FINAL REPORT
 Contract NAS5-32483

Augmentation of the IUE Ultraviolet Spectral Atlas Principal Investigator: Chi-Chao Wu

Under this program, the Principal Investigator (PI) continued observations of normal stars in order to fulfill the following two goals: (1) to provide a stellar library as complete as practical, which will be able to support astronomical research by the scientific community long into the future, and (2) to obtain a sufficient sample of stars to guard against variability and peculiarity, and to allow a finite range of temperature, gravity, and metallicity in a given spectral type-luminosity class combination.

The candidate stars have been selected such that they are not spectroscopic binaries or variables with significant changes in magnitude or color, they have well determined spectral types, and if possible, they have small interstellar reddening. Most of the observations were made with the trail and pseudo-trail techniques, and at optimum exposure, in order to achieve maximum signal-to-noise ratio for the spectra.

The PI and his collaborators have completed the reduction of the data obtained during the IUE twelfth through seventeenth episodes: SALCW, SAMCW, SANCW, SAOCW, SAPCW, and SAQCW. The data are presented in The IUE Ultraviolet Spectral Atlas, Addendum II, by C.-C. Wu. F. H. Schiffer, 3rd, and D. M. Crenshaw (see attachment).

This second addendum of the spectral atlas contains 183 stars. Combining with the 315 stars presented in the original spectral atlas (Wu et al 1983, NASA IUE Newsletter 22). and its first addendum (Wu et al 1991, NASA IUE Newsletter 43), the stellar library contains 498 stars. It covers spectral types from O3 to M7, with good representation for the main sequence, and reasonably good sample for higher luminosity stars. We believe this porject has fulfilled the two goals mentioned in the first paragraph.

The second addendum contains spectral plots and flux tables (samples are given in the attachment for three stars). Stars earlier that F3 have data from 1150 to 3200 angstroms (have both the SWP and LWP images), and stars later than F6 have data from 1974 to 3200 angstroms (LWP only). The production of Addendum II is essentially complete. Minor cosmetic changes are being made to the plots and tables for a few stars. The paper version will be submitted to the NASA IUE Newsletter for publicaiton. The electronic copy will be made available to the IUEDAC and NSSDC.

THE IUE ULTRAVIOLET SPECTRAL ATLAS ADDENDUM II

Chi-Chao Wu, Francis H. Schiffer, 3rd, D. Michael Crenshaw Science Programs, Computer Sciences Corporation

I. Introduction

The IUE Ultraviolet Spectral Atlas and the first addendum were published by Wu et al. (1983, 1991) in printed and machine readable versions. This atlas and addendum contain UV spectra of 315 stars with spectral types ranging from O 3 to M 5 and many spectral type-luminosity class combinations. There were three criteria for selecting these stars: (1) they were not spectroscopic binaries or variables with significant changes in magnitude or color, (2) they must have well-determined spectral types (many are MK standards) and (3) the stars should not be heavily reddened.

Further augmentation of the atlas is desirable to provide a more complete coverage of the spectral type-luminosity class combinations and more than one star per combination. The extra spectral type-luminosity class combinations reduce the need for interpolation. The extra stars within a given combination guard against variability and peculiarity, and allow for a finite range of temperature, metallicity and gravity.

The previous atlas and addendum presented data that were obtained through the eleventh episode under IUE programs with C.-C. Wu and D. Burstein as principal investigators. In this second addendum, we present the spectra obtained by Wu's programs during the twelfth through seventeenth episodes: SALCW, SAMCW, SANCW, SAOCW, SAPCW and SAQCW. During the period between July 1989 and September 1994, Wu observed 183 stars under these programs. Most of these observations are high quality trails or pseudo-trails (multiple exposures in the large aperture).

II. Observations and Reductions

The observations for this atlas were made with the IUE using the Short Wavelength Prime (SWP) and Long Wavelength Prime (LWP) cameras in low dispersion mode. The SWP camera covered the 1150-1974 \AA region. The LWP camera covered the 1974-3200 \AA region. The IUE cameras have a spectral resolution of about $6 \AA$ in low-dispersion mode. Boggess et al. (1978a, b) presented the first discussion of the IUE scientific instrument and its performance. For more recent updates, readers should consult Sonneborn et al. (1987), Harris and Sonneborn (1987), and Grady and Taylor (1989).

Most of the observations used the trail or pseudo-trail technique to increase the signal-tonoise ratio. These techniques increased the exposure time by moving the target star along the major axis of the large aperture, which is nearly perpendicular to the dispersion direction. In a trailed exposure, the star moves at a constant rate through the large aperture. Generally, we used this method when the total exposure time was less than 10 minutes and the star was within 100
degrees of the Sun. When a star was more than 100 degrees from the Sun or the exposure time for trailing was more than 10 minutes, the pseudo-trail technique provided the increased exposure time. This pseudo-trail technique places the star at several discrete locations (generally 3) along the major axis. The camera takes an exposure at each location without reading out the data while a guide star stabilizes the spacecraft. The widened spectra obtained by these techniques improved the signal-to-noise ratio by collecting more photons and by recording the spectra on more image pixels. The use of more image pixels improved the chance of averaging out the fixed-pattern noise. Spectra through the small aperture provided data in wavelength regions, which contained saturation, low exposure levels, reseaux or other blemishes in the large aperture spectra.

