicitly identify those program components as steerable. Steering

objects are created, catalogued, and manipulated at execution time by Progress' runtime system. The runtime

system consists of two distinct components: a server and a client. The server is an additional thread

associated with the multithreaded multiprocessor application program. This thread responds to runtime

application events, performs steering actions in response application events, executes commands from the

client, and communicates with the client to provide consistent object information. The client provides

command, recording, scripting, and user interface facilities, and it interfaces to existing program animation or

data visualization facilities offered by the Falcon monitoring system [Eisenhauer94FAL] and by data

visualizers [Ribarsky94] employed by Progress users.

This paper explores the requirements and opportunities of on-line program steering. Its contributions

focus on the usage of steering during the execution of high performance parallel programs, similar to ongoing

research on dynamic program monitoring [Eisenhauer94FAL,Hollingsworth93]. Stated briefly, the hypothesis

we explore in this research is "program steering should be dynamically initiated, enabled and disabled, used

selectively, and changed in scope and functionality." The Progress toolkit provides facilities with which we

test this hypothesis.

1.1 Interactive Program Steering

Program steering is defined as the runtime manipulation of an application program and its execution

environment. The goal of this manipulation is either performance improvement or increased functionality,

such as focusing program execution toward more interesting data domains or improving resource usage

Progress: a Toolkit for Interactive Program Steering • Page 2

through manual load balancing.An essentialcharacteristicdistinguishingprogram steeringfrom work on

interactivedata visualizationand navigationisthe latter'slack offeedback from data manipulation to the

program producing the data.Program steeringaffectsthe programs producing data,whereas data navigation

isusuallyperformed afterprogram executionhas completed.Similarly,a distinctionofprogram steeringfrom

researchinon-lineprogram adaptation[Mukherjee93, Bihari91]isthatsteeringenablesboth algorithmsand

users "inthe loop"when applicationprograms take actionsin response tochanges inprogram stateoroutput.

Our hope is to utilizethis interactivityto improve productivityin the specificscientificand engineering

processesbeing undertaken. For example, in the interactiveatmospheric modeling code being developed by

our group, multiple researcherswill be able to inspectand manipulate data objectsin shared 3D data

visualizations.One such manipulation concerns changes in the concentrationofatmospheric constituents,so

that researcherscan play "what if'games concerningthe model'sglobaleffects.Another manipulation allows

alterationstothe verticalconstituentmovement inthe simulation'stransportmodel. This movement remains

a poorlyunderstood phenomenon, and model outcomes are significantlyaffectedor even invalidatedby the

settingsof simulationparameters controllingmovement and the computational methods used for describing

it.Steeringimproves the applicationby providingconstant,selectivefeedback to the end user.The user can

terminate the program, stallthe program forinspection,schedule steeringactionsfor execution,and effecta

host ofothermodifications.

A concise breakdown of interactiveprogram steering has three components: data collection,data

interpretation,and steering.Data collectionhas a richhistoryofresearch in monitoring and data analysis.

Data interpretationalso has an extensivepast with visualizationand other techniques such as filtering,

clustering,and queries [Bates86,Snodgrass88].Steering,however, is rather immature. We review several

systems in the Section4 (RelatedWork); a complete review ofsystems relatedto thistopicis availablein

[Gu94].

To summarize, program steering permits users to control program execution in terms of program

abstractions familiar to them. Such abstractions may be encapsulations of computations producing program

output like 'constituent concentration', or they may address program resource usage like 'average thread wait

times' (typically of interest to program developers). In either case and in contrast to traditional research on

program monitoring and debugging, steering must be based on abstractions specific to each application

program, using runtime support that minimally perturbs program performance. This implies that steering

cannot rely on automated methods for code inspection that may require disabling compiler optimizations, and

it cannot require default instrumentation at any level of program abstraction. Furthermore, since steering is

on-line, Progress carmot utilize existing post mortem methods for trace analysis as used in program debugging

Progress: a Toolkit for Interactive Program Steering • Page ,,1

and inoff-linemonitoring[LeBlanc87,Ma191]. This prompts us to adopt the Falcon system's [weiming] event-

and view-based models of program monitoring firstadvocated by Bates [Bates86] and Snodgrass for the

collectionof program state in Progress. Similarly,the Progress toolkitassumes that users employ

visualizationand animation toolkits[Ribarsky94,Kra93]for constructingthe application-specificdisplaysof

program behavior required for steering.The Progress prototype targets the actual tools that software

developersneed tocreategenerally'steerable'applicationsand the additionalfunctionalityrequiredfrom the

operatingsystem,and the monitoring system.

Computational fluiddynamics isa interestingtargetapplicationarea forsteering.Biomedical researchers

at GT are developinga parallelversionof a spectralelement fluiddynamics simulationprogram. CFD isan

attractivearea forprogram steeringbecause most computations meet the time requirements with average

simulations lastingdays or weeks. Intermediate analysis of resultscould both pinpoint errors in initial

conditionsand allow modificationsto error convergence limits.CFD data is usually visualizedfor final

analysisbut with on-line,interactivesystems, variousdata might be visualizedand modified throughout the

simulation.

MD [Eisenhauer94] isa molecular dynamics simulationthatexploresthe statisticalmechanics ofcomplex

liquids.The dominant computational requirement isthe calculationof_ forcesbetween particles.

MD is an interestingsteeringtarget because load balancing is difficultand standard heuristicsare not

effectivein managing the load.With the aid of a steeringsystem, however, a human user may manage

resourcesmanually resultingina low cost,effectivesimulation.

Weather and climatemodeling presents a fascinatingarea for experimenting with Progress due to the

enormous data setsgarnered from satellitesand other remote sensing stations.These data sets sometimes

require repeated processing. End users can easily experiment with alternativemodel parameters,

convenientlyevaluate and re-evaluatethe behavior ofspecificprocessesbeing modeled, and affector change

model execution to improve performance. Also, selectingcertaindata sets for evaluationor 'focusing'the

calculationisusefulwith largedata sets.

