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Abstract---Single-mode distributed feedback (DFB) laser diodes
typically require a two-step epitaxial growth or use of a corru-
gated substrate. We demonstrate InGaAs-GaAs-AIGaAs DFB
lasers fabricated from a single epitaxial growth using lateral
evanescent coupling of the optical field to a surface grating
etched along the sides of the ridge. A CW threshold current
of 25 mA and external quantum efficiency of 0.48 mW/mA
per facet were measured for a 1 mm cavity length device with
anti-reflection coated facets. Single-mode output powers as high
as l l mW per facet at 935 nm wavelength were attained. A
coupling coefficient of at least 5.8 cm- _ was calculated from the
subthreshold spectrum taking into account the 2% residual facet
reflectivity.

I. INTRODUCTION

TABLE single longitudinal mode behavior, narrowlinewidths (_MHz), low power requirements, and small
size have made distributed feedback (DFB) semiconductor

laser diodes attractive in many applications including

spectroscopy, pump sources for amplifiers, injection sources
for solid-state lasers, and as both sources and local oscillators

in coherent communication systems. DFB laser diodes

achieve wavelength selectivity by incorporating a periodic

change of refractive index or gain along the lasing cavity.
This is usually done by growing the laser structure on a

corrugated substrate or by interrupting the growth above the

active region, pauerning and etching the grating, and then

growing the upper cladding and cap layers. Determining the

proper surface preparation and growth parameters to achieve

high quality epitaxial regrowth while preserving the grating

structure is technically demanding--particularly for short
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Fig. 1. Diagram of a laterally-coupled distributed feedback (LC-DFB) ridge

laser diode.

wavelength A1GaAs lasers with high aluminum content and

long wavelength GaSb-based devices.

One way to eliminate the regrowth problem is to rely on

evanescent coupling of the electromagnetic fields to a surface

grating. This approach has been demonstrated by etching the

grating directly over the waveguide and injecting the current

from the side [ 1] or by etching the grating through the cap and

upper cladding layer to provide the lateral index guiding tot the

"ridge" and selective feedback [2]. Both of these techniques

require a deep, uniform transfer of the grating into the upper

cladding. An alternative approach is to etch the ridge first

and then define the grating on either side of the ridge (Fig.

I) by either electron beam [3]-[4] or x-ray [5] lithography.

The difficulty with this structure lies in achieving sufficient

interaction of the evanescent field with the surface grating.
Agrawal and Dutta have shown that the threshold of a ridge

DFB increases by a factor of 20 or more when the gratings

under the ridge are removed [6]. In this letter the CW lasing

characteristics of a laterally-coupled distributed feedback (LC-

DFB) ridge laser using a single growth step are presented.

II. FABRICATION

The fabrication of LC-DFB lasers is very similar to that

of standard ridge lasers. Photolithography was used to de-

fine 2 /tm-wide photoresist stripes on an MBE grown In-

GaAs-GaAs-A1GaAs graded index separate confinement het-

erostructure (GRINSCH). Chemically assisted ion beam etch-
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ing (CAIBE) using chlorine gas in conjunction with an argon

ion beam was used to etch the ridges to within 0.1 ltm of the

GRINSCH. The two dimensional overlap of the electric field

with the grating--and hence the coupling coefficient, ^:--is
critically dependent on the ridge etch depth and width [7].

Etching the ridge too deep results in strong index guiding of

the field and reduces the lateral 0/-direction) fill factor of the

grating. Too shallow of a ridge depth reduces the transverse

(:+;-direction) overlap of the field with the grating. A narrow

ridge was used to increase the lateral overlap of the electric

field with the grating.

After etching the ridge, PMMA was applied to the wafer

and a first order grating was exposed (Fig. 2) using electron

beam lithography. To simplify alignment of the +:-beam pattern

to the ridge, the grating was written continuously across the
structure. Grating free ridges were included in the pattern to

permit comparison of Fabry-Perot and DFB devices from the

same wafer. CAIBE was then used to transfer the grating

approximately 700 A deep into the cap layer and upper

cladding beside the ridge. The grating depth was much less

than the thickness of the highly-doped cap region. The high

resolution +:-beam configuration used to expose the grating
pattern resulted in very narrow exposed lines (_25 rim)

yielding an etched to unetched aspect ratio of 1 : 5 (16.6%

duty cycle) for the etched grating. For a rectangular shaped first

order grating, optimal feedback is achieved with a symmetric

grating--i.e., a 50% duty cycle. A self-aligned technique using

silicon nitride and polyimide was used to planarize the wafer

and facilitate contacting the narrow ridge. The wafer was

thinned and finished with Cr-Au (/,-type) and AuGe-Ni-Au

(,>type) contacts. Devices were mounted junction side up
on copper heat sinks for testing. Anti-reflection coatings

consisting of a quarter wavelength (A/,I) of AI.,O:_ (R --, 2%)

were deposited on both facets of the DFB devices to suppress
Fabry-Perot modes.