The input for this atlas was the merged spectra, which the IUESIPS production software created on the date of the processing. Turnrose and Thompson (1984), Harris and Sonneborn (1987), and Grady and Taylor (1989) provide detailed discussions of this IUE image processing system. Bohlin and Holm (1980) provided the absolute calibration for the SWP spectra. This calibration was described in more detail by Holm et al. (1982). Cassatelia, Lloyd, and Gonzalez Riestra (1987) were the source of the calibration for the LWP data.

The IUE Data Analysis Center (IUE DAC) in the Laboratory for Astronomy and Solar Physics at Goddard Space Flight Center (GSFC) provided the facilities and software for further custom reductions. These reductions included corrections to all fluxes for exposure time and temperature effects. The fluxes of the small aperture spectra are not on an absolute scale due to the uncertainty in the small aperture throughput. The ratio of the large to small aperture fluxes for the same star provided a correction for this uncertainty. This ratio used only the fluxes in regions unaffected by bad data and with measurable signal. The correction placed the fluxes and exposure time of the small aperture spectrum on the same absolute scale as the large aperture spectrum. Multiple spectra of the same star and in the same wavelength range were combined into an averaged spectrum. The combination weighted each spectrum by its exposure time. These averaged spectra excluded any data that contained saturation, reseaux, flagged bright spots or microphonic noise. The final step in the custom reductions was to bin the spectra at $2 \AA$ intervals.

This addendum contains spectra for 183 stars and spectral types from O7 to M6. Stars earlier than F3 have both SWP and LWP data. For stars later than F6, only LWP spectra are presented. Table I catalogues the stars in order of spectral type-luminosity class. Columns (1) and (2) give the HD number and name of the star, respectively. Column (3) gives the spectral type as published in the reference, a code for which appears in Column (4). An explanation of these codes appears at the end of Table I. Columns (5) and (6) contain the right ascension and declination (1950 epoch) for the star. Columns (7) and (9) give V and $B-V$ respectively. The primary source of these photometric data was Mermilliod and Mermilliod (1994). For HD 216399, O'Connell (1973) provided the V magnitude and SIMBAD the B-V. The photometry for HD 219188 came from Turon et al. (1992). In Column (8), an "A" shows that the star has a close neighbor and that the V
magnitude is only for the brighter component. On the other hand, an "AB" in Column (8) indicates that the V magnitude is the combined brightness of both components. The entries in Column (8) are from Mermilliod and Mermilliod (1994). The $E(B-V)$ value, which appears in Column (10), is the observed B-V from Column (9) minus the intrinsic B-V from FitzGerald (1970). The E(B-V) values assume that the intrinsic $B-V$'s for higher luminosity O stars are the same as main sequence stars of the same spectral type. The computations of $E(B-V)$ for spectral types and luminosity classes, which have no intrinsic B-V in FitzGerald, used interpolated values of $B-V$.

Table I contains information about the IUE images for each star as well. The IUE image number appears in Column (11). Column (12) contains a flag for the aperture, where " L " is the large aperture and " S " is the small aperture. Column (13) defines the observing technique. A " T " in Column (13) means trailed. A number represents the number of exposures in the single image. A value greater than one (like 3 or 4) in the large aperture implies that the image used the pseudotrail technique. The total exposure time in seconds appears in Column (14). A correction to the exposure time was necessary for the single and multiple (pseudo-trail) exposure spectra, if the time for the individual exposure was 60 seconds or less. The correction accounted for two factors, which can cause errors in the exposure time of 0.5 percent or higher (Schiffer 1980; Crenshaw 1986). First, the IUE on-board computer controls the exposure time in discrete steps of 0.4096 seconds each. Second, the camera takes 0.120 ± 0.015 seconds to turn on at the start of an exposure. Therefore, the actual exposure time is

$$
\text { Actual Exposure Time }=[\operatorname{Integer}(\mathrm{t} / 0.4096) \times 0.4096]-0.120
$$

where t , is the commanded exposure time in seconds from the IUE observing script. Column (14) contains the exposure time, which is the sum of the actual exposure times from the above equation. For trailed spectra, the exposure time is equal to the trail length in arcseconds divided by the trail rate in arcseconds per second. The actual trail length is 21.4 and 20.5 arc seconds for the short and long wavelength spectrographs, respectively (Panek 1982). The observing script records the trail rate. The result from the exposure time computation, which used the actual trail length, the trail rate and the number of passes, appears in Column (14). The exposure time that is on the observing script and in the IUE image header assumes a trail length of 20 arcseconds and so is not accurate. Column (15) records the temperature of the camera head amplifier during the exposure. This temperature determined a small correction of camera sensitivity (Garhart and Teays 1989).