1.2 Paper Outline

This paper describes the design objectives for Progress, its architecture and implementation, and the

evaluation of Progress with a real-world application. Section 2 describes the construction of the Progress

steering system. Section 3 evaluates Progress with an application. Section 4 reviews related work. Section 5

concludes this paper with a review of research goals and future research.

Progress: a Toolkit for Interactive Program Steering • Page 4

2. The Progress Steering Toolkit

Progress is an acronym for Program and Resource Steering System. The goal of ProgReSS is _to provide

applications developers with a complete set of tools and facilities for creating steerable parallel applications."

The Progress steering toolkit has several concepts and stages. First, the application developer must

understand the steering object model to properly instrument the target application. The Progress object model

encapsulates components of the application that the user might wish to steer or monitor. Second, the

application developer actually instruments the application with calls to the Progress library to create and

maintain these steering objects throughout the application's lifetime. The developer understands the

application's operation sufficiently to allow external changes to its state while the application is executing.

And finally, the end-user controls the application with the steering runtime system. The steering system is

composed of a steering server and steering client. The steering server executes as a separate thread in the

same memory space with the application. The client presents a graphical user interface the end-user for

control of the remote steering server.

Progress is not intended as an advanced remote visualization system, or a parallel debugger. Remote

visualization systems focus on the visualization of application output or performance visualizations. While

interactive program steering will combine visualization of data and control of the application, its goal is not

primarily visualization of data. Progress admittedly does not attempt to duplicate the functionality of

advanced parallel debuggers. Parallel debuggers are far more general and flexible in their exploration of

program information.

2.1 Design Requirements

Our design requirements for Progress include three fundamental notions: basic steering should be

possiblewith many dynamic applications,the steeringlibraryshould providefunctionalityforsteeringbeyond

updates to simple variables,and the user interfaceshould allow end-users the capabilityto exploretheir

executing programs. While designingProgress,itbecame obvious that certaintypes of programs are more

'steerable'than others.There isa distinctrange ofoptionsfacilitatedby steeringand not allthese optionsare

feasiblewith every program.

The libraryshould support complex steeringoperations.Steering should provide toolsfor changing an

executing applicationthat protectapplicationintegrityand allow changes to applicationstatethat do not

degrade applicationperformance. As opposed to changing one integer variable in a SPMD application,

steeringshould allow a varietyofchanges toalltypesofdata within the application.These toolsshould also

providea levelofabstractionthat iseffectiveforan end-user and usefulforsteering.Steering,as opposed to

Progress: a Toolkit for Interactive Program Steering • Page 5

debugging,should not allow accesstoevery program variableand the abilityto arbitrarilyinterruptprogram

flow.Steeringconcentrateson observingand changing parameters ofa correctapplicationwhich iscontrary

todebugging inthatdebugging focusesattempts tolocatefaultsinan application[McDowel189L Types should

not be limitedtostandard data types provided by the language. User-definedtypes includingstructuresand

arraysmust be accessibletoallowcomplex steeringoperationson arraysand structuresofdata.

Because the interfacetothe steeringsystem might be predominately used by non-computer scientists,the

interfacetothe steeringsystem must followtypicalguidelinesforuser interfacedesign.The end user,not the

applicationdeveloper,controlsthe steeringsystem through thissteeringuser interface.This interfacemust

provide various types of steering actionsconsistentlyon a continuous range of steerableprograms. One

steeringinterfacefor allsteering.The steeringinterfaceto a CFD applicationand an atmospheric modeling

applicationare the same; however, the steeringobjectsaccessiblefrom thisinterfaceare applicationspecific.

Operations on steeringobjectsare consistentbetween differentapplications.From the steeringinterface,the

user should be able to selectivelymonitor and modify steering objectswithin the application.Also, the

interfacemust provideways of interpretingand analyzing largeamounts of data produced by the steering

system [Kra93].

2.2 Steering Object Model

An objectmodel allowsthe steeringsystem (and the user)toconcentrateon only those components ofthe

applicationthat the developer explicitlydeclared priorto execution.This abstractionisnecessary to limit

amount ofinformationthatthe steeringsystem must contend with as well as the end-user.This objectmodel,

distinct from other notions of object-orientation,provides a convenient mechanism for naming and

manipulating program components. Progress does not support inheritanceand other characteristicsofobject

oriented languages; Progress' object model encapsulates and identifiescomponents of the program for

monitoring and steering.This conceptisidenticalto LeBlanc'sinstantreplaymechanism [LeBlancS7],where

the user identifiesobjectswithin the code.Replays guarantee tosimulate interactionsbetween these objects,

but not between everyprogram component.

An objectbecomes known tothe steeringserver(and the user)when the objectisregistered.An objectisa

convenientway ofdescribingdata within the program that isofinterest.A registeredobjectcan be accessed

inthree ways throughout the Progresssystem. Informationabout each objectisstoredin the applicationas a

handle,in the server'sobjectregistry,and inthe client'sobjectregistry.This objectregistrationdelimitsthe

data ofinterestwithin the application,classifiesthe data type,and assignsa unique ID number tothatobject.

Registrationalso entersa record into the steering server'sregistryof steeringobjects.The steeringserver

uses this registryrecord to controlthe steering objectwithin the application.The applicationreceivesa

Progress: a Toolkit for Interactive Program Steering • Page 6

handle tothe objectso that itcan perform operationson the object.The applicationmay want tounregisteran

object,synchronize itselfwith the steeringserver and the end-user,or check an objectto determine ifany

synchronous modificationsare scheduled.Afterregistration,the steeringservercan controlsteeringobjects.