III. MEASUREMENTS AND ANALYSIS

Laterally-coupled DFB lasers with cavity lengths of 1.0 and
1.5 mm had as-cleaved CW threshold currents of 10-15 mA
which increased to 18-25 mA when AR coated. Power-current

(P-I) characteristics of a 1.0 mm cavity length LC-DFB laser

with AR coatings are shown in Fig. 3. The threshold current

and external slope efficiency are 25 mA and 0.48 mW/mA

per facet. LC-DFB devices with cavity lengths of 250 llm
to 500 itm had CW threshold currents of 8-10 mA with as-
cleaved facets. When AR coated, however, threshold currents

increased to 35-80 mA indicating insufficient grating feedback

(i.e. weak coupling) for these cavity lengths.

The inset of Fig. 3 shows the CW spectral characteristics

of a 1 mm device measured with a 3/4 m spectrometer as the

current is increased from 3_45 mA in 5 mA steps. Single-

mode DFB operation was observed up to 11 mW at which

point a second DFB mode begins to lase. The side-mode

suppression ratio (SMSR) measured with an optical spectrum

analyzer was greater than 30 dB at an output power of 10 roW.
The lasing wavelength as a function of beat sink lemperature

was measured for a LC-DFB laser along with a standard

ridge laser. The tasing wavelength of the ridge devices without

Fig. 2. Scanning electron micrograph of the lirst order grating pattern over

the ridge delincd in PMMA by ,-beam lithography.

gratings shifted at ,--3 /I,/°C compared to a much slower rate
of 0.65 ._/°C tor the LC-DFB devices.

The coupling coefficient can be determined from the sub-

threshold normalized slop-band width 18], WL. delined as the

normalized mode spacing between the fundamental (lowest

threshold) DFB mode and the lowest threshold adjacent DFB
mode, i.e.,

WI+ = 9 1 1 A A
-rrJ_,,ttL _ - A7 = 2rvr,,.+tL A-T_, (1)

In this equation A. k , and A+ are the wavelengths of the

fundamental, shorter adjacent, and longer adjacent modes, t_,.tr

is the etfective index including the dispersion [91, and L is the

laser cavity length. The relationship between WL and t,'L is

shown in Fig. 4 for the case of 0'7, and 2'_ facet reflectivity.

The perfect AR case is calculated using the theory of Kogelnik

and Shank [101. It becomes more difficult to determine the

coupling when the residual facet reflectivity is taken into

account because the phase of the grating at the front and rear

facets is unknown. For the 2'Z, case, the phases of the grating at

the front and rear facets were each varied from 0 to 15 7r/_ in
rr/8 steps. The nommlized threshold gain (¢_L) and frequency

deviation from the Bragg condition (bL) of the 5 mtxles nearest

the Bragg wavelength were calculated l I 1 ] for each of the 256

phase combinations for t,:L values ranging from 0.2 to 1.0.

The minimum and maximum normalized stop-band width were

extracted for each ,;L value. Fig. 4 shows that for a given value

of hL. the residual reflectivity and random grating phase of

the facets introduces a large variation in the stop-band width.

WL values of 4.14 (L = l.(/ ram) and 4.61 (L = 1.5 ram)

were measured on subthreshold spectra of LC-DFB lasers. Fig.
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Fig. 3. CW power-current and spectral characteristics of a I mm cavity

LC-DFB laser with AR-coated facets. For the spectral data the current is

stepped from 30 mA to 45 mA in 5 mA steps,

4 shows that for the measured WL values, h;L is at least 0.59

(_ = 5.9 cm -1) and 0.87 (_,: = 5.8 cm -1) for the 1 mm and

1.5 mm devices respectively. In general, for good performance
of a DFB laser, a _L product of 1-1.5 is desired. A theoretical

coupling coefficient of 8.6 cm-t was determined by applying
coupled-mode theory [7] to the lnGaAs LC-DFB laser with a

16.6% duty cycle rectangular grating. This analysis revealed

that the coupling coefficient would be doubled with a 50%

duty cycle grating. If the minimum measured coupling value

(t_ = 5.8 cm -1) is doubled by using a symmetric grating, a _L

of 1.0 could be attained for a LC-DFB laser with a 900 iLm
cavity length.

|g. SUMMARY AND CONCLUSION

Single mode distributed feedback laser diodes were pro-

duced from a single epitaxial growth that rely on the lat-

eral coupling of the evanescent electromagnetic fields with

a surface grating etched along the sides of the ridge. Good

performance of strained layer lnGaAs-GaAs-AlGaAs SQW
LC-DFB lasers was achieved. A 25 mA CW threshold cur-

rent, total external quantum efficiency of 82%, and single
longitudinal mode output power of 11 mW were attained

for a I mm cavity length laterally-coupled device. The 2%

residual facet reflectivity of the anti-reflection coating used
on the LC-DFB lasers prevented an exact measurement of ,_

from the stop-band but taking into account the random phase

of the grating at the facets, a minimum coupling coefficient

of 5.8 cm -t was determined from the subthreshold spectra.

We have demonstrated that a laterally-coupled DFB laser has
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Fig. 4. Relationship between the normalized stop-band width, WL, and ,L

for residual facet reflectivity of 0'/_ and 2_/,. For the 2_Z case, the phases

of the grating at each facet were varied from 0 to l,Srr/8 in 7r/S steps. The

minimum and maximum normalized stop-band width obtained from the 256

phase combinations are shown.

potential as a stable, single-mode device with power levels

suitable for many applications. This technique could be used to

fabricate DFB lasers in material systems for which regrowth is

prohibitive--such as high AI concentration (short wavelength
and visible lasers) and GaSb (long wavelength) based devices.
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