An indicator of the exposure level appears in Column (16). The values are either a data number (DN) or an overexposure level. The DN values range from 0 to 255 . At a DN of 255 , the spectrum contains at least one overexposed pixel. The estimated level of overexposure appears as a number followed by " x ". For example, $3 x$ means approximately three times overexposed. Three exposure level values are given in Column (16): " E " is for the strongest emission line, " C " is for the continuum, and " B " is for the background regions, which are immediately adjacent to the
spectrum. The Telescope Operator measured these levels during the quick-look analysis of the images and recorded them on the observing script. They serve as a rough indicator of the quality and utility of the data. The emission line indicators do contain errors. For instance, the emission level may be missing for a weak emission component of a P-Cygni profile or Mg II line at $2800 \AA$. Another common error was to misidentify a less absorbed region in the heavily absorbed spectrum of a late type star as an emission line.

In this addendum, there is a plot for each averaged spectrum. The scales of these plots are the same as in the earlier installments (Wu et al. 1983, 1991). On the page facing each plot, there is a table of average fluxes in $2 \AA$ wavelength bins. In the spectral plots, the regions with bad data (nearly saturated data, reseaux or blemishes) are blank. The values in the flux tables also omit these bad data. The omission of the nearly saturated data is a change from the earlier atlas and addendum. This change is due to the realization that the responses of the cameras are very nonlinear for data values near saturation. In spectral regions where the signal-to-noise ratio is low (e.g., the short wavelength end of the LWP spectra), negative fluxes can appear in the tables.

The merged files for the individual spectra in this addendum have been sent to the IUE DAC and the National Space Science Data Center (NSSDC) at GSFC. If you have an interest in receiving a copy of the data, requests should be sent to the IUE Observatory or the NSSDC.

We thank Dr. Conrad Sturch for his helpful discussions on the stellar photometry. This work was supported by the NASA IUE research contracts NAS5-28749, NAS5-31846, NAS532478 and NAS5-32483 to the Computer Sciences Corporation.

References

Boggess, A. et al. 1987a, Nature, 275, 372.
Boggess, A. et al. 1987b, Nature, 275, 377.
Bohlin, R. C. and Holm, A. V. 1980, NASA IUE Newsietter, 11, 18.
Buscombe, W. 1984, MK Spectral Classifications, Sixth General Catalog (Evanston: Northwestern University).
Cassatella, A., Lloyd, C. and Gonzalez Riestra, R. 1987, report presented at the November IUE Three-Agency Meeting.
Cowley, A., Cowley, C., Jascheck, M. and Jascheck, C. 1969, A. J., 74, 375.
Crenshaw, D. M. 1986, NASA IUE Newsletter, 31, 37.
Fanelli, M. N., O'Connell, R. W., Burstein, D. and Wu, C.-C. 1990, Ap. J., 364, 272.
Fanelli, M. N., O’Connell, R. W. and Thuan, T. X. 1987, Ap. J., 321, 768.
FitzGerald, M. P. 1970, Astr. Ap., 4, 234.
Garhart, M. P. and Teays, T. J. 1989, NASA IUE Newsletter, 40, 54.

Garrison, R. F., Hiltner, W. A. and Schild, R. E. 1977, Ap. J. Suppl., 35111.
Grady, C. A. and Taylor, M. A. 1989, NASA IUE Newsletter, 39, 1.
Harris, A. W. and Sonneborn, G. 1987, in Exploring the Universe with the IUE Satellite (Dordrecht: D. Reidel), ed. Y. Kondo, 729.
Hoffleit, D. 1982, The Bright Star Catalogue (New Haven: Yale University Observatory).
Holm, A. V., Bohlin, R. C., Cassatella, A., Ponz, D. P. and Schiffer, F. H. 1982, Astr. Ap., 112, 341.
Jascheck, M. 1980, Catalog of Selected Spectral Types in the MK System (Strasbourg: Centre de Donnes Stellaires).
Johnson, H. L. and Morgan, W. W. 1953, Ap. J., 117, 313.
Keenan, P. C. and Pitts, R. E. 1980, Ap. J. Suppl., 42, 541.
Keenan, P. C. and Pitts, R. E. 1981, 1981 Edition of Revised MK Types (OSU: Department of Astronomy).
Lesh, J. R. 1968, Ap. J. Suppl., 17, 371.
Lesh, J. R. 1972, Astr. Ap. Suppl., 5, 129.
Mermilliod, J.-C. and Mermilliod, M. 1994, Catalogue of Mean UBV Data on Stars (New York: Springer-Verlag).
Morgan. W. W., Code, A. D. and Whitford, A. E. 1955, Ap. J. Suppl., 2, 41.
Morgan, W. W. and Keenan, P. C. 1973, Ann. Rev. Astr. Ap., 11, 29.
O’Connell, R. W. 1973, A. J., 78, 1074.
Panek, R. J. 1982, NASA IUE Newsletter, 18, 68.
Schiffer, F. H., III 1980, NASA IUE Newsletter, 11, 33.
Sonneborn. G., Oliverson, N. A., Imhoff, C. L., Pitts, R. E. and Holm, A. V. 1987, NASA IUE Newsletter, 32, 1.
Turnrose, B. E. and Thompson, R. W. 1984, IUE Image Processing Information Manual, Version 1.1, CSC/TM-84/6058.
Turon, C. et al. 1992, The Hipparcos Input Catalogue, ESA SP-1136 (Noordwijk: ESA Publications Division)
Walborn, N. R. 1972, A. J., 77, 312.
Walborn, N. R. 1973, A. J., 78, 1067.
Walborn, N. R. 1982, A. J., 87, 1300.
Wu, C.-C., Ake, T. B., Boggess, A., Bohlin, R. C., Imhoff, C. L., Holm, A. V., Levay, Z. G., Panek, R. J., Schiffer, F. H., III and Turnrose, B. E. 1983, NASA IUE Newsletter, 22, 1.
Wu, C.-C., Crenshaw, D. M., Blackwell, J. H., Jr., Wilson-Diaz, D., Schiffer, F. H., III, Burstein, D., Fanelli, M. N. and O'Connell, R. W. 1991, NASA IUE Newsletter, 43, 1.
Table I-Atlas Stars and Images