The steeringserver controlsthe objectby monitoring the objector steering(modifying)the object.These

operationsare describedfullyinSection2.3.At applicationterminationorunregistrationfora steeringobject,

the server'sregistryrecord isremoved and futurereferencestothis objectare eitherignoredor produce an

error.

2.3 Steering Object Operations

Once a steeringobjectisdefinedwithin the application,the steeringservermanipulates the objectwith

severaldifferentoperations.These operationsallow a varietyofsynchronous and asynchronous accessesto

the application.Synchronous and asynchronous accessare important to differentiatebecause, insome cases,

asynchronous accesstosteeringobjectsmay produce inconsistentviews ofthe objectoractuallyinvalidatethe

applicationresults!To perform synchronous operations,the developermust instrument the application.The

operationsavailableon all steeringobjectsare probe read, probe write,sense, and actuate.Operations

availableon specializedsteeringobjectsare synch points,functionexecution,and scripts.

Probe reads and writestothe steeringobject.A probe isthe simplestofthe steeringoperationsbecause

once an objectis registeredthe steeringserver can just read the object'smemory. After registrationthe

developerdoes not have to introduceany additionalcode intothe application.The steeringserverperforms

probeswithout respecttothe applicationscontrolflow;therefore,probes are consideredasynchronous. Probes

are particularlyusefulforinspectingstalledprograms orupdating non-criticalvariablesinthe application.

Sense captures an object'sstatewithin the applicationand forwards itto the monitoring system for

analysis.When the applicationencountersa 'Sense'callinitsthread ofexecution,itcopiesthe objectstateto

an event record,and places the record into a bufferdestined for the monitoring system. Because sense is

executed within the controlflow of the application,sense issynchronous.The steeringservercan enable or

disable'Sense'for each particularsteeringobject.Both probes and sensors are investigatedin [Ogle93] as

part of an applicationspecificmonitoring system. In Progress,these mechanisms monitor steeringobjects

insteadoflanguage specificapplicationcomponents.

Actuate performs a modificationon the steeringobject.Actuate isa new steeringmechanism that is

analogous to the sense mechanism because it is synchronous with the application'scontrolflow and it

performs an opposite action on the application.When the applicationthread executes this actuate call,

actuatechecks itsbufferto determine ifany changes are intended for itssteeringobject.These changes are

'programmed' for a steering objectby the steeringserver,when the applicationexecutes an actuate call,

Progress: a Toolkit for Interactive Program Steering • Page 7

actuatechecks to decideifany changes to it'ssteeringobjectare necessary.Actuate issynchronous with the

controlofthe applicationbecause the modificationisnot performed on the applicationuntilthe application

encounters an actuateinstrumentationpoint.Ifno modificationsawait the object,the actuatecallexits.Ifa

change iswaiting inthe buffer,then the actuatecallmodifiesthe objectas specified.

Synchronous Asynchronous

Monitor Sense Probe Read

Steer Actuate Probe Write

TableI -Summary ofPrimaryOperationsforSteeringObjects

For enhanced functionality,Progress provides a set ofspecializedobjects.These objectshave particular

functionalitythat helps a user tosteeran application.These operationsare synch points,functionexecution,

and scripts.Synch Points stallan applicationso that the end user can explorethe stateof the application

and the steeringclientviews a consistentsnapshot ofthe applicationstate.Synch Pointsare activatedby the

user so that the applicationstalls.The applicationthreads spin waiting for a releasecommand from the

server.Because the threads are essentiallyhalted,the user can interactivelyinspectand modify program

statewithout fear ofcorruptingan executingapplication.The user can also be certainthat the information

storedinthe objectregistries,on both the clientand server,are consistentwith the actualapplicationstate.

Functionm allow the developer to registerapplicationfunctionswith the steeringserver so that the

servercan execute applicationfunctions.Usually, these functionsare complex operationsthat eithergather

information from that applicationor update some applicationstate.Functions are regular C functions

registeredas steeringobjectswith the server.Eitherthe applicationorthe serverthread might executethese

registeredfunctions.The applicationcouldjust callthe functionas itwould any otherfunctionas could the

server thread;however, forthis functionto be known to the registryand the client,the applicationmust

registerthe function.Registrationpublishesthe name ofthe functiontothe steeringsystem includingthe end

user.When the callingthread isthe serverthread,functionscan have one parameter and theirreturnvalue is

ignored.Functions are usefulforaccomplishing tasks otherthan just reading or writinga data value.These

functionscan alterapplicationspecificdata structureswithin the executingapplication.For example, a user

might stallan applicationand executea registeredfunctionto remove an element from a queue. The function

knows how toupdate the data structure,while updating allthe variablesforthe queue data structureper se

istediousand errorprone.In certaincases,these functionsmust synchronizewith the applicationto prevent

Progress: a Toolkit for Interactive Program Steering • Page 8

corruptionofthe application.Alternatively,a functionmight calculatea globalvalueand storeitina steering

objectwhere itcan be accessedasynchronouslywith a probe.

Scriptsprovideusers with the functionalityofcombining othersteeringoperationsina language form for

repeated execution.Scriptsare differentfrom functionsbecause they are executed eitheron the clientor in

the steeringserver;,the valuesthey use and actionsthey executeare derivedonly from the registry- scripts

cannotaccessprogram data otherthan registeredobjects.

2.4 Runtime System

The runtime system iscomposed ofa serverand a client.This separationisconvenientbecause the server

runs on the same machine as the application,and the client,which presents a graphicaluser interfacetothe

user, usually executes remotely on a separate machine. With the server on the same machine as the

application,the servercan accessand controlthe applicationwith low latency[Gu95].Because the clientis

remote, latenciesintroducenetwork delays.These network delays are closertohuman interactiveresponse

times;however, they are burdensome forthe server.

This architectureisalsoadvantageous because the server must existthrough the application'slifetime

while the clientdoes not.The clientistransitoryand can connect to the servermany times throughout the

server's(application's)existence.Because the clientmay use visualizationsfor data interpretation,the end-

user may choosetorun the clienton a high-performancegraphicssystem.