HD	Name	Spectral Type R			RA			DEC		V	AB	B-V	$E(B-V)$		Image	Ap		Expo	Thda	DN					
93204		$05 \mathrm{~V}(\mathrm{f})$)	4	104	3231.0		-59 2		836	8.44 B		0.10	0.42	LWP	P 24603	L	3	83.20	12.8	$\mathrm{C}=237 \mathrm{~B}=35$					
							LWP	P 24603				S		1	300.0	12.8	$\mathrm{C}=5 \mathrm{X} \quad \mathrm{B}=35$								
							SWP	P 46596				L		3	255.0	13.2	$\mathrm{C}=2 \mathrm{XX} \quad 16$								
							SWP	PP 46596				S		1	240.0	13.2	$\mathrm{C}=5 \mathrm{X} \quad \mathrm{B}=16$								
							SWP	P 46603				L		3	104.09	9.2	$\mathrm{E}=157 \mathrm{C}=165$	$\mathrm{B}=17$							
169582		06 If	4	18	22	57.9			-09	46	57		8.70		0.55	0.87	LWP	PP 26495	L	3	450.0	6.1	$\mathrm{C}=221 \quad \mathrm{~B}=45$		
									SWP						NP 48824		L	3	2160.0	6.1	$\mathrm{E}=205 \mathrm{C}=1.5 \mathrm{X}$	$B=27$			
93160		$06 \mathrm{III}(\mathrm{f})$	5	10	4210.7				-59 18		84		7.82	$A B$		0.17	0.49	LWP	PP 23301	L	1	29.78	6.5	$\mathrm{C}=226 \mathrm{~B}=33$	
								LWP			PP 23301			S	1			39.61	6.5	$\mathrm{C}=170 \mathrm{~B}=33$					
								SWP			WP 44925	S		1	80.00			6.8	$\mathrm{C}=114 \quad \mathrm{~B}=15$						
								SWP			NP 44926	L		1	75.00			6.8	$\mathrm{C}=246 \quad \mathrm{~B}=15$						
								SWP			WP 44926	S		1	240.0			6.8	$C=2 \times \quad B=15$						
93222		07 III ((f))	5	104240.4					-59 49			41	8.10		0.05	0.37	LWP	PP 23302	L	T	82.00	6.8	$\mathrm{C}=196 \quad \mathrm{~B}=35$		
							LWP	NP 23302			S				1		44.53	6.8	$\mathrm{C}=236 \quad \mathrm{~B}=35$						
							SWP	NP 44927			L				T		139.1	7.2	$\mathrm{C}=197 \mathrm{~B}=15$						
							SWP	NP 44927			S				1		70.00	7.2	$\mathrm{C}=178 \quad \mathrm{~B}=15$						
101205		$07 \operatorname{IIIn}((f))$	4	113559.9			-63 05		45	6.46		AB	0.04	0.36		LWP	NP 22552	L	T	20.50	8.5	$\mathrm{C}=213 \mathrm{~B}=40$			
							LWP	NP 22552								S	1	7.66	8.5	$\mathrm{C}=176 \mathrm{~B}=40$					
								NP 44138								L	T	32.10	7.8	$\mathrm{C}=204 \mathrm{~B}=17$					
							SWP	WP 44138			S				1	13.81	7.8	$\mathrm{C}=165 \mathrm{~B}=17$							
162978		$07.5 \mathrm{II}(\mathrm{f})$)	5	175149.3					-24 52		44	6.20		0.04	0.35	LWP	WP 26497	L	T	17.42	6.5	$\mathrm{C}=214 \quad \mathrm{~B}=32$			
								LWP			WP 29195		L			T	17.42	7.8	$\mathrm{C}=210 \quad \mathrm{~B}=35$						
								SWP			WP 48826		L			T	19.26	5.8	$\mathrm{E}=164 \mathrm{C}=168$	$B=20$					
											NP 52148		L			T	19.26	8.2	$\mathrm{C}=185 \mathrm{~B}=15$						
24912	XI PER	$07.5 \operatorname{III}(\mathrm{n})(\mathrm{f})$)	5	035542.8					+35 38			56	4.04		0.02	0.33	LWP	WP 23809	L	T	1.79	9.2	$\mathrm{C}=182 \mathrm{~B}=29$		
											WP 45474			L			T	4.55	9.2	$\mathrm{C}=1.5 \times \mathrm{B}=17$					
								SWP			NP 45474			S			T	0.64	9.2	$C=105 \quad B=19$					
46056		08 Vn	4	062848.2					+04 52			14	8.24	A	0.20	0.51		WP 19966	L	T	153.75	13.5	$\mathrm{C}=204 \mathrm{~B}=38$		
							LWP	WP 19966			5						1	74.84	13.5	$\mathrm{C}=211 \mathrm{~B}=38$					
								WP 41161			L						T	470.81	13.5	$\mathrm{C}=235 \mathrm{~B}=18$					
								WP 41161			S						1	180.0	13.5	$\mathrm{C}=222 \mathrm{~B}=18$					
112244		$08.5 \mathrm{Iab}(\mathrm{f})$	4	125259.4			-5633		54	5.37		A	0.02	0.31		WP 22440	L	T	7.38	11.8	$\mathrm{C}=205 \mathrm{~B}=40$				
							LWP	WP 22440			S				1	19.54	411.8	$\mathrm{C}=5 \times \quad \mathrm{B}=40$							
								WP 44045			L				T	12.31	111.2	$\mathrm{C}=241 \mathrm{~B}=18$							
								WP 44045			S				1	9.71	11.2	$\mathrm{C}=1.5 \times \quad \mathrm{B}=18$							
46149		08.5 V	4	062912.9					+05	04		7.60		0.17	0.48		WP 27454	4	T	76.87	11.8	$\mathrm{C}=203 \mathrm{~B}=50$			
															WP 50072	L	T	181.97	11.8	$\mathrm{C}=206 \mathrm{~B}=32$					