Progress: a Toolkit for Interactive Program Steeling • Page 9

Application

Object 1

Progress' Runtime
Server

Object 2

i

i

!i;i!ii!ii

Communications

Link

Progress Client
I

User Interface

Object Regis_'y

Shared memory buffers for receiving sensor
events from objects and arming actuators for
object changes.

Figure 1 - Progress Architecture

2.4.1 SteeringServer

The steeringserverisa separatethread that executesinthe same memory space as the application.The

serverarchitecture(Figure 1)allowsthe applicationtoexecutenormally.In fact,the applicationcan execute

entirelywithout interferencefrom the server.The server thread has three basic tasks:interactwith the

steeringclient,gather monitoring output from the application,and steer the applicationvia the steering

objects.This server continuouslymaintains a registryof steeringobjectswithin the executing application.

Each objectthat the applicationregistersisstoredby name in the registry.Registry recordscontainenough

informationtoaccessthe application'sobjectat anytime and interpretinformationgenerated from the object.

The registryisalsoused torouteinformationfrom the applicationtothe clientand visa-versa.

The servercommunicates with the clientthrough UNIX sockets.When the serverstarts,itallocatesa

socket,publishesthe socketnumber, and listenstothat socketforpending clientconnections.Once the client

connectioncontactsthisserversocket,the servercreatesa new stream connectionforthat client-serverpair.

Thereafter,the message protocolallows bi-directionalmessages between the clientand server.The server

pollsthe client'ssocketfor incoming messages. When a message isreceived,the serverdecodes the message

Progress: a Toolkit for Interactive Program Steering. Page 10

and executes any action required. The server assumes that incoming messages from the client will be

relatively infrequent compared to the other server tasks. The server is required to execute actions requested

by the client. Occasionally, those actions require extensive time.

The server monitors the application by receiving sensor events and probing objects. The server does

simple analysis to filter irrelevant events out of the stream. The server controls monitoring so that the end-

user can selectively observe different steering objects throughout the application's lifetime. Based on the

commands from the end user, the server enables and disables sensors and probes objects to gather

information for the end user. This monitoring has two levels of application specific filtering. First, the

application developer registers only those objects that may possibly be of interest to an end user. This level of

filtering discards all temporary or uninteresting data values in the application. The developer selects data

that the user may want to observe or control. Second, the end user elects which steering objects to monitor

through the client user interface. The end user only receives information about objects that are registered

with the server and that he has selected through the client interactively. The user cannot arbitrarily access

components of the application that are not registered with the server.

The server steers the application through steering objects using the steering operations detailed in

Section 2.3. Several actions can trigger a steering operation. The user can manually request a steering

operation on a steering object, or the server can execute a steering operation in response to an event received

from the application.

2.4.2 Steering Client

The steeringclientisa remote applicationto controlthe residentsteeringserver.The clientisa single

threaded Motif applicationthat communicates with the steering server through a customized message

protocol.The graphicaluser interfaceforthe steeringclientispresented in Figure 2. The clienthas three

main tasks:interactwith the user,communicate with the steeringserver,keep relativelyconsistentstate

informationabout allthe steeringobjects.The clientreceivesallofitsinformationfrom the steeringserver;it

receivesperiodicupdates toitsregistryfrom the server,based on the frequency ofactivityatthe server.The

clienthas a mirror registryofthe server'sregistry.The interfaceallows the user to selectivelymonitor and

modify steeringobjects.Each of the steeringactionsavailablethrough the steeringservercan be initiated

from the steeringclientalbeitthe latencyishigher.A user can enable monitoring ofa steeringobjectthrough

sensors,probe an objectforitscurrentstate,ormodify the objectthrough a probe writeor an actuator.

An additionaltask of the steeringclientiseasy manipulation ofpossiblylargedatasete resultingfrom

monitoring.Ifa user selectsmonitoring foran objectat a high frequency,simple textualdisplayofthe results

Progress: a Toolkit for Interactive Program Steering • Page 11

fails {Kra93}. However, because the structure of the steering object is known to the client, the client can map

the objects updates onto a simple graph or other visualization.

Figure 2 - Graphical User Interface for Steering Client

The client's user interface is build with Motif to present steering objects in a consistent and general

manner. This same interface is used with all steering applications whether the application is a atmospheric

modeling simulation or a CFD application. Steering objects are presented to the user in a consistent fashion

for investigation and modification.

Figure 2 shows the main screen of the Progress client. The main menubar is at top. Next are two boxes:

one list box and one text box. The list box displays all registered steering objects in the application. All objects

are listed here whether they are regular steering objects or more specialized steering objects. The text box is

an event log. As objects produce events, they are logged here in the event log. This log information can be

captured in an ASCII file for post.mortum review. The command line allows the user to enter complex

expressions and other statements not easily entered with the graphical user interface. Below the command

line, the message log displays messages specific to the operation of the client, but not the server. A popup

window (not shown), the object information box, provides object specific information about the selected object.

Progress: a Toolkit for Interactive Program Steering • Page 12

This box displays the object ID, object type, object name, etc.and any attributes particular to the object type.

Menu sensitivitieschange as different objects are selected in the object listbox. For example, the 'enable' and

'disable'menu options are disabled when a function is highlighted in the object listbox because these menu

options do not work with functions.

2.5 Instrumenting an application

Instrumenting the application builds entirely on the steering object model (Section 2.2).Instrumentation

creates the steering server, and registers and manages the steering objects. The application registers these

steering objects with the steering server.

1

2
3

4

5
6
7

8

9
i0

ii

12
13

14

15
16
17

18

19
2O

21
22

23

24
25

26
27

28 l

main()

{
£nt i;

pSteeringServer steeringServer;
pSObject sobj;

CreateSteeringServer(&steeringServer);

RegisterSteeringObject(steeringServer,

i - l;

while(++i < I0)
[

Sense(sobj);

while(i != 0)

[
Actuate(

}
sobj);

printf("%d", £);

DestroySteeringServer(steeringServer);

&sobj,

Figure 3 - Steering Server Calls

&i, A_INTEGER);

Figure 3 outlines the necessary calls to the Progress toolkit for a simple application.

CreateSteeringServer creates data structures, initializesthe state, and spawns that steering server for this

application. The steering server's internal structure is described in Section 2.4.1.Once the steering server is

initialized,the application can register steering objects. RegisterSteeringObject creates an record in the

application containing information about the object, and italso enters a record in the steering server's object

registry.The registration requires a pointer to the application state of interest (e.g.,integer ion line 11) and

the data type of that application state (e.g.,A_INTEGER on line 11). After the registration, the server can

access the object with steering operations and the steering client is notified of the registration, so that the

user can interrogate the new object and possibly steer it.

Progress: a Toolkit for Interactive Program Steering • Page 13

The 'Sense' call uses the information stored in the steering object record to determine its operation. First,

the call checks whether sensing is enabled for this object. If sensing is disable, the call returns without

further action. Otherwise, it continues. The call, using the information in the steering object record, copies the

object state to an event record and places it in a shared memory buffer. The buffer was previously created by

the steering server and the steering object record contains the name of this buffer. In this example (Figure 3),

the event record would contain an object identifier, a timestamp, a thread id, and the value of the steering

object (integer iffil). Once the event record is inserted into the buffer, the sense call returns to the application.

Notice that the sense call only requires a steering object handle. The Sense call gathers all the necessary

information about the object from the steering object handle. This design is convenient for several reasons.

First, if the frequency of state updates for a steering object is too low, then the developer can insert more

'Sense' calls using the same steering object handle. Second, if multiple objects are to be monitored, then a

sense call for each object must be inserted with a handle to each object. Third, if a user wants to disable

monitoring for a particular object, then they disable monitoring for that object, not each sense call. Because

the event records generated by each sense call update the state of an object at the server and eventually the

client, it is advantageous to enable and disable monitoring on a per object basis rather than a per sensor

basis. The object model allows the user to focus on objects of interest within the program and only those

objects. The user does not have to enable and disable multiple sensor insertion points for each object they

wish to observe; they merely enable or disable all sensors for each object.

The 'Actuate' call is a steering operation that modifies the steering object. Actuate uses information

stored in the steering object record to determine if any modifications to the object state are required. If the

actuator is not armed, then the call just returns to the application. If the object is to be updated, then the

actuate call retrieves a record from a shared memory queue. This record contains all the necessary

information to update the steering object. When the actuate call is executed, it checks this shared memory

queue for entries. If the queue contains an entry, then the actuator retrieves the record and updates the

steering object state appropriately. The actuator is armed by the s_ering server. The server arms an

actuators on a per object basis. In Figure 3, the actuate call forces the value of i to equal 0, otherwise the

program loops forever. The external steering server places an record into the actuate queue for 'sobj.' Then,

when the application executes the actuate call on sobj, the application retrieves the record and updates the

object appropriately. In our example, the actuate call is constantly checking the sobj actuate queue to

determine when a change must occur. Because the steering server places only one record in this object's

actuate queue, the majority of calls to actuate just return without modifying the sobj (or the integer i).

Progress: a Toolkit for Interactive Program Steering • Page 14

However, on the lastcallto actuate,the serverhas placeda recordinthe actuatequeue tochange the object

to0.On thislastcall,the objectisupdated to0 and the loopterminateson itsnext looptest(i/=0).

Actuate operateson a per objectbasis.Many actuatecallscan serviceone steeringobject.Placement of

the actuatecallsthroughout the sourcecode identifiestime frames when the steeringobjectcan be updated

withoutcorruptingthe applicationduring execution.A higherfrequency ofthese actuatecallsallowssteering

objectstorespond more rapidlyto user steeringrequests.As with sense,each individualactuatecallcannot

be disabled.

Actuators alsohave pre-and post-conditions[Bihari91].Preconditionsallowa binarytesttocheck a state

within the applicationbeforefiringthe actuator.Post conditionsexecute a functionafterthe actuator has

modified the applicationstate.Postconditionsusuallyupdate applicationstatebased on the change performed

by the actuator.An actuator might even return a steering object to its previous value because the

postconditionfailedwith the new value.

3. Evaluation

To evaluateProgress,we use N-body because itisa well-understoodand conciseexample with which we

can describethe functionalityand performance ofour toolkit.AdditionalfunctionalityofProgress isevaluated

by demonstrating new techniques of interactingwith the executing application.Performance isimportant

because this toolkitcannot prohibitivelydegrade performance of the application.Users will not tolerate

excessive performance penalties.

3.1 N-body

The numerical N-body of gravitation [Greengard90] simulates dynamical behavior of large stars with only

gravitational forces acting between them. This simulator uses a straightforward N 2 algorithm for calculating

pairwise gravitational forces and updating the velocities and positions of the bodies. The N-body application is

implemented as a collection of worker threads calculating gravitational forces and new positions for each of

the bodies in synchronous timesteps. N-body is built on a user-level threads library. Multiple threads divide

the work by allocating each thread a group of bodies to update. Each worker thread reads the positions and

parameters of its neighbors, and then updates the position and velocity for each body assigned to it.

Integrating N-body with the Progress system required two distinct steps. First, the developer added

appropriate calls to create and initialize the steering server. Second, registration calls for all steerable objects

were inserted into the source code. Third, all synchronous objects had the instrumentation code inserted in

the application to identify points where these objects could be accessed.

Progress: a Toolkit for Interactive Program Steering • Page 15

Creating and destroying the steering system only required adding two calls to the N-body source code.