Table I-Atlas Stars and Images (continued)

Table 1-Atlas Stars and Images (continued)																				
HD	Name	Spectral Type	Ref	RA			DEC			V	AB	$\mathrm{B}-\mathrm{V}$	$E(B-V)$	Image		Ap	N	Expo Thda		DN
46106		B1 V	13	06	28	58.8	+05	03	47	7.93		0.14	0.40	LWP	20205	L	T	143.50	9.5	$\mathrm{C}=232 \mathrm{~B}=40$
														LWP	20205	S	1	360.0	9.5	$C=5 \times \quad B=40$
														SWP	41449	L	T	235.40	9.8	$\mathrm{C}=208 \mathrm{~B}=18$
														SWP	41449	S	1	100.0	9.8	$\mathrm{C}=206 \mathrm{~B}=18$
44506		B1.5 IIIn	7	06	18	47.6	-34	07	13	5.54		-0.19	0.06	LWP	17689	L	T	6.15	10.8	$\mathrm{C}=212 \quad \mathrm{~B}=34$
														SWP	38493	L	T	8.03	9.8	$\mathrm{C}=220 \quad \mathrm{~B}=17$
74375		B1.5 III	7	08	39	30.8	-59	34	55	4.32	A	-0.12	0.13	LWP	16494	L	T	2.41	7.5	$\mathrm{C}=210 \quad \mathrm{~B}=36$
														SWP	36721	L	T	3.42	9.5	$\mathrm{C}=219 \mathrm{~B}=17$
69081		B1.5 IV	7	08	12	05.6	-36	10	11	5.08	A	-0.20	0.05	LWP	16690	L	T	4.72	6.8	$\mathrm{C}=242 \mathrm{~B}=41$
														SWP	37479	L	T	5.35	6.1	$\mathrm{C}=240 \mathrm{~B}=23$
83058		B1.5 IV	7	09	32	24.6	-51	01	56	5.00		-0.19	0.06	LWP	21841	L	T	3.84	12.5	$\mathrm{C}=219 \mathrm{~B}=40$
														LWP	21841	S	1	0.70	12.5	$\mathrm{C}=162 \quad \mathrm{~B}=40$
														SWP	43214	L	T	4.28	12.8	$\mathrm{C}=1.5 \times \quad \mathrm{B}=18$
														SWP	43217	L	T	3.21	12.8	$\mathrm{C}=216 \mathrm{~B}=18$
37744		B1.5 V	6	05	38	06.9	-02	51	00	6.21		-0.21	0.04	LWP	26787	L	T	11.28	7.8	$\mathrm{C}=214 \quad \mathrm{~B}=34$
														SWP	49282	L	T	9.63	7.2	$\mathrm{C}=228 \quad \mathrm{~B}=14$
														SWP	49285	L	1	2.34	6.1	$C=193 \quad B=12$
41117	CHI 2 ORI	\dagger B2 Ia	1	06	00	57.0	+20	08	28	4.63		0.27	0.44	LWP	17594	L	T	9.33	11.2	$\mathrm{C}=210 \mathrm{~B}=35$
														SWP	38433	L	T	32.10	11.2	$\mathrm{C}=182 \mathrm{~B}=18$
14357		B2 II	9	02	17	38.4	+56	38	14	8.52		0.32	0.53	LWP	21477	L	3	300.0	11.5	$\mathrm{C}=244 \quad \mathrm{~B}=40$
														LWP	21477	s	1	600.0	11.5	$\mathrm{C}=3 \mathrm{X} \quad \mathrm{B}=40$
														SWP	42697	L	3	1440.0	11.5	$\mathrm{C}=253 \mathrm{~B}=48$
														SWP	42697	S	1	600.0	11.5	$\mathrm{C}=156 \quad \mathrm{~B}=48$
127381	SIG LUP	B2 III	7	14	29	14.0	-50	14	11	4.41		-0.19	0.05	LWP	26235	L	T	2.00	7.8	$\mathrm{C}=200 \quad \mathrm{~B}=34$
														SWP	48487	L	T	2.03	7.8	$\mathrm{C}=218 \mathrm{~B}=15$
148703		B2 III	7	16	628	06.5	-34	35	50	4.23		-0.17	0.07	LWP	21247	L	T	1.90	8.8	$\mathrm{C}=210 \mathrm{~B}=38$
														SWP	42466	L	T	1.98	8.2	$C=218 \quad B=18$
28873	DEL CAE	B2 IV-V	7	04	29	18.1	-45	03	336	5.06		-0.20	0.04	LWP	19963	L	T	4.10	12.8	$\mathrm{C}=211 \quad \mathrm{~B}=35$
														LWP	19963	S	1	1.52	12.8	$C=216 \quad B=35$
														SWP	41158	L	T	5.56	13.8	$\mathrm{C}=1.5 \times \quad \mathrm{C}=18$
														SWP	41158	S	1	1.52	13.8	$\mathrm{C}=1.5 \times \quad \mathrm{B}=18$
39291	55 ORI	B2 IV-V	6	05	48	57.1		31	148	5.35		-0.20	0.04	LWP	26788	L	T	4.61	7.2	$C=194 \quad B=33$
														SWP	49283	L	T	5.08	6.8	$C=214 \quad B=17$
														SWP	49286	L	1	1.11	6.1	$C=166 \quad B=13$
122980	CHI CEN	B2 V	7	14	402	59.0	-40	56	627	4.35		-0.20	0.04	LWP	24819	L	T	3.07	7.5	$C=250 \quad B=34$
														SWP	46857	L	T	2.14	7.2	$C=200 \quad B=15$