Straightforward steering objects provided information on the iteration number, timestep, body count, and

various other parameters. These objects were registered with the server through the code, usually near their

declaration. At various points in the master thread, the sense calls produce one event to update these objects,

if monitoring is enabled. These activation points are not limited to one location. For example, the timestep

variable controls the outermost loop in the simulation. In the master thread and the slave threads, these loops

are identical with barriers synchronizing the loops. Timestep is the variable loop variable. The timestep object

is registered once in the master thread's loop and it has only one sense call within the master thread's loop.

This thread generates one event per loop for the entire application. Because the timestep only changes once

per loop, then updating it more often with additional sense calls would be repetitive and inefficient. Also, if

the slave threads had sense calls within their loop, the timestep object would generate one event per thread

per sense call. In other words, at every timestep the number of events generated updating the timestep object

would be equal to the number of threads in the application including the master and its slaves. However, all

of these events would be identical updates to the timestep object because the timestep loop is synchronized

across all threads. Thus, these multiple updates are redundant.

Prior to the steering integration, user interaction was limited to file I/O. The user created an input file

with various parameters. N-body then read this file and began processing, occasionally, producing an output

message for feedback to the user. At various intervals, the application dumped body position and velocity to a

file. While this type of interaction could be customized to provide interactivity, there are no generic methods

or toolkits to facilitate this type of selective, application-specific interaction.

Progress allows far more interaction with the simulation than file I/O. With Progress the user

interactively explores the intermediate results of the simulation. For example, one particular body's velocity

can be traced during the simulation using a sensor to determine if the parameters are realistic. Another

sensor can report the timestep value. Yet another sensor can track a load average for that thread. If the user

notices an error in the parameters, then he can stall the application and inspect all other objects.

Furthermore, if the user decides to take corrective action, the user can update the parameter with a probe

write or an actuator, and then, allow the application to continue.

Users may add new bodies and delete existing bodies to the executing simulation with the aid of Progress.

As the application is advancing through its timesteps, the Progress server manipulates the application so that

a new body with specific parameters is added to the simulation. In our N-body simulation, two application

procedures were created that add one body to the current simulation and delete one body from executing

simulation. The results of these procedures are cumulative. Executing AddBody twice will add two bodies to

Progress: a Toolkit for Interactive Program Steering • Page 16

the executingsimulation.These two applicationprocedures are necessarilyapplicationspecific.They have

access to the necessary variablesand data structuresso that the simulation can be updated properly.

Additionally,thisAddBody procedure can registerthesenew bodieswith the steeringserverso that the user

can altertheirparameters. Once the procedure iscomplete and the body parameters are adjusted,the user

can continuethe simulation.

3.2 Performance

The utmost concernofProgress'designerswas the performance degradationdue to instrumentationwith

the Progress library.Obviously,the user can chose to degrade performance by controllingthe program;

however, this option remains with the user. As illustratedin Table 2, the application'sperformance

degradation due to the additionof Progress is minimal when compared to other common debugging and

profilingtechniques.The steeringsystem did not interactwith the applicationduring the test.These testsdid

varied proportionallywith longerexecutiontimes and they did not vary considerablyfrom architectureto

architecture(KSR, SGI, Sparc).The measurements inTable2 were gathered on an SGI 8-node multiprocessor

with the standard SGI compilerand multiprocessorlibrary.

N-body optimized 55.55

N-body w/Progress 57.23

N-body w/gprof 69.73

N-body w/-g compiler option 72.11

Table 2 - Application Performance

Latency is important because the information presented at the client, and used for decision making at the

server must be close to real time. Unusual feedback might occur if the information is too far out of date,

impeding any performance gains due to steering and limiting the usefulness of the steering system. Also, the

server must be fast enough to execute steering actions. In Table 3, the performance of several measurements

are outlined.

Table 3 describes the latency for several type of steering operations under the following conditions: a total

of 100,000 operations are executed by the server and they are measured from this beginning of the operation

until they complete including the object registry query time. Additional filtering or processing on the

operations are not used. For the synchronous operations, the server time is the time the server requires to

place a record into the objects actuate buffer. Enabling and disabling sensors is essentially a probe write to a

Progress: a Toolkit for Interactive Program Steering • Page 17

memory locationthat the sensor checks during each callthis iswhy the time iscloseto that of the probe

read/write.

4. Related Work

Severalsteeringsystems exist{Gu94] as wellas researchin dynamic applicationsand adaptable systems.

Because Progress focuseson interactivesystems, we limitour review to systems that allow interactivity.

Functionalityand generalityofthesesystems vary but they are consistentwith Progress'goalsofperforming

interactiveprogram steering.As discussedearlier,interactiveprogram steeringimpliesthat human users

have the optionof interpretingprogram data and providingfeedback to the program during itsexecution.

Other research on dynamic systems discussesfeedback and adaptation;however, the feedback isusuallythe

productofan algorithm.

Tuchman, et al.[Tuchman91] createdthe Vista system for simulation-timevisualizationof data.Vista

Action Server Time (Ms)

Probe Read/Write 643

Actuate 627

Sensor Event 181

Enable/Disable Sensor 651

Table3 -ProgressPerformance

providesa window intothe applicationby showing program data automaticallyduring execution.The system

architectureisdesigned fora distributedor remotely executingapplication.The Vista model allows a trace

filetoreplacethe executingapplication,providinga visualization'databrowser'fordata from past simulation

runs.Data from the executingapplicationare interactivelyselectedand displayed.Vistadid not concentrate

on steeringthe application;however, the interactiveselectionand displayof applicationdata issimilarto

Progress'interactiveselectionand controlof steeringobjects.Progress goes furtherby allowing the user to

propagate changes from the user interfaceback intothe executingsimulation.

Program directingisinvestigatedin [Sosi92].Program directingis synonymous with program steering.

Dynas¢ope monitors a program, presents the data to a user or program, and allows for possiblefeedback

actions.Dynascope provides basic monitoring and controllingin distributedenvironments. The system is

integrated with existingprogramming tools and uses a few generic operating system and networking

primitives.Dynascope providesa complete set oftoolsforinteractingwith an application,includingfeedback;

however, Dynascope did not concentrateon high performance, parallelapplications.The toolsavailablefor

Progress: a Toolkit for Interactive Program Steering • Page 18

interactingwith the executingprogram gave the operatoraccesstothe entireprogram and Dynascope did not

allow the developerto clearlydefinehow and where a user could steerthe application.Progress focusesboth

the developer'sand user'sattentionon the steeringobjectsallowing efficientand meaningful access to

program components.

The VASE system [Jablonowski931presentsan abstractionfor a steerableprogram and offerstoolsthat

createand manage collectionsofsteerablecodes.VASE annotates existingFortran code tocreatea high-level

model ofthe application;therefore,users do not have to work at the sourcecode level.Software developers

must annotate the existingcode,however. Once the sourcecode isannotated,VASE coordinatesthe execution

ofthese codes inthe distributedenvironment.VASE supports only the SPMD model ofparallelexecution.A

powerful 'C-likescriptinglanguage providesflexibilityfor data selectionand steeringduring execution.The

SGI IrisExplorer renders output data visualizations.Progress resembles VASE in severalways; however,

there are differences.Both VASE and Progress provide a user interfacefor interactingwith a remotely

executing application.They both also provide a technique for abstractinguninterestingdetailsfrom the

steeringprocess.VASE, however, concentratesof abstractingblocks of code and controlflow, whereas

Progressfocuseson abstractingimportant data (steeringobjects)and time windows foraccessingthose data

items(sense,actuate).Both ofthesesystem recognizethe differencebetween the applicationdeveloperand the

applicationuser.The applicationdeveloperisresponsiblefor instrumenting the applicationcode so that the

end user can controlthe applicationwith a generalsteeringinterface.

DYNA3D and AVS {ApplicationVisualizationSystem from AVS Inc.)are combined with customized

interactivesteering code to produce a time-accurate,unsteady finite-elementsimulation in [Kerlick93].

Rudimentary steering is demonstrated in a distributedenvironment consistingof a supercomputer and

multiple graphicsworkstations.Although steeringwas demonstrated, [Kerlick93]did not present a general

toolkitfor steeringany applicationprogram. Progress attempts to definea libraryand runtime system that

willwork with a varietyofMIMD applications.

[Parris93]describeschallengesfora real-timevisualizationofa complex physicalsimulation.The goal of

thisreal-timevisualizationis a virtualworld where human users interactwith the visualizationin a 3D

environment. The implementation spans a network of severalspecializedcomputer systems. [Parris93]is

interestingin the contextofProgress because ofthe feedback techniques used. However, the resultsof this

work were customized fora particularhigh performance graphics system and network ofcomputers, and it

did not address the creationofa generaltoolkitforsteeringcommon high performance paralld applications.

Progress: a Toolkit for Interactive Program Steering • Page 19

5. Conclusions

Progress is a prototype steering toolkit for the specific purpose of evaluating the necessary components of

a general steering system and the essential functionality required by interactive steering. Progress has

successfully provided a testbed for interactive steering, and we have outlined a set of general features for

inspecting and modifying executing applications: the steering object model and their respective object

operations. Progress' steering object model provides a useful technique for identifying components of the

application to export to the end-user. Probes, sensors, actuators, synch points, and functions furnishes a

developer with numerous mechanisms to allow an end-user to observe and modify his application at runtime.

Two improvements to the existing Progress system are essential. First, the object registry system must

allow complex user defined types including arrays and structures. Existing technology forces our toolkit to

define these user types are runtime, rather than compile time. The developer must add additional toolkit calls

to the application to describe any user defined types that he may want to register as steering objects. Arrays

are extremely valuable because the user may want to adjust an entire array of values and rather than

registering each element of the array with the server, the developer could just register the array itself.

Structures are also important because to allow a user access to the fields within a structure, the developer

must now register each field individually instead of just registering the entire structure.

Second, visualizations of steering objects at runtime is necessary to interpret the massive amounts of

information that the user might select [Appelbe91,Bem93,Cou93]. Eventually, the goal of Progress is direct

manipulation of graphical models of the simulation with appropriate feedback into the executing simulation.

High performance graphics systems could possibly provide complex graphics in real-time. For example, one

sensor in the application captures three variables: timestep, convergence error, and data region. The Progress

runtime periodically forwards this event to the graphics system over the network. At the graphics system, a

user binds these three values to a 3D surface graph. Using this visualization, the user easily locates

convergence problems with portions of the data regions. As the simulation executes, the user could view an

animation of the convergence errors and their respective data regions in the simulation.

6. References

[Appelbe91] William F. Appelbe. John T. Stasko, Eileen Kraemer. "Applying Program Visualization Techniques to Aid
Parallel and Distributed Program Development." Report G1T-CC 91/34, College of Computing, Georgia
Institute of Technology. July 1991.

[Bates86] Peter Bates. "Debugging Heterogeneous Distributed Systems Using Event-Based Models of Behavior."
ACM/ONR Workshop on Parallel and Distributed Debuggin 8 (1988). pp. 11-22.

[Bem93] Thomas Bemmerl, Peter Braun. '*Visualization of Message Passing Programs with the TOPSYS Parallel
Programming Environment." Journal of Parallel and Distributed Computing, 18(2): 118-128. June 1993.

[Bihari91] Thomas E. Bihari. Karsten Schwan. 'Dynamic Adaptation of Real-Time Software." IEEE Transactions on
Computer Systems. 9(2): 143-174, May 1991.

Progress: a Toolkit for Interactive Program Steering • Page 20

[Cou93] Alva L. Couch. "Categories and Context in Scalable Execution Visualization." Journal of Parallel and

Distributed Computing, 18(2): 195-204. June 1993.