HD	Name		Spectral Type	Ref		RA			DEC	V	AB	B-V	$E(B-V)$	Image A	Ap N		
222439	KAP	AND	B9 IVn	10		37	56.3	+44	0325	4.14	A -0.07		0.00	LWP 22196 L T LWP 22196 S 1 SWP 43553 L T SWP 43553 S 1			
21790	17	ERI	B9 Vs	10	03	28	08.0	-05	1443	4.73		-0.09	-0.02	LWP 27318	L T		
														SWP 49913			
98664	SIG	LEO	B9.5 Vs	10	11	18	33.5	+06	1813	4.04	-0.06		-0.02	LWP 20548	L T		
													LWP 20548	51			
													LWP 24611	L T			
													SWP 46601				
100889	THE	CRT	B9.5 Vn	10		34	08.6	-09	3132	4.70		-0.08		-0.04	LWP 24610		
															LWP 24610	S 1	
															SWP 46602	L T	
166014	OMI	HER	B9.5 V	10	18	05	35.4	+28	4515	3.84	-0.03		0.01	LWP 26014			
													LWP 26014				
													SWP 48241	L T			
													SWP 48241	S 1			
92207			AO Ia	13	10	35	32.3	-58	2823	5.47	0.50			0.48	LWP 21843	L T	
			LWP 21843										S 1				
			SWP 43216										L 3				
			SWP 43216										S 1				
46300	13	MON		A0 Ib	9	06		12.0	+07	2216	4.50			0.01	0.01	SWP 52192	L T
175687	XI 1	SGR		A0 II	10	18		22.2	-20	4324	5.07	0.13		0.13	LWP 26498		
																LWP 26498	S 1
			SWP 48726											L T			
123299	ALF	DRA	AO III	2	14		02.0	+64	3651	3.66	-0.05		-0.02		LWP 23582	L T	
													LWP 23582	51			
													SWP 45226	L T			
													SWP 45226	S			
130109	109	VIR	A0 V	2		43	43.1	+02	0609	3.74	-0.01			0.00	LWP 28483	L	
													SWP 51227		L		
153808	EPS	HER	AO V	10		58	22.5	+30	5955	3.92	-0.02			-0.01	$\begin{aligned} & \text { LWP } 23116 \\ & \text { SWP } 44679 \end{aligned}$	L	
													L				
212061	GAM	AQR	A0 V	10		219	04.4	-01	3823	3.85	A	-0.06		-0.05	LWP 28291	L	

Table I-Atlas Stars and Images (continued)