[Eisenhauer94]Greg Eisenhauer. Weiming Gu. Karsten Schwan. and Niru Mallavarupu. "Falcon -- toward interactive parallel

programs: The on-line steering of a molecular dynamics application." In Proceedings of The Third

International Symposium on High-Performance Distributed Compuung. San Francisco. CA. August 1994.

[Greengardgo] Leslie Greengard. "The Numerical Solution of the N-Body Problem.'" Computers in Physics. March/April

1990. pp. 142-152.

[Gu94] Weiming Gu. Jeffrey Vetter. and Karsten Schwan. "An Annotated Bibliography of Interactive Program

Steering." ACM SIGPLAN Notices.29(9): !40-148. September 1994.

[Gu95] Weiming Gu, Greg Eisenhauer. Eileen Kraemer. Karsten Schwan. John Stasko. Jeffrey Vetter. and

Nimpama Mallavarupu. "Falcon: On-line Monitoring and Steering of Large-Scale Parallel Programs."

Proceedings of FRONTIERS'95. February 1995.

[Hollingsworth93] Jeffrey K. Hollingsworth. Barton P. Miller. '_)ynamic Control of Performance Monitoring on Large Scale

Parallel Systems." Proceedings of International Conference on Supercomputing (1993).

[Jablonowski93] David Jabionowski. John Bruner. Brian Bliss. and Robert Haber. "VASE: The Visualization and

Application Steering Environment." In Proceedings of Supercomputing 93. pp. 560--569.

[Kerlick93] David Kerlick and Eliabeth Kirby. "Towards Interactive Steering. Visualization and Animation of Unsteady
Finite Element Simulations." In Proceedings of Visualization 93.

[Kiipatrick91] Carol E. Kilpatrick. Karsten Schwan. "ChaosMON -- Application-Specific Monitoring and Display of
Performance Information for Parallel and Distributed Systems." ACM/ONR Workshop on Parallel and

Distributed Debugging (1991).

[Kra93] F_,,ileenKraemer. John T. Stasko. 'The Visualization of Parallel Systems: An Overview." Journal of Parallel

and Distributed Computing, 0:. May 1993.

[LeBianc87] Thomas I. LeBlanc. John M. Mellor-Cmmmey. "Debugging Parallel Programs with Instant Replay." IEEE

Transactions on Computers. C-36(4):471-481. April 1987.

[Mal91] Allen D. Malony. David H. Hammerslag. David J. Jablownski. 'Traceview: A Trace Visualization Tool."

IEEE Software. 8(5):29-38. September 1991.

[Malony92] Allen D. Malony. Daniel A. Reed. Harry A. G. Wijshoff. "Performance Measurement Intrusion and

Perturbation Analysis." IEEE Transactions on Parallel and Distributed Systems, 3(4):433-450, July 1992.

[MarinescugO] Dan C. Marinescu, James E. Lumpp. Thomas L. Casavant. Howard Jay Siegel. "Models for Monitoring and

Debugging Tools for Parallel and Distributed Software." Journal of Parallel and Distributed Compuung.

(9): 171-183. 1990.

[McCormick88] B.H. McCormick. T. A. DeFanti. M. D. Brown. "Visualization in Scientific Computing." ACM SIGGRAPH

Computer Graphics. 21(6):. November 1988.

[McDowel189] Charles E. McDoweil, David P. Heimboid. "Debugging Concurrem Programs." ACM Computing Surveys,

21 (4):593-622. December 1989.

[Mukherjee93] Bodhisattwa Mukherjee and Karsten Schwan. "Improving Performance by Use of Adaptive Objects:

Experimentation with a Configurable Multiproccssor Thread Package. Proc. of Second International

Symposium on High Performance Distributed Computing (HPDC-2). July 1993. pp. 59-66.

[Ogle93] David M. Ogle, Karsten Schwan, Richard Snodgrass. "Application Dependent Dynamic Monitoring of

Distributed and Parallel Systems." IEEE Transactions on Parallel and Distributed Systems. 4(7):762-778,

July 1993.

[Parris93] Mark Pan-is, Carl Mueller. Jan Prins, Adam Deggan. Quan Zhou, Erik Erikson. "A Distributed

Implementation of an N-body Virtual World Simulation." In Proceedings of The Workshop on Parallel and

Distributed Real-Time Systems (April 1993). pp. 66--70.

[Ribarsky94] William Ribarsky. Eric Ayers. John Eble. Sougata Mukherjea. "Using Glyphmaker to Create Customized

Visualizations of Complex Data." IEEE Computer. June 1994.

[Schwang8] Karsten Schwan. Rajiv Ramnath. Sridhar Vasudevan. David Ogle. "A Language and System for the
Construction and Timing of Parallel Programs." IEEE Transactions on Software Engineering. 14(4):455-

471, April 1988.

[Snodgrass88] Richard Snodgrass. "A Relational Approach to Monitoring Complex Systems." ACM Transactions on

Computer Systems. 6(2): 157-196, May 1988.

[SosicO2] R. Sosic. "Dynascope: A Tool for Program Directing." In Proceedings of SIGPLAN'92 Conference on

Programming Language Design and Implementation. SIGPLAN Notices, 27(7): 12-21. July 1992.

Progress: a Toolkit for Interactive Program Steering • Page 21

[Stasko90]

[Tuchman91]

John T. Stasko. Charles Patterson. 'Understanding and Classifying Systems for the Visualization

Computer Data Structures. Programs. and Process." Report GrI'-CC 90/66. College of Computing. Georgia
Institute of Technology. 199 I.

Allan Tuchman. David Jablonowski. George Cybenko. "Run-Time Visualization of Program Data."
Proceedings of Visualization '91 (1991). pp. 255-261.

Prograse: a Toolkit for Interactive Program Steeling • Page 22