HD	Name		Spectral Type	Ref		RA			DEC	$\checkmark \mathrm{AB}$	B-V	$E(B-V)$	Image A	Ap N		
159532	THE	SCO	F1 II	13	17	33	43.4	-42	5805	1.86	0.40	0.15	LWP 26146	L T		
													LWP 26146	S 1		
													SWP 48384	L T		
													SWP 48384	S 1		
156897	XI	OPH	F1 III-IV	13		18	00.3	-21	0339	4.39 AB	0.38	0.05	LWP 26015	L T		
													LWP 26015	S 1		
													SWP 48242	L 3		
													SWP 48242	S 1		
182835	NU	AQL	F2 Ib	13	19	23	57.6	+00	1414	4.66 A	0.59	0.41	LWP 26236	L T		
													SWP 48725	L 3		
129502	MU	VIR	F2 III	13	14	40	25.3	-05	2636	3.88	0.38	0.02	LWP 19605	L T		
													LWP 19605	S 1		
													SWP 40923	L T		
													SWP 40923	S 1		
432	BET	CAS	†F2 III-IV	1	0006		29.7	+58	5226	2.27 A	0.34	-0.03	LWP 20862	L T		
							LWP 20862						S 1			
							SWP 42113						L T			
							SWP 42113						S 1			
82434	PSI	VEL	F2 IV	13	0928			43.7	-40	1449	3.58 AB	0.36	-0.01	LWP 24745	L T	
							SWP 24745							L T		
29875	ALF	CAE		13	0438			56.9	-41	5729	4.45 AB	0.34	-0.01	LWP 20865	L T	
							LWP 20865							51		
							SWP 42467							L		
							SWP 42467							S 1		
112374			F3 Ia	15	1253			48.4	-26	1122	6.62	0.68	0.47	LWP 22438	S 1	
			LWP 22551				L 3									
							LWP 22551							S 1		
206901	KAP	PEG		F3 IV	13	2142		22.6	+25 2451		4.14 AB	0.42	0.03	LWP 25892	L T	
			LWP 25892					S								
			SWP 48096					6 L 3								
			SWP 48096					S								
199532	ALF	OCT	F4 III	13	2058		44.0		$-77 \quad 1301$		5.14	0.49	0.07	LWP 20204	4	
							LWP 20204				S					
							SWP 41447				L					
209166	20	PEG	F4 III	13		2158		39.1	+12	5246		5.62 A	0.34	-0.08	LWP 20546	L T

Table I-Atlas Stars and Images (continued)

HD	Name		Spectral Type	Ref	RA			DEC			V	AB	B-V	$E(B-V$	Image	Ap N
26462	45	TAU	F4 V	13	04	08	40.4	+05	23	39	5.73	A	0.36	-0.06	LWP 27243	$L 3$
															SWP 49838	L 3
185395	THE	CYG	F4 V	13	19	35	06.0	+50	06	16	4.48	AB	0.38	-0.04	LWP 19464	L T
															LWP 19464	S 1
															SWP 40443	L 1
															SWP 40443	S 1
172052			F5 Ib	13	18	36	00.1	-23	13	38	6.73		0.66	0.40	LWP 29194	L 3
															LWP 29233	L 3
43905	45	AUR	F5 III	13	06	17	42.5	+53	28	38	5.35		0.43	0.00	LWP 27372	L T
															SWP 49966	L 3
															SWP 49967	L 2
79940			F5 III	13	09	13	44.9	-37	12	14	4.62	AB	0.45	0.02	LWP 20451	L T
															LWP 20451	S 1
															LWP 20453	L T
															LWP 24744	L T
139664			F5 IV-V	13	15	37	44.5	-44	29	50	4.63		0.40	-0.02	LWP 27868	L 1
															LWP 27974	L 3
															LWP 27974	S 1
															SWP 50615	L 3
160922	OMG	DRA	F5 V	13	17	37	14.3	+68	46	52	4.79	A	0.43	-0.02	LWP 25724	L T
															LWP 25724	S 1
															SWP 47854	L 3
															SWP 47854	51
30652	PI 3	ORI	†F6 V	1	04	47	07.4	+06	52	32	3.19	A	0.45	-0.03	LWP 27309	L T
															SWP 49839	L 1
															SWP 49908	L 3
															SWP 49914	L 3
57623	DEL	VOL	F6 V	13	07	16	51.7	-67	51	56	3.96		0.77	0.29	LWP 16496	L T
171635	45	DRA	F7 Ib	13	18	31	42.7	$+57$	00	24	4.79		0.61	0.16	LWP 17040	L T
															LWP 17040	S 1
8890	ALF	UMI	F7 Ib-II	13	01	48	48.8	+89	01	43	2.02	A	0.60	0.12	LWP 27111	L T
															LWP 27111	S 1
151769	20	OPH	F7 IV	13	16	47	03.9	-10	41	46	4.65		0.47	-0.03	LWP 19821	L T
															LWP 19821	51
124850	10 T	VIR	F7 V	13	14	13	23.3	-05	45	46	4.08		0.51	0.01	LWP 28390	L 3
															SWP 51069	$L 3$
133683			F8 Iab-Ib	13	15	05	01.5	-66	53	36	5.76		0.68	0.13	LWP 22439	L 3
															22439	S

Table I-Atlas Stars and Images (continued)

$I L=g \quad G B T=0 \quad X Z=\Xi$

	7	ItELZ dM7 bもてLZ dMT	$28 \cdot 0$	LO＇τ		¢¢ ${ }^{\circ}$		£¢ 81＊	8＇91	6250	I	qI－qPI टW！	n甘L	611	6889\％
	7	LEOLT dMT													
I	7	bScEt dm	89.0	£દ’ ${ }^{\prime}$	＊	00°		โย 8¢＋	5．85	IV 12	I	EI CWH	dヨコ	กW	986902
	7	26LZZ dMT													
	S	68LZZ dMT													
	T	68LZ2 dMT	10＇0－	65^{\prime} I		56\％		$9512+$	6.01	8181	I	qIII T ＋	प्रGH	901	$02 \angle 891$
t	S	16LZて dMI													
ε	T	L6L2Z dMT	10．0	［9＊τ		OT＇0	IV	LI 8t＋	$2.6 z$	98 GT	I	qeill－twt	पGS	d४¢	LLもじ！
1	7	8 8tbL dMT													
ε	7	9 9tbLZ dMI	ع0＇0－	L5＇ 1		LL＇O	2%	Ob Lt	じして	95 てT	I	GIII－IW \downarrow	WOS	9ε	69LZIT
ε	＇	£ट8LL dMT	ST． 0	08．τ		$50 \cdot 5$	てを	$9580-$	8．$\varepsilon 1$	Sb 90	TI	eII－qI＋ T W			L¢ع66
I	I	โ6ع82 dMI	90\％－	T\％ 1		$6 b^{\prime} 8$		$6200-$	L＇60	8 bl て	2	\wedge ¢ 0 W			L¢9tt
［	S	9 9¢LZ dMT													
ε	＇	9 9t\＆LZ dMT													
2	7	SIELZ dMT	50\％ 0	19．τ		$58^{\circ} \mathrm{\varepsilon}$		$9869+$	S．LZ	82 IT	21	T－EJ III OW	צֻ¢	W\％］	620001
1	S	680LT dMT													
ε	T	680LT dMT													
τ	S	bT9SI dMT													
ε	T	btgst amt	00\％	LS．${ }^{\text {I }}$		โ＇$\chi^{\text {¢ }}$	52	D¢ ¢ \square^{-}	8．17	9210	τ	EIII－0W	GHd	WzJ	£¢06
τ	S	Ls9zz dMT													
ε	T	Ls92z dMT	10．0－	$66^{\circ} \mathrm{T}$		¢8＊	8ε	GE IT＋	8． 51	$0 \varepsilon 91$	โ	III LYt	प⿴囗十	62	19160t
ε	7	てItEて dMT													
โ	S	£！IEて dMT													
ε	T	£โIを dMT	$20 \cdot 0$	SS． 1		$\nabla T \cdot \varepsilon$	8τ	9 ¢ b®＋	6．00	81 60	τ	qeili Lxt	NKT	ATV	£6608
τ	5	8609T dMT													
ε	7	86b9I dMT													
โ	7	LL6ZT dMT	It＇0	EL＇I	＊	$90^{\circ} \varepsilon$	$\varepsilon \square$	IS Lて－	و•Eம	6S 90	I	GI Lyt	VWD	9 IS	LL8ZS
［	S	I685 dmT													
τ	T	1689Z dMT													
โ	5	959zて dMT													
ε	＇I	959zz dmT	$10 \cdot 0$	25．1		£＇\quad \％	8ε	$6215+$	9•92	55 LT	โ	III ¢¢ +	v7C	W母O	850¢9
ε	T	Still dmt													
ε	T	I ZITLZ dMT	L0．0	$85^{\circ} \tau$		96.6	65	$0 \varepsilon L L+$	£ โ 5	Z§ ST	£I	III SY	IWn	GHLL	6996を
I	T	I S6SLT dMT													
τ	7	I I6SLI dMT													
L	S	て£89T dMT													
ε	7	I 2£89T dMT	$9 \mathrm{E} \cdot 0$	96 ${ }^{\text {T }}$		L8＇\％		8166^{+}	$6^{\circ} 20$	12 90	I	aI－qei 0 －St	पת	I ISd	LESbも
	dq	－abeul	$(\Lambda-8) 3$	A－8		\wedge		כヨa		V4		ədK」 texaวəds		uren	aH
（ponu！łuos）so6eu！pue saełS self－I olqe1															

Table I-Atlas Stars and Images (continued)

未

 － \％

 － 둥․ －

 둥

 － ．
 $=$ क．© 62 ．11容寅 ㄷ．
 46603
 $1.38 e-1$
$1.47 \mathrm{e}-11$
＝ F $\stackrel{7}{\dot{\text { ¢ }}}$ $=$
$\dot{\omega}$
0
0
0

 ㄷ．
 F $\stackrel{\dot{\omega}}{\dot{\omega}}$

 N

 는

 Nㅜㅇ

 즌 응ㅇㅇㅇㅎㅇ $\frac{x}{\bar{L}}$

 는

 응ㅇㅇ

 증응으으응ㅇㅇㅇ으으으으응응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

증응으응으응으으응으응으으응ㅇㅇ으으응으으으응ㅇㅇㅇㅇㅇㅇㅇㅇ

HD 123299 AOII

$\underset{4}{x}$
 으으으응ㅇㅇㅇㅇㅇㅇㅇㅇ응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ으웅ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ으읭ㅇㅇㅇㅇ岳

 응ㅇㅇㅇ

 으윽⼆응ㅇㅇ

 웅ㅇㅇㅡ и

 웅ㅇㅇㄴ

 응ㅇㅇ이은

 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ으응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ응ㅇ응ㅇㅇ은 P 23582

 응ㅇㅇㅇ응

urwam 1976

喿离